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Abstract We propose a generalization of the classical notions of plumbing andMura-
sugi summing operations to smooth manifolds of arbitrary dimensions, so that in this
general context Gabai’s credo “the Murasugi sum is a natural geometric operation”
holds. In particular, we prove that the sum of the pages of two open books is again
a page of an open book and that there is an associated summing operation of Morse
maps. We conclude with several open questions relating this work with singularity
theory and contact topology.

Keywords Cobordisms · Morse functions · Murasugi sums · Open books ·
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1 Introduction

Around 1960, Milnor and Mumford introduced independently particular cases of an
operation which builds new manifolds with boundary from given ones: “plumbing”.
Milnor used this operation to construct exotic spheres in higher dimensions andMum-
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ford in order to describe the boundaries of nice neighborhoods of isolated singular
points on complex surfaces.

Around the same time,Murasugi defined an analogous operation on Seifert surfaces
of links in the 3-sphere. This operation was done on embedded objects rather than
abstract ones. Nevertheless, this operation agrees with (a slight generalization of) the
plumbing operation on the embedded surfaces.

In the mid-1970s, Stallings introduced the name of “Murasugi sum” for the oper-
ation above, and he showed that the Murasugi sum of two pages of open books is
again the page of an open book. Several years later, Gabai proved that Murasugi
sum preserves other properties of surfaces embedded in 3-manifolds, and summarized
the general philosophy behind such results by the credo “Murasugi sum is a natural
geometric operation” (see Gabai 1983a, b, 1985, 1986).

In the mid-1980s, Lines proved an analog of Stallings’ theorem for special types of
open books in higher dimensional spheres, after having extended to that context the
operation of Murasugi sum.

Details about the previous historical facts may be found in Sects. 2 and 3 of our
paper.

The effect of the Murasugi sum on the hypersurfaces under scrutiny is to plumb
them, that is, roughly speaking, to identify by a special diffeomorphism two balls
embedded in them, in such a way that the result is again a manifold with boundary.

The aim of this paper is to identify the most general operation of plumbing in
arbitrary dimensions, which allows one to extend the classical operation of Murasugi
sum, such that Gabai’s credo still holds.

Our main result (see Theorem 9.3) is that an analog of Stallings’ theorem holds
if the plumbing operation is generalized by allowing the gluing of two manifolds
with boundary through any diffeomorphism of compact full-dimensional submanifolds,
provided that the result is again a manifold with boundary.

In particular, we never impose orientability hypotheses. Instead, throughout the
paper the crucial assumptions are about coorientability of hypersurfaces. Moreover,
we work with fixed coorientations. As those coorientations are present in the absence
of any orientations on the ambient manifold or on the hypersurface, we work in a
slightly non-standard context. This obliges us to give careful definitions of all the
objects we manipulate, by lack of a convenient source in the literature.

An important message of our work is that it is much easier to prove that general-
ized Murasugi sums conserve geometric properties (illustrating Gabai’s credo) if the
fundamental notion of sum is defined on special types of cobordisms. In fact, the most
difficult result of our work from the technical viewpoint (Proposition 9.1) states that
our generalization of theMurasugi sum to arbitrary dimensions coincides with another
definition given in terms of cobordisms.

We believe that, combining our new operations with those explored in Kauffman
and Neumann (1977) and Neumann (1987), one will get a better understanding of the
differential topology of singularities.

Let us describe the structure of the paper.
In Sect. 2we sketch the historical evolution of the notions of plumbing andMurasugi

sum, through the works of Milnor, Mumford, Murasugi, Stallings, Gabai and Lines.
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Generalized Plumbings and Murasugi Sums 71

We quote from the original sources, in order to allow the reader to compare easily
those classical constructions to ours.

In Sect. 3 we explain Gabai’s geometric proof of Stallings’ theorem. We describe
a variant of his proof given by Giroux and Goodman and give a second interpretation
of it as explained by Etnyre.

In Sect. 4 we explain our basic conventions about coorientations of hypersurfaces
in manifolds with boundary (see Definition 4.3), their sides and collar neighborhoods
(see Definition 4.7).

In Sect. 5 we set up our notation for cobordism of manifolds with boundary (see
Definition 5.1), which is essential for our approach, mainly through its special case of
cylindrical cobordisms (see Definition 5.5). Cobordisms of manifolds with boundary
may also be composed, just like usual cobordisms. In the following sections, for
concision, we simply speak about cobordisms instead of cobordism of manifolds with
boundary.

In Sect. 6 we describe the notions of Seifert hypersurfaces (see Definition 6.1) and
open books (see Definition 6.14) and establish the equivalence of these notions with
some special types of cobordisms.

In Sect. 7 we introduce our generalizations of the classical notions of plumbing
and Murasugi sum. We call them abstract and embedded summing respectively (see
Definitions 7.4 and 7.8). For the latter, the hypersurfaces to be summed are not assumed
to be coorientable, but only the identified patches (see Definition 7.2) are assumed
to be cooriented. We show that embedded summing is an associative but in general
non-commutative operation (see Proposition 7.10).

In Sect. 8 we introduce a supplementary structure on cylindrical cobordisms, stiff-
enings, which exist and are unique up to isotopy, but which are not canonical. Such
structures are essential for the proofs presented in Sect. 9. We also define a summing
operation on stiffened cylindrical cobordisms (see Definition 8.6).

In Sect. 9 we show that, under the assumption that the hypersurfaces which are to
be summed in an embedded way are globally cooriented, the operation of embedded
summing may be reinterpreted as a summing operation on cylindrical cobordisms
(see Proposition 9.1). Our generalization of Stallings’ theorem (see Theorem 9.3) is
obtained then easily by working with a stiffening adapted to the open books under
scrutiny. We also formulate an extension of this theorem to what we call Morse open
books (see Definition 9.5).

Finally, in Sect. 10 we list several open questions. Some of them concern the
relations of open books with singularity theory and contact topology. For this reason,
we begin that section by recalling briefly the basics of those relations. We hope that
this work will be useful in particular to the researchers interested in the topology of
singular spaces and to those interested in the topology of contact manifolds.

2 Plumbing and Murasugi Sums in the Literature

In this section we recall the classical notions of plumbing, as defined byMilnor and by
Mumford, as well as Murasugi’s original construction, its extensions by Stallings and
Gabai to more general 3-dimensional operations and by Lines to arbitrary dimension.
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In Milnor (1959, p. 71), Milnor constructed for any k ≥ 1 a (2k − 1)-connected
manifold-with-boundary Mk of dimension 4k whose intersection form in dimension
2k has the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1

1 2 1 −1

1 2 1

1 2 1

−1 1 2 1

1 2 1

1 2 1

1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in an appropriate basis, where the missing entries are 0. The determinant of this matrix
is 1, which ensures that the boundary of the constructedmanifold is homeomorphic to a
sphere. Milnor showed that this boundary generated the cyclic group of 7-dimensional
homotopy spheres which bound parallelizable manifolds.

In order to construct Mk , Milnor started from two transversal copies of the sphere
S
2k inside S2k × S

2k , intersecting in exactly two points, and having self-intersections
+2: the diagonal and its image by the map 1 × α, where α : S2k → S

2k denotes in
his words the “twelve hour rotation which leaves the north pole fixed, and satisfies
α(x) = −x for x on the equator”.

He took the universal cover Ũ of a tubular neighborhood U of the union X of the
two spheres, and looked at the total preimage X̃ of X inside Ũ . He could easily find
in Ũ a sequence:

T1 ∪ T ′
1 ∪ T2 ∪ T ′

2 ∪ T3 ∪ T ′
3 ∪ T4 ∪ T ′

4

of tubular neighborhoods of eight (2k)-dimensional spheres of X̃ intersecting in a
chain, whose intersection matrix is isomorphic to the one given above, except that the
two −1’s are replaced by 0-s. Milnor explains at this point:

“To correct this intersection matrix it is necessary to introduce an intersection
between T ′

1 and T3, so as to obtain an intersection number−1. Choose a rotation
of S2k × S

2k which carries a region of T ′ near the “equator” onto a region of T
near the “equator”, so as to obtain an intersection number of −1. Matching the
corresponding regions of T ′

1 and T3, we obtain a topological manifold W2, with
the required intersection matrix.”

We note that W2 is not the final manifold in Milnor’s construction, but this is not
so important for our purposes. It is this “matching” of regions which was later named
“plumbing”, following a denomination introduced for a related object by Mumford
Mumford (1961).

Mumford’s problem in Mumford (1961) was to study the topology of the bound-
ary of a “tubular neighborhood” of a reducible compact complex curve in a smooth
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complex surface. He assumed that the irreducible components Ei of the curve are
smooth and he described the boundary M of their union as the result of a cut-and-
paste operation done on the boundaries Mi of tubular neighborhoods of the individual
Ei ’s. One first has to cut some solid tori from the Mi ’s and then glue pairwise collar
neighborhoods of the boundary components created in this way. He described those
collar neighborhoods as “standard plumbing fixtures” (see Mumford 1961, page 8).
The term “plumbing” was brought to this context! Later, it was used as a name for two
different but related operations:

• following Mumford, a cut-and-paste operation used to describe the boundary of a
tubular neighborhood of a union of submanifolds of a smooth manifold, intersect-
ing generically (see Neumann 1981; Popescu-Pampu 2007);

• following Milnor, a purely pasting operation used to describe the tubular neigh-
borhoods themselves.

One of the first definitions of this operation in a textbook is to be found inHirzebruch
et al. (1971, Chapter 8). Let us quote from it the definition of the plumbing of two
n-disc bundles (see Fig. 1, reproduced from the same book):

Definition 2.1 “Let ξ1 = (E1, p1,Sn
1) and ξ2 = (E2, p2,Sn

2) be two oriented n-disc
bundles over Sn . Let Dn

i ⊂ S
n
i be embedded n-discs in the base spaces and let:

fi : Dn
i × Dn → Ei |Dn

i

be trivializations of the restricted bundles Ei |Dn
i for i = 1, 2. To plumb ξ1 and ξ2 we

take the disjoint union of E1 and E2 and identify the points f1(x, y) and f2(y, x) for
each (x, y) ∈ Dn × Dn .”

It was Hirzebruch (1963) who related Milnor’s and Mumford’s constructions:

“M(E8) was constructed by “plumbing” 8 copies of the circle bundle over S2k

with Euler number−2. By replacing this basic constituent by the tangent bundle
of S2k one obtains a manifold M4k−1(E8) of dimension 4k − 1. This carries a
natural differentiable structure. For k ≥ 2 it is homeomorphic to S

4k−1, but not
diffeomorphic (Milnor sphere).”

Here Hirzebruch proposed an alternative construction of a generator of the group
of homotopy spheres of dimension 7, as the intersection matrix of the E8 diagram

Fig. 1 Plumbing of two n-disc
bundles according to Hirzebruch
et al. (1971)
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Fig. 2 Primitive s-surface of
type (n, 1), whose boundary is
the (−2, n)-torus link

D1 D2

B1

B2

Bn

is simpler than the one considered by Milnor (1959). In fact, Milnor presented later
in Milnor (1964) Hirzebruch’s “plumbing” construction according to the E8 diagram
rather than his initial construction.

The operation of “plumbing” was generalized from n-disc bundles over n-
dimensional spheres to arbitrary n-dimensional manifolds as base spaces, the
identifications of f1(x, y) and f2(−y, x) being also allowed [see, for example, Brow-
der’s book (Browder 1972, SectionV.2)]. Nevertheless, what remained unchangedwas
the structure of the subbundles to be patched: products Dn × Dn of n-dimensional
discs.

Now let us turn our attention to the related notion ofMurasugi sum.We quote below
the original construction by Murasugi (1963, p. 545), illustrating it in Figs. 2 and 3 by
drawings which are similar to Murasugi’s original ones:

“Let us consider an orientable surface F in S3 [...] consisting of two disks D1, D2
to which n bands B1, B2, ..., Bn are attached. All Bi are twisted once in the same
direction, and the bands are pairwise disjoint and do not link one another. Let
us call F a primitive s-surface of type (n, ε), where ε = ±1 according as the
twisting is right-handed or left-handed. [...]
Consider two primitive s-surfaces F and F ′ in S3 of type (n, ε) and (m, η). Take
two disks, D1 and D′

1 say, from each F and F ′ and identify them so that the
resulting orientable surface F̃ = F ∪ F ′ spans a link, and that F̃ − F and F̃ − F ′
are separated, i.e. there exists a 2-sphere S in S

3 such that S ∩ F̃ = D1(= D′
1)

and each component of S3− S contains points of F̃ − D1. [...] F̃ will be called an
s-surface. [...] In general, by an s-surface is meant an orientable surface obtained
from a number of primitive s-surfaces by identifying their disks in this manner.”

The “primitive s-surfaces” used byMurasugi are fiber-surfaces, that is, they appear
as the pages of some open books in S3 (see Definition 6.14 below). In Stallings (1978,
p. 56), Stallings generalized Murasugi’s construction to arbitrary fiber-surfaces as
follows:

“Consider two oriented fibre surfaces T1 and T2. On Ti let Di be 2-cells, and let
h : D1 → D2 be an orientation-preserving homeomorphism such that the union
of T1 and T2 identifying D1 with D2 by h is a 2-manifold T3. That is to say:

h(D1 ∩ Bd T1) ∪ (D2 ∩ Bd T2) = Bd D2. (2.1)
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Generalized Plumbings and Murasugi Sums 75

Fig. 3 Disks in primitive
s-surfaces of type (2, 1) and of
type (2, −1) are identified to
give a Seifert surface for a
figure-eight knot

[Here Bd X denotes the boundary of X ].
We can realize T3 in S3 as follows: Thicken D1 on the positive side of T1, to get
a 3-cell, whose complementary 3-cell E1 contains T1 with T1 ∩ Bd E1 = D1
and with negative side of T1 contained in the interior of E1. Likewise, there is a
3-cell E2 containing T2 with T1 ∩ Bd E1 = D1 and with the positive side of T2
contained in the interior of E2. The homeomorphism h : D1 → D2 extends to
h : Bd E1 → Bd E2. The union of E1 and E2, identifying their boundaries by
h - this is S3 - contains T3 as T1 ∪ T2. We say T3 is obtained from T1 and T2 by
plumbing.”

The main result of Stallings’ paper is:

Theorem 2.2 If T1 and T 2 are fibre surfaces, so is T3.

This shows in particular that the s-surfaces of Murasugi are fibre surfaces. Note
that, Stallings’ definition of (embedded) “plumbing” applies to any oriented surfaces
in S3, not only to fibre surfaces.

Gabai (1983a, p. 132) coined the name “Murasugi sum” for a slightly restricted
operation:

“The oriented surface R ⊂ S
3 is a Murasugi sum of compact oriented surfaces

R1 and R2 in S3 if:
1. R = R1 ∪D R2, D = 2n gon
2. R1 ⊂ B1, R2 ⊂ B2 where B1 ∩ B2 = S, S a 2-sphere, B1 ∪ B2 = S

3 and
R1 ∩ S = R2 ∩ S = D. ”

As remarked by Gabai, this definition extends immediately to an operation on
oriented surfaces in arbitrary oriented 3-manifolds.
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Note that in the definition above, the way that D is embedded in R1 ∪D R2 is not
explicitly stated, but in Gabai’s drawing (Gabai 1983a, Figure 1) the edges on the
boundary of the 2n-gon D appear as arcs included alternately in the interior of R1
and in the interior of R2. Thus we may deduce that this slightly restricted operation is
what Gabai had in mind from the fact that ∂ D gets a structure of a polygon with an
even number of edges from its embedding in both R1 and R2.

Rudolph (1998) called this second, more restrictive interpretation of the summing
operation, “Murasugi sum” and reserved the name “Stallings plumbing” for Stallings’
more general definition. Changing his notations to those of Stallings’ paper, in order
to be able to make reference to the identity (2.1), let us quote his comparison of the
two definitions:

“On its face, Stallings plumbing is a strict generalization of Murasugi sum, [...]
its seemingly special case in which [...] (2.1) is supplemented by:

h(D1 ∩ Bd T1) ∩ (D2 ∩ Bd T2) = ∂(D2 ∩ Bd T2). (2.2)

In fact, however, it is easy to see that (up to ambient isotopy) every Stallings
plumbing is a Murasugi sum of the same plumbands. The distinction is nonethe-
less useful and will be maintained here.”

The fact that the more general notion of “Stallings plumbing” is “nonetheless use-
ful”, even if it describes the same objects as the “Murasugi sum” may be seen already
from the first application of Theorem 2.2 given by Stallings in his paper (Stallings
1978, Theorem 2):

Theorem 2.3 The oriented link β̂ obtained by closing a homogeneous braid β is
fibered.

A homogeneous braid is described by a word in the standard presentation of the
braid groups, such that each generator appears always with exponents of the same
sign. In the special case in which the generators are always positive, one obtains
the usual notion of positive braid. Stallings’ proof considers the Seifert algorithm
for constructing a Seifert surface applied to the diagram of the link β̂ associated to
the given word. The Seifert surface appears constructed as a finite sequence of disks
situated in parallel planes, successive disks being connected by twisted bands. The
condition of homogeneity says that all the bands between two given successive disks
are twisted in the same sense (see Fig. 4). One recognizes therefore an s-surface of
Murasugi, which is in general a “Stallings plumbing” in Rudolph’s sense, but not a
“Murasugi sum” in Gabai’s sense.

For a special type of higher dimensional hypersurfaces in spheres, a generalization
of Murasugi summing was studied by Lines in a series of papers Lines (1985, 1986,
1987). Here are the definitions he used:

Definition 2.4 A knot K ⊂ S
2k+1 is a (k − 2)-connected oriented (2k − 1)-

dimensional submanifold. A Seifert surface for K is a compact oriented hypersurface
of S2k+1 with boundary K . The knot K is called simple if it admits a (k−1)-connected
Seifert surface.
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Fig. 4 On the leftThefigure eight knot β̂ which is the closure of the homogeneous braidβ = σ−1
1 σ2σ

−1
1 σ2.

On the rightThe top two diskswith twisted bands connecting them form a primitive s-surface of type (2, −1),
while the lower two disks with twisted bands connecting them form a primitive s-surface of type (2, 1). By
gluing these primitive s-surfaces in the obvious way, we get a Seifert surface for β̂. Compare with Fig. 3

The following definition appeared in Lines (1985, Section 2):

Definition 2.5 Let K1 and K2 be two simple knots in S
2k+1 bounding (k − 1)-

connected Seifert surfaces F1 and F2 respectively. Suppose that S2k+1 is the union
of two balls B1 and B2 with a common boundary which is a (2k)-sphere S. Let
ψ : Dk × D

k → S be an embedding such that:

1. F1 ⊂ B1, F2 ⊂ B2;
2. F1 ∩ S = F2 ∩ S = F1 ∩ F2 = ψ(Dk × D

k);
3. ψ(∂Dk × D

k) = ∂ F1 ∩ ψ(Dk × D
k) and ψ(∂Dk × ∂Dk) = ∂ F2 ∩ ψ(Dk × D

k).

Then the submanifold F := F1 ∪ F2 ⊂ S
2k+1, after smoothing the corners, is said to

be obtained by plumbing together the Seifert surfaces F1 and F2.

Lines (1985, Proposition 2.1) proved that Theorem 2.2 extends to this context.
His proof is algebraic, not geometric. In the sequel, we will extend his definition,
dropping any hypothesis on the topology of the pages and of the ambient manifold
(see Definition 7.8), and we will show, through a geometric proof, that Theorem 2.2
extends also to this more general context (see Theorem 9.3).

3 A Geometric Proof of Stallings’ Theorem

For the sake of completeness, we include here a geometric proof of Theorem 2.2, for
the most frequently used case in the literature, where the plumbing region is just a
rectangle (n = 2 in Gabai’s Murasugi sum). The principle of the proof below is due to
Gabai (1983a, pp. 139–141), although we will present here another formulation of his
proof which appeared more recently in Giroux and Goodman (2006, p. 101), using the
language of open books (see Definition 6.14), rather than fibered surfaces or foliations.

First we prepare a local model of a neighborhood of a properly embedded arc in
the page of an open book in an arbitrary 3-manifold as follows. Set:

K̃ = {(x, y, z) ∈ R
3 | x = ±1, y = 0}
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x

y

x2+2y2 = 2

Fig. 5 The intersection of the “pages” of (K̃ , θ̃ ) with the xy-plane, and the ellipse x2 + 2y2 = 2

and let θ̃ : R3\K̃ → S
1 be the map defined by:

θ̃ (x, y, z) = arg

(
1 + x + iy

1 − x − iy

)
= arg(1 − x2 − y2 + 2iy).

As θ̃ does not depend on the z-coordinate, for each t ∈ S
1, the preimage θ̃−1(t) can be

described as the intersection θ̃−1(t)∩{z = 0}, translated invariantly in the z-direction.
Therefore, to visualize θ̃−1(t), it suffices to understand (θ̃ |{z=0})−1(t) which is the
preimage of a ray starting from the origin in the complex plane under the homography

defined by the equation w = 1 + u

1 − u
, where u = x + iy. Since homographies preserve

the circles, each such preimage is included in some circle on the xy-plane. Using the
last equality above, it is possible to see that for each t 	= 0, π ∈ S

1, the preimage
(θ̃ |{z=0})−1(t) is an open arc of a circle passing through (1, 0) and (−1, 0), as depicted
in Fig. 5. For t = 0 and t = π , these preimages are given by the segment (−1, 1) and
R\[−1, 1] on the x-axis, respectively.

It follows that, for t 	= π ∈ S
1, the union θ̃−1(t) ∪ K̃ is a connected infinite

strip parallel to the z-axis, while θ̃−1(π) ∪ K̃ consists of two connected components.
Therefore, θ̃ is not a locally trivial fibration over S1 (and hence it does not define an
open book on R

3), but nevertheless, θ̃−1(t) ∪ K̃ is still called a “page” of θ̃ , since it
gives a “piece” of an open book.
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x

y

z

x2+ z2 = 2

K̃K̃

Fig. 6 The intersection of the (π/2)-page of (K̃ , θ̃ ) with B

Let E = ∂ B denote the ellipsoid which is the boundary of the domain:

B = {(x, y, z) ∈ R
3 | x2 + 2y2 + z2 ≤ 2}.

Note that, for all t 	= ±π/2, the pages of the “open book” (K̃ , θ̃ ) intersect E
transversely inducing a foliation on E\K̃ , where E ∩ K̃ = {(1, 0, 1), (1, 0,−1),
(−1, 0,−1), (−1, 0, 1)}. This foliation agrees with what Gabai depicted in Gabai
(1983a, Fig. 4). It is invariant with respect to the reflections along all three coordinate
planes, and under a rotation of angle π about all three coordinate axes.

The four points in E ∩ K̃ are the corners of a square inscribed in the circle of radius√
2 on the xz-plane (see Fig. 6). Moreover, the map:

ρ̃ : E → E, (x, y, z) → (z,−y,−x)

cyclically permutes these four points, rotating the square (clockwise) in the xz-plane
by an angle of π/2. Furthermore, ρ̃ is an orientation reversing self-diffeomorphism of
E such that:

θ̃ ◦ ρ̃(x, y, z) = θ̃ (x, y, z) + π for any (x, y, z) ∈ E\K̃ .

Let Mi be an arbitrary closed oriented 3-manifold for i = 1, 2, and let (Ki , θi ) be
an open book in Mi . Our goal is to construct an open book (K , θ) in the connected
sum of M1 and M2 such that the page of (K , θ) is obtained by plumbing the pages
of (K1, θ1) and (K2, θ2). Suppose that Ci is a properly embedded arc in the page
θ−1

i (0) ∪ Ki . Then Ci has a neighborhood Ui ⊂ Mi with an orientation-preserving
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80 B. Ozbagci, P. Popescu-Pampu

diffeomorphism ψi : Ui → R
3, carrying (Ki ∩ Ui , θi |Ui ) to (K̃ , θ̃ ) and Ci to the

segment [−1, 1] on the x-axis. This last claim follows from two basic facts:

(i) any locally trivial fibration is trivial over an interval;
(ii) the geometric monodromy can be assumed to be the identity near the binding of

an open book.

Consequently, the composition:

ρ = ψ−1
2 ◦ ρ̃ ◦ ψ1 : E1 = ψ−1

1 (E) → E2 = ψ−1
2 (E)

is an orientation-reversing diffeomorphism which can be used to construct the con-
nected sum:

M = M1#M2 = (M1\int(B1)) ∪ρ (M2\int(B2)),

where Bi = ψ−1
i (B).

There is a natural open book (K , θ) on M which is defined as follows: Let K be the
union of K1\int(B1) and K2\int(B2), which is a link in M because of the properties
of the map ρ̃ discussed above. Since θ2 ◦ ρ(x, y, z) = θ1(x, y, z) + π , the map θ

defined as θi + (−1)i+1π/2 when restricted to (Mi\int(Bi ))\Ki induces a fibration
on M\K .

To understand the pages of the open book (K , θ) on M , consider the piece of (non-
smooth) surface (θ̃−1(π/2) ∪ K̃ )\int(B) depicted in Fig. 7 (compare with Fig. 6, but
beware that we take the complement). Since (K̃ , θ̃ ) is a local model for both open
books (K1, θ1) and (K2, θ2), we just need to understand how the pages in two copies
of this local model fit together by the map ρ̃ : E → E . Because of the symmetry
of the construction, (θ̃−1(−π/2) ∪ K̃ )\int(B) is also homeomorphic to the surface
depicted in Fig. 7. These two oriented surfaces-with-boundary can be glued together
along parts of their boundaries, dictated by the map ρ̃ : E → E , to give an oriented
smooth surface with corners as we depicted on the left in Fig. 8.

This shows that the 0-page of (K , θ) can be viewed as the plumbing of the (−π/2)-
page of (K1, θ1) with the (π/2)-page of (K2, θ2) along the neighborhoods of the arcs
C ′
1 and C ′

2 defined by:

Fig. 7 (θ̃−1(π/2) ∪ K̃ )\int(B)
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C2

C1

K2

K1

K2

K1

Fig. 8 Local pictures of the pages of (K , θ): the 0-page on the left, other pages on the right

C ′
1 = ψ−1

1 (C1) and C ′
2 = ψ−1

2 (C2),

where:

C1 = {x2 + y2 = 1, y ≤ 0, z = 0} and C2 = {x2 + y2 = 1, y ≥ 0, z = 0}.

Similarly, all the other pages of the open book (K , θ) will appear locally as drawn
on the right in Fig. 8, each of which is globally diffeomorphic to the 0-page, after
smoothing the corners as usual. Hence θ : M\K → S

1 is a locally trivial fibration
each of whose fibers is obtained by plumbing a page of (M1, θ1) with a page of
(M2, θ2)—which finishes Gabai’s proof of Stallings’ Theorem 2.2.

The proof above can be described with another point of view which turns out to be
more suitable for the generalizations we have in mind. One can interpret what is inside
the domain B in the local model (R3, θ̃ ) as the union of two (overlapping) pieces:

– a tubular neighborhood of the intersection B ∩ K̃ , which is nothing but two disjoint
arcs of the binding K̃ ;

– a thickening of the plumbing region.

The thickening (topologically a rectangle times an interval) consists of a rectangle
from each page θ̃−1(t)∪ K̃ for t ∈ [−π/2, π/2] ∈ S

1. To see this, we slightly truncate
the pages of θ̃ in B corresponding to the arc [−π,−π/2]∪[π/2, π ] on S1 such that the
pages intersect the xy-plane as shown in Fig. 9. In other words, we slightly deform the
domain B keeping all of its symmetries needed in the previous discussion. Therefore,
by removing B, we remove the plumbing region from half of the pages of the open
book corresponding to one “half” of S1, along with tubular neighborhood of the two
arcs of the binding.

For the Murasugi sum of two open books, we remove the plumbing regions from
half of the pages in both open books but these halves correspond to complementary
oriented arcs on S

1. (This fact reveals itself in the above proof by the appearance
of the difference π in the parametrization of the fibrations to be glued.) So, when
we glue the ambient manifolds after removing diffeomorphic copies of B from each
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x

y

thickening of the plumbing region

neighborhood of the bindingneighborhood of the binding

Fig. 9 A model with truncated pages

one of them, the fibrations in the complements of the respective bindings will glue
together so that the hole created as a result of removing a rectangle (the plumbing
region) from any page will be sewn back up by the rectangle in the corresponding
page of the complementary fibration. The way that these rectangles are identified is
equivalent to plumbing, so that the resulting pages are smooth manifolds. One can also
see that the aforementioned tubular neighborhoods of the arcs on the bindings will
indeed disappear in the process, whereas the rest of the bindings will glue together to
give the new binding in the glued up manifold.

There is yet another interpretation of the proof using abstract open books (see
Etnyre 2006, Theorem 2.17). Given two abstract open books (Σi , φi ), i = 1, 2 (see
Remark 6.15(1) below), let Ci be an arc properly embedded in Σi and Ri = Ci ×
[−1, 1] ⊂ Σi a rectangular neighborhood of Ci . The idea of the proof is to perform a
Murasugi sum of the mapping tori M (Σ1, φ1) and M (Σ2, φ2) leaving the bindings
out of the picture at first and then to complete the resulting mapping torus into an open
book of the connected sum of the ambient manifolds.

Note that B1 = R1 × [1/2, 1] is a 3-ball in M (Σ1, φ1) and similarly B2 = R2 ×
[0, 1/2] is a 3-ball inM (Σ2, φ2). We view the mapping torusM (Σ1, φ1) obtained as
gluing Σ1 × {0} to Σ1 × {1} using the identity and then cutting the resulting Σ1 × S

1

along Σ1 × {1/4} and regluing using φ1 (see Fig. 10). Similarly we viewM (Σ2, φ2)

obtained as gluingΣ2×{0} toΣ2×{1} using the identity and then cutting the resulting
Σ2 × S

1 along Σ2 × {3/4} and regluing using φ2.
Let Σ = Σ1 +Σ2 denote the Murasugi sum of Σ1 and Σ2 along the rectangles R1

and R2. ThenM (Σ1, φ1)\B1 andM (Σ2, φ2)\B2 can be glued together, as illustrated
in Fig. 11, to induce a mapping torus with page Σ . Therefore we conclude that:
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φ1 φ2

0 1/4 1

0 3/4 1

R1

R2

1/2

1/2

Fig. 10 Local pictures of M (Σ1, φ1)\B1 (on the left) andM (Σ2, φ2)\B2 (on the right)

(Σ1,φ1)\B1

(Σ2,φ2)\B2

Fig. 11 Two “lego” pieces of Fig. 10 fitting together

(M (Σ1, φ1)\B1) ∪ (M (Σ2, φ2)\B2) = M (Σ, φ),

where Σ = Σ1 +Σ2, and φ = φ1 ◦φ2. Here we extend φi (i = 1, 2) fromΣi toΣ by
the identity map and then compose these extended diffeomorphisms, which we still
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R

s2

I2

s2

s1

s1

I1

2

2

2

2

Fig. 12 The four disks used to cap off S′ in order to get the sphere S

denote by φi on Σ . As a matter of fact, from this monodromical viewpoint “Murasugi
sum” appears more like a composition than a sum.

To show that the mapping torusM (Σ, φ) extends to an open book of the connected
sum M1#M2 we proceed as follows [see Goodman’s Thesis (Goodman 2003, pages 9–
10)]. First of all, we viewΣi as a submanifold ofΣ and identify R = Ri , for i = 1, 2.
Then si =: R ∩ ∂Σi is the disjoint union of two properly embedded arcs in Σ such
that the set of four points ∂s1 = ∂s2 belongs to ∂Σ .

In the following we present the separating sphere S in the connected sum M =
M1#M2. Let I1 = [0, 1/2] and I2 = [1/2, 1]. For each i = 1, 2, consider the disjoint
union of two disks si × Ii ⊂ Σ × I ⊂ M (Σ, φ). Let S′ be the surface obtained as
the following union of six disks:

(s1 × I1) ∪ (s2 × I2) ∪ (R × {0}) ∪ (R × {1/2})

in M (Σ, φ). Observe that ∂S′ = S
1 × ∂s1. We can cap off S′ with the four disks

D
2 × ∂s1 to construct the desired sphere S as illustrated in Fig. 12.
Now we claim that M\S decomposes into M1\B1 and M2\B2 for some 3-

dimensional balls B1 and B2. To prove our claim, we note that M (Σ, φ) =
(Σ × I1)∪ (Σ × I2), where we identify Σ ×{1/2} in the first product with Σ ×{1/2}
in the second product via φ1 and Σ × {1} with Σ × {0} via φ2. It follows that, by
removing S, we have (Σ1 
 (Σ2\R)) × I1 glued to (Σ2 
 (Σ1\R)) × I2. But since
φ1 is the identity on Σ2 and φ2 is the identity on Σ2, the result can also be viewed as
a union of two pieces M (Σ1, φ1)\(R × I1) and M (Σ2, φ2)\(R × I2).

Finally, we insert the binding as follows. Since ∂si is a set of four points in ∂Σ ,
the solid torus D2 × ∂Σ is cut into four pieces along D2 × ∂si . Thus by gluing in the
binding, we see that M decomposes into two pieces along the sphere S:
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(M (Σ1, φ1) ∪ (D2 × ∂Σ1))\((R × I1) ∪ (D2 × s1)) = M1\((R × I1) ∪ (D2 × s1))

and:

(M (Σ2, φ2) ∪ (D2 × ∂Σ2))\((R × I2) ∪ (D2 × s2))= M2\((R × I2) ∪ (D2 × s2)).

Observe that each Bi := (R × Ii ) ∪ (D2 × si ) is a 3-ball with boundary S.
Our paper ismotivated by the search of themost general operation ofMurasugi-type

sum (that is, embedded Milnor-style plumbing) for which one has an analog of Theo-
rem 2.2. We figured out that we do not need to restrict in any way the full-dimensional
submanifolds which are to be identified in the plumbing operation. That is why we
define a general operation of “summing” of manifolds (see Definition 7.4), which
reduces to the classical operation of Definition 2.1 when the identified submanifolds
have product structures Dn × D

n .
The greater level of generality obliged us to discard the special model used in the

previous proof. The principle of the proof of our generalization Theorem9.3 ofGabai’s
theorem is instead inspired by Etnyre’s interpretation. In this respect, Fig. 11 is to be
compared with Fig. 30.

4 Conventions and Basic Definitions

In this section we explain our conventions about manifolds, orientations and coorien-
tations of hypersurfaces. We give rather detailed explanations because throughout the
paper we work without any assumptions about orientability of the manifolds: the only
important issues are about coorientations, whichmakes the setting rather non-standard
when compared with the usual literature in differential topology.

In this paper, the manifolds are assumed to be smooth and pure dimensional, but
not necessarily orientable or connected. If a manifold is endowed with an orientation,
we explicitly say that it is an “oriented manifold”. We use the expression “manifold-
with-boundary” for a smooth manifold with possibly empty boundary. We denote by
∂W the boundary of the manifold-with-boundary W and by:

int(W ) := W\∂W

its interior.
In the sequel, we will implicitly use the facts that the corners of a manifold with

corners can be smoothed, and that the resulting smooth manifold-with-boundary is
well-defined up to isotopy as a zero-codimensional submanifold of the initial man-
ifold with corners. A standard reference for these folklore facts is the Appendix of
Milnor’s paper (Milnor 1959). We will also use the folklore fact that two manifolds-
with-boundary can be glued along compact zero-codimensional submanifolds of their
boundaries, once a diffeomorphism between these submanifolds is fixed, and that the
result is well-defined up to diffeomorphism. A standard reference for this is Hirsch’s
book (Hirsch 1976, Chapter 8.2). All these facts are also treated in a detailed way by
Douady in his contributions (Douady 1961/1962a, 1961/1962b, 1961/1962c) to the
Seminar Cartan.

123



86 B. Ozbagci, P. Popescu-Pampu

Remark 4.1 In the sequel, the only gluings to be done will be special cases of iden-
tifications of submanifolds of two manifolds-with-boundary by diffeomorphisms. In
order to simplify the notations, instead of giving different names to those submani-
folds and labeling also the diffeomorphism used for the gluing, we will assume that
the two submanifolds were identified using that diffeomorphism, which implies that
the gluing diffeomorphism is the identity. For instance, we will not write “glue M1 to
M2 using the diffeomorphism φ : P1 → P2 of Pi ↪→ Mi”, but “glue M1 to M2 along
P ↪→ Mi”.

If V is a submanifold-with-boundary embedded in W , then we use the notation
V ↪→ W . We say that V is properly embedded into W if V ∩ ∂W = ∂V and if
V and ∂W are transversal in W everywhere along ∂V . When ∂V = ∅, this means
simply that V ⊂ int(W ). In this paper, the submanifolds of interest are not necessarily
properly embedded (for instance, the pages of an arbitrary open book). If M ↪→ W
is a submanifold, we denote by codimW (M) its codimension in the ambient manifold
W .

If V ↪→ W is properly embedded, we denote by UW (V ) (or simply U (V ) if
W is clear from the context) a closed tubular neighborhood of V in W such that
UW (V ) ∩ ∂W is a tubular neighborhood of ∂V in ∂W . Moreover, we assume that
UW (V ) is endowed with a structure of smooth fiber bundle over V , whose fibers are
diffeomorphic to compact balls of dimension codimW (V ).

Let us examine the special case of properly embedded hypersurfaces. One has the
following well-known proposition:

Proposition 4.2 Let M ↪→ W be a compact hypersurface-with-boundary properly
embedded inside the manifold W . The following conditions are equivalent:
1. the normal bundle NM|W of M in W is orientable;
2. M admits a tubular neighborhood diffeomorphic to [−1, 1]× M, where M ↪→ W

is identified with {0} × M;
3. each connected component Ui of an arbitrary regular neighborhood UW (M) is

disconnected by Ui ∩ M.

Moreover, if any of the conditions above is satisfied, then the following choices are
equivalent:
(1’) an orientation of the normal bundle NM|W of M in W ;
(2’) an embedding [−1, 1] × M ↪→ W which sends {0} × M to M by {0} × m → m

for any m ∈ M, up to isotopy;
(3’) a choice of connected component of Ui\M for each connected component Ui of

a tubular neighborhood UW (M).

More precisely, the normal vectors pointing towards the positive side for the chosen
orientation of the normal bundle are tangent to the curves entering into (0, 1] × M,

which defines the choice of connected component of each Ui .

The previous proposition allows us to define:

Definition 4.3 Let M ↪→ W be a properly embedded compact hypersurface-with-
boundary. It is called coorientable if it satisfies any one of the equivalent conditions
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(1)–(3) of the previous proposition. A coorientation of M in W is an orientation of
the normal bundle NM|W of M in W .

Example 4.4 Consider a Möbius band W seen as a non-trivial segment-bundle over a
circle. Any fiber is coorientable, but no section of it is coorientable.

Suppose that W is a manifold with nonempty boundary ∂W . Recall that we do not
assume orientability of either W or ∂W . Even though ∂W is not properly embedded in
W , it has an orientable normal bundle in W and hence we say that ∂W is coorientable
by adaptingDefinition 4.3 to this case. Since ∂W is coorientable, then any codimension
zero submanifold of ∂W is coorientable and for each connected component of such a
submanifold of ∂W , the two coorientations may be distinguished as:

– incoming, if the corresponding normal vectors point inside W ;
– outgoing, if the corresponding normal vectors point outside W .

Remark 4.5 In the sequel (see for instance Definition 5.1) we will not necessarily
coorient a whole boundary component uniformly, but we might have to break it up by
inserting “corners” as in Fig. 14. For this reason, we also speak about the coorientation
of any full-dimensional submanifold of the boundary.

If a manifold-with-boundary W is oriented, then for each connected component of
its boundary ∂W we define the outgoing orientation by the rule known as “outside
pointing normal vector comes first”: a normal vector to ∂W pointing outside of W ,
followed by a positive basis of the tangent space to ∂W , gives a positive basis to the
tangent space of W . It is customary to take the outgoing orientation as the canonical
orientation induced on ∂W . The opposite orientation of the boundary is the incoming
orientation.

Example 4.6 For each n ≥ 1, we denote by D
n ⊂ R

n the compact unit ball endowed
with the restriction of the canonical orientation ofRn and by Sn−1 its boundary sphere,
endowed with the associated outgoing orientation.

If W is an oriented manifold-with-boundary and ∂W is independently oriented,
then:

– its outgoing boundary ∂+W is the union of the connected components of ∂W
which are endowed with the outgoing orientation;

– its incoming boundary ∂−W is the union of the connected components of ∂W
which are endowed with the incoming orientation.

We clearly have:

∂W = ∂+W
⊔

∂−W.

In this case, we see W as a cobordism from ∂−W to ∂+W (see Fig. 13).
For instance, the interval [0, 1] endowed with its canonical orientation is a cobor-

dism from the positively oriented point {0} = ∂−[0, 1] to the positively oriented point
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Fig. 13 W is a cobordism from
∂−W to ∂+W

∂−W

∂+W

W

{1} = ∂+[0, 1]. Note that to orient a point means to choose one of the signs± attached
to it, which allows us to speak in this case about positive/negative orientations.

More generally, we will denote by I or I j ( j varying inside some index set) an
oriented compact interval, that is, an oriented compact manifold-with-boundary,
diffeomorphic to [0, 1] ⊂ R. Its two boundary components will be endowed with their
canonical orientations, therefore we may speak without ambiguity of the outgoing
point ∂+ I and the incoming point ∂− I of I .

Definition 4.7 Let M ↪→ W be a properly embedded and cooriented compact hyper-
surface-with-boundary. A positive side of M is an embedding I + × M ↪→ W such
that M ↪→ W is identified with ∂− I + × M and the positive normal vectors of M point
into I +×M . A negative side of M is an embedding I −×M ↪→ W such that M ↪→ W
is identified with ∂+ I − × M and the positive normal vectors of M point outside it.
Here both I + and I − denote oriented compact intervals. A collar neighborhood of
M ↪→ W is the union of a negative and of a positive side of M whose intersection is
M .

In the sequel we will have to work with a more general notion of cobordism, which
is described in the next section.

5 Cobordisms of Manifolds-with-Boundary

In this section we set up the notation for cobordisms of manifolds with boundary,
without the assumption of orientability.We also introduce cylinders, cylindrical cobor-
disms and endobordisms as particular cases of cobordisms ofmanifoldswith boundary.
Moreover, we explain in which sense the notions of endobordism and properly embed-
ded cooriented hypersurface in a manifold-with-boundary are equivalent.

In the next definition we extend the notion of cobordism to situations where:

– the total manifold is not necessarily orientable;
– the incoming and outgoing boundaries are not necessarily closed manifolds;
– the total manifoldmay have boundary components which are not labeled as incom-
ing or outgoing.
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What we keep instead from the situation described in the previous section is the dis-
jointness of the two types of boundary regions and the fact that they are of codimension
zero in the boundary of the cobordism.

Definition 5.1 Let M− and M+ be manifolds-with-boundary. A cobordism W from
M− to M+ is a manifold-with-boundary W , whose boundary is decomposed as:

∂W = Y ∪ M− ∪ M+,

where Y is a nonempty submanifold-with-boundary of ∂W such that M− ∩ M+ = ∅,
Y ∩ M− = ∂ M−, Y ∩ M+ = ∂ M+ and:

– M− is endowed with the incoming coorientation, and
– M+ is endowed with the outgoing coorientation.

We say that M∓ is the incoming/outgoing boundary region of the cobordism W and
set ∂∓W = M∓. We denote this cobordism (of manifolds-with-boundary) by:

W : ∂−W ��⇒ ∂+W.

Remark 5.2 The definition above is not new (see, for example, Borodzik 2012) except
for the orientability assumptions. Strictly speaking, W is a manifold with corners (for
this reason, we called them “cobordisms with corners” in a previous version of this
paper), but nevertheless, corners along ∂(∂−W )
∂(∂+W )may be smoothed. Note that
∂−W and ∂+W may belong to the same connected component of ∂W after smoothing
the corners and also, the boundary of W may have connected components disjoint
from ∂−W 
 ∂+W , as illustrated in Fig. 14.

More generally, if one has two manifolds M− and M+ (possibly with boundaries)
and fixed diffeomorphisms M± � ∂±W , we simply say that W is a cobordism from
M− to M+ and write W : M−

��⇒ M+. Note that cobordisms can be composed: if
W1 : M1 ��⇒ M2 and W2 : M2 ��⇒ M3 are two cobordisms then their composition
W2 ◦ W1 : M1 ��⇒ M3 is a cobordism obtained by gluing W1 and W2 along M2.

Fig. 14 Cobordism of
manifolds-with-boundary
W : ∂−W ��⇒ ∂+W , where
∂−W is blue, ∂+W is red and Y
(the rest of ∂W ) is green (colour
figure online)

∂−W

∂+W

W

Y
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Remark 5.3 The notion of cobordism of manifolds-with-boundary weakens and
extends to arbitrary dimension the notion of sutured manifold introduced in dimension
3 by Gabai (1983b, Definition 2.6):

“A sutured manifold (M, γ ) is a compact oriented 3-manifold M together with
a set γ ⊂ ∂ M of pairwise disjoint annuli A(γ ) and tori T (γ ). Furthermore,
the interior of each component of A(γ ) contains a suture, i.e. a homologically
nontrivial oriented simple closed curve. We denote the set of sutures by s(γ ).
Finally every component of R(γ ) = ∂ M − int(γ ) is oriented. Define R+(γ ) (or
R−(γ )) to be those components of ∂ M − int(γ ) whose normal vectors point out
of (into) M . The orientations on R(γ ) must be coherent with respect to s(γ ),
i.e., if δ is a component of ∂ R(γ ) and is given the boundary orientation, then δ

must represent the same homology class in H1(γ ) as some suture.”

A sutured manifold (M, γ ) as in Gabai’s definition is a cobordism of manifolds-with-
boundary from R−(γ ) to R+(γ ) according to our definition. We drop any constraints
on the structure of the complement of the union of outgoing and incoming bound-
ary regions inside the full boundary. Moreover, we do not assume that the ambient
manifold is oriented, or even orientable. Our definition is also more general than the
extension to arbitrary dimensions of the notion of sutured manifold, given by Colin
et al. (2011).

In the sequel, we will simply write “cobordisms” instead of “cobordisms of
manifolds-with-boundary”.

Definition 5.4 If the incoming and the outgoing boundaries M− and M+ of a cobor-
dism W : M−

��⇒ M+ are diffeomorphic and a diffeomorphism between them is
fixed, then we say that W is an endobordism of M � M− � M+. The mapping
torus of the endobordism W : M−

��⇒ M+ is the manifold-with-boundary T (W )

obtained by gluing M− and M+ using this diffeomorphism. The mapping torus comes
equipped with a cooriented proper embedding M ↪→ T (W ), which is the image inside
T (W ) of the boundary manifolds M− and M+ which are identified (see Fig. 15).

In the notation “T (W )”, we suppress for simplicity the diffeomorphism which
identifies the incoming and outgoing boundaries. Note that it is nevertheless of fun-
damental importance for the construction. The reason we chose the name “mapping
torus” is explained in Remark 6.15(2) below.

We will be mainly concerned with the following types of endobordisms:

Definition 5.5 Let M be a manifold-with-boundary. A cylinder with base M is a
trivial cobordism W = I × M , the incoming boundary being ∂− I × M and the
outgoing one being ∂+ I × M . A cylindrical cobordism with base M is a cobordism
W from a copy M− of M to another copy M+ such that the union of connected
components of ∂W which intersect M− ∪ M+—the cylindrical boundary ∂cyl W—
is endowed with a diffeomorphism (respecting the incoming and outgoing boundary
regions) to the boundary ∂(I × M) = (∂ I × M) ∪ (I × ∂ M) of a cylinder with base
M . The segment I is called the directing segment of the cylindrical cobordism.
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glue by a diffeomorphism

W

T (W)

M− M+

M

Fig. 15 Mapping torus of an endobordism

Note that cylinders with base M are special cases of cylindrical cobordisms with
base M , which are special cases of endobordisms of M .

The composition of two cylinders/cylindrical cobordisms with the same base M is
a cylinder/cylindrical cobordisms with base M . More generally, the composition of
two endobordisms of M is again an endobordism of M .

To any cooriented and properly embedded hypersurface M of a (not necessarily
oriented or even orientable) manifold-with-boundary is associated canonically (up to
diffeomorphisms) an endobordism with base M .

Definition 5.6 Let W be a compact manifold-with-boundary and let M ↪→ W be a
cooriented and properly embedded compact hypersurface-with-boundary. We view a
collar neighborhood [−1, 1]× M ↪→ W of M as the cylinder Z[−1,1] : {−1}× M ��⇒
{+1}× M . Denote by Z[−1,0] and Z[0,1] the analogous cylinders corresponding to the
intervals [−1, 0] and [0, 1], which implies that Z[−1,1] � Z[0,1] ◦ Z[−1,0]. Let WM be
the closure insideW of the complementW\([−1, 1]×M).We see it as an endobordism
WM : {1}× M ��⇒ {−1}× M , hence the composition Z[−1,0] ◦ WM ◦ Z[0,1] is also an
endobordism of M . We call this endobordism the splitting of W along M and denote
it by:

ΣM (W ) : M−
��⇒ M+
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Fig. 16 Splitting of W along a
cooriented properly embedded
hypersurface M

M

W

ΣM(W)
M− M+

σM

(see Fig. 16), where M∓ are two copies of M . The natural map:

σM : ΣM (W ) → W

is called the splitting map of W along M or of M ↪→ W .

Intuitively, one modifies W replacing each point of M by the set of two orientations
of the normal line to M at that point.

Remark 5.7 1. The splittingmap σM is a diffeomorphism above W\M , the preimage
of M by σM being the disjoint union M+ 
 M− of two copies of M , distin-
guished canonically as the incoming and the outgoing boundaries of the cobordism
ΣM (W ) : M−

��⇒ M+. Both Figs. 15 and 16 may be seen as graphical represen-
tations of the splitting map σM . In the first case one starts from the source and in
the second case from the target, before constructing the map σM .

2. The splitting map σM allows one to prove that the splitting of W along M is
unique up to a unique diffeomorphism above W (that is, any two such splittings
are related by a unique diffeomorphism compatible with their splitting maps). One
may see ΣM (W ) as a generalization of the surface obtained by cutting a given
surface along a properly embedded arc, an operation fundamental in Riemann’s
approach of Riemann (1851) to the topology of surfaces. Another way to model
this splitting operation is to remove a collar neighborhood of M . We preferred the
previous definition because of its canonical nature.
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3. One could also define a splittingmap along non-coorientable hypersurfaces. In this
case one would not obtain a cobordism, because above M the map would restrict
to a non-trivial covering of degree 2. We did not define such splittings because we
do not use them in this paper.

We have the following immediate relation between the operations of taking the
mapping torus and of splitting:

Proposition 5.8 The operations of taking the mapping torus of an endobordism and
of splitting along a cooriented properly embedded hypersurface are inverse to each
other.

6 Seifert Hypersurfaces and Open Books

In this section we introduce a notion of Seifert hypersurface and we explain in which
sense it is equivalent to the notion of cylindrical cobordism introduced in the previous
section. We conclude by treating the special case of Seifert hypersurfaces which are
pages of open books.

Assume that M is still a cooriented compact hypersurface-with-boundary in W ,
but which is not properly embedded. Instead, we require M to be contained in the
interior of W . In order to write more concisely, we introduce a special name for such
hypersurfaces:

Definition 6.1 Let W be a manifold-with-boundary. A compact hypersurface-with-
boundary M ↪→ W is a Seifert hypersurface if:

– the boundary of each connected component of M is non-empty;
– M ↪→ int(W );
– M is cooriented.

Remark 6.2 Traditionally, a Seifert surface is defined as an oriented surface embedded
in S3, whose boundary is an oriented link L which one wants to study. Seifert surfaces
are often used algebraically through their associated Seifert forms. To define the Seifert
form, one needs to choose a positive side of the Seifert surface, to push some 1-cycles
off the surface towards that direction and to compute some linking numbers. An
important ingredient in this construction is the coorientation of the Seifert surface,
which is canonically determined by the orientation of L and S

3. For this reason, we
have decided to extend this aspect of Seifert surfaces in S3 to a general definition, that
also subsumes Lines’ Definition 2.4.

There is a canonical way to associate to a Seifert hypersurface M of W a coori-
ented and properly embedded hypersurface-with-boundary in a new manifold (see
Definition 6.8). But in order to achieve this, one has first to “pierce” W along ∂ M . We
will define this piercing procedure using special trivialized tubular neighborhoods of
∂ M ↪→ W :

Definition 6.3 Let W be a manifold-with-boundary and let M ↪→ W be a Seifert
hypersurface. A tubular neighborhood UW (∂ M) of ∂ M ↪→ W is called adapted to
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M
W

Fig. 17 Angular coordinate of ∂ M adapted to M

M if it is endowed with a product structure D2 × ∂ M such that M intersects it along
[0, 1] × ∂ M (where [0, 1] ↪→ D

2 is the canonical embedding) and if the canonical
orientation of ∂D2 coincides with the given coorientation of M in W . The composition
of the first projection UW (∂ M)\∂ M � (D2\{0}) × ∂ M → D

2\{0} with the angular
coordinate θ : D2\{0} → S

1 is called an angular coordinate of ∂ M adapted to M
(see Fig. 17).

An adapted tubular neighborhood of the boundary of a Seifert hypersurface always
exists and is unique up to isotopy. The reason is that the normal bundleN∂ M|W of ∂ M
in W is canonically trivialized up to homotopy, by taking as a first section a nowhere
vanishing incoming vector field on M along ∂ M and as an independent section a
positively normal vector field of M along ∂ M (recall the fundamental hypothesis that
M is cooriented).

We want to pierce or blow-up W in an oriented way along ∂ M . We will define
this operation using the following local model to be used in each fiber of an adapted
tubular neighborhood:

Definition 6.4 The radial blow-up of D2 is the map π0 : [0, 1] × S
1 → D

2 which
expresses the cartesian coordinates on D

2 in terms of polar ones:

(r, θ) �→ (r cos θ, r sin θ).

One may perform the radial blow-up operation fiberwise in an adapted tubular
neighborhood of a Seifert hypersurface:

Definition 6.5 Let W be a manifold-with-boundary and let M ↪→ W be a Seifert
hypersurface. Let D2 × ∂ M ↪→ W be a tubular neighborhood of ∂ M adapted to M .
Let Π∂ M (W ) be the manifold obtained as the union of W\∂ M and [0, 1] × S

1 × ∂ M ,
where (D2\{0})×∂ M in W\∂ M is identifiedwith (0, 1]×S

1×∂ M in [0, 1]×S
1×∂ M

through the diffeomorphism π0 × id∂ M . The radial blow-up of W along ∂ M is the
map:
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M
W

Fig. 18 The radial blow-up of the surface W of Fig. 17 along the end points of the arc M , and the strict
transform M ′ of M . The two green cylinders are attached transversely to W (in the usual 3-dimensional
space), where we first remove two disks from W (colour figure online)

π∂ M : Π∂ M (W ) → W

described as follows:π∂ M is just the inclusionmaponW\∂ M and is given byπ0×id∂ M

on [0, 1] × S
1 × ∂ M . We also say that Π∂ M (W ) is obtained by piercing W along

∂ M . The strict transform M ′ of M by π∂ M is the closure of (π∂ M )−1(int(M)) inside
Π∂ M (W ).

The operation of radial blow-up is also called oriented blow-up in the literature,
but under that name it is in general used in the semi-algebraic category. Intuitively,
W is modified by replacing each point of ∂ M by the circle of oriented lines passing
through the origin of the normal plane to ∂ M at that point. We have the following easy
lemma:

Lemma 6.6 The radial blow-up map π∂ M is proper and a diffeomorphism above
W\M. The restriction π∂ M |M ′ : M ′ → M is a diffeomorphism.

In the sequel, we will identify M and M ′ using this diffeomorphism, which will
allow us to speak about the embedding M ↪→ Π∂ M (W ). This embedding is cooriented
(by the lift of the coorientation of M in W ) and proper.

Remark 6.7 1. The radial blow-up allows us to pass from a Seifert hypersurface to a
properly embedded cooriented hypersurface in the pierced manifold.

2. This remark is to be compared with Remark 5.7(3). One could define an analogous
operation of radial blow-up along an arbitrary submanifold of codimension 2, as
one does not need to have a globally trivial fibered tubular neighborhood in order to
dofiberwise radial blow-ups of the centers of the discs.Nevertheless,we introduced
this more restricted definition, as the only one which is needed in the paper.

As M is cooriented and properly embedded in Π∂ M (W ), one may consider the
splitting ΣM (Π∂ M (W )), as introduced in Definition 5.6:
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Fig. 19 The splitting of W
along M for the pair (W, M) of
Fig. 17. Recall that the
intermediate radial blow-up is
drawn in Fig. 18

W

Definition 6.8 Let W be a manifold-with-boundary and let M ↪→ W be a Seifert
hypersurface. The splitting of W along M , denotedΣM (W ), is defined as the splitting
ΣM (Π∂ M (W )) of the properly embedded hypersurface M ↪→ Π∂ M (W ). It is therefore
an endobordism of M . The composition π∂ M ◦ σM : ΣM (W ) → W is called the
splitting map of W along M (Fig. 19).

Remark 6.9 This remark is a continuation of Remark 5.7(2). Riemann explained that
one has to cut a surface along a curve which goes from the boundary to the boundary.
This is the operation we modeled in arbitrary dimensions by Definition 5.6. He added
that if the surface has no boundary, then one has first to pierce it, creating like this
an infinitely small boundary, and then one may cut it along a curve going from this
boundary to itself. This is the operation we modeled in arbitrary dimensions in Defi-
nition 6.8. We first “pierced” W along the boundary of M (Definition 6.5), and then
we were able to apply Definition 5.6.

One has the following immediate observation, consequence of the fact that one
gets a segment by splitting a circle at a point. This observation is nevertheless very
important for the sequel. Recall that both notions of cylindrical cobordisms and of
their cylindrical boundaries were introduced in Definition 5.5:

Lemma 6.10 If M ↪→ W is a Seifert hypersurface, then the splitting ΣM (W ) is a
cylindrical cobordism whose cylindrical boundary is given by:

σ−1
M (M ∪ π−1

∂ M (∂ M)).

Assume conversely that W : M−
��⇒ M+ is a cylindrical cobordism with base M ,

its cylindrical boundary being identified with ∂(I × M). Fix an orientation-preserving
identification of S1 with the circle obtained from I by gluing ∂− I and ∂+ I . One
identifies therefore to S

1 × ∂ M the image of the cylindrical boundary inside the
mapping torus T (W ). This allows us to define:

Definition 6.11 Let W : M−
��⇒ M+ be a cylindrical cobordism with base M . Its

circle-collapsed mapping torus Tc(W ) is obtained from the mapping torus T (W ) by
collapsing the circle S1×{m} to {0}×{m}, for all m ∈ ∂ M . The Seifert hypersurface
associated to the cylindrical cobordism W is the natural embedding M ↪→ Tc(W ).
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We have the following analog of Proposition 5.8:

Proposition 6.12 The operations of taking the circle-collapsed mapping torus of a
cylindrical cobordism and of splitting along a Seifert hypersurface are inverse to each
other.

This shows that, in differential-topological constructions, onemay use interchange-
ably either cylindrical cobordisms or Seifert hypersurfaces.

One may describe the construction of the circle-collapsed mapping torus of a cylin-
drical cobordism in a slightly different way, by filling the boundary of the mapping
torus with a product manifold, instead of collapsing the circles contained in it:

Lemma 6.13 Let W : M−
��⇒ M+ be a cylindrical cobordism with base M. The

manifold obtained by gluing the mapping torus T (W ) to the productD2×∂ M through
the canonical identification of their boundaries is diffeomorphic to the circle-collapsed
mapping torus Tc(W ) through a diffeomorphism which is the identity on the comple-
ment of an arbitrary neighborhood of D2 × ∂ M and which sends 0 × ∂ M onto ∂ M.

We will use this second description in the proof of Proposition 9.1.
We apply now the previous considerations to the special situation where M ↪→ W

is a page of an open book. Let us recall first this notion:

Definition 6.14 An open book in a closed manifold W is a pair (K , θ) consisting of:

1. a codimension 2 submanifold K ⊂ W , called the binding, with a trivialized
normal bundle;

2. a fibration θ : W\K → S
1 which, in a tubular neighborhood D

2 × K of K
is the normal angular coordinate (that is, the composition of the first projection
D
2 × K → D

2 with the angular coordinate D2\{0} → S
1).

It follows that for each θ0 ∈ S
1, the closure in W of θ−1(θ0)—called a page

of the open book—is a Seifert hypersurface whose boundary is the binding K . Its
coorientation is defined by turning the pages in the positive sense of S1. If v is a vector
field which is transverse to the pages, meridional near K and such that its vectors
project to positive vectors on S

1, then the first return map of v on an arbitrary page
is called the geometric monodromy of the open book. As in the 3-dimensional case,
such a geometric monodromy is well-defined up to isotopies relative to the boundary
and conjugations by diffeomorphisms which are the identity on the boundary. No
conjugation appears if the initial page is fixed.

One may describe the previous monodromical considerations in a slightly different
way, using the splitting of the ambient manifold along a page (see Definition 6.8).
Let M ↪→ W be an arbitrary page of the open book. The splitting of W along M
is a cylindrical cobordism ΣM (W ) : M ��⇒ M . Consider the same vector field as
before. Its flow realizes a diffeomorphism from the incoming boundary (a copy of M)
to the outgoing boundary (another copy of M). Therefore it gives a diffeomorphism
of M , which is moreover fixed on the boundary of M . It is the geometric monodromy
diffeomorphism!

This geometric monodromy is isotopic to the identity if and only if ΣM (W ) is
isomorphic to the cylinder I × M by an isomorphism which is the identity on the
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boundary and respects the fibrations over the interval I . Note that ΣM (W ) is always
isomorphic to that cylinder, if we do not impose constraints on the boundary.

Conversely, for any self-diffeomorphism φ of a compact manifold-with-boundary
M which is the identity on ∂ M , one can construct as follows a closedmanifold equipped
with an open book with page M and monodromy φ:

– take the cylinder [0, 1] × M ;
– consider it as a cylindrical cobordism [0, 1]× M : M0 ��⇒ M1 where M0, M1 are
two copies of M , that M0 is identified to {0} × M using the identity of M and M1
is identified to {1} × M using φ : M � M1;

– take the circle-collapsed mapping torus associated to this cylindrical cobordism
(see Definition 6.11). The fibers of the first projection [0, 1]× M → [0, 1] induce
the pages of an open book structure on it.

Remark 6.15 1. The pair (M, φ) is sometimes called an abstract open book.
2. The mapping torus of the previous cylindrical cobordism (according to Defini-

tion 5.4) coincides with the classical mapping torus M (M, φ) of the diffeomor-
phism φ. This is the reason why we chose the name “mapping torus” for the object
introduced in Definition 5.4.

3. A codimension 2 closed submanifold K ↪→ V of a closed manifold is called a
fibered knot if it is the binding of some open book (K , θ). In this case, the map
θ is not part of the structure.

4. One may consult (Winkelnkemper 1998) for a survey of the use of open books
till 1998. Since then, Giroux’s paper (Giroux 2002) started a new direction of
applications of open books, into contact topology. The expression “open book”
appeared for the first time in 1973 in the work of Winkelnkemper (1973). Before,
equivalent notions of “fibered knots” and “spinnable structures” were introduced
in Durfee and Lawson (1972) and Tamura (1972) respectively. All those papers
were partly inspired by Milnor’s discovery in Milnor (1968) of such structures—
without using any name for them—associated to any germ f : (Cn, 0) → (C, 0)
of polynomial with an isolated singularity at 0. In Caubel (2006) was introduced
the name “Milnor open book” for the open books associated more generally to
holomorphic functions on germs of complex spaces, when both have isolated
singularities.

7 Abstract and Embedded Summing

In this section we define a notion of sum of manifolds-with-boundary of the same
dimension (seeDefinition7.4),whichgeneralizes the usual notionofplumbing recalled
in Definition 2.1. The sum is done along identified patches and extends to a commuta-
tive and associative operation on patched manifolds with identified patches. Then we
define an embedded version of this sum (see Definition 7.8). Unlike the abstract sum,
this operation is in general non-commutative, but it is still associative (see Proposi-
tion 7.10). It generalizes both Stallings’ and Lines’ plumbing operations recalled in
Sect. 2.
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A

A A

B B

B

P

M

Fig. 20 A patched manifold (M, P) with patch (P, A)

In the sequel, we will consider embedded submanifolds-with-boundary in other
manifolds-with-boundary of the same dimension, where part of the boundary of the
submanifold belongs to the interior, and part to the boundary of the ambient manifold.
The next two definitions will allow us to speak shortly about such embeddings:

Definition 7.1 Let P be a compact manifold-with-boundary. An attaching region
A ↪→ ∂ P is a compact manifold-with-boundary of the same dimension as ∂ P . The
closure B := ∂ P\A of the complement of the attaching region is the non-attaching
region. We say that (P, A) is an attaching structure on P . The complementary
attaching structure of (P, A) is (P, B).

Definition 7.2 Let M be ann-dimensional compactmanifold-with-boundary.Apatch
of M is the datum of an attaching structure (P, A) on another n-dimensional compact
manifold-with-boundary and of an embedding P ↪→ M such that P ∩∂ M = B, where
B is the non-attaching region of (P, A) (see Fig. 20). That is, the attaching region A is
the closure of ∂ P ∩ int(M). A manifold endowed with a patch is a patched manifold.
We denote it either as a pair (M, P) or as an embedding P ↪→ M .

Remark 7.3 1. The condition P ∩ ∂ M = B is equivalent to the condition that the
attaching region A is the closure of ∂ P ∩ int(M). Therefore, the attaching region
is determined by the embedding P ↪→ M . We chose the name “attaching region”
thinking to the fact that P is attached to M\P along it.

2. As represented in Fig. 20, a patch (P, A) is best thought as amanifoldwith corners.
When we speak about P as a manifold-with-boundary, we again use implicitly the
fact, recalled at the beginning of Sect. 4, that the corners may be smoothed.

Now we are ready to give the main definition of this section, that of an operation
of summing of two patched manifolds with identified patches:
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M1

M2

A1

A1

P
P

P

A2 A2

P

=

Fig. 21 The abstract sum M1
⊎P M2 of M1 and M2 along P

Definition 7.4 Let M1 and M2 be two compact manifolds-with-boundary of the same
dimension. Assume that a manifold P is a patch of both M1 and M2, with the corre-
sponding attaching regions A1 and A2, such that A1 ∩ A2 = ∅. Then we say that the
two patched manifolds (M1, P) and (M2, P) are summable. The (abstract) sum of
M1 and M2 along P , denoted by:

M1

P⊎
M2,

is the compact manifold-with-boundary obtained from the disjoint union M1
⊔

M2 by
gluing the points of both copies of P through the identity map. Its associated patch
is the canonical embedding P ↪→ M1

⊎P M2, obtained by identifying the two given
patches with attaching region A1 ∪ A2 (see Fig. 21).

Note that Definition 7.4 respects our convention explained in Remark 4.1. It may
be immediately extended to the case where the patches are distinct, and are identified
by a given diffeomorphism, such that after the identification the attaching regions are
disjoint.
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Fig. 22 An alternative
description of the abstract sum
M1

⊎P M2

A1

A2

A1

A2

P

M2

M1 \P

Remark 7.5 1. The attaching region of P ↪→ M1
⊎P M2 is the union of the attaching

regions of P ↪→ M1 and P ↪→ M2.
2. One may also present the construction of M1

⊎P M2 in the following way (see
Fig. 22): glue M1\P to M2 by the canonical identification of A1 ↪→ ∂(M1\P)

and A1 ↪→ ∂ M2. One has this last inclusion because the hypothesis A1 ∩ A2 = ∅
implies that A1 ⊂ B2 ⊂ ∂ M2, where B2 denotes the non-attaching region of
(P, A2). This second description shows that, indeed, the sum M1

⊎P M2 has a
structure of manifold-with-boundary. One has of course a symmetric description
obtained by permuting the indices 1 and 2.

3. If M1
⊎P M2 is viewed as described in the previous remark, one can see that a

diffeomorphic manifold is obtained by allowing isotopies of A1 inside the non-
attaching region B2 := ∂ P\A2. In other words, it is sufficient to require only
that the interiors of A1 and A2 are disjoint. Note that, if A1 ∩ A2 	= ∅, then
strictly speaking, P is not a patch inside M1

⊎P M2. Nevertheless, in this case
one still gets a canonical realization of P as a patch, up to isotopy, in M1

⊎P M2,
by isotoping A1 inside itself so that the hypothesis A1 ∩ A2 = ∅ is achieved. As
explained in Sect. 4, the operations of gluing done here are defined up to smoothing
of the corners.

4. When the two patches used in the summing are the complementary patches (Dn ×
D

n,Sn−1 × D
n) and (Dn × D

n,Dn × S
n−1), one gets the classical notion of

plumbing recalled in Definition 2.1. This is an example of a situation discussed in
Remark 7.5(3), in which only the interiors of the attaching regions are disjoint.

Remark 7.5(3) shows that one may define the abstract sum:

P⊎
i∈I

Mi
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whenever P appears as a patch of all the manifolds in a finite collection (Mi )i∈I of
manifolds-with-boundary with pairwise disjoint interiors of attaching regions.

This sum is commutative and associative (up to unique isomorphisms), which
motivates the absence of brackets in the notation. It is again endowed with a canonical
patch P ↪→ ⊎P

i∈I Mi whenever the attaching regions themselves are pairwise disjoint.
As explained in Remark 7.5(3), if only the interiors of the initial patches are assumed
to be disjoint, then there is still such a patch, but only well-defined up to isotopy.

We pass now to the definition of the embedded sum. Let us explain first which are
the objects which may be summed in this way.

Definition 7.6 Let W be a compact manifold-with-boundary and P ↪→ M be a
patched manifold. Assume that M ↪→ int(W ) is an embedding of M as a hyper-
surface of int(W ). We say that the triple (W, M, P), also denoted P ↪→ M ↪→ W , is
a patch-cooriented triple if:

• P is coorientable in W ;
• a coorientation of P in W is chosen.

In the previous definition, M is not necessarily a Seifert hypersurface of W (see
Definition 6.1). Indeed, we only assume that a coorientation was chosen along P . It
is even possible that M is not coorientable inside W . To illustrate this, we depict in
Fig. 23 a cooriented quadrilateral patch P of a Möbius band M ↪→ W := S

3.
Recall that the notion of positive side for a cooriented hypersurface was explained

in Definition 4.7. Let I + and I − denote oriented compact intervals.

Definition 7.7 Let (W, M, P) be a patch-cooriented triple. A positive thick patch of
(W, M, P) is a choice of positive side I + × P ↪→ W of P ↪→ W intersecting M only
along P . If for example I + = [0, 1], then this means that {0} × P maps to P in M ,
and the positive tangents to I + point in the direction of co-orientation. Analogously,
a negative thick patch of (W, M, P) is a choice of negative side I − × P ↪→ W of
P ↪→ W , also intersecting M only along P .

Wemaynowdescribe a generalization of Stallings’ (embedded) plumbing operation
recalled in Sect. 2 (see the quotation containing equality (2.1)) and of Lines’ higher
dimensional plumbing operation (see Definition 2.5):

Fig. 23 Cooriented
quadrilateral patch P in a
Möbius band M

M

P
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Definition 7.8 Let (W1, M1, P) and (W2, M2, P)be twopatch-cooriented tripleswith
identified patches, such that (M1, P) and (M2, P) are two summable patched mani-
folds (recall Definition 7.4). Then we say that the two triples are summable and their
(embedded) sum, denoted by:

(W1, M1)

P⊎
(W2, M2),

is the compact manifold-with-boundary obtained by the following process (see
Fig. 24):

– choose a positive thick patch I + × P ↪→ W1 of (W1, M1, P) and a negative thick
patch I − × P ↪→ W2 of (W2, M2, P);

– consider the complements of their interiors W ′
1 := W1\int(I + × P) and W ′

2 :=
W2\int(I − × P);

– glue W ′
1 to W ′

2 by identifying ∂(I + × P) ↪→ W ′
1 to ∂(I − × P) ↪→ W ′

2 through
the restriction of the map σ × idP : I + × P → I − × P . Here σ : I + → I −
denotes any diffeomorphism which reverses the orientations (that is, such that
σ(∂± I +) = ∂∓ I −).

M1

M2

P

=

positive
thick
patch

negative
thick
patch

Fig. 24 Embedded sum (W1, M1)
⊎P (W2, M2) of two patch-cooriented triples
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It follows that:

(
(W1, M1)

P⊎
(W2, M2), M1

P⊎
M2, P

)

is a patch-cooriented triple through the canonical embeddings:

P ↪→ M1

P⊎
M2 ↪→ (W1, M1)

P⊎
(W2, M2)

and the gluing of the coorientations of P in W1 and in W2.

Remark 7.9 1. The manifold (W1, M1)
⊎P

(W2, M2) has non-empty boundary if
and only if either W1 or W2 has a non-empty boundary.

2. The abstract sum M1
⊎P M2 is obtained inside (W1, M1)

⊎P
(W2, M2) as the

union of the images of M1 ↪→ W ′
1 and of M2 ↪→ W ′

2.
3. We choose to take a positive thick patch for the first hypersurface and a

negative one for the second hypersurface in order to respect Stallings’ conven-
tion (see the citation containing formula (2.1)). If we choose the other way
around, we get an alternative definition of the embedded sum of the triples
(W1, M1, P), (W2, M2, P), which is diffeomorphic to (W2, M2)

⊎P
(W1, M1)

by a diffeomorphismwhich fixes M1
⊎P M2 and the coorientation of P . The oper-

ation of embedded sum being in general non-commutative (see Proposition 7.10),
this alternative definition is indeed different from Definition 7.8.

Proposition 7.10 The patch being fixed, the operation of embedded sum of patch-
cooriented triples is associative, but non-commutative in general.

Proof Let us prove first the associativity of the operation. Consider three summable
patch-cooriented triples (W1, M1, P), (W2, M2, P), (W3, M3, P), that is, assume that
the attaching regions A1, A2, A3 are pairwise disjoint. We want to prove that the two
patch-cooriented triples:

((
(W1, M1)

P⊎
(W2, M2)

)
P⊎

(W3, M3), M1

P⊎
M2

P⊎
M3, P

)
,

(
(W1, M1)

P⊎ (
(W2, M2)

P⊎
(W3, M3)

)
, M1

P⊎
M2

P⊎
M3, P

)

are isomorphic. But this is an immediate consequence of the fact (see Definition 7.8)
that both may be obtained from the disjoint union W1 
 W2 
 W3 by removing:

– the interior of a positive thick patch of (W1, M1, P);
– the interiors of a positive and of a negative thick patch of (W2, M2, P), which
intersect only along P;

– the interior of a negative thick patch of (W3, M3, P);
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and executing then the same gluings.
Let us show now that the operation is non-commutative in general. Consider the

particular case where the triples to be summed are bands in 3-spheres, as in Fig. 24,
that is, M1 and M2 are either annuli or Möbius bands. Moreover, assume that the
patches are disks disposed as in that figure, that is, such that one may choose core
circles K1, K2 of the two bands such that they intersect transversally once inside P .

Denote by J1 the arc of K1 intercepted by P . Isotope K1 inside both (S3, M1)
⊎P

(S3, M2) and (S3, M2)
⊎P

(S3, M1) by pushing the arc J1 a little outside P towards
the positive side of P , and keeping its complement in K1 fixed. Denote by K +

1 the new
circle, contained either in (S3, M1)

⊎P
(S3, M2) or in (S3, M2)

⊎P
(S3, M1). Look

then at the linking number (modulo 2) lk(K +
1 , K2). It is equal to 1 in the first case and

to 0 in the second case.
This shows that there is no isomorphism from (S3, M1)

⊎P
(S3, M2) to

(S3, M2)
⊎P

(S3, M1) which is fixed on M1
⊎P M2 and respects the coorientation

of P . This is enough in order to deduce that the operation of embedded summing is
in general non-commutative.

In the next section we will consider carefully the special situation in which the
hypersurfaces Mi ↪→ Wi are globally cooriented:

Definition 7.11 Let (W1, M1, P) and (W2, M2, P) be two patch-cooriented triples
with identified patches. They are called summable patched Seifert hypersurfaces
if both M1 ↪→ W1 and M2 ↪→ W2 are Seifert hypersurfaces whose coorientations
extend those of the patches.

8 The Sum of Stiffened Cylindrical Cobordisms

In Sect. 7 we defined an operation of embedded sum for (summable) patch-cooriented
triples without assuming that the hypersurfaces endowed with the (identified) patches
are themselves cooriented or even coorientable. In this section we will assume this
supplementary condition and we give an alternative definition of the (embedded) sum
based on the equivalence of Seifert hypersurfaces and cylindrical cobordisms stated
in Proposition 6.12. In the next section we will show that this alternative definition
gives the same result as Definition 7.8. This alternative definition will make the proof
of a generalization of Stallings’ Theorem 2.2 very easy (see Theorem 9.3).

In the following definition we enrich the structure of cylindrical cobordism of
Definition 5.5:

Definition 8.1 A stiffened cylindrical cobordism (see Fig. 25) is a cylindrical cobor-
dism W : M−

��⇒ M+ and a neighborhood V (the stiffening) of M− ⊔
M+ in W ,

endowed with a diffeomorphism to a neighborhood of (∂ I )× M in I × M of the form:

(I\int(C)) × M,

which extends the restriction to V of the given diffeomorphism ∂cyl W � ∂(I × M).
Here C ↪→ int(I ) denotes a compact subsegment, called the core of the stiffened
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W

base M

height

core C

I

Fig. 25 A stiffened cylindrical cobordism W with directing segment I

cobordism. The pull-back to V ∪ ∂cyl W of the first projection I × M → I is called
the height function of the stiffened cylindrical cobordism.

Remark 8.2 1. Given a cylindrical cobordism, stiffenings exist and are unique up to
isotopy.

2. Our choice of name ismotivated by the fact thatwe see this supplementary structure
as a way to rigidify or stiffen the initial cobordism.

Recall from Lemma 6.10 that one obtains cylindrical cobordisms by splitting any
manifold along a Seifert hypersurface. Moreover, the two notions are equivalent, as
shown by Proposition 6.12. From this viewpoint, stiffenings correspond to tubular
neighborhoods of the Seifert hypersurface:

Lemma 8.3 Let M ↪→ W be a Seifert hypersurface. Consider a collar neighborhood
[−θ, θ ] × M of the strict transform M ↪→ Π∂ M W of M (see Definition 6.5), which
intersects the boundary S

1 × ∂ M ↪→ Π∂ M W along [−θ, θ ] × ∂ M. Here θ ∈ (0, π),

therefore the segment [−θ, θ ] is seen as an arc of the circleS1. Then its image inside the
splitting ΣM (W ) is a stiffening of this cylindrical cobordism, with directing segment
the splitting of S1 at the point of argument 0 and core segment [θ, 2π − θ ].

A straightforward proof of this lemma easily follows by inspecting Figs. 18 and 19.
In the following definition we extend to stiffened cylindrical cobordisms the notion

of sum introduced for manifolds (see Definition 7.4) and for hypersurfaces (see Defi-
nition 7.8):

Definition 8.4 Consider two summable patched manifolds (Mi , P)i=1,2, with attach-
ing regions (Ai )i=1,2. Let (Wi : M−

i ��⇒ M+
i , Vi )i=1,2 be two stiffened cylindrical
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cobordisms with identified directing segment I . They are called summable if their
core intervals (Ci )i=1,2 are disjoint and if C1 is situated after C2 with respect to the
orientation of I . In this case, their sum, denoted by:

(W1, V1)

P⊎
(W2, V2)

is obtained by performing the following operations using the stiffenings (see Figs. 26
and 27):

– Over, I\(int(C1) ∪ int(C2)), sum fiberwise (M1, P) to (M2, P) (that is, one
has to multiply the gluing map used to do this abstract sum by {t}, for any t ∈
I\(int(C1) ∪ int(C2))).

– Over C1, glue C1 × M2\P to W1 along C1 × ∂ M1 fiberwise (for each t ∈ C1) by
the canonical identification of A2 ↪→ ∂(M2\P) and A2 ↪→ ∂ M1.

– Over C2, glue C2 × M1\P to W2 along C2 × ∂ M2 fiberwise (for each t ∈ C2) by
the canonical identification of A1 ↪→ ∂(M1\P) and A1 ↪→ ∂ M2.

Remark 8.5 1. Let hi denote the height function of the stiffened cylindrical cobor-
dism Wi , for i = 1, 2. In Definition 8.4, we use the facts that for sufficiently small
(and also sufficiently large) t ∈ I , the fiber h−1

i (t) is canonically identified with
Mi and that this identification extends to an identification of h−1

i (t) ∩ ∂Wi with
∂ Mi for all t ∈ I , by the definition of a stiffened cylindrical cobordism. All the
gluings above fit together by Remark 7.5(2).

2. The sumW1
⊎P W2 gets a natural structure of stiffened cylindrical cobordismwith

basis M1
⊎P M2, directing segment I and core segment the convex hull inside I

of the cores C1 and C2. The new stiffening is the image inside W1
⊎P W2 of the

union of the initial stiffenings, and the two initial height functions glue into the
new height function.

Next, we extend the summing operation to cylindrical cobordisms whose directing
segments are not identified, and which do not have fixed stiffenings. One has to make
the following choices:

– Choose stiffenings. This choice is unique up to isotopy (see Remark 8.2(1)).
– Identify their directing segments by an orientation-preserving diffeomorphism.

There are two ways to make such an identification, up to isotopy, in order to guar-
antee the disjointness of the cores, which is an essential hypothesis in Definition 8.4.
Therefore, one gets an operation which is a priori non-commutative. The fact that it is
indeed in general non-commutative results from the combination of propositions 7.10
and 9.1. More precisely, we use the fact, resulting from the proof of Proposition 7.10
using any kinds of bands, that the embedded summing operation is non-commutative
even when the hypersurfaces are globally cooriented.

Definition 8.6 Consider two summable patched manifolds (Mi , P)i=1,2, with attach-
ing regions (Ai )i=1,2. Let (Wi : M−

i ��⇒ M+
i )i=1,2 be two cylindrical cobordisms

with directing segments (Ii )i=1,2. Choose stiffenings for both of them. Letϕ : I1 → I2
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P

W1
base M1

base M2

W2

height

I

core C2 core C1

P

Fig. 26 Two summable stiffened cylindrical cobordisms

be an orientation-preserving diffeomorphismwhich places the core segment of I1 after
the core segment of I2. The sum of W1 and W2, denoted by:

W1

P⊎
W2

is obtained by applying Definition 8.4 after identifying the directing segments I1 and
I2 using the diffeomorphism ϕ.

Remark 8.7 The diffeomorphism ϕ which places the core segment of I1 after the core
segment of I2 being well-defined up to isotopy, as well as the stiffenings, we deduce
that the sum is well-defined up to diffeomorphisms fixed on the cylindrical boundary
of the cylindrical cobordism W1

⊎P W2 (see Remark 8.5(2)).
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P

P

C1 C2

M1

M2

W1

W2

Fig. 27 The stiffened cylindrical cobordism Wi (for i = 1, 2) is represented by the solid rectangular box
where the solid green ball in the interior is removed. The sum (W1, V1)

⊎P (W2, V2)will look like Fig. 11,
except that two disjoint solid balls have to be removed from the interior (colour figure online)

9 Embedded Summing is a Natural Geometric Operation

In this section we prove an extension of Stallings’ Theorem 2.2 to arbitrary dimen-
sions. Namely, we prove that the embedded sum of two pages of open books is again
a page of an open book (see Theorem 9.3). We extend this result to pages of what we
call Morse open books (see Theorem 9.7). A direct consequence of this theorem is a
generalization to arbitrary dimensions of a theorem proved in dimension 3 by Goda.
Both theorems illustrate Gabai’s credo that “Murasugi sum is a natural geometric oper-
ation”. Their proofs are parallel and are based on the fact that, in the case of Seifert
hypersurfaces, the embedded sum as described in Definition 7.8 may be equivalently
described using the operation of sum of cylindrical cobordisms described in Defini-
tion 8.6 (see Proposition 9.1). Technically speaking, this is the most difficult result of
the paper.

The following proposition shows that in the case inwhich oneworkswith summable
patched Seifert hypersurfaces (see Definition 7.11), the previous notion of sum of
cylindrical cobordisms gives the same result as the embedded sum of two patch-
cooriented triples with identified patches:

Proposition 9.1 Let (W1, M1, P) and (W2, M2, P) be two summable patched Seifert
hypersurfaces. Then their embedded sum (see Definition 7.8):

M1

P⊎
M2 ↪→ (W1, M1)

P⊎
(W2, M2)
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is diffeomorphic, up to isotopy, to the Seifert hypersurface associated to the cylindrical
cobordism (see Definitions 6.11 and 8.4):

ΣM1(W1)

P⊎
ΣM2(W2).

Proof We start from the cylindrical cobordisms ΣM1(W1) and ΣM2(W2), to which
we apply Definition 8.6. We want to show that the associated Seifert hypersurface
is diffeomorphic to that obtained using Definition 7.8. In order to achieve this, we
will show that the circle-collapsed mapping torus of ΣM1(W1)

⊎P
ΣM2(W2) may be

obtained from the circle-collapsed mapping tori of the factors ΣMi (Wi ) by removing
codimension 0 submanifolds which are diffeomorphic to [0, 1] × P , and identifying
the resulting boundaries appropriately.

The difficulty is that those submanifolds do not appear directly with the desired
product structures, but as the unions of several codimension 0 submanifolds. It turns
out that all of them are endowedwith product structures and those structures are related
in a way which allows us to achieve our aim.

Rather than working with the circle-collapsed mapping tori Tc(ΣMi (Wi )), we will
use instead the manifolds obtained by filling the boundaries of the mapping tori
T (ΣMi (Wi )) by the products D2 × ∂ Mi . As stated in Lemma 6.13, those are sim-
ply different models of the same Seifert hypersurfaces. Therefore, for i = 1, 2, we
denote:

Φ∂ Mi (Wi ) := Π∂ Mi (Wi ) ∪S1×∂ Mi
(D2 × ∂ Mi ),

where Π∂ Mi (Wi ) is the result of piercing Wi along ∂ Mi (see Definition 6.5) and the
two manifolds-with-boundary on the right-hand-side are glued through the canonical
identifications of their boundaries with S1 × ∂ Mi . Similarly, we will fill by a product
the boundary of ΣM1(W1)

⊎P
ΣM2(W2).

We choose stiffenings Vi ofΣMi (Wi ) and identifications of their directing segments
that allow us to perform the sum as in Definition 8.4.

We may now apply the gluing operations described in the Definition 8.4 of the sum
of stiffened cylindrical cobordisms with identified directing segments. Recall that over
I\(int(C1)∪ int(C2)) those gluings may be described in several ways. The point here
is to choose the description which is best adapted to our aim.

Denote α± := ∂± I and choose a point β ∈ I which lies strictly between the two
cores C1 and C2. Denote (see Fig. 28):

I1 := [α−, β], I2 := [β, α+].

We will do the gluings of Definition 8.4 by removing P fiberwise from ΣMi (Wi )

over Ii , for each i ∈ {1, 2}. But we interpret the gluing operations directly on the
mapping torus of ΣMi (Wi ). A simple schematic representation of the operation of
summing (M1, P) and (M2, P) is depicted abstractly in Fig. 29, in order to help the
reader following easily Fig. 30.We denote by Ei the closure in ∂ Mi of ∂ Mi\Bi , where
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Fig. 28 The interval I

α− β α+

C2 C1

I1 I2

I

P P P

A1 A1 A1

A2A2 A2

P

=

K K K K

E1

E2 E2

E1

K K

M1 M2 M1

P

M2

Fig. 29 The schematic representation of Ei and K

Bi is the non-attaching region of (Mi , P) (see Definition 7.1), and by K the closure
of ∂ P\(A1 ∪ A2).

The steps of the construction, interpreted using our filled models Φ∂ Mi (Wi ) of
(Wi , Mi ), are:

– For each i ∈ {1, 2}, remove (Ii × P) ∪ (D2 × ∂ Mi ) from Φ∂ Mi (Wi ), then take the
closure.

– Glue through the canonical identification the portions of the resulting boundaries
which are isomorphic to (see Fig. 30):

(I1 × A1) ∪ (I2 × A2) ∪ (α± × P) ∪ (β × P).

– Fill then the resulting boundary by:

D
2 × ∂

(
M1

P⊎
M2

)
= (D2 × E1) ∪ (D2 × K ) ∪ (D2 × E2).

Note that the piecesD2×Ei ↪→ D
2×∂ Mi are first removed, then inserted back into

the same position (that is, we glue exactly as before to the adjacent pieces). Therefore,
we obtain the same final result without touching them.
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I1×A1

β ×P

I2×A2

α+×P

I1×A1

β ×P

I2×A2

α−×P

Fig. 30 This figure is to be compared with Fig. 11

Fig. 31 Splitting the unit disk

β α

I1

2

I2

1

Instead, the pieceD2× K is removed twice and put back only once. Onemay obtain
the same result by cutting the disc D2 into two half-discs D1 and D2, as represented
in Fig. 31, and only removing two conveniently chosen complementary half-discs.
Namely, we will remove Di × K from Φ∂ Mi (Wi ).

The reinterpreted construction is:

– Remove (I1 × P)∪ (D2 × A2)∪ (D1 × K ) from Φ∂ M1(W1), then take the closure.
Symmetrically, remove (I2 × P) ∪ (D2 × A1) ∪ (D2 × K ) from Φ∂ M2(W2), then
take the closure.

– Glue the resulting boundaries through the canonical identification.

Notice now that (I1 × P) ∪ (D2 × A2) ∪ (D1 × K ) is isomorphic to I1 × P , and
similarly (I2 × P) ∪ (D2 × A1) ∪ (D2 × K ) is isomorphic to I2 × P . Indeed, in each
case we may apply Lemma 9.2 twice to end up with a description as in Definition 7.8.
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We leave the proof of the following intuitively clear lemma to the reader:

Lemma 9.2 Let Q be a manifold-with-boundary and B ↪→ ∂ Q be a full-dimensional
submanifold-with-boundary of the boundary. Then the result of gluing [0, 1] × B to
Q through the canonical identification of 0 × B with B is isomorphic to Q through
an isomorphism which is the identity outside an arbitrarily small neighborhood of B
in Q.

Here is our generalization of Stallings’ Theorem 2.2 (recall that the notion of open
book was explained in Definition 6.14):

Theorem 9.3 Let (Wi , Mi , P)i=1,2 be two summable patched Seifert hypersurfaces
which are pages of open books on the closed manifolds Wi . Then the Seifert hypersur-
face associated to the sum (W1, M1)

⊎P
(W2, M2) is again a page of an open book.

Moreover, the geometric monodromy of the resulting open book is the composition
φ1 ◦φ2 of the monodromies of the initial open books. Here φi : Mi → Mi is extended
to M1

⊎P M2 by the identity on (M1
⊎P M2)\Mi .

Proof Consider the splittingsΣM1(W1) andΣM2(W2) of W1, W2 along the two pages.
Let (∂ Mi , θi ) be an open book on Wi such that Mi = θ−1

i (0) (that is, such that Mi is
the page of argument 0). The map θi : Wi\∂ Mi → S

1 lifts to an everywhere defined
map θ̃i : Π∂ Mi Wi → S

1 which is moreover a locally trivial fiber bundle projection.
Therefore, it lifts to another fiber bundle projection:

Σ(θ̃i ) : ΣMi Wi → [0, 2π ]

where the interval [0, 2π ] is obtained by splitting the circle S1 at the point of argument
0.

One may choose as stiffening of ΣMi Wi a preimage Σ(θ̃i )
−1([0, 2π ]\int(Ci )),

where Ci ⊂ (0, 2π) is an arbitrary compact segment with non-empty interior. More-
over, in order to get the hypothesis of Definition 8.4, we assume that C2 and C1
are disjoint and situated in this order on the segment [0, 2π ] endowed with its usual
orientation. One may take as height functions the projections Σ(θ̃i ) themselves.

Definition 8.4 shows that the two height functions glue into a new globally defined
height function:

h : ΣM1(W1)

P⊎
ΣM2(W2) → [0, 2π ]

which is again a fiber bundle projection. Its generic fiber is isomorphic to M1
⊎P M2.

Therefore, the associated Seifert hypersurface is again an open book, with page iso-
morphic to M1

⊎P M2.
But, by Proposition 9.1, this Seifert hypersurface is isomorphic to:

M1

P⊎
M2 ↪→ (W1, M1)

P⊎
(W2, M2).
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Theproof of the last statement in the theorem is similar to the proof in the 3-dimensional
case (see Sect. 3).

Up to diffeomorphisms, all the choices of pages in an open book are equivalent.
Therefore, the previous theoremallows to define anotionof sum (generalizedMurasugi
sum) for open books:

Definition 9.4 Assume that (Ki , θi )i=1,2 are open book structures on the closed man-
ifolds Wi of the same dimension. Let Mi be pages of them, and P a common patch of
M1 and M2. Assume that (M1, P) and (M2, P) are summable. The sum of the two
open books is the open book on (W1, M1)

⊎P
(W2, M2) constructed in the previous

proof.

The previous theorem may be extended to structures which are analogous to open
books, in the sense that they have bindings and are similar to open books near them,
but which are allowed to have Morse singularities away from the bindings:

Definition 9.5 AMorse open book in a closedmanifold W is a pair (K , θ) consisting
of:

1. a codimension 2 submanifold K ⊂ W , called the binding, with a trivialized
normal bundle;

2. a map θ : W\K → S
1 which, in a tubular neighborhood D

2 × K of K is the
normal angular coordinate, and which has only Morse critical points. The closure
of any fiber θ−1(θ0) is a page of the Morse open book. A page is called regular
if θ0 is a regular value of θ and singular otherwise.

Remark 9.6 1. The previous definition extends to arbitrary dimensions the notion of
“regular Morse map” introduced in dimension 3 by Weber et al. (2001).

2. The regular pages of Morse open books are Seifert hypersurfaces. Conversely,
any Seifert hypersurface is a regular page of a Morse open book. Therefore, the
problem of defining and finding the minimal complexity of such a Morse open
book arises naturally, which motivates the rest of this section.

3. All the pages of a classical open book are diffeomorphic, but this is certainly not
true for a Morse open book which has a singular page. Even if one considers only
the regular pages of aMorse open book,wemay be sure that they are diffeomorphic
only if they are preimages of pointswhich belong to the same connected component
of the complement of the critical image of θ inside S1.

One has the following extension to this setting of Theorem 9.3:

Theorem 9.7 Let (Wi , Mi , P)i=1,2 be two summable patched Seifert hypersurfaces
which are regular pages of Morse open books on the closed manifolds Wi . Then the
Seifert hypersurface associated to the sum (W1, M1)

⊎P
(W2, M2) is again a regular

page of a Morse open book, whose multigerm of singularities is isomorphic to the
disjoint union of the multigerms of singularities of the initial Morse open books.

Proof One may reason along the same lines as in the proof of Theorem 9.3. The
difference is that one has to choose now the core intervalsCi such that int(Ci ) contains
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the critical values of the maps Σ(θ̃i ). One does not touch the neighborhoods of the
critical points of the two Morse maps, which ensures that the new set of singularities
are the disjoint unions of the two initial sets of singularities.

Inspired by the Morse–Novikov number attached to a Seifert surface inWeber et al.
(2001, Section 6), we introduce the following invariants in order to measure how far
a Seifert hypersurface is to being a page of an open book:

Definition 9.8 Let M ↪→ W be a Seifert hypersurface in the closed manifold W of
dimension w ≥ 1. For each k ∈ {1, ..., w − 1}, denote by mk(W, M) be the minimal
number of critical points of index k of a map θ : W\ ∂ M → S

1 such that (∂ M, θ) is
a Morse open book, and M is a regular page. We call it the k-th Morse number of
(W, M).

As an immediate consequence of Theorem 9.7, we have:

Proposition 9.9 Let (Wi , Mi , P)i=1,2 be two summable patched Seifert hypersur-
faces in the closed manifolds (Wi )i=1,2 of the same dimension w ≥ 1. Then:

mk

(
(W1, M1)

P⊎
(W2, M2)

)
≤ mk(W1, M1) + mk(W2, M2)

for each k ∈ {1, . . . , w − 1}.
As explained in the introduction of Hirasawa and Rudolph (2003), this theoremwas

proved in dimension 3 by Goda (1992), under a different but equivalent formulation.

10 Questions Related to Contact Topology and Singularity Theory

We conclude this paper with a list of questions. Almost all of them concern the sum
of open books and its relations with singularity theory and contact topology. That is
why we recall briefly the basics of those relations, developing part of the information
given in Remark 6.15(4).

Consider a germ of polynomial function f : (Cn, 0) → (C, 0) which has an
isolated singularity at the origin. Let S2n−1(r) ↪→ C

n be the Euclidean sphere of
radius r > 0 centered at the origin. The argument of f is well-defined outside the
0-level of f . Look at the restrictions of both objects to the sphere S2n−1(r):

K := f −1(0) ∩ S
2n−1(r), θ : S2n−1(r)\ K → S

1.

Milnor proved in Milnor (1968) that (K , θ) is an open book on S
2n−1(r), whenever

r is sufficiently small. This result was extended by Hamm (1971) to holomorphic
functions f with isolated singularity, defined on any germ of complex analytic space
(X, 0) which is non-singular in the complement of the base point 0. In this case, one
replaces S2n−1(r) by the intersection M(r) of X with a sphere of sufficiently small
radius r , centered at 0, once (X, 0) was embedded in some affine space (CN , 0). For
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r > 0 small enough, one gets in this way open books (K , θ) on M(r). In Caubel
(2006), such open books originating in singularity theory were called Milnor open
books.

Giroux (2002) launched a programof study of contact topology through open books.
Namely, he described a particularly adapted mutual position of a contact structure and
an open book on any closed 3-dimensional manifold, saying that, in that case, the
open book supports the contact structure. In fact, Thurston andWinkelnkemper (1975)
proved that any open book supports a contact structure. Conversely, Giroux showed
that any contact structure is supported by some open book. Moreover, he proved that
two open books which support the same contact structure are stably equivalent, that
is, one may arrive at the same open book by executing finite sequences of Murasugi
sums with positive Hopf bands, starting from each one of the initial open books.

In the same paper, Giroux sketched an extension of this theory to higher dimensions.
In particular, he defined higher dimensional analogs of supporting open books. In this
case, if one wants to construct a contact structure starting from an open book, one
has to enrich it with symplectic-topological structures. Namely, the pages are to be
Weinstein manifolds [see the recent monograph (Cieliebak and Eliashberg 2012) for
a detailed exploration of this notion], and there should exist a geometric monodromy
respecting in some sense the Weinstein structure.

In 2006, the paper (Caubel 2006) of Caubel, Némethi and the second author related
the two instances where open books appear naturally: singularity theory and contact
topology. Note that there are canonical contact structures on the manifolds M(r), as
they are level sets of a strictly plurisubharmonic function (the square of the distance
to 0) on the complex manifold (X\0). In Caubel (2006), it was proved that the Milnor
open book of any function f : (X, 0) → (C, 0) with an isolated singularity at 0
supports the canonical contact structure, whenever the radius r is sufficiently small.
This generalized an analogous result proved before by Giroux (2003), for the case
where X is smooth and where instead of round spheres, deformed ones are chosen
adapted to a given holomorphic germ f with isolated singularity.

Here are our questions:

1. An open book is considered to be trivial if its page is a smooth ball and its geometric
monodromy is the identity. We call an open book indecomposable if it cannot be
written in a non-trivial way as a sum of open books (see Definition 9.4). Find
sufficient criteria of indecomposability.

2. Find sufficient criteria on germs of holomorphic functions f : (X, 0) → (C, 0)
with isolated singularity to define indecomposable open books.

3. Find natural situations leading to triples (Xi , fi )1≤1≤3 of isolated singularities and
holomorphic functions with isolated singularities on them, such that the Milnor
open book of (X3, f3) is a sum of theMilnor open books of (X1, f1) and (X2, f2).

4. Consider an open book and a contact structure supported by this open book on a
closed manifold. Describe an adapted position of a patch inside a page, relative to
the contact structure, allowing to extend the operation of sum of open books to a
sum of open books which support contact structures. Also, prove an analog of the
following result using appropriate patches in higher dimensions:
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Theorem 10.1 (Torisu 2000) Let ξi be the contact structure on a 3-manifold Mi

supported by the open book (Σi , φi ), for i = 1, 2. Then the connected sum (M, ξ) =
(M1, ξ1)#(M2, ξ2) is supported by the open book (Σ, φ), where Σ is the Murasugi
sum of Σ1 and Σ2 and φ = φ1 ◦ φ2.

Let us point out that Giroux proved a particular instance of Theorem 10.1 for
stabilizations of open books in higher dimensions.

5. In analogywith Goda’s results of Goda (1992), find lower bounds for the following
difference of Morse numbers (see Definition 9.8):

mk

(
(W1, M1)

P⊎
(W2, M2)

)
− (mk(W1, M1) + mk(W2, M2))

whenever (Wi , Mi ) are Seifert hypersurfaces in closed manifolds of the same
dimension.

Acknowledgments We thank the referee for his/her careful reading of the first submitted version of this
paper.
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