
Arnold Math J. (2015) 1:69–73
DOI 10.1007/s40598-014-0004-0

PROBLEM CONTRIBUTION

Periods of Pseudo-Integrable Billiards

Vladimir Dragović · Milena Radnović
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Abstract Consider billiard desks composed of two concentric half-circles connected
with two edges. We examine billiard trajectories having a fixed circle concentric with
the boundary semicircles as the caustic, such that the rotation numbers with respect to
the half-circles are ρ1 and ρ2 respectively. Are such billiard trajectories periodic, and
what are all possible periods for given ρ1 and ρ2?.
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1 Introduction: Rotation Numbers

Let us start with the billiard within a circle C. The trajectories of this system are
polygonal lines inscribed in C, having all sides of the same length. A natural and easy
question is whether such a line is periodic. Namely, if α is the central angle of C

The research was supported by Project 174020: Geometry and Topology of Manifolds, Classical
Mechanics, and Integrable Dynamical Systems of the Serbian Ministry of Education, Science, and
Technological Development and by Grant no. FL120100094 from the Australian Research Council.

V. Dragović
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corresponding to a chord of the length equal to a side of a given trajectory, then the

trajectory is periodic if and only if
α

2π
is rational.

The number ρ = α

2π
is called the rotation number. It is easy to see that the period

is equal to q if and only if the rotation number is equal to s
q , with (s, q) = 1.

The numerator s corresponds to the winding number—the number of rounds of the
billiard particle about the centre within one period.

Notice that there is a circle C0 concentric with C, which is tangent to each segment
of the given billiard trajectory. We will refer to C0 as the caustic of the trajectory.

If R and r are radii of C and C0 then the rotation number is:

ρ = 1

π
arccos

r

R
.

2 Formulation of the Problem

Consider the billiard system within a domain bounded by two concentric half-circles
and two segments lying on the same diameter, as shown in Fig. 1.

Each trajectory of such a billiard will also have a caustic which is concentric with
the half-circles contained in the boundary.

Let R1, R2 be the radii of the half-circles on the boundary. For a fixed the caustic of
radius r , denote by ρ1 = ρ(R1, r), ρ2 = ρ(R2, r) the corresponding rotation numbers.

Question 1 Given ρ1, ρ2, determine if the billiard trajectories are periodic. If yes,
what are the periods?

3 Examples

Let us present several examples.

Example 1 Consider the billiard domain described in Sect. 2, and the caustic, such
that the rotation numbers are ρ1 = 1/3 and ρ2 = 1/4. The boundary of that domain

Fig. 1 The billiard domain, one trajectory, and its caustic
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Fig. 2 12-Periodic and 7-periodic trajectories; the decomposition of the boundary into two regions

is decomposed into two regions, see Fig. 2. For each trajectory with the given caustic,
we have:

• either all bouncing points in the gray parts—in this case, the billiard particle hits
twice each gray part until the trajectory becomes closed and the trajectory is 12-
periodic;

• or all bouncing points are in the black parts—the particle will hit each part once
until closure and the trajectory is 7-periodic.

Example 2 • For ρ1 = 1/4, ρ2 = 1/6, all billiard trajectories are periodic. They
are divided into two classes, one containing the 5-periodic trajectories and another
containing the 6-periodic ones.

• If ρ1 = 1/3, ρ2 = 1/5, all billiard trajectories are again periodic. Their periods
are equal to 13 and 21.

Example 3 For ρ1 = 1/4, ρ2 = 1/
√

30, there exist both periodic and non-periodic
trajectories. The boundary is again decomposed into two regions, as shown in Fig. 3.
For each trajectory with the given caustic, we have:

• either all bouncing points are in the black parts—in this case, the trajectory is not
periodic;

• or all bouncing points are in the gray parts—the particle will hit each part twice
until the closure and the trajectory is 6-periodic.

Now, we can reformulate the Question 1 in the following way:

Question 2 (Arithmetic Question) For given rotational numbers ρ1 and ρ2, find an
arithmetic criterion to determine the number of non-periodic regions on the boundary,
the number of periodic ones and the corresponding periods.

Question 3 We can ask Questions 1 and 2 in a more general situation: for a billiard
domain bounded by a finite number of arcs of concentric circles and segments of the
radial lines of the circles.
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Fig. 3 Both periodic and non-periodic trajectories can share the same caustic

4 Final Remarks

Remark 1 There is an upper topological bound on the possible number n + m of
regions as a linear function of the total number k of concave angles on the boundary
of the billiard desk, see Dragović and Radnović (2014a, b). For k = 1 the upper bound
is 3 and for k = 2 the upper bound is 6.

Remark 2 The answers to the above questions remain the same for the billiards
within domains bounded by arcs of confocal conics, see Dragović and Radnović
(2014a, b). For the definition of the rotation numbers associated to confocal con-
ics see Dragović and Radnović (2011); King (1994); Kozlov and Treshchëv (1991);
Tabachnikov (2005).

Remark 3 Analytical condition for periodicity of a billiard trajectory within an ellipse
is a classical result of Cayley (1853), Griffiths and Harris (1978). This result was
generalized to domains bounded by several confocal conics (Dragović and Radnović
2004, 2011), when there are no reflex angles on the boundary. However, the result
derived in Dragović and Radnović (2004) can be applied also to the billiard domains
with concave angles on the boundary, but only as a necessary condition.

Remark 4 The above examples show that so-called pseudo-integrable billiards within
tables bounded by arcs of confocal conics and containing concave angles generate
dynamics which is significantly different from the integrable dynamics. See Dragović
and Radnović (2014a, b), Richens and Berry (1981) for more details about pseudo-
integrabilty. Qualitative picture of the integrable dynamics is encapsulated in the
Liouville–Arnold theorem Arnold (1978), according to which the non-degenerate
compact invariant manifolds are tori. On each torus, the trajectories are either all
periodic with the same period, or all non-periodic and dense. In contrast, in the case
of of pseudo-integrable billiards with k reflex angles, the invariant surfaces are of
genus g = k +1, see Dragović and Radnović (2014a, b) and also Maier (1943), Zeml-
jakov and Katok (1975), Arnold (1992, 1993). In Examples 1–3, we had k = 2 and
thus g = 3. Examples 1 and 2 show that the fixed invariant surface of genus 3 can
be decomposed into two regions with distinct periods. Example 3 shows the case of
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an invariant surface of genus 3 decomposed into two regions, one with periodic and
another with non-periodic trajectories.
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