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Abstract We consider a weighted family of n parallelly transported hyperplanes in a
k-dimensional affine space and describe the characteristic variety of the Gauss–Manin
differential equations for associated hypergeometric integrals. The characteristic vari-
ety is given as the zero set of Laurent polynomials, whose coefficients are determined
by weights and the associated point in the Grassmannian Gr(k, n). The Laurent
polynomials are in involution. These statements generalize (Varchenko, Mathematics
2:218–231, 2014),where such adescriptionwas obtained for aweightedgeneric family
of parallelly transported hyperplanes. An intermediate object between the differential
equations and the characteristic variety is the algebra of functions on the critical set
of the associated master function. We construct a linear isomorphism between the
vector space of the Gauss–Manin differential equations and the algebra of functions.
The isomorphism allows us to describe the characteristic variety. It also allowed us
to define an integral structure on the vector space of the algebra and the associated
(combinatorial) connection on the family of such algebras.
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1 Introduction

There are three places, where a flat connection depending on a parameter appears:

• KZequations, κ ∂ I
∂zi

= Ki I , i = 1, . . . , n. Here κ is a parameter, I (z1, . . . , zn) a V -
valued function,whereV is a vector space from representation theory, Ki : V → V
are linear operators, depending on z. The connection is flat for all κ , see, for
example, Etingof et al. (1998), Varchenko (1995).

• Quantum differential equations, κ ∂ I
∂zi

= pi ∗z I , i = 1, . . . , n. Here p1, . . . , pn

are generators of some commutative algebra H with quantum multiplication ∗z

depending on z. The connection is flat for all κ . These equations are a part of the
Frobenius structure on the quantum cohomology of a variety, see Dubrovin (1996),
Manin (1999).
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• Differential equations for hypergeometric integrals associated with a family of
weighted arrangements with parallelly transported hyperplanes, κ ∂ I

∂zi
= Ki I , i =

1, . . . , n. The connection is flat for all κ , see, for example, Varchenko (1989), Orlik
and Terao (2001).
If κ ∂ I

∂zi
= Ki I , i = 1, . . . , n, is a system of V -valued differential equations of one

of these types, then its characteristic variety is

Spec = {(q, p) ∈ T ∗
C

n | ∃v ∈ V − {0}with K j (q)v = p jv, j = 1, . . . , n}.

It is known that the characteristic varieties of the first two types of differential
equation are interesting objects. For example, the characteristic variety of the quan-
tum differential equation of the flag variety is the zero set of the Hamiltonians of the
classical Toda lattice, see Givental (1997), Givental and Kim (1995), and the charac-
teristic variety of the glN KZ equations with values in the tensor power of the vector
representation is the zero set of the Hamiltonians of the classical Calogero–Moser
system, see Mukhin et al. (2012).

In this paper we describe the characteristic variety of the Gauss–Manin differential
equations for hypergeometric integrals associated with an arbitrary weighted family
of n parallelly transported hyperplanes inC

k . This description generalizes (Varchenko
2014, Corollary 4.2) where such a description was obtained for a weighted generic
family of parallelly transported hyperplanes.

The characteristic variety is given as the zero set of Laurent polynomials, whose
coefficients are determined by weights and the associated point in the Grassmannian
Gr(k, n). The Laurent polynomials are in involution, see Sect. 4.1.

It is known that the KZ differential equations, as well as some quantum differ-
ential equations, can be identified with certain symmetric parts of the Gauss–Manin
differential equations of weighted families of parallelly transported hyperplanes, see
Schechtman and Varchenko (1991), Tarasov and Varchenko (2014). Therefore, the
results of this paper on the characteristic variety is a step to studying characteristic
varieties of more general KZ and quantum differential equations, which admit integral
hypergeometric representations.

Our description of the characteristic variety is based on the fact (Varchenko 2006),
that the characteristic variety of the Gauss–Manin differential equations is generated
by the master function of the corresponding hypergeometric integrals, that is, the
characteristic variety coincides with the Lagrangian variety of the master function.
That fact was developed later in Mukhin et al. (2011, Theorem 5.5), it was proved
there with the help of the Bethe ansatz, that the local algebra of a critical point of the
master function associated with a glN KZ equation can be identified with a suitable
local Bethe algebra of the corresponding glN module.

In Sect. 2, we consider a weighted arrangement (C, a) of n affine hyperplanes in
C

k . Here a is a point of (C×)n called the weight. We introduce the Aomoto complex
(A(C), d(a)), the flag complex (F(C), d), the critical set CC,a of the master function
on the complement to the arrangement. We remind the isomorphism of vector spaces
E : O(CC,a) → Hk(F(C), d), constructed in Varchenko (2011) and given by a variant
of the Grothendieck residue. The algebra O(CC,a) is a nonlinear object, defined by
the critical point equations; the space Hk(F(C), d) is a combinatorial object defined
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by the matroid of the arrangement C; the isomorphism E is given by a k-dimensional
integral. Our firstmain result, Theorem2.16, gives an elementary isomorphism [S(a)] :
Hk(F(C), d) → O(CC,a) such that [S(a)] ◦ E = (−1)k . Theorem 2.16 allows us
to bring to O(CC,a) the combinatorial structures on Hk(F(C), d). In particular, we
construct a set {wα0,...,αk } of marked elements of O(CC,a), labeled by flags of edges
of C, which spans the vector space O(CC,a). We give the linear relations between the
marked elements; the relations are with integer coefficients and depend only on the
matroid of C, see Corollary 2.18.

In Sect. 3, we consider a family of weighted arrangements (C(x), a) of n affine
hyperplanes in C

k , parameterized by x ∈ C
n . The hyperplanes of (C(x), a) are trans-

ported parallelly as x changes. Each of the arrangements has the algebra O(CC(x),a)

of functions on the critical set CC(x),a of the associated master function. We define
the discriminant � ⊂ C

n so that the combinatorics of C(x) does not change when x
runs through C

n − �. The constructions of Sect. 2 provide us with the vector bundle
of algebras 	x∈Cn−�O(CC(x),a) → C

n − �, whose fibers are canonically identified
with the help of the marked elements. The multiplication in O(CC(x),a) depends on
x . The isomorphism Hk(F(C(x)), d) → O(CC(x),a) of Sect. 2 allows us to describe
the multiplication in O(CC(x),a) combinatorially, see Corollary 3.8. We describe the
Gauss–Manin differential equations associated with the weighted family of arrange-
ments as a system of differential equations on the bundle of algebras.

In Sect. 4.1, for given k-dimensional vector subspace Y ⊂ C
n and weight

a ∈ (C×)n , we define a Lagrangian variety LY,a ⊂ C
n × (Cn)∗. We consider

the projection πLY,a : LY,a → C
n and the algebras of functions O(LY,a(x)) on

fibers of the projection. We describe LY,a as the zero set of Laurent polynomials in
involution.

In Sect. 4.3, for the family of arrangements C(x) considered in Sect. 3, we
define a k-dimensional subspace Y ⊂ C

n and construct an isomorphism �∗
C(x),a :

O(LY,a(x)) → O(CC(x),a) of algebras for any x ∈ C
n . Theorem 4.5, on this iso-

morphism, is our second main result. We discuss corollaries of Theorem 4.5 in Sects.
4.4, 4.5 and 4.6. In particular, in Corollary 4.10 we describe the ratio of the Hessian
element inO(CC(x),a) and the Jacobian element inO(LY,a(x)) and in Corollary 4.11
we identify the standard residue form onO(CC(x),a), defined by a k-dimensional inte-
gral, with a residue form on O(LY,a(x)), defined by an n-dimensional integral. In
Sect. 4.5, we consider the vector bundle of algebras 	x∈Cn−�O(LY,a(x)) → C

n −�.
The isomorphism �∗

C(x),a allows us to identify the fibers of the bundle and describe
the Gauss–Manin differential equations with values in that bundle. They have the
form κ ∂ I

∂q j
(x) = [p j ] ∗x I , j = 1, . . . , n, where q1, . . . , qn are coordinates on C

n ,

p1, . . . , pn are the dual coordinates on (Cn)∗, [p j ]∗x is the multiplication by p j in
O(LY,a(x)).

In Sect. 4.6, we observe a rather unexpected ‘reality’ property of the Lagrangian
variety LY,a , which is similar to the reality property of Schubert calculus, see Mukhin
et al. (2009a, b), Sottile (2010).

In Theorem 5.1, we identify the characteristic variety of the Gauss–Manin differ-
ential equations associated with the family of arrangements considered in Sect. 3 and
the Lagrangian variety LY,a defined in Sect. 4.3.

123



Critical Set of the Master Function. . . 257

2 Arrangements

2.1 Affine Arrangement

Let k, n be positive integers, k < n. Denote J = {1, . . . , n}.
Consider the complex affine spaceC

k with coordinates t1, . . . , tk . LetC = (Hj ) j∈J ,
be an arrangement of n affine hyperplanes in C

k . Denote U (C) = C
k − ∪ j∈J Hj , the

complement. An edge Xα ⊂ C
k of C is a nonempty intersection of some hyperplanes

of C. Denote by Jα ⊂ J the subset of indices of all hyperplanes containing Xα . Denote
lα = codimCk Xα .

We assume that C is essential, that is, C has a vertex, an edge which is a point.
An edge is called dense if the subarrangement of all hyperplanes containing it is

irreducible: the hyperplanes cannot be partitioned into nonempty sets so that, after a
change of coordinates, hyperplanes in different sets are in different coordinates. In
particular, each hyperplane of C is a dense edge.

2.2 Orlik–Solomon Algebra

Define complex vector spaces Ap(C), p = 0, . . . , k. For p = 0, we set Ap(C) = C.
For p ≥ 1, Ap(C) is generated by symbols (Hj1 , . . . , Hjp ) with ji ∈ J , such that

(i) (Hj1 , . . . , Hjp ) = 0 if Hj1 ,…,Hjp are not in general position, that is, if the
intersection Hj1 ∩ · · · ∩ Hjp is empty or has codimension less than p;

(ii) (Hjσ(1) , . . . , Hjσ(p)
) = (−1)|σ |(Hj1 , . . . , Hjp ) for any element σ of the symmet-

ric group 	p;

(iii)
∑p+1

i=1 (−1)i (Hj1 , . . . , Ĥ ji , . . . , Hjp+1) = 0 for any (p+1)-tuple Hj1 , . . . , Hjp+1

of hyperplanes in C which are not in general position and such that Hj1 ∩ · · · ∩
Hjp+1 
= ∅.

The direct sumA(C) = ⊕N
p=1Ap(C) is theOrlik–Solomon algebrawith respect tomul-

tiplication (Hj1 , . . . , Hjp )·(Hjp+1 , . . . , Hjp+q ) = (Hj1 , . . . , Hjp , Hjp+1 , . . . , Hjp+q ).

2.3 Aomoto Complex

Fix a point a = (a1, . . . , an) ∈ (C×)n called the weight. Then the arrangement C is
weighted: for j ∈ J , we assign weight a j to hyperplane Hj . For an edge Xα , define its
weight aα = ∑

j∈Jα
a j . We define ω(a) = ∑

j∈J a j · (Hj ) ∈ A1(C). Multiplication

by ω(a) defines the differential d(a) : Ap(C) → Ap+1(C), x �→ ω(a) · x , on A(C),
(d(a))2 = 0. The complex (A(C), d(a)) is called the Aomoto complex.

2.4 Flag Complex

For an edge Xα , lα = p, a flag starting at Xα is a sequence Xα0 ⊃ Xα1 ⊃ . . . ⊃
Xαp = Xα of edges such that lα j = j for j = 0, . . . , p. For an edge Xα , we define

(Fα)Z as the free Z-module generated by the elements Fα0,...,αp=α labeled by the
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258 A. Varchenko

elements of the set of all flags starting at Xα . We define (Fα)Z as the quotient of
(Fα)Z by the submodule generated by all the elements of the form

∑

Xβ ,Xα j−1⊃Xβ⊃Xα j+1

Fα0,...,α j−1,β,α j+1,...,αp=α . (2.1)

Such an element is determined by j ∈ {1, . . . , p − 1} and an incomplete flag Xα0 ⊃
· · · ⊃ Xα j−1 ⊃ Xα j+1 ⊃ · · · ⊃ Xαp = Xα with lαi = i .

We denote by Fα0,...,αp the image in (Fα)Z of the element Fα0,...,αp . For p =
0, . . . , k, we set (F p(C))Z = ⊕Xα, lα=p (Fα)Z, F p(C) = (F p(C))Z ⊗ C, F(C) =
⊕N

p=1F p(C). We define the differential dZ : (F p(C))Z → (F p+1(C))Z by

dZ : Fα0,...,αp �→
∑

Xβ ,Xαp ⊃Xβ

Fα0,...,αp,β , (2.2)

d2
Z

= 0. Tensoring dZ with C, we obtain the differential d : F p(C) → F p+1(C). In
particular, we have (see Schechtman and Varchenko 1991)

H p(F(C), d) = H p((F(C))Z, dZ) ⊗ C. (2.3)

Theorem 2.1 (Schechtman and Varchenko 1991, Corollary 2.8) We have
H p(F(C), d) = 0 for p 
= k and dim Hk(F(C), d) = |χ(U (C))|, where χ(U (C)) is
the Euler characteristic of the complement U (C).

2.5 Euler Characteristic of U(C)

A formula for the Euler characteristic χ(U (C)) in terms of the matroid associated with
C is given in Schechtman et al. (1995, Proposition 2.3). The condition χ(U (C)) 
= 0
is discussed in Crapo (1967, Theorem 2) cited as Theorem 2.4 in Schechtman et al.
(1995). On the equality of the absolute value |χ(U (C))| and the number of bounded
components of the real part of U (C) see, for example, Varchenko (1995).

2.6 Duality

The vector spacesAp(C) andF p(C) are dual, see Schechtman and Varchenko (1991).
The pairingAp(C) ⊗F p(C) → C is defined as follows. For Hj1 , . . . , Hjp in general
position, set F(Hj1, . . . , Hjp ) = Fα0,...,αp , where Xα0 = C

k , Xα1 = Hj1 , …, Xαp =
Hj1 ∩· · ·∩ Hjp . Then we define 〈(Hj1 , . . . , Hjp ), Fα0,...,αp 〉 = (−1)|σ |, if Fα0,...,αp =
F(Hjσ(1) , . . . , Hjσ(p)

) for some σ ∈ Sp, and 〈(Hj1 , . . . , Hjp ), Fα0,...,αp 〉 = 0 other-
wise.

An element F ∈ Fk(C) is called singular if F annihilates the image of the map
d(a) : Ak−1(C) → Ak(C), see Varchenko (2006). Denote by Singa Fk(C) ⊂ Fk(C)

the subspace of all singular vectors.
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2.7 Contravariant Map and Form

The weight a determines the contravariant map

S(a) : F p(C) → Ap(C), Fα0,...,αp �→
∑

a j1 · · · a jp (Hj1 , . . . , Hjp ) , (2.4)

where the sum is taken over all p-tuples (Hj1 , . . . , Hjp ) such that Hj1 ⊃ Xα1 ,…,
Hjp ⊃ Xαp . IdentifyingAp(C) with F p(C)∗, we consider the map as a bilinear form,
S(a) : F p(C) ⊗F p(C) → C. The bilinear form is called the contravariant form. The
contravariant form is symmetric. For F1, F2 ∈ F p(C),

S(a)(F1, F2) =
∑

{ j1,..., jp}⊂J
a j1 · · · a jp 〈(Hj1 , . . . , Hjp ), F1〉 〈(Hj1 , . . . , Hjp ), F2〉,

where the sum is over all unordered p-element subsets (see Schechtman andVarchenko
1991).

Lemma 2.2 (Schechtman andVarchenko 1991, Lemma 3.2.5)The contravariant map
(2.4) defines a homomorphism of complexes S(a) : (F(C), d) → (A(C), d(a)).

2.8 Generic Weights

Theorem 2.3 (Schechtman and Varchenko 1991, Theorem 3.7) If the weight a is
such that none of the dense edges has weight zero, then the contravariant form is
nondegenerate. In particular, we have an isomorphism of complexes S : (F(C), d) →
(A(C), d(a)).

Theorem 2.4 (Schechtman and Varchenko 1991; Yuzvinsky 1995; Orlik and Terao
2001) If the weight a is such that none of the dense edges has weight zero, then
H p(A∗(C), d(a)) = 0 for p 
= k and dim Hk(A∗, d(a)) = |χ(U (C))|.

Theorem 2.4 is a corollary of Lemma 2.2 and Theorems 2.1, 2.3.

Corollary 2.5 If the weight a is such that none of the dense edges has weight zero,
then the dimension of Singa Fk(C) equals |χ(U (C))|.

Notice that none of the dense edges has weight zero if all weights are positive.

2.9 Differential Forms

For j ∈ J , fix defining equations f j = 0 for the hyperplanes Hj , where f j =
b1j t1 + · · · + bk

j tk + z j with bi
j , z j ∈ C. Consider the logarithmic differential 1-form

ω j = d f j/ f j onC
k . Let Ā(C) be the exteriorC-algebra of differential forms generated

by 1 and ω j , j ∈ J . The map A(C) → Ā(C), (Hj ) �→ ω j , is an isomorphism. We
identify A(C) and Ā(C).
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260 A. Varchenko

For I = {i1, . . . , ik} ⊂ J , denote dI = di1,...,ik = detki,l=1(b
i
il
). Then

ωi1 ∧ · · · ∧ ωik = di1,...,ik

fi1 . . . fik

dt1 ∧ · · · ∧ dtk . (2.5)

Lemma 2.6 The functions (1/ f j ) j∈J separate points of U (C).

2.10 Master Function

The master function of the weighted arrangement (C, a) is


C,a =
∑

j∈J
a j log f j , (2.6)

a multivalued function on U (C). We have d
C,a = ∑
j∈J a jω j = ω(a) ∈ A1(C). Let

CC,a = {u ∈ U (C) | ∂
C,a
∂ti

(u) = 0 for i = 1, . . . , k} be the critical set of 
C,a . The

critical point equations can be reformulated as the equation ω(a)|u = 0. Notice that

∂
C,a

∂ti
=

∑n

j=1
bi

j
a j

f j
and

∂
C,a

∂z j
= a j

f j
. (2.7)

Define the Hessian of the master function, HessC,a = detki, j=1

(
∂2
C,a
∂ti ∂t j

)
. A critical

point u ∈ CC,a is nondegenerate if HessC,a(u) 
= 0.We have the formula inVarchenko
(2006):

HessC,a = (−1)k
∑

I⊂J,|I |=k
d2

I

∏

i∈I

ai

f 2i
. (2.8)

2.11 Isolated Critical Points

Theorem 2.7 (Varchenko 1995; Orlik and Terao 1995; Silvotti 1996) For generic
exponent a ∈ (C×)n, all critical points of 
C,a are nondegenerate and the number of
critical points equals |χ(U (C))|.

Consider the projective space P
k compactifying C

k . Assign the weight a∞ =
−∑

j∈J a j to the hyperplane H∞ = P
k − C

k . Denote by C∨ the arrangement

(Hj ) j∈J∪∞ in P
k . The weighted arrangement (C, a) is called unbalanced if the weight

of any dense edge ofC∨ is nonzero, seeVarchenko (2011). For example, (C, a) is unbal-
anced if all weights (a j ) j∈J are positive. The unbalanced weights form a Zariski open
subset in the space of all weights a ∈ (C×)n .

Lemma 2.8 (Varchenko 2011, Section 4) If (C, a) is unbalanced, then all critical
points of 
C,a are isolated and the sum of their Milnor numbers equals |χ(U (C))|.
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2.12 Residue

Let O(U (C)) be the algebra of regular functions on U (C) and IC,a =
〈
∂
C,a

∂ti
| i =

1, . . . , k
〉

⊂ O(U (C)) the ideal generated by the first derivatives of 
C,a . Let

O(CC,a) = O(U (C))/IC,a be the algebra of functions on the critical set and
[ ] : O(U (C)) → O(CC,a), f �→ [ f ], the projection. The algebra O(CC,a)

is finite-dimensional, if all critical points are isolated. In that case, O(CC,a) =
⊕u∈CC,aO(CC,a)u , where O(CC,a)u is the local algebra corresponding to the point
u.

Lemma 2.9 (Varchenko 2011, Lemma 2.5) If the algebra O(CC,a) is finite-
dimensional, then the elements [1/ f j ], j ∈ J , generate O(CC,a).

Let Ru : O(CC,a)u → C be the Grothendieck residue,

[ f ] �→ 1

(2π i)k
Resu

f
∏k

i=1
∂
C,a

∂ti

= 1

(2π i)k

∫

�u

f dt1 ∧ · · · ∧ dtk
∏k

i=1
∂
C,a

∂ti

. (2.9)

Here �u is the real k-cycle located in a small neighborhood of u and defined by
the equations | ∂
C,a

∂ti
| = εi , i = 1, . . . , k, where εs are sufficiently small positive

numbers. The cycle is oriented by the condition d arg ∂
C,a
∂t1

∧ · · · ∧ d arg ∂
C,a
∂tk

> 0,
see Griffiths and Harris (1994).

Denote by [HessC,a]u the image of the Hessian in O(CC,a)u . We have

Ru : [HessC,a]u �→ μu, (2.10)

where μu = dimCO(CC,a)u , the Milnor number, see Arnol’d et al. (1985). Define
the bilinear form on O(CC,a)u ,

([ f ], [g])u = Ru([ f ][g]). (2.11)

If O(CC,a) is finite-dimensional, we define the residue bilinear form ( , )CC,a on
O(CC,a) as

( , )CC,a = ⊕u∈CC,a ( , )u .

This form is nondegenerate, see Arnol’d et al. (1985), and ([ f ][g], [h])CC,a =
([ f ], [g][h])CC,a for all [ f ], [g], [h] ∈ O(CC,a). In other words, the pair (O(CC,a),

( , )CC,a ) is a Frobenius algebra.

2.13 Canonical Element

A differential k-form H ∈ Ak(C) can be written as H = fH dt1 ∧ · · · ∧ dtk , where
fH ∈ O(U (C)). Define a map F : U (C) → Fk(C) which sends u ∈ U (C) to the
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262 A. Varchenko

element F(u) ∈ Fk(C) such that 〈H,F(u)〉 = fH (u) for any H ∈ Ak(C). The map
F is called the specialization map, the vector F(u) is called the special vector at u,
see Varchenko (2006). In the theory of quantum integrable systems special vectors are
called the Bethe vectors.

Let (Fm)m∈M be a basis of Fk(C) and (Hm)m∈M ⊂ Ak(C) the dual basis. We have
Hm = fHm dt1 ∧ · · · ∧ dtk for some fHm ∈ O(U (C)). The element

E =
∑

m∈M
fHm ⊗ Fm ∈ O(U (C)) ⊗ Fk(C) (2.12)

is called the canonical element. For u ∈ U (C), we have

F(u) =
∑

m∈M
fHm (u)Fm . (2.13)

Let [E] be the image of the canonical element in O(CC,a) ⊗ Fk(C).

Lemma 2.10 (Varchenko 2006, Lemma 2.6) We have [E] ∈ O(CC,a)⊗Singa Fk(C).

Theorem 2.11 (Varchenko 2006) For u ∈ U (C), we have

S(a)(F(u),F(u)) = (−1)kHessC,a(u). (2.14)

Moreover, if u1, u2 ∈ U (C) are distinct isolated critical points of 
C,a, then the special
singular vectors F(u1),F(u2) are orthogonal,

S(a)(F(u1),F(u2)) = 0, (2.15)

cf. Mukhin and Varchenko (2005), Varchenko (2011).

2.14 Canonical Isomorphism

Assume that the algebra O(CC,a) is finite-dimensional. Define the linear map

E : O(CC,a) → SingFk(C), [g] �→ ([g], [E])CC,a . (2.16)

Theorem 2.12 (Varchenko 2011) If the weight a ∈ (C×)n is unbalanced, then the
map E is an isomorphism of vector spaces. The isomorphism E identifies the residue
form on O(CC,a) and the contravariant form on SingFk(C) multiplied by (−1)k ,

( f, g)CC,a = (−1)k S(a)(E( f ), E(g)) for all f, g ∈ O(CC,a). (2.17)

The map E is called the canonical isomorphism. We provide a proof of Theorem
2.12 in Sect. 2.16.

Corollary 2.13 (Varchenko 2011) If the weight a ∈ (C×)n is unbalanced, then the
restriction of the contravariant form S(a) to the subspaceSingFk(C) is nondegenerate.
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On the restriction of S(a) to the subspace SingFk(C) see also Falk and Varchenko
(2012).

If all critical points are nondegenerate, then

E : [g] �→
∑

u∈CC,a

∑

m

g(u) fHm (u)

HessC,a(u)
Fm =

∑

u∈CC,a

g(u)

HessC,a(u)
F(u) , (2.18)

see (2.10).

Remark. If the weight a ∈ (C×)n is unbalanced, then the canonical isomorphism E
induces a commutative associative algebra structure on Sing aFk(C). Togetherwith the
contravariant form S(a)|Singa F k it is a Frobenius algebra. The algebra of multiplication

operators on Sing aFk(C) is an analog of the Bethe algebra in the theory of quantum
integrable models, see, for example, Mukhin et al. (2011), Varchenko (2011).

2.15 Orthogonal Projection

Lemma 2.14 It the weight a ∈ (C×)n is unbalanced, then dFk−1(C) = Singa
Fk(C)⊥, where dFk−1(C) ⊂ Fk(C) is the image of the differential defined by (2.2) and
Singa Fk(C)⊥ ⊂ Fk(C) is the orthogonal complement to Singa Fk(C) with respect to
S(a).

Proof We have dFk−1(C) ⊂ Singa Fk(C)⊥ by Lemma 2.2 and the definition of
Singa Fk(C). But dim dFk−1(C) = dim Singa Fk(C)⊥ by Theorem 2.1 and Corollary
2.5.

Corollary 2.15 It the weight a ∈ (C×)n is unbalanced, the orthogonal projec-
tion π⊥ : Fk(C) → Singa Fk(C) establishes the isomorphism Hk(F(C), d) ∼=
Singa Fk(C).

Define the map

[S(a)] : Fk(C) → O(CC,a), F �→∈ [ f ] , (2.19)

whereS(a)(F)= f dt1∧· · ·∧dtk . Clearly, [S(a)](Singa Fk(C)⊥)= [S(a)](dFk−1(C))

= 0, since ω(a) = 0 on CC,a . In particular, [S(a)] induces the map

[S(a)] : Hk(F(C), d) → O(CC,a). (2.20)

Theorem 2.16 It the weight a ∈ (C×)n is unbalanced, then the map

[S(a)]∣∣Singa F k(C)
: Singa Fk(C) → O(CC,a) (2.21)

is an isomorphism of vector spaces and

E◦[S(a)]∣∣Singa F k (C)
= (−1)k . (2.22)
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264 A. Varchenko

Identity (2.22) was conjectured in Varchenko (2011). It was proved in Varchenko
(2011) that the left-hand side in (2.22) is a nonzero scalar operator, if C is a generic
arrangement.

Remark. The map [S(a)]∣∣Singa F k(C)
: Singa Fk(C) → O(CC,a) is elementary. The

map E : O(CC,a) → Singa Fk(C) is transcendental: it is given by a k-dimensional
integral. Formula (2.22) says that the inverse map to the transcendental map is ele-
mentary.

Corollary 2.17 If the weight a ∈ (C×)n is unbalanced, then the map [S(a)] :
Hk(F , d) → O(CC,a) is an isomorphism of vector spaces.

2.16 Proof of Theorems 2.12 and 2.16

First assume that the weight a is generic and all critical points of 
C,a are nondegen-
erate. Then the special vectors (F(u))u∈CC,a form a basis of Singa Fk(C) by Theorems
2.11, 2.7 and Corollary 2.5. (In the theory of quantum integrable systems this fact is
called the completeness of the Bethe ansatz method, see Varchenko (1995, 2006).)

Theorem 2.11 and formula (2.10) applied to the basis (F(u))u∈CC,a show that S(a)

restricted to Sing aFk(C) is nondegenerate and E : O(CC,a) → SingFk(C) is an
isomorphism of vector spaces that identifies the residue form on O(CC,a) and the
contravariant form on SingFk(C) multiplied by (−1)k . (More precisely, this follows
from the following fact. Let u ∈ CC,a and gu ∈ O(CC,a) be the function which equals
1 at u and equals 0 at other points of CC,a . Then E(gu) = F(u)/HessC,a(u).)

The orthogonal projection Fk(C) → Sing aFk(C) is defined by the formula

F �→
∑

u∈CC,a

S(a)(F,F(u))

S(a)(F(u),F(u))
F(u) = (−1)k

∑

u∈CC,a

S(a)(F,F(u))

HessC,a(u)
F(u).

(2.23)

Let S(a)(F) = f dt1 ∧ · · · ∧ dtk and u ∈ U (C), then f (u) = S(a)(F,F(u)) by the
definitions of F(u), S(a), S(a). Hence the map [S(a)] defined in (2.19) sends F to the
element ofO(CC,a) which equals S(a)(F,F(u)) at every u ∈ CC,a . Applying formula
(2.18) to this element we obtain

E◦[S(a)] : F �→
∑

u∈CC,a

S(a)(F,F(u))

HessC,a(u)
F(u) . (2.24)

These two formulas prove Theorem 2.16 if all critical points are nondegenerate.
Assume now that the weight a is unbalanced. Then all critical points of 
C,a are

isolated and the sum of the corresponding Milnor numbers equals |χ(U (C))|. We
deform the weight a to make it generic and to make all critical points nondegenerate.
Then Sing aF(C) and S(a)

∣
∣
Sing aF(C)

continuously depend on the deformation as well

as O(CC,a) and ( , )CC,a . The maps [S(a)]∣∣Sing aF(C)
and E also continuously depend

on the deformation. This implies that for the initial unbalanced weight a, we have the
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identity E◦[S(a)]∣∣Singa F k(C)
= (−1)k and the fact that E identifies the residue form on

O(CC,a) and the contravariant form on SingFk(C) multiplied by (−1)k . This proves
Theorems 2.16 and 2.12.

2.17 Integral Structure on O(CC,a) and Sing aF k(C)

If the weight a is unbalanced, the formula H p(F(C), d) = H p((F(C))Z, dZ) ⊗ C

and the isomorphism [S(a)]∣∣Singa F k(C)
: Hk(F , d) → O(CC,a) define an integral

structure on O(CC,a). More precisely, for a k-flag of edges Xα0 ⊃ Xα1 ⊃ · · · ⊃
Xαk , let S(a)(Fα0,...,αk ) = fα0,...,αk dt1 ∧ · · · ∧ dtk . Denote by wα0,...,αk the element
[ fα0,...,αk ] ∈ O(CC,a).

Corollary 2.18 If the weight a is unbalanced, then the set of all elements {wα0,...,αk },
labeled by all k-flag of edges of C, spans the vector space O(CC,a). All linear relations
between the elements of the set are corollaries of the relations

∑

Xβ ,Xα j−1⊃Xβ⊃Xα j+1

wα0,...,α j−1,β,α j+1,...,αp= α = 0 ,

∑

Xβ ,Xαp ⊃Xβ

wα0,...,αp,β = 0 , (2.25)

cf. formulas (2.1), (2.2).

Similarly, for a k-flag of edges Xα0 ⊃ Xα1 ⊃ · · · ⊃ Xαk , let vα0,...,αk be the
orthogonal projection of Fα0,...,αk to Sing aFk(C).

Corollary 2.19 If the weight a is unbalanced, then the set of all elements {vα0,...,αk },
labeled by all k-flag of edges of C, spans the vector space Sing aFk(C). All linear
relations between the elements of the set are corollaries of the relations

∑

Xβ ,Xα j−1⊃Xβ⊃Xα j+1

vα0,...,α j−1,β,α j+1,...,αp= α = 0 ,

∑

Xβ ,Xαp ⊃Xβ

vα0,...,αp,β = 0 , (2.26)

cf. formulas (2.1), (2.2).

We have

[S(a)] : vα0,...,αk �→ wα0,...,αk , E : wα0,...,αk �→ (−1)kvα0,...,αk . (2.27)

The elements {wα0,...,αk } ⊂ O(CC,a) and {vα0,...,αk } ⊂ Sing aFk(C) will be called
the marked elements. The relations (2.25), (2.26) will be called the marked relations.

Remark. An interesting problem is to express 1 ∈ O(CC,a) as a linear combination
of the marked elements wα0,...,αk , see Varchenko (2015), where such a formula is
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given for a generic arrangement. Notice, that if all points of the critical set CC,a are
nondegenerate, then

E(1) =
∑

u∈CC,a
F(u)/HessC,a(u) ,

see Mukhin et al. (2011), where such sums were studied.

2.18 Skew-Commutative Versus Commutative

If a is unbalanced, then

Hk(A(C), d(a)) ∼= Hk(F(C), d) ∼= O(CC,a) (2.28)

as vector spaces. The first space is a cohomology space of a skew-commutative
graded algebra A(C). The last space is the vector space of a commutative algebra.
Isomorphisms (2.28) identify these skew-commutative and commutative objects. It is
interesting to identify the multiplication operators on the last space with suitable oper-
ators on the first two spaces. It turns out that those operators appear in the associated
Gauss–Manin (hypergeometric) differential equations, see Sect. 3.7 and Mukhin et al.
(2011), Varchenko (2006), Varchenko (2011).

Another identification of skew-commutative and commutative objects of an
arrangement see in Gelfand and Varchenko (1987), Proudfoot (2006).

2.19 Combinatorial Connection

Consider a deformation C(s) of the arrangement C, which preserves the combinatorics
of C. Assume that the edges of C(s) can be identified with the edges of C so that
the elements in formula (2.1) and the differential in formula (2.2) do not depend on
s. Assume that the deformed arrangement C(s) has a deformed weight a(s), which
remains unbalanced. Then for every s, the elements {wα0,...,αk (s)} spanO(CC(s),a(s)) as
a vector spacewith linear relations (2.25) not depending on s. This allows us to identify
all the vector spaces O(CC(s),a(s)). In particular, if an element w(s) ∈ O(CC(s),a(s))

is given, then the derivative dw
ds is well-defined. This construction is called the com-

binatorial connection on the family of algebras O(CC(s),a(s)), see Varchenko (2015).
All the elements {wα0,...,αk (s)} are flat sections of the combinatorial connection.

Similarly we can define the combinatorial connection on the family of vector spaces
Sing a(s)Fk(C(s)).

2.20 Arrangement with Normal Crossings

An essential arrangement C is with normal crossings, if exactly k hyperplanes meet at
every vertex of C. Assume that C is an essential arrangement with normal crossings.
A subset { j1, . . . , jp} ⊂ J is called independent if the hyperplanes Hj1 , . . . , Hjp

intersect transversally.
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A basis of Ap(C) is formed by (Hj1 , . . . , Hjp ), where { j1 < · · · < jp} are inde-
pendent ordered p-element subsets of J . The dual basis of F p(C) is formed by the
corresponding vectors F(Hj1, . . . , Hjp ). These bases ofAp(C) and F p(C) are called
standard. We have

F(Hj1, . . . , Hjp ) = (−1)|σ |F(Hjσ(1) , . . . , Hjσ(p)
), for σ ∈ 	p. (2.29)

For an independent subset { j1, . . . , jp}, we have S(a)(F(Hj1, . . . , Hjp ), F(Hj1 , . . . ,

Hjp )) = a j1 · · · a jp and S(a)(F(Hj1, . . . , Hjp ), F(Hi1 , . . . , Hik )) = 0 for distinct
elements of the standard basis. If a is unbalanced, then themarked elements inO(CC,a)

are

wi1,...,ik = di1,...,ik

ai1

[ fi1 ]
. . .

aik

[ fik ]
, (2.30)

where {i1, . . . , ik} runs through the set of all independent k-element subsets of J . We
have

wiσ(1),...,iσ(k)
= (−1)σ wi1,...,ik , for σ ∈ 	k . (2.31)

We put wi1,...,ik = 0 if the set {i1, . . . , ik} is dependent. The marked relations are
labeled by independent subsets {i2, . . . , ik} and have the form

∑

j∈J
w j,i2,...,ik = 0. (2.32)

Themarked elementsvi1,...,ik inSing aFk(C) are orthogonal projections toSing aFk(C)

of the elements F(Hi1 , . . . , Hik ) with the skew-symmetry property

viσ(1),...,iσ(k)
= (−1)σ vi1,...,ik , for σ ∈ 	k . (2.33)

and the marked relations

∑

j∈J
v j,i2,...,ik = 0 (2.34)

labeled by independent subsets {i2, . . . , ik}.

3 Family of Parallelly Transported Hyperplanes

3.1 Arrangement in C
n × C

k

Recall that J = {1, . . . , n}. Consider C
k with coordinates t1, . . . , tk , Cn with coordi-

nates z1, . . . , zn , the projection π : C
n × C

k → C
n . Fix n nonzero linear functions

on C
k , g j = b1j t1 + · · · + bk

j tk, j ∈ J, where bi
j ∈ C. We assume that the functions

g j , j ∈ J , span the dual space (Ck)∗.
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Define n linear functions on C
n × C

k , f j = g j + z j = b1j t1 + · · · + bk
j tk + z j ,

j ∈ J. We consider in C
n × C

k the arrangement of hyperplanes C = {Hj } j∈J , where
Hj is the zero set of f j , and denote by U (C) = C

n × C
k − ∪ j∈J Hj the complement.

Lemma 3.1 For any linear relation
∑n

j=1 β j g j = 0 we have the relation

∑n

j=1
β j (z j − f j ) = 0. (3.1)

�	
For every x = (x1, . . . , xn) ∈ C

n , the arrangement C induces an arrangement C(x)

in the fiberπ−1(x).We identify every fiber withC
k . Then C(x) consists of hyperplanes

{Hj (x)} j∈J , defined in C
k by the equations g j + x j = 0. Thus {C(x)}x∈Cn is a family

of arrangements inC
k , whose hyperplanes are transported parallelly as x changes. We

denote by U (C(x)) = C
k − ∪ j∈J Hj (x) the complement.

For almost all points x ∈ C
n , the arrangement C(x) is with normal crossings. Such

points form the complement in C
n to the union of suitable hyperplanes called the

discriminant.

3.2 Discriminant

The collection (g j ) j∈J induces a matroid structure on J . A subset C = {i1, . . . , ir } ⊂
J is a circuit if (gi )i∈C are linearly dependent but any proper subset ofC gives linearly
independent gi ’s. Denote by C the set of all circuits in J .

For a circuit C = {i1, . . . , ir }, let (λC
i )i∈C be a nonzero collection of complex

numbers such that
∑

i∈C λC
i gi = 0. Such a collection is unique up to multiplication

by a nonzero number. For every circuit C we fix such a collection and denote fC =∑
i∈C λC

i zi . The equation fC = 0 defines a hyperplane HC in C
n . It is convenient to

assume that λC
i = 0 for i ∈ J − C and write fC = ∑

i∈J λC
i zi .

Lemma 3.2 Any linear relation
∑

j∈J c j g j = 0 is a linear combination of relations
∑

i∈J λC
i gi = 0 associated with circuits C ∈ C.

For any x ∈ C
n , the hyperplanes {Hi (x)}i∈C in C

k have nonempty intersection if
and only if x ∈ HC . If x ∈ HC , then the intersection has codimension r − 1 in C

k .
The union � = ∪C∈CHC is called the discriminant. The arrangement C(x) in C

k has
normal crossings if and only if x ∈ C

n − �, see Varchenko (2011).
On the discriminant see also Bayer and Brandt (1997).

3.3 Combinatorial Connection

For any x1, x2 ∈ C
n −�, the spacesF p(C(x1)),F p(C(x2)) are canonically identified

if a vector F(Hj1(x1), . . . , Hjp (x1)) of the first space is identified with the vector
F(Hj1(x2), . . . , Hjp (x2)) of the second. In other words, we identify the standard
bases of these spaces.
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Assume that a weight a ∈ (C×)n is given. Then each arrangement C(x) is weighted.
The identification of spacesF p(C(x1)),F p(C(x2)) for x1, x2 ∈ C

n −� identifies the
corresponding subspaces Singa Fk(C(x1)), Singa Fk(C(x2)) and contravariant forms.

Assume that the weighted arrangement (C(x), a) is unbalanced for some x ∈
C

n − �, then (C(x), a) is unbalanced for all x ∈ C
n − �. The identifica-

tion of Singa Fk(C(x1)) and Singa Fk(C(x2)) also identifies the marked elements
v j1,..., jk (x1) and v j1,..., jk (x1), see Sect. 2.20. For x ∈ C

n −�, denote V = Fk(C(x)),
Singa V = Singa Fk(C(x)), v j1,..., jk = v j1,..., jk (x). The triple (V,Singa V, S(a)),
with marked elements v j1,..., jk , does not depend on x under the identification.

As a result of this reasoning we obtain the canonically trivialized vector bundle

	x∈Cn−� Fk(C(x)) → C
n − �, (3.2)

with the canonically trivialized subbundle 	x∈Cn−� Singa Fk(C(x)) → C
n − �

and the constant contravariant form on the fibers. This trivialization identifies the
bundle in (3.2) with the bundle (Cn − �) × V → C

n − � and the subbundle
	x∈Cn−� Singa Fk(C(x)) → C

n − � with the subbbundle

(Cn − �) × (Singa V ) → C
n − �. (3.3)

The bundle in (3.3) will be called the combinatorial bundle, the flat connection on it
will be called combinatorial, see Varchenko (2011, 2015), cf. Sect. 2.19.

3.4 Operators K j ∈ O(Cn − �) ⊗ (End V ), j ∈ J

For a circuit C = {i1, . . . , ir } ⊂ J , we define the linear operator LC : V → V
as follows. Let Cm = C − {im}. Let F(Hj1, . . . , Hjk ) be an element of the
standard basis. We set LC : F(Hj1, . . . , Hjk ) �→ 0 if |{ j1, . . . , jk} ∩ C | <

r − 1. If { j1, . . . , jk} ∩ C = Cm , then by (2.29) we have F(Hj1, . . . , Hjk ) =
±F(Hi1 , Hi2 , . . . , Ĥim , . . . , Hir−1 , Hir , Hs1 , . . . , Hsk−r+1) with {s1, . . . , sk−r+1} =
{ j1, . . . , jk} − Cm . We set

LC : F(Hi1, . . . , Ĥim , . . . , Hir , Hs1 , . . . , Hsk−r+1)

�→ (−1)m
∑r

l=1
(−1)lail F(Hi1, . . . , Ĥil , . . . , Hir , Hs1 , . . . , Hsk−r+1). (3.4)

Consider on C
n × C

k the logarithmic 1-forms ωC = d fC
fC

, C ∈ C. Recall fC =
∑

j∈J λC
j z j . We set

K j =
∑

C∈C
λC

j

fC
LC ∈ O(Cn − �) ⊗ (End V ). (3.5)

We have
∑

C∈CωC ⊗ LC =
∑

j∈J
dz j ⊗ K j . (3.6)
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Theorem 3.3 (Varchenko 2011) For any j ∈ J and x ∈ C
n −�, the operator K j (x)

preserves the subspace Singa V ⊂ V and is a symmetric operator, S(a)(K j (x)v,w) =
S(a)(v, K j (x)w) for all v,w ∈ V .

3.5 Corollary of Theorem 3.3

We obtain formulas for the action of K j on the marked elements v j1,..., jk ∈ Sing a V
from formulas for the action of LC .

Let C = {i1, . . . , ir } be a circuit and v j1,..., jk ∈ Sing a V a marked element. If
|{ j1, . . . , jk} ∩ C | < r − 1, then LC (v j1,..., jk ) = 0. If { j1, . . . , jk} ∩ C = Cm , then
by (2.33) we have v j1,..., jk = ±vi1,i2,...,îm ,...,ir−1,ir ,s1,...,sk−r+1

with {s1, . . . , sk−r+1} =
{ j1, . . . , jk} − Cm . We have

LC : vi1,i2,...,îm ,...,ir−1,ir ,s1,...,sk−r+1
�→ (−1)m

∑r

l=1
(−1)lail vi1,...,̂il ,...,ir ,s1,...,sk−r+1

.

(3.7)

3.6 Gauss–Manin Connection on (Cn − �) × (Singa V ) → C
n − �

The master function of (C, a) is 
C,a = ∑
j∈J a j log f j , a multivalued function on

U (C). Let κ ∈ C
×. The function e
C,a/κ defines a rank one local system Lκ on U (C)

whose horizontal sections over open subsets ofU (C) are univalued branches of e
C,a/κ

multiplied by complex numbers, see, for example, Schechtman andVarchenko (1991),
Varchenko (1995). The vector bundle

	x∈Cn−� Hk(U (C(x)),Lκ |U (C(x))) → C
n − � (3.8)

is called the homology bundle. The homology bundle has a canonical flatGauss–Manin
connection.

For a fixed x , choose any γ ∈ Hk(U (C(x)),Lκ |U (C(x))). The linear map

{γ } : Ak(C(x)) → C, ω �→
∫

γ

e
C,a/κω, (3.9)

is an element of SingFk(C(x)) by Stokes’ theorem. It is known that for generic κ any
element of SingFk(C(x)) corresponds to a certain γ and in that case this construction
gives the integration isomorphism

Hk(U (C(x)),Lκ |U (C(x))) → Singa Fk(C(x)), (3.10)

see Schechtman and Varchenko (1991). The precise values of κ , such that (3.10) is an
isomorphism, can be deduced from the determinant formula in Varchenko (1989).

For generic κ the fiber isomorphisms (3.10) define an isomorphism of the homology
bundle and the combinatorial bundle (3.3). The Gauss–Manin connection induces a
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connection on the combinatorial bundle. That connection on the combinatorial bundle
will also be called the Gauss–Manin connection.

Thus, there are two connections on the combinatorial bundle: the combinator-
ial connection and the Gauss–Manin connection depending on κ . In this situation
we consider the differential equations for flat sections of the Gauss–Manin con-
nection with respect to the combinatorially flat standard basis. Namely, let γ (x) ∈
Hk(U (C(x)),Lκ |U (C(x))) be a flat section of the Gauss–Manin connection. Let us
write the corresponding section Iγ (x) of the bundle (Cn − �) × Sing a V → C

n − �

in the combinatorially flat standard basis,

Iγ (x) =
∑

independent
{ j1<···< jk }⊂J

I j1,..., jk
γ (x)F(Hj1 , . . . , Hjk ),

I j1,..., jk
γ (x) =

∫

γ (x)

e
C,a/κω j1 ∧ · · · ∧ ω jk . (3.11)

By Theorem 3.3, we can also write

Iγ (x) =
∑

independent
{ j1<···< jk }⊂J

I j1,..., jk
γ (x)v j1,..., jk . (3.12)

For I = ∑
I j1,..., jk v j1,..., jk and j ∈ J , we denote ∂ I

∂z j
= ∑

∂ I j1,..., jk

∂z j
v j1,..., jk . This

formula defines the combinatorial connection on the combinatorial bundle.

Theorem 3.4 (Varchenko 1995, 2011) The section Iγ satisfies the differential equa-
tions

κ
∂ I

∂z j
(x) = K j (x)I (x), j ∈ J, (3.13)

where K j (x) are the linear operators defined in (3.5).

On the Gauss–Manin connection and these differential equations see also Cohen
and Orlik (2006).

3.7 Critical Set

Denote by CC,a the critical set of 
C,a in the C
k-direction,

CC,a =
{

(x, u) ∈ U (C) ⊂ C
n × C

k
∣
∣ ∂
C,a

∂ti
(x, u) = 0 for i = 1, . . . , k

}

.

(3.14)

Lemma 3.5 If CC,a is nonempty, then it is a smooth n-dimensional subvariety of U (C).
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Proof For j1, . . . , jk ∈ J , we have

detki,l=1

(
∂2
C,a

∂z jl ∂ti

)

= (−1)k detki,l=1

(
bi

jl

) k∏

l=1

a jl

f 2jl
.

Since (g j ) j∈J span (Ck)∗, there exists j1, . . . , jk ∈ J such that detki,l=1(b
i
jl
) 
= 0. �	

Lemma 3.6 If a ∈ (C×)n is generic, then

(i) every fiber of the projection π |CC,a : CC,a → C
n is finite;

(ii) for any x ∈ C
n, the number of points of CC,a in the fiber over x, counted with

their Milnor numbers, equals |χ(U (C(x)))|;
(iii) for generic x ∈ C

n, each of the points of CC,a in the fiber over x is nondegenerate.

Proof The lemma follows from Theorem 2.7 and Lemma 2.8. �	
LetO(CC,a) be the algebra of regular functions onCC,a andO(CC(x),a) the algebra

of regular functions onCC(x),a = CC,a ∩π−1(x). Namely, for x = (x1, . . . , xn) ∈ C
n ,

let IC(x),a be the ideal in O(U (C(x))) generated by ∂
C,a
∂ti

, i = 1, . . . , k. We set

O(CC(x),a) = O(U (C(x)))/IC(x),a . (3.15)

Assume that the weight a is such that the pair (C(x), a) is unbalanced for some
x ∈ C

n − �. Then dimO(CC(x),a) = |χ(U (C(x)))| for every x ∈ C
n − � and we

obtain the vector bundle of algebras

	x∈Cn−� O(CC(x),a) → C
n − � . (3.16)

For x ∈ C
n − �, consider the canonical element E(x) of the arrangement C(x) and

its image [E(x)] in O(CC(x),a) ⊗ Singa V , see Lemma 2.10. Recall the canonical
isomorphism (2.16),

E(x) : O(CC(x),a) → Singa V . (3.17)

This fiber isomorphism establishes an isomorphism E of the bundles (3.16) and (3.3).
The isomorphism E and the combinatorial and Gauss–Manin connections on the bun-
dle (3.3) induce two connections on the bundle (3.16) which will also be called the
combinatorial and Gauss–Manin connections, respectively.

Theorem 3.7 (Varchenko 2011) If the pair (C(x), a) is unbalanced for x ∈ C
n − �,

then for all j ∈ J , we have

E(x) ◦
[

a j

f j

]

∗x = K j (x) ◦ E(x) , (3.18)

where
[

a j
f j

]
∗x is the operator of multiplication by

[
a j
f j

]
in O(CC(x),a) and K j (x) :

Sing a V → Sing a V is the operator defined in (3.5).
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Remark. Recall that a j/ f j = ∂
C,a/∂z j and the elements [a j/ f j ], j ∈ J , generate
the algebraO(CC(x),a). Theorem (3.7) says that under the isomorphism E(x) the oper-
ators of multiplication [a j/ f j ]∗x inO(CC(x),a) are identified with the operators K j (x)

in the Gauss–Manin differential equations (3.13), cf. Sect. 2.18. The correspondence
of Theorem 3.7 defines a commutative algebra structure on Sing a V , the structure
depending on x . The multiplication in this commutative algebra is generated by the
operators K j (x), j ∈ J . The correspondence of Theorem 3.7 also defines the Gauss–
Manin differential equations on the bundle of algebras in terms of the multiplication
in the fiber algebras.

Notice that the relations between the operators K j (x) coincide with the relations
among the elements [a j/ f j ] in CC(x),a .

3.8 Formulas for Multiplication

For x ∈ C
n − � and a circuit C = {i1, . . . , ir } ⊂ J , we define the linear operator

LC : O(CC(x),a) → O(CC(x),a) as follows. Let w j1,..., jk ∈ O(CC(x),a) be a marked
element. If |{ j1, . . . , jk}∩C | < r −1, then we set LC (w j1,..., jk ) = 0. If { j1, . . . , jk}∩
C = Cm , then by (2.31) we have w j1,..., jk = ±wi1,i2,...,îm ,...,ir−1,ir ,s1,...,sk−r+1

with
{s1, . . . , sk−r+1} = { j1, . . . , jk} − Cm . We set

LC

(
wi1,i2,...,îm ,...,ir−1,ir ,s1,...,sk−r+1

)
= (−1)m

∑r

l=1
(−1)lail wi1,...,̂il ,...,ir ,s1,...,sk−r+1

,

(3.19)

cf. formula (3.7). For j ∈ J , we define the operator K j (x) : O(CC(x),a) → O(CC(x),a)

by the formula

K j (x) =
∑

C∈C
λC

j

fC (x)
LC , (3.20)

cf. formula (3.5).

Corollary 3.8 If the pair (C(x), a) is unbalanced for x ∈ C
n − �, then the operator

of multiplication
[ a j

f j

]∗x in O(CC(x),a) equals the operator K j (x) : O(CC(x),a) →
O(CC(x),a) defined in (3.20).

3.9 Corollary of Theorem 3.7

For a section I = ∑
j1,..., jk I j1,..., jk w j1,..., jk of the bundle of algebras (3.16) and

j ∈ J , we define ∂ I
∂z j

= ∑
∂ I j1,..., jk

∂z j
w j1,..., jk . This formula defines the combinatorial

connection on the bundle of algebras (3.16).

Theorem 3.9 (Varchenko 2015) If a section I of the bundle of algebras (3.16) is flat
with respect to the Gauss–Manin connection, then it satisfies the differential equations

123



274 A. Varchenko

κ
∂ I

∂z j
(x) =

[
a j

f j

]

∗x I (x), j ∈ J. (3.21)

Notice that solutions of these differential equations are given by the hypergeometric
integrals

Iγ (x) =
∑

independent
{ j1<···< jk }⊂J

I j1,..., jk
γ (x) w j1,..., jk , (3.22)

where γ (x) ∈ Hk(U (C(x)),Lκ |U (C(x))) is a flat section of the Gauss–Manin connec-

tion on the homology bundle and I j1,..., jk
γ (x) = ∫

γ (x)
e
C,a/κω j1 ∧ · · · ∧ ω jk .

Notice the similarities between the differential equations in (3.21) and the stan-
dard differential equations associated with Frobenius structures, see Dubrovin (1996),
Manin (1999).

4 Langrangian Variety and Critical Set

4.1 Lagrangian Variety

Consider C
n with coordinates q1, . . . , qn and the dual space (Cn)∗ with the dual coor-

dinates p1, . . . , pn . The spaceC
n ×(Cn)∗ has symplectic formω = ∑n

j=1 dp j ∧dq j .

Two functions M, N on C
n × (Cn)∗ are in involution if {M, N } = ∑n

j=1

(
∂ M
∂q j

∂ N
∂p j

−
∂ M
∂p j

∂ N
∂q j

)
= 0.

For a k-dimensional vector subspace Y ⊂ C
n , denote by Y ⊥ ⊂ (Cn)∗ the anni-

hilator of Y . The n-dimensional vector space Y × Y ⊥ is a Lagrangian subspace of
C

n × (Cn)∗ with defining equations

Fα :=
n∑

j=1

α j p j = 0, α = (α1, . . . , αn) ∈ Y,

Gβ :=
n∑

j=1

β j q j = 0, β = (β1, . . . , βn) ∈ Y ⊥. (4.1)

The set of all functions {Fα, Gβ} is in involution.
Fix a weight a ∈ (C×)n . Consider the invertible rational symplectic map ra :

C
n × (Cn)∗ → C

n × (Cn)∗,

(q1, . . . , qn, p1, . . . , pn) �→ (q1 + a1/p1, . . . , qn + an/pn, p1, . . . , pn).

Denote

LY,a = ra(Y × Y ⊥) ⊂ C
n × (Cn)∗. (4.2)
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Lemma 4.1 Assume that for every j ∈ J , the subspace Y does not lie in the hyper-
plane q j = 0 and the subspace Y ⊥ does not lie in the hyperplane p j = 0, then
LY,a is an irreducible smooth n-dimensional Lagrangian subvariety in C

n × {y ∈
(Cn)∗ | ∏n

j=1 p j (y) 
= 0} defined by equations

Fα :=
n∑

j=1

α j p j = 0, α = (α1, . . . , αn) ∈ Y,

Gβ,a :=
n∑

j=1

β j (q j − a j/p j ) = 0, β = (β1, . . . , βn) ∈ Y ⊥. (4.3)

The set of all functions {Fα, Gβ,a} is in involution.

Let I = {i1, . . . , ik} ⊂ J be a k-element subset and Ī its complement.

Lemma 4.2 Under hypotheses of Lemma 4.1, assume that I is such that the functions
qI = {qi | i ∈ I } form a coordinate system on Y . Then the functions qI and pĪ =
{p j | j ∈ Ī } form a coordinate system on LY,a.

Proof The functions pI are expressed in terms of pĪ with the help of equations Fα = 0.
The functions qĪ are expressed in terms of qI , pĪ with the help of equations Gβ,a = 0.
Clearly the functions qI , pĪ are independent. �	

We order the functions of the coordinate system qI , pĪ according to the increase
of the index. For example, if k = 3, n = 6, I = {1, 3, 6}, then the order is
q1, p2, q3, p4, p5, q6.

Fix a basis bi = (bi
1, . . . , bi

n), i = 1, . . . , k, of Y . Let t = (t1, . . . , tk) be the
associated coordinate system on Y . Then q j |Y = ∑k

i=1 bi
j ti . For I = {i1, . . . , ik} ⊂

J , we denote dI = di1,...,ik = detki,l=1(b
i
il
), cf. Sect. 2.9.

Lemma 4.3 Let I = {i1, . . . , ik} and I ′ = {i ′1, . . . , i ′k} be subsets of J each satisfying
the hypotheses of Lemma 4.2. Consider the corresponding ordered coordinate systems
qI , pĪ and qI ′ , pĪ ′ on LY,a. Express the coordinates of the second system in terms
of coordinates of the first system and denote by JacI, Ī ′(qI , pĪ ) the Jacobian of this
change. Then

JacI, Ī ′(qI , pĪ ) = (di ′1,...,i ′k /di1,...,ik )
2.

Proof This statement is proved inVarchenko (2015, Lemma 5.4) under the assumption
that Y ⊂ C

n is a generic subspace with respect to the coordinate system q1, . . . , qn .
This implies the lemma since the left- and right-hand sides of the formula continuously
depend on Y . �	

Let I = {i1, . . . , ik} ⊂ J satisfy the hypotheses of Lemma 4.3, and qI , pĪ the
corresponding ordered coordinate system on LY,a . The functions q1, . . . , qn form an
ordered coordinate system on C

n . Let πLY,a : LY,a → C
n be the restriction to LY,a of

the natural projection C
n × (Cn)∗ → C

n . Let JacI (qI , pĪ ) be the Jacobian of πLY,a

with respect to the chosen coordinate systems.
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Theorem 4.4 The function d2
I JacI on LY,a does not depend on the choice of I and

d2
I JacI = (−1)n−k

∑

M⊂J, |M|=n−k

d2
M̄

∏

j∈M

a j

p2j
. (4.4)

Proof The function d2
I JacI does not depend on I by Lemma 4.3. Formula (4.4) is

proved in Varchenko (2015, Theorem 3.8) under the assumption that Y ⊂ C
n is a

generic subspace with respect to the coordinate system q1, . . . , qn . This implies the
theorem since the left- and right-hand sides of the formula continuously depend on Y .

4.2 Fibers of πLY,a

For x ∈ C
n , denote CY,a(x) = π−1

LY,a
(x), the fiber of the projection πLY,a . The fiber is

defined in (C×)n with coordinates p1, . . . , pn by the equations

n∑

j=1

α j p j = 0, α = (α1, . . . , αn) ∈ Y,

n∑

j=1

β j (x j − a j/p j ) = 0, β = (β1, . . . , βn) ∈ Y ⊥, (4.5)

cf. (4.3). Let ILY (x),a be the ideal in O((C×)n) generated by the left-hand sides of
equations (4.5). Set

O(LY,a(x)) = O((C×)n)/ILY (x),a . (4.6)

4.3 Arrangement in C
n × C

k

Return to the objects and notations of Sect. 3 and consider C
k with coordinates

t1, . . . , tk , C
n with coordinates z1, . . . , zn , the projection π : C

n × C
k → C

n and
n nonzero linear functions on C

k , g j = b1j t1 + · · · + bk
j tk, j ∈ J . As in Sect. 3 we

assume that g j , j ∈ J , span the dual space (Ck)∗. We consider the linear functions
f j = g j + z j = b1j t1+· · ·+bk

j tk + z j onC
n ×C

k and the arrangement of hyperplanes

C = {Hj } j∈J in C
n × C

k , where Hj is defined by the equation f j = 0. We assume
that a weight a ∈ (Cn)× is given and consider the critical set CC,a defined by (3.14).
In the rest of the paper we denote by

Y = Y (C) (4.7)

the k-dimensional subspace of C
n spanned by the vectors bi = (bi

1, . . . , bi
n), i =

1, . . . , k.

Theorem 4.5 Assume that for any j ∈ J , the subspace Y ⊥ does not lie in the hyper-
plane p j = 0. Assume that the critical set CC,a is nonempty. Then the map
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�C,a : U (C) → C
n × (Cn)∗, (x, u) �→ (x, y(x, u)), (4.8)

where

y(x, u) =
(∂
C,a

∂z1
(x, u), . . . ,

∂
C,a

∂zn
(x, u)

)
=

( a1
f1(x, u)

, . . . ,
an

fn(x, u)

)
, (4.9)

restricted to CC,a is a diffeomorphism of the critical set CC,a onto the Lagrangian
variety LY,a.

Proof .

Lemma 4.6 We have �C,a(CC,a) ⊂ LY,a.

Proof Ifα∈Y and (x, u)∈CC,a , then the equation Fα

(
∂
C,a
∂z1

(x, u), . . . ,
∂
C,a
∂zn

(x, u)
)

= 0 is a linear combination of the equations ∂
C,a
∂ti

(x, u) = 0, i = 1, . . . , k, see (2.7). If

β ∈ Y ⊥ and (x, u) ∈ CC,a , then the equation Gβ,a

(
x,

∂
C,a
∂z1

(x, u), . . . ,
∂
C,a
∂zn

(x, u)
)

= 0 is just the Eq. (3.1). �	

Lemma 4.7 The map �C,a sends distinct points of U (C) to distinct points of C
n ×

(Cn)∗.

Proof It is enough to check that �C,a(x, u) 
= �C,a(x, u′) if u 
= u′, but this follows
from Lemma 2.6. �	

Lemma 4.8 The Jacobian of the map �C,a |CC,a : CC,a → LY,a is never zero.

Proof The lemma follows from Lemmas 4.1, 3.5, 4.7 or by direct calculation. �	

Lemma 4.9 We have �C,a(CC,a) = LY,a.

Proof Let �C,a(CC,a) 
= LY,a and (x0, y0) ∈ LY,a − �C,a(CC,a), where x0 ∈ C
n

and y0 ∈ (Cn)∗. We have dim(LY,a − �C,a(CC,a)) < n by Lemmas 4.1, 3.5, 4.8.
Hence there exists a germ of an analytic curve ι : (C, 0) → (LY,a, (x0, y0)) such
that ι(s) ∈ �C,a(CC,a) for s 
= 0. Consider the curve s �→ (�C,a)−1(ι(s)) for
s 
= 0. Let (�Y,a)−1(ι(s)) = (x(s), u(s)), where x(s) ∈ C

n and u(s) ∈ C
k . We

have lims→0 γ (s) = x0. Since for any j ∈ J , the function ∂
C,a
∂z j

(x(s), y(s)) has a

finite limit, there is a finite nonzero limit u0 := lims→0 u(s) in U (C(x0)). Clearly
(x0, u0) ∈ CC,a and�C,a : (x0, u0) �→ (x0, y0). We get a contradiction which proves
the lemma.

One can also check the statement by direct calculation. �	

Lemmas 4.6, 4.7, 4.8 and 4.9 prove Theorem 4.5.
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4.4 Hessian and Jacobian

Recall the Hessian of the master function 
C,a , see Sect. 2.10. Under the diffeomor-
phism CC,a → LY,a of Theorem 4.5, we may consider the Hessian as a function on
LY,a . Then

HessC,a = (−1)k
∑

I⊂J,|I |=k

d2
I

∏k

i∈I

p2i
ai

. (4.10)

Corollary 4.10 Let I ⊂ J satisfy the hypotheses of Lemma 4.2. Then

HessC,a = (−1)nd2
I JacI

∏

j∈J

p2j
a j

. (4.11)

Proof Formula (4.11) follows from formulas (4.4) and (4.10). �	
Notice that the ratio of HessC,a and d2

I JacI is never zero.

4.5 Corollaries of Theorem 4.5

The map �C,a of Theorem 4.5 establishes an isomorphism

�∗
C,a : O(LY,a) → O(CC,a), [q j ], �→ [z j ], [p j ] �→

[
∂
C,a

∂z j

]

, (4.12)

for all j ∈ J , and for any x ∈ C
n , the isomorphism

�∗
C(x),a : O(LY,a(x)) → O(CC(x),a), [p j ] �→

[
∂
C,a

∂z j

]

, j ∈ J. (4.13)

In particular, if the weight a is such that (C(x), a) is unbalanced, then the number of
solutions of system (4.5), counted with multiplicities, equals |U (C(x))| and can be
calculated in terms of the matroid associated with the arrangement C(x), see Lemma
3.6.

The isomorphism �∗
C(x),a allows us to compare objects associated withO(CC(x),a)

and objects associated with O(LY,a(x)). For example, let qI , pĪ be an ordered
coordinate system on LY,a like in Lemma 4.2. Assume that x ∈ C

n is such that
dimO(LY,a(x)) is finite. Consider the Grothendieck residue R : O(LY,a(x)) → C,

[ f ] �→ 1

(2π i)n

∫

�

f dpI ∧ dqĪ∏n
j=1 q j

, (4.14)

where the differentials are ordered as in the ordered coordinate system qI , pĪ , cf. (2.9).
Define the nondegenerate bilinear form ( , )LY,a(x) on O(LY,a(x)) by the formula
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([ f ], [g])LY,a(x) = (−1)n

d2
I

R
(

[ f ][g]
∏n

j=1

a j

[p2j ]

)

. (4.15)

Corollary 4.11 Assume that the weight a is generic in the sense of Lemma 3.6, then
the isomorphism �∗

C(x),a identifies the form ( , )LY,a(x) on O(LY,a(x)) and the form
( , )CC(x),a(x) on O(CC(x),a).

Proof For generic x ∈ C
n , the corollary follows from Corollary 4.10. For all x ∈ C

n ,
the corollary follows by continuity. �	
Remark. Notice that the form ( , )LY,a(x) is given by an n-dimensional integral while
the form ( , )CC(x),a(x) is given by a k-dimensional integral.

If (C(x), a) is unbalanced for some x ∈ C
n − �, then we have the vector bundle

of algebras

	x∈Cn−� O(LY,a(x)) → C
n − � . (4.16)

The fiber isomorphism �∗
C(x),a identifies this bundle of algebras with the bundle of

algebras in (3.16). The combinatorial and Gauss–Manin connections on the bundle of
algebras in (3.16) induce the corresponding connections on the bundle in (4.16).

For x ∈ C
n − �, we define the marked elements pi1,...,ik in O(LY,a(x)) as the

images under �∗
C(x),a of the marked elements wi1,...,ik in O(CC(x),a). By formula

(2.30), we have

pi1,...,ik = di1,...,ik ai1 . . . aik pi1 . . . pik (4.17)

with the skew-symmetry property

piσ(1),...,iσ(k)
= (−1)σ pi1,...,ik , for σ ∈ 	k . (4.18)

and the marked relations

∑

j∈J
p j,i2,...,ik = 0 (4.19)

labeled by independent subsets {i2, . . . , ik}. By Corollary (2.18), the marked elements
pi1,...,ik span O(LY,a(x)) as a vector space and relations (4.18), (4.19) are the only
linear relations between them. This fact defines an integral structure on O(LY,a(x)).

For a section I = ∑
j1,..., jk I j1,..., jk p j1,..., jk of the bundle of algebras (4.16) and

j ∈ J , we define ∂ I
∂q j

= ∑
∂ I j1,..., jk

∂q j
p j1,..., jk . This formula defines the combinatorial

connection on (4.16).

Theorem 4.12 If a section I of the bundle of algebras (4.16) is flat with respect to
the Gauss–Manin connection, then it satisfies the differential equations
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κ
∂ I

∂q j
(x) = [p j ] ∗x I (x), j ∈ J, (4.20)

where [p j ]∗x is the operator of multiplication by [p j ] in O(LY,a(x)).

Remark. Notice that solutions of these differential equations are given by the multi-
dimensional hypergeometric integrals as in (3.22). Notice also the action of [p j ]∗x

on the marked elements pi1,...,ik can be identified with action on the marked elements
wi1,...,ik of the operator K j (x) from (3.20).

4.6 Real Solutions

Assume that for any j ∈ J , the subspace Y ⊥ does not lie in the hyperplane p j = 0.
Assume that all coordinates of the weight a ∈ (C×)n are positive. Assume that all
entries of the matrix (bi

j ) i=1,...,k
j=1,...,n

, defining Y ⊂ C
n in (4.7), are real. Assume that the

critical set CC,a is nonempty.

Corollary 4.13 Under these assumptions, if x ∈ R
n ⊂ C

n, then all solutions of system
(4.5) are real and nondegenerate, and the number of solutions equals |χ(U (C(x))|.
Proof If a ∈ (R>0)

n , x ∈ R
n , and (bi

j ) are real, then all points of the critical set
CC(x),a are real, nondegenerate, and the number of points equals |χ(U (C(x))|, see
Varchenko (1995). Now the corollary follows from Theorem 4.5.

The reality property in Corollary 4.13 is similar to the reality property of Schubert
calculus, see Mukhin et al. (2009a), Mukhin et al. (2009b), Sottile (2010).

5 Characteristic Variety of the Gauss–Manin Differential Equations

Consider the Gauss–Manin differential equations κ ∂ I
∂z j

= K j I in (3.13). Define the
characteristic variety of the κ-dependent D-module associated with the Gauss–Manin
differential equations as

SpecC,a ={(x, y)∈(Cn − �) × (Cn)∗ | ∃v ∈ Sing a V with K j (x)v= y jv, j ∈ J }.
(5.1)

Let πSpecC,a
: SpecC,a → C

n be the projection to C
n .

Recall the Lagrangian variety LY,a ⊂ C
n × (Cn)∗ introduced in Sect. 4.3 and the

projection πLY,a : LY,a → C
n .

Theorem 5.1 Assume that the weight a is generic in the sense of Lemma 3.6, then
SpecC,a = π−1

LY,a
(Cn − �).

Proof For generic x ∈ C
n − �, the special vectors (F(u))u∈CC,a form a basis of

Sing a V by Theorem 2.11. This gives π−1
SpecC,a

(x) = π−1
LY,a

(x) by Theorems 2.12 and

3.7. We get the equality π−1
SpecC,a

(x) = π−1
LY,a

(x) for all x ∈ C
n − � by continuity. �	

Theorem 5.1 is proved in Varchenko (2015) if C is generic.

123



Critical Set of the Master Function. . . 281

Acknowledgments The author thanks V.Tarasov for collaboration. The proof of Theorem 2.16 is the
result of joint efforts. The author thanks B.Dubrovin and A.Veselov for helpful discussions.

References

Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differential Maps, vol. I. Nauka,
Moscow (1982) (also Birkhauser, 1985)

Bayer, M., Brandt, K.: Discriminantal arrangements, fiber polytopes and formality. J. Algebr. Comb. 6(3),
229–246 (1997)

Cohen, D., Orlik, P.: Stratified Morse theory in arrangements. Pure Appl. Math. Q. 2 3(1), 673–697 (2006)
Crapo, H.: A higher invariants for matroids. J. Comb. Theory 2, 406–417 (1967)
Dubrovin B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable

Systems and Quantum Groups. Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer
(1996)

Etingof, P., Frenkel, I., Kirillov, A.: Lectures on Representation Theory and Knizhnik–Zamolodchikov
Equations, Mathematical Surveys and Monographs, p. 58. AMS (1998)

Falk,M., Varchenko, A.: The contravariant form on singular vectors of a projective arrangement. In: Bjorner,
A., Cohen, F., De Concini, C., Procesi, C., Salvetti, M. (eds.) Configuration Spaces, Geometry, Com-
binatorics and Topology, pp. 255–272. CRM Series (2012)

Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture,
topics in singularity theory. AMS Transl. Ser. 2(180), 103–115 (1997)

Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)
Givental, A., Kim, B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys.

168(3), 455–675 (1995)
Gelfand, I.M., Varchenko, A.: On Heaviside functions of a configuration of hyperplanes. Funk. Anal. i

Prilozh. 21(4), 1–18 (1987). (p. 96)
Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, vol. 47. American Mathe-

matical Society Colloquium Publications (AMS), Providence (1999)
Mukhin, E., Tarasov, V., Varchenko, A.: Bethe algebra of the glN+1 Gaudin model and algebra of functions

on the critical set of the master function. In: New Trends in Quantum Integrable Systems, pp. 307–324.
World Scientific Publication, Hackensack (2011)

Mukhin, E., Tarasov, V., Varchenko, A.: The B. and M. Shapiro conjecture in real algebraic geometry and
the Bethe ansatz. Ann. Math. (2) 170(2), 863–881 (2009)

Mukhin, E., Tarasov, V., Varchenko, A.: Schubert calculus and representations of the general linear group.
J. Am. Math. Soc. 22(4), 909–940 (2009)

Mukhin, E., Tarasov,V., Varchenko,A.: KZ characteristic variety as the zero set of classical Calogero–Moser
Hamiltonians. SIGMA 8, 11 (2012). (Paper 072)

Mukhin, E., Varchenko, A.: Norm of a Bethe vector and the Hessian of the master function. Compos. Math.
141(4), 1012–1028 (2005)

Orlik, P., Terao, H.: The number of critical points of a product of powers of linear functions. Invent. Math.
120(1), 1–14 (1995)

Orlik, P., Terao, H.: Arrangements and hypergeometric integrals, vol. 9, p. 112. MSJ Memoir. Math Soc,
Japan, Tokyo, ix+ (2001)

Proudfoot, N.: The equivariant Orlik–Solomon algebra. J. Algebra 305(2), 1186–1196 (2006)
Silvotti, R.: On a conjecture of Varchenko. Invent. Math. 126(2), 235–248 (1996)
Sottile, F.: Frontiers of reality in Schubert calculus. Bull. Am. Math. Soc. (N.S.) 47(1), 31–71 (2010)
Schechtman, V., Terao, H., Varchenko, A.: Local systems over complements of hyperplanes and the Kac–

Kazhdan conditions for singular vectors. J. Pure. Appl. Algebra 100, 93–102 (1995)
Schechtman, V., Varchenko, A.: Arrangements of hyperplanes and Lie algebra homology. Invent. Math.

106, 139–194 (1991)
Tarasov, V., Varchenko, A.: Hypergeometric solutions of the quantum differential equation of the cotangent

bundle of a partial flag variety. Cent. Eur. J. Math. 12(5), 694–710 (2014)
Varchenko, A.: Beta-function of Euler, Vandermonde determinant, Legendre equation and critical values

of linear functions of configuration of hyperplanes, I. Izv. Akademii Nauk USSR, Seriya Mat. 53(6),
1206–1235 (1989)

123



282 A. Varchenko

Varchenko, A.: Multidimensional hypergeometric functions and representation theory of Lie Algebras and
Quantum Groups. In: Advanced Series in Mathematical Physics, vol. 21. World Scientific, River Edge
(1995)

Varchenko, A.: Critical points of the product of powers of linear functions and families of bases of singular
vectors. Compos. Math. 97, 385–401 (1995)

Varchenko, A.: Bethe Ansatz for arrangements of hyperplanes and the Gaudin Model. Mosc. Math. J. 6(1),
195–210 (2006). pp. 223–224

Varchenko, A.: Quantum integrable model of an arrangement of hyperplanes. Symmetry Integr. Geom.
Methods Appl. 7, 55 (2011). (Paper 032)

Varchenko, A.: Arrangements and Frobenius like structures. Annales de la faculte des sciences de Toulouse
Ser. 6 24(1), 133–204 (2015)

Varchenko, A.: Characteristic variety of the Gauss–Manin differential equations of a generic parallelly
translated arrangement. Mathematics 2, 218–231 (2014)

Yuzvinsky, S.: Cohomology of the Brieskorn–Orlik–Solomon algebras. Commun. Algebra 23, 5339–5354
(1995)

123


	Critical Set of the Master Function and Characteristic Variety of the Associated Gauss--Manin Differential Equations
	Abstract
	1 Introduction
	2 Arrangements
	2.1 Affine Arrangement
	2.2 Orlik--Solomon Algebra
	2.3 Aomoto Complex
	2.4 Flag Complex
	2.5 Euler Characteristic of U(C)
	2.6 Duality
	2.7 Contravariant Map and Form
	2.8 Generic Weights
	2.9 Differential Forms
	2.10 Master Function
	2.11 Isolated Critical Points
	2.12 Residue
	2.13 Canonical Element
	2.14 Canonical Isomorphism
	2.15 Orthogonal Projection
	2.16 Proof of Theorems 2.12 and 2.16
	2.17 Integral Structure on mathcal O(C mathcal C, a) and Sing a mathcal F k(A)
	2.18 Skew-Commutative Versus Commutative
	2.19 Combinatorial Connection
	2.20 Arrangement with Normal Crossings

	3 Family of Parallelly Transported Hyperplanes
	3.1 Arrangement in mathbbCntimesmathbbCk
	3.2 Discriminant
	3.3 Combinatorial Connection
	3.4 Operators K jin mc O(C n- Delta) otimes (End V),  j in J
	3.5 Corollary of Theorem 3.3
	3.6 Gauss--Manin Connection on (C n- Delta) times ( on Sing a V) to C n- Delta
	3.7 Critical Set
	3.8 Formulas for Multiplication
	3.9 Corollary of Theorem 3.7

	4 Langrangian Variety and Critical Set
	4.1 Lagrangian Variety
	4.2 Fibers of πLY,a
	4.3 Arrangement in mathbbCntimesmathbbCk
	4.4 Hessian and Jacobian
	4.5 Corollaries of Theorem 4.5
	4.6 Real Solutions

	5 Characteristic Variety of the Gauss--Manin Differential Equations
	Acknowledgments
	References




