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Abstract We establish a relation between the Bollobás–Riordan polynomial of a
ribbon graph with the relative Tutte polynomial of a plane graph obtained from the
ribbon graph using its projection to the plane in a nontrivial way. Alsowe give a duality
formula for the relative Tutte polynomial of dual plane graphs and an expression of the
Kauffman bracket of a virtual link as a specialization of the relative Tutte polynomial.
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1 Introduction

Given a graph on a surface, we will construct a special associated plane graph which
contains all of the topological information coming from the embedding of the graph
into the surface. These constructed plane graphs usually have some extra (distin-
guished) edges and extra vertices. They are called relative plane graphs.

Definition A relative plane graph is a plane graph G with a distinguished subset
H ⊆ E(G) of edges. The edges H are called the 0-edges of G. Edges in E(G)\H
will be referred to as regular edges.
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284 C. Butler, S. Chmutov

The motivation of our work comes from knot theory. The classical Thistlethwaite
theorem (Thistlethwaite 1987) relates the Jones polynomial of an alternating link to the
Tutte polynomial of a plane graph obtained froma checkerboard coloring of the regions
of the link diagram. This theorem has two different kinds of generalizations to virtual
links.One (Chmutov 2009;Chmutov andPak 2007;Chmutov andVoltz 2008;Dasbach
et al. 2008; Moffatt 2010) involves graphs on surfaces and a topological version of
the Tutte polynomial due to Bollobás and Riordan (2002). Another generalization is
based on a relative version of the Tutte polynomial found by Diao and Hetyei (2010).
In this paper we establish a direct relation between the Bollobás–Riordan and relative
Tutte polynomials that explains how these two generalizations are connected.

In Sect. 2 we explain the construction of a relative plane graph from a ribbon graph
as well as how to recover a ribbon graph from a relative plane graph. Our main theo-
rem is formulated in Sect. 3 and proved in Sect. 4. In Sect. 5 we describe the relation
between the relative Tutte polynomials of dual plane graphs that generalizes the clas-
sical relation TG(x, y) = TG∗(y, x). In Sect. 6 we obtain the Kauffman bracket of a
virtual link in terms of the relative Tutte polynomial, improving the theorem of Diao
and Hetyei (2010). Section 7 places our relation between the Bollobás–Riordan poly-
nomial and relative Tutte polynomial within the context of other polynomial invariants
of graphs on surfaces.

This work has been done as a part of the Summer 2010 undergraduate research
working group

http://www.math.ohio-state.edu/~chmutov/wor-gr-su10/wor-gr.htm
“Knots and Graphs” at the Ohio State University. We are grateful to all participants

of the group for valuable discussions and to the OSU Honors Program Research Fund
for the student financial support.

2 Ribbon Graphs and Relative Plane Graphs

We refer to Biggs (1993), Godsil and Royle (2001), Gross and Tucker (1987), Lando
and Zvonkin (2004), Loebl (2010) and Mohar and Thomassen (2001) for the standard
general notions and terminology of (topological) graph theory.

2.1 Ribbon Graphs and Their Arrow Presentation

Definition 2.1 (Bollobás and Riordan 2002) By a ribbon graph we mean an abstract
(not necessarily orientable) surfacewith boundary decomposed into a number of closed
topological discs of two types, vertex-discs and edge-ribbons, satisfying the following
natural conditions: the discs of the same type are pairwise disjoint; the vertex-discs
and the edge-ribbons intersect by disjoint line segments, each such line segment lies on
the boundary of precisely one vertex and precisely one edge, and every edge contains
exactly two such line segments, which are not adjacent.

Ribbon graphs are considered up to homeomorphisms of the underlying surfaces
preserving the decomposition.

Here are three examples.
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(a) (b) (c)

=

A ribbon graph may be given by an arrow presentation.

Definition 2.2 (Chmutov 2009) An arrow presentation consists of a set of disjoint
circles together with a collection of arrow markings on these circles. These arrows are
labeled in pairs. To obtain a ribbon graph from an arrow presentation, we glue discs to
each of the circles and attach edge ribbons to each pair of arrows in such a way that the
arrows form part of a consistent orientation around the boundary of the edge ribbon.

Here is an example of an arrow presentation.

3

1

2
3

1
2

1
2

3

See more details of the arrow presentation in Chmutov (2009) and Moffatt (2010).

2.2 Medial Graphs

The relation between ribbon graphs and relative plane graphs is based on the standard
notion of amedial graph (see, for example Biggs 1993; Godsil and Royle 2001; Loebl
2010).

Definition 2.3 Let H be a planar graph. Its medial graph M(H) is the planar graph
whose vertices are the mid-points of the edges of H , and whose edges are given by the
following procedure: whenever two edges are adjacent in some face of H , we connect
the corresponding vertices of M(H) by an edge that follows the boundary of the face.
Each vertex of M(H) will be 4-valent. The medial graph is embedded into the same
plane as H ; each of its faces corresponds either to a face of H or to a neighborhood
of a vertex of H .

The top figure below exemplifies the construction of the medial graph around an
edge of H . Herewe drawone pair of opposite edges ofM(H) by solid lines and another
pair by dotted lines. The bottom figure shows an example of the entire medial graph.

an edge of a plane graph drawing medial graph
around the edge

vertex of M(H)

123



286 C. Butler, S. Chmutov

plane graph
drawing medial graph medial graph as two

immersed circles

1-st circle 2-nd circle

Since M(H) is a regular 4-valent planar graph, we may consider it as an immersion
of a number of circles into the plane: if a circle goes into a vertex of M(H) along
some edge of M(H), it continues to go out of the vertex along the opposite edge of
M(H). Then another pair of edges at this vertex belongs either to the same circle or
to a different one. We draw the edges of one circle by solid lines and the edges of a
different circle by dotted lines. The number of these circles is denoted by δ(H). In
particular, for the medial graph of the bottom figure above δ(H) = 2. This immersion
of circles has only double points as singularities, which are points in the plane at which
the immersion is two-to-one, but the tangent directions at this point are distinct.

Construction 2.4 In the other direction, for a regular 4-valent planar graph B we can
construct a graph H := C(B) forwhich themedial graph is equal to B,M(C(B)) = B.
To construct H we consider a black and white checkerboard coloring of the regions
of the complement to B with the outer region painted white. For any planar 4-valent
graph such coloring does exist. It is given by a parity of the intersection index of a path
connecting a point at infinity with a point in interior of a region. Thenwe place a vertex
into each black region and connect two vertices by an edge for each common double
point on their boundaries. This edge is drawn through the corresponding double point.

2.2.1 Medial Graphs of Ribbon Graphs

Let R be a ribbon graph and ̂R be its core graph, obtained by forgetting the ribbon
graph structure on the vertices and edges. ̂R embeds naturally into R, by placing each
vertex of ̂R in the interior of the corresponding vertex disc of R, and connecting these
vertices by edges through the corresponding edge-ribbons of R, in such a way that
the cyclic order of the edges around each vertex of ̂R matches the cyclic order of the
edge-ribbons around each vertex disc of R. In the same manner as for planar graphs,
we may then construct the medial graph of ̂R (which we will also denote as M(R)

with respect to this embedding, by placing a vertex at the center of each edge of ̂R and
connecting the vertices of M(R) that belong to edges which are adjacent in the cyclic
ordering around a vertex of ̂R by an edge that follows the boundary of R, and does not
intersect ̂R. The construction of M(R) gives an embedding of this graph into R: we
will require for convenience that, in this embedding, the vertex ofM(R) corresponding
to a given edge of ̂R lies in the interior of the corresponding edge-ribbon of R. The
connected components of R − M(R) are disks and cylinders. The disks correspond
to the vertices of ̂R and the cylinders correspond to the boundary components of R.
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2.3 From Ribbon Graphs to Relative Plane Graphs

The manner in which we draw ribbon graphs suggests to consider a projection π :
R → R

2 with singularities of two types. The first occurs when two edge-ribbons cross
over each other. The second occurs when an edge ribbon twists over itself. Away from
the singularities the projection is one-to-one.

R

π

Possible singularities of the projection

R

π

The image B of M(R) may then be considered as a regular 4-valent planar graph
whose vertices are divided into two types. The vertices which are images of vertices of
M(R) will be called regular vertices, and the vertices that arise from the singularities
of the projection will be called 0-vertices. By applying the construction 2.4, we then
obtain a relative planar graph G := C(B), whose 0-edges correspond to the 0-vertices
of B.

Example 2.5

ribbon graph R

projection π(R)

vertex of M(R) checkerboard coloring
of regions of B

relative planar

graph G = C(B)

In this figure the 0-edges of G are drawn as dashed lines.

Of course such a projection always exists for any ribbongraph. In fact, these projections
are easily constructed from an arrow presentation of a ribbon graph. We consider the
circles of the arrow presentation as disjoint circles in the plane, none of which is
contained in another. The vertex discs are constructed by filling in these circles. The
edge ribbons are constructed in the plane by first considering arcs connecting the
corresponding arrows on each circle which intersect transversally in the plane, and
then taking sufficiently small neighborhoods of these arcs in the plane. If an edge ribbon
must twist, we incorporate the twist in the ribbon away from any of the intersections
of the arcs.
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The constructed relative plane graph G clearly depends on the projection π and
on the position of vertices of the medial graph on the edge-ribbons. However the
invariants we will work with will not be affected by this ambiguity. The figure above
shows the dependence of G on the position of a vertex of the medial graph.

2.4 From Relative Plane Graphs to Ribbon Graphs

Conversely, froma relative plane graphGwemay construct a ribbon graph R. Consider
the spanning subgraph H of G whose edges are the 0-edges of G. Construct M(H) as
in Sect. 2.2. Consider the medial graph as an immersion of a collection of δ(H) circles
with clean double points. Each regular edge of G intersects the planar graph M(H)

in two points. Each of these points has a neighborhood in which the immersion is an
embedding. For each regular edge of G, take a square I 2 and identify one edge with a
neighborhood of an intersection point in M(H), and identify the opposing edge with a
neighborhood of the second intersection point in M(H), so that the counterclockwise
orientation of the plane and the counterclockwise orientation of the boundary of I 2 are
compatible. Via the embedding in a neighborhood of each intersection point, we may
pull these identifications back to the collection of δ(H) disjoint circles. The ribbon
graph R is then the quotient space obtained by filling in each of these circles by a disc,
and performing the constructed identifications of these circles with the collection of
squares I 2 corresponding to the regular edges of G.

Example 2.6

graph G
medial graph of H medial graph with arrows

1-st circle 2-nd circle

separating the circles with arrows

arrow representation of R ribbon graph R

We do not label the pairs of arrows in this example because there is only one pair.
One can easily see that if G is a relative plane graph constructed from a ribbon

graph R as in previous subsection, then this construction recovers R from G. Also one
may notice that there is a natural one to one correspondence between the edges of R
and the regular edges of G.
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2.5 The Bollobás–Riordan Polynomial of Ribbon Graphs

TheBollobás–Riordan polynomial, originally defined inBollobás andRiordan (2002),
was generalized to a multivariable polynomial of weighted ribbon graphs in Moffatt
(2008), Vignes-Tourneret (2009). We will use a sightly more general doubly weighted
Bollobás–Riordan polynomial of a ribbon graph R with weights (xe, ye) of an edge
e ∈ R.

Definition 2.7

BR(X,Y, Z) :=
∑

F⊆R

(

∏

e∈F
xe

)

⎛

⎝

∏

e∈R\F
ye

⎞

⎠ Xk(F)−k(R)Yn(F)Zk(F)−bc(F)+n(F),

where the sum runs over all spanning subgraphs F , k(F) is the number of connected
components of F , n(F) = |E(F)| − v(F) + k(F) is the nullity of F , and bc(F) is
the number of boundary components of F .

2.6 The Relative Tutte Polynomial

Definition 2.8 Let G be a relative plane graph with the distinguished set of 0-edges
H . We consider spanning subgraphs F of G containing all 0-edges H . Such spanning
subgraph can be identified with a subset of edges of G \ H . Summing over all such
spanning subgraphs we set

TG,H (G) :=
∑

F⊆G\H

(

∏

e∈F
xe

)

⎛

⎝

∏

e∈F
ye

⎞

⎠ Xk(F∪H)−k(G)Yn(F)ψ(HF ),

where F = G \ (F ∪ H), ψ is a block-invariant function on graphs, and HF is the
plane graph obtained from F ∪ H by contracting all edges of F . Our choice of ψ is

ψ(HF ) := dδ(HF )−k(HF )wv(HF )−k(HF ),

δ(HF ) is the number of circles that immerse to the medial graph of HF .

Remarks.

1. The relative Tutte polynomial was introduced by Diao and Hetyei in 2010, who
used the notion of activities to produce the most general form of it. The all subset
formula we use was discovered by a group of undergraduate students (Carnovale,
Dong, Jeffries) at the OSU summer program “Knots and Graphs” in 2009. How-
ever, similar expressions may be traced back to Traldi (2004) for the non-relative
case, and to Chaiken (1989) for the relative case of matroids.

2. The functionψ inDiao andHetyei (2010) can be obtained fromours by substitution
w = 1.
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290 C. Butler, S. Chmutov

3. Another difference with Diao and Hetyei (2010) is that we are using a doubly
weighted version of the relative Tutte polynomial with weights (xe, ye) of an edge
e ∈ G \ H .

4. In the process of constructing the graph HF by contracting the edges of F in F∪H ,
we may come to a situation when we have to contract a loop. Then the contraction
of a loop actually means its deletion. Since G and F ∪ H are plane graphs, then
the graph HF is also embedded into the plane.

5. While the medial graph of the planar graph HF depends on the embedding of HF

into the plane, the number δ(HF ) does not (see Diao and Hetyei 2010). It depends
only on the abstract graph HF .

3 Main Theorem

Theorem 1 Suppose R is a ribbon graph, and G is a relative plane graph associated
to a projection of R. Or, equivalently, assume G is a relative plane graph and R is the
ribbon graph arising from G. Assume that the natural bijection between the edges of
R and regular edges of G preserves the weights.

Then under the substitution w =
√

X
Y , d = √

XY ,

XαY βTG,H (X,Y ) = BR

(

X,Y,
1√
XY

)

where α := k(G) − k(R) − β and β := − 1
2 (v(R) − v(G)).

Remarks.

1. It is a remarkable consequence of the main theorem that the specialization (w =
√

X
Y , d = √

XY ) of the relative Tutte polynomial does not depend on the various
choices made in the construction of the relative plane graph in Sect. 2.3. It is not
difficult to describe a sequence of moves on relative plane graphs relating the
graphs with different choices of the regular edges. It would be interesting to find
suchmoves for different choices of the projectionπ and,more generally, themoves
preserving the relative Tutte polynomial.

2. The construction of G from R and backward can be generalized to a wider class
of projections π . We can require that only the restriction of π to the boundary of
R be an immersion with only ordinary double points as singularities. The theorem
holds in this topologically more general situation. However, from the point of view
of graph theory it is more natural to restrict ourselves to the class of projections
which we use.

4 Proof

Our constructions of G from R and R from G in Sects. 2.3 and 2.4 give a bijection
between regular edges of G and the edge-ribbons of R. We denote the corresponding
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edges by the same letter e for both e ∈ G \ H and for e ∈ R since this will not lead to
confusion.Moreover, in the theoremwe assume that this bijection respects the weights
of the doubly weighted polynomials. The bijection can be naturally extended to the
bijection between spanning subgraphs F ⊆ G \ H and F ′ ⊆ R so that the weights of
F and F ′ are equal to each other:

(

∏

e∈F
xe

)

⎛

⎝

∏

e∈F
ye

⎞

⎠ =
(

∏

e∈F ′
xe

)

⎛

⎝

∏

e∈R\F ′
ye

⎞

⎠

Thus the theorem can be checked only on monomials in X and Y corresponding to
F ⊆ G \ H and F ′ ⊆ R. In other words, we have to prove that

Xk(G)−k(R)+ 1
2 (v(R)−v(G))Y− 1

2 (v(R)−v(G))Xk(F∪H)−k(G)Yn(F)

dδ(HF )−k(HF )wv(HF )−k(HF ) = Xk(F ′)−k(R)Yn(F ′)Zk(F ′)−bc(F ′)+n(F ′) (1)

for d = √
XY , w =

√

X
Y , and Z = 1√

XY
.

We need the following combinatorial equalities:

(2) |E(F)| = |E(F ′)|
(3) k(HF ) = k(F ∪ H)

(4) bc(F ′) = n(F) + δ(HF )

(5) v(HF ) = k(F)

(2) is clear from the subgraph correspondence. Since contracting edges of a graph
cannot disconnect it or connect disconnected components, (3) is immediate.

4.1 Proof of (4)

The restriction of the projection π : R → R
2 from Sect. 2.3 to the spanning ribbon

subgraph F ′ is an immersion of bc(F ′) circles into the plane R2. We need to compare
this number of the immersed circles with the number n(F)+δ(HF ). To do this one can
check how the number of immersed circles changes when edges of F are contracted.
It is easy to see that the contraction of a non-loop does not change the number of
circles. But, the contraction of a loop, which is the same as deletion of the loop, fuses
two disjoint circles together, one from the outside of the loop and one from the inside
of the loop. So it reduces the number of circles by 1. The result of contracting all the
edges of F is the graph HF , for which the number of circles will be δ(HF ). Since the
number of loops contracted during the process of contraction is n(F), we have

bc(F ′) = n(F) + δ(HF ).

4.2 Proof of (5)

Consider F ∪ H as a spanning subgraph of G and remove the edges of H from it.
Then we get the spanning subgraph F . Its edges are supposed to be contracted, so
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292 C. Butler, S. Chmutov

each connected component of F gives a vertex of the resulting graph. Now restoring
the edges of H does not change the number of vertices of the graph obtained by
contracting F . Thus v(HF ) = k(F).

4.3 Proof of the Theorem

We deal with the exponents of X and Y separately. The exponent of X in the left hand
side of Eq. (1) is

1

2
(v(R) − v(G)) + k(G) − k(R) + k(F ∪ H) − k(G)

+1

2
(δ(HF ) − k(HF ) + v(HF ) − k(HF ))

Substituting the equalities above and making appropriate cancellations,

= 1

2
(v(R) − v(G)) − k(R) + 1

2
(δ(HF ) + k(F))

= 1

2
(v(R) − v(G)) − k(R) + 1

2
(bc(F ′) − n(F) + k(F))

= 1

2
(v(R) − v(G)) − k(R) + 1

2
(bc(F ′) − |E(F ′)| + v(G))

= −k(R) + 1

2
(bc(F ′) + v(R) − |E(F ′)|)

= k(F ′) − k(R) + 1

2
(bc(F ′) − n(F ′) + k(F ′))

which is the exponent of X in BR .
For Y , the exponent in the left hand side of equation (1) is

−1

2
(v(R) − v(G)) + n(F) + 1

2
(δ(HF ) − k(HF ) − v(HF ) + k(HF ))

This is equival to,

= |E(F)| − v(G) + k(F) + 1

2
(bc(F ′) − n(F) − v(HF ) − v(R) + v(G))

= 1

2
(bc(F ′) − |E(F)| + 2v(G) − v(R) − 2k(F)) + |E(F)| − v(G) + k(F)

= 1

2
(|E(F ′)| − v(R) + bc(F ′))

= n(F ′) + 1

2
(bc(F ′) − n(F ′) − k(F ′))

which is the exponent of Y in BR .
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5 Dual Relative Plane Graphs

Let G be a relative plane graph. The dual of G, denoted G∗ is formed by taking the
dual of G as a plane graph, and labeling the edges of G∗ which intersect 0-edges of
G as the 0-edges of G∗. Note that for relative plane graphs (G∗)∗ = G, as with usual
planar duality.

Theorem 2 Under the substitution w =
√

X
Y , d = √

XY , we have

Xa(G,H)Yb(G)TG,H (X,Y ) = Ya(G∗,H∗)Xb(G∗)TG∗,H∗(Y, X)

with the correspondence on the edge weights being xe=ye∗ , ye=xe∗ , where e∗ is
the edge of G∗ that intersects e, and a(G, H) = (|E(G \ H)| − v(G))/2 +
k(G), b(G) = v(G)/2 .

Remarks.

1. This theoremgeneralizes the classical relation, TG(x, y) = TG∗(y, x), for theTutte
polynomials of dual plane graphs to relative plane graphs. The duality theorem for
the Bollobás–Riordan polynomial was found in Ellis-Monaghan and Sarmiento
(2011) (see also Moffatt (2008) and Chmutov (2009)), and for the more general
Krushkal’s polynomial in Krushkal (2011).

2. The theorem could be proved knowing that the dual of a relative plane graph
corresponds to the dual ribbon graph and using the Bollobás–Riordan duality
result from Ellis-Monaghan and Sarmiento (2011). However, at this moment we
do not claim this relation and give a direct proof below. In general, it would be
interesting to express the partial duality of ribbon graphs from Chmutov (2009),
Moffatt (2010) in terms of relative plane graphs.

Proof of the Theorem The equality is on monomials of TG,H , TG∗,H∗ in the edge
weight variables (xe, ye) which establish the correspondence between spanning sub-
graphs F of G \ H and F∗ of G∗ \ H∗. Namely, F∗ consists of those regular edges
of G∗ which do not intersect the regular edges of F .

We prove the equality on monomials for the exponent of X . Equality for Y then
follows from duality. The exponent of X on the left is

1

2
(|E(G \ H)| − v(G)) + k(G) + k(F ∪ H) − k(G) + 1

2
(δ(HF ) − k(HF )

+v(HF ) − k(HF ))

= 1

2
(|E(G \ H)| − v(G) + bc(FR) − n(F) + k(F))

= 1

2
(|E(G \ H)| + bc(FR) − |E(F)|)

= 1

2
(|E(F)| + bc(FR)),

where FR is the ribbon graph constructed from the relative plane graph F ∪ H in the
manner of Sect. 2.4.
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On the right, let F∗ denote the subgraph of G∗ corresponding to F . Then the
exponent of X is

n(F∗) + 1

2
(δ(HF∗) − k(HF∗) − v(HF∗) + k(HF∗) + v(G∗))

= n(F∗) + 1

2
(bc(F∗

R) − n(F∗) − k(F∗) + v(G∗))

= 1

2
(bc(F∗

R) + |E(F∗)|)

Now, |E(F∗)| = |E(F)| by the subgraph correspondence. The equality bc(FR)=bc
(F∗

R) follows from the fact that the ribbon graphs FR and F∗
R have the same boundary.

It can also be seen from the following figures:

e

G e F

e∗

G∗ e∗ ∈ F ∗

e

G e ∈ F

e∗

G∗ e∗ F ∗

6 Kauffman Bracket of Virtual Links

In this section we generalize the result of Diao and Hetyei (2010) which extends
the Thistlethwaite theorem to virtual links. Virtual links are represented by diagrams
similar to ordinary knot diagrams, except some crossings are designated as virtual.
Here are some examples of virtual knots.

Virtual link diagrams are considered up to plane isotopy, the classicalReidemeister
moves:

,

and the virtual Reidemeister moves:

.

The Kauffman bracket for virtual links is defined in the same way as for classical
links. Let L be a virtual link diagram. Consider two ways of resolving a classical

crossing. The A-splitting, , is obtained by joining the two vertical angles
swept out by the overcrossing arc when it is rotated counterclockwise toward the
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undercrossing arc. Similarly, the B-splitting, , is obtained by joining the
other two vertical angles. A state s of a link diagram L is a choice of either an A or
B-splitting at each classical crossing. Denote by S(L) the set of states of L . A diagram
L with n crossings has |S(L)| = 2n different states.

Denote by α(s) and β(s) the numbers of A-splittings and B-splittings in a state s,
respectively, and by δ(s) the number of components of the curve obtained from the
link diagram L by splitting according to the state s ∈ S(L). Note that virtual crossings
do not connect components.

Definition 6.1 TheKauffman bracket of a diagram L is a polynomial in three variables
A, B, d defined by the formula

[L](A, B, d) :=
∑

s∈S(L)

Aα(s) Bβ(s) d δ(s)−1 .

Note that [L] is not a topological invariant of the link; it depends on the link diagram
and changes with Reidemeister moves. However, it determines the Jones polynomial
JL(t) by a simple substitution:

A = t−1/4, B = t1/4, d = −t1/2 − t−1/2 ;

JL(t) := (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2 − t−1/2) .

In 1987 Thistlethwaite (1987) (see also Kauffman 1988) proved that up to a sign
and a power of t the Jones polynomial VL(t) of an alternating link L is equal to the
Tutte polynomial TGL (−t,−t−1) of the Tait graph GL obtained from a checkerboard
coloring of the regions of a link diagram.

L GL

Kauffman (1989) generalized the theorem to arbitrary (classical) links using signed
graphs. To virtual links this theorem was extended in Chmutov (2009), Chmutov and
Pak (2007), Chmutov and Voltz (2008) using ribbon graphs. Another extension, using
the relative Tutte polynomial, is due Diao and Hetyei (2010). In their construction
the relative plane graph is the Tait graph of a virtual link diagram whose 0-edges
correspond to virtual crossings. They expressed [L](A, A−1,−A2 − A−2) as a spe-
cializationof the relativeTutte polynomial. ThewholeKauffmanbracket [L](A, B, d),
although not a link invariant, is of interest as a pure combinatorial invariant of link
diagrams. It turns out that it also can be expressed as a specialization of the relative
Tutte polynomial.

Following Diao and Hetyei (2010), we assign signs to the edges of the Tait graph
G depending on whether the edge connects A- or B-splitting regions:
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+ −

Theorem 3 Let L be a virtual link diagram, and G the relative plane Tait graph of
Then, under the substitution

X = Bd

A
, Y = Ad

B
, w = B

A
, x+ = y+ = 1,

x− =
√

X

Y
= B

A
, y− =

√

Y

X
= A

B

we have,

[L](A, B, d) = Av(G)−k(G)B|E(G\H)|−v(G)+k(G)dk(G)−1TG,H.

Proof The equality is on monomials, with the correspondence between subgraphs F
and states S being the natural one:

−+
e

A

B

e ∈ F

e
F

e

A

B

e F

e ∈ F

Let |E−(F)| (resp. |E+(F)|) be the number of negative (resp. positive) edges in
the graph F . The power of B on the right is

|E(G \ H)| − v(G) + k(G) + |E−(F)| − |E−(F)|
+ k(F ∪ H) − k(G) − n(F) + v(HF ) − k(HF )

= |E−(F)| − |E−(F)| + |E(G \ H)| − |E(F)|
= |E−(F)| − |E−(F)| + |E(F)| = |E−(F)| + |E+(F)| = β(S),

as it can be easily seen from the picture above. The proof of equality on the exponent
of A is similar. For d, the exponent on the right is

k(G) − 1 + k(F ∪ H) − k(G) + n(F) + δ(HF ) − k(HF )

= n(F) + δ(HF ) − 1 = bc(FR) − 1 = δ(S) − 1.
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7 Polynomials of Graphs on Surfaces

There are several other polynomial invariants of graphs on surfaces. This section is
intended to be a guide for the interested reader to understand how these polynomial
invariants are related to each other, and how our work on the Bollobás–Riordan poly-
nomial and relative Tutte polynomial fits within this more general context.

One of themost general such polynomials PR(X,Y, A, B)was defined byKrushkal
in 2011 in terms of the topology of the embedding. It generalizes theBollobás–Riordan
polynomial:

BR(X,Y, Z) = Y g PR(X,Y,Y Z2,Y−1),

where g is the genus of the ribbon graph.
A combinatorial polynomial LVR(x, y, z) was defined by Las Vergnas in 1980,

1999 using matroids of the graph and its dual. It turns out to be a specialization of the
Krushkal polynomial Askanazi et al. (2013):

LVR(x, y, z) = zg PR(x − 1, y − 1, z−1, z).

The Bollobás–Riordan polynomial was extended to ribbon graphs with additional
structure, arrow structure, in Bradford et al. (2012). It would be interesting to define
this structure for relative planar graphs and extend our main theorem to it. Some other
polynomial invariants may be found in Ellis-Monaghan and Moffatt (2015).

The next diagram represents various relations between these polynomials.

Both the relative Tutte polynomial of Diao and Hetyei (2010) and the Las Vergnas
polynomial of 1980, 1999may be formulated for matroids. But the results of Askanazi
et al. (2013) (see also the substitutions in the diagram above) indicate that the Las
Vergnas and the Bollobás–Riordan polynomials are independent. Since the latter poly-
nomial specializes to the relative Tutte polynomial one should expect that the relative
Tutte and the Las Vergnas polynomials are also independent. This may signify the
existence of a more general matroid polynomial which would be a matroidal counter-
part of the Krushkal polynomial. Recently this sort of polynomial was found in Chun
et al. (2014).
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