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Abstract Let S be a polynomial ring and let I ⊆ S be a monomial ideal. In this
short note, we propose the conjecture that the Betti poset of I determines the Stanley
projective dimension of S/I or I . Our main result is that this conjecture implies
the Stanley conjecture for I , and it also implies that sdepth S/I ≥ depth S/I −
1. Recently, Duval et al. (A non-partitionable Cohen–Macaulay simplicial complex,
arXiv:1504.04279, 2015) found a counterexample to the Stanley conjecture, and their
counterexample satisfies sdepth S/I = depth S/I − 1. So if our conjecture is true,
then the conclusion is best possible.

Keywords Monomial ideal · LCM-lattice · Betti poset · Stanley depth ·
Stanley conjecture
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1 Introduction

Let S be a polynomial ring and I ⊆ S a monomial ideal. In this note we consider the
Stanley depth of S/I and of I , which is a combinatorial invariant. We refer the reader
to Pournaki et al. (2009) for a short introduction to the subject and to Herzog (2013)
for a comprehensive survey.

The lcm-lattice L I of a monomial ideal I ⊆ S is the lattice of all least common
multiples of subsets of the minimal generators of I . It is known that the isomorphism
type of L I determines the projective dimension of I , cf. Gasharov et al. (1999). Further,
the Betti poset B(I ) ⊂ Z

n is the poset of all multidegrees in which S/I has non-
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vanishing Betti numbers. It is known that the Betti poset is a subposet of L I and it is
determined by the latter. Recently, Tchernev and Varisco (2015), and also Clark and
Mapes (2014) showed that Betti poset already determines the projective dimension
of I , in fact, it even determines the full structure of the minimal free resolution.
In Ichim et al. (2014), Ichim, the author and Moyano Fernández showed that the
Stanley projective dimension of S/I and I are determined by the isomorphism type
of L I as well. Here, the Stanley projective dimension of a module M can be defined
as spdim M = dim S − sdepth M . In the present paper, we propose the following
extension of that result:

Conjecture 2.4 The Betti poset of a monomial ideal I determines the Stanley projec-
tive dimension of S/I and I .

More precisely, if I ⊆ S and I ′ ⊆ S′ are two monomial ideals in two polynomial
rings S and S′ such thatB(I ) ∼= B(I ′), then it holds that spdimS S/I = spdimS′ S′/I ′
and spdimS I = spdimS′ I ′.
The significance of this conjecture stems from the following result:

Theorem 3.1 If 2.4 is true, then for any monomial ideal I ⊂ S, it holds that

sdepth S/I ≥ depth S/I − 1 and

sdepth I ≥ depth I.

The original motivation for the research on the Stanley depth is the Stanley conjec-
ture (Stanley 1982, Conjecture 5.2), which asserts that sdepthM ≥ depth M for every
Z
n-graded finitely generated S-module M. Very recently, the Stanley conjecture was

disproven by Duval et al. (2015). Indeed, these authors construct a monomial ideal I
in some polynomial ring S, such that

sdepth S/I = depth S/I − 1.

Thus, our 2.4 would imply the Stanley conjecture for ideals, and it would give the
best-possible bound for the Stanley depth of cyclic modules S/I .

We also show that 2.4 can be reduced to the following special case:

Conjecture 3.5 Let I ⊂ S = K[x1, . . . , xn] be a squarefree monomial ideal,
let further I ′ := (I : xn) and assume that B(I ) ∼= B(I ′). Then it holds that
sdepth S/I = sdepth S/I ′, or equivalently spdim S/I = spdim S/I ′. Similarly, it
holds that sdepth I = sdepth I ′, or equivalently spdim I = spdim I ′.

This note is structured as follows. In Sect. 2 we review some background necessary
for stating 2.4. Also, we add some remarks about this conjecture. In the subsequent
Sect. 3 we provide the proof of Theorem 3.1 and of the equivalence of 2.4 with 3.5.
Finally, in Sect. 3.3 we show that a weak version of 2.4 holds for generic ideals.

2 Statement of the Conjecture

Throughout the paper, letK denote some fixed field. By S and S′ we denote polynomial
rings over K, which we always consider with the fine grading.
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2.1 The Stanley Depth

Consider the polynomial ring S = K[x1, . . . , xn] endowed with the fine Z
n-grading.

Let M be a finitely generated (multi-)graded S-module, and let m ∈ M be a homo-
geneous element. Let Z ⊂ {x1, . . . , xn} be a subset of the set of indeterminates of S.
The K[Z ]-submodule mK[Z ] of M is called a Stanley space of M if mK[Z ] is a free
K[Z ]-module. A Stanley decomposition of M is a finite family

D = (K[Zi ],mi )i∈I

in which Zi ⊂ {x1, . . . , xn} andmiK[Zi ] is a Stanley space of M for each i ∈ I with

M ∼=
⊕

i∈I
miK[Zi ]

as a multigraded K-vector space. This direct sum carries the structure of an S-module
and has therefore a well-defined depth. The Stanley depth of M , sdepth M , is defined
to be the maximal depth of a Stanley decomposition of M . Similarly, the Stanley
projective dimension spdim M of M is defined as the minimal projective dimension
of a Stanley decomposition of M . Note that

spdim M + sdepth M = n

by the Auslander-Buchsbaum formula.
In the sequel, we will concentrate on modules which are either cyclic S/I or ideals

I ⊂ S. In this case, Herzog et al. (2009) provide a convenient alternative description
of the Stanley depth in terms of interval partitions. Note that there is no known relation
between spdim S/I and spdim I .

2.2 The Lcm-Lattice and the Betti Poset

Let I ⊂ S be a monomial ideal. The lcm-lattice L I of I is the lattice of all least
common multiples of subsets of the minimal generators of I , together with a minimal
element 0̂.

The following two results by Gasharov, Peeva and Welker, resp. Ichim, the author
and Moyano Fernández connect the lcm-lattice with projective dimension and the
Stanley projective dimension.

Theorem 2.1 Let I ⊂ S and I ′ ⊂ S′ be two monomial ideals. If there exists a
surjective join-preserving map L I → L I ′ , then (Gasharov et al. 1999; Ichim et al.
2014)

pdim S′/I ′ ≤ pdim S/I, and

spdim S′/I ′ ≤ spdim S/I.
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The corresponding statements hold as well for I and I ′ instead of S/I and S′/I ′. In
particular, the isomorphism type of L I determines both the projective dimension and
the Stanley projective dimension of both S/I and I .

Here, pdim M denotes the projective dimension ofM . For any given finite atomistic
lattice L , one can find a monomial ideal I ⊆ S in some polynomial ring such that L ∼=
L I , cf. Phan (2005); Mapes (2013); Ichim et al. (2014). The preceding theorem thus
implies that the invariants pdimQ L := pdim S/I, pdimI L := pdim I, spdimQ L :=
spdim S/I and spdimI L := spdim I do not depend on the choice of I . The subscripts
Q and I stand for “quotient” and “ideal”, respectively.

We denote by βS
i,m(S/I ) := dimK TorSi (S/I, K)m the multigraded Betti num-

ber of S/I over S in homological degree i and multidegree m. It is known that the
Betti numbers can be computed in terms of the lcm-lattice by the following formula,
cf. (Gasharov et al. 1999, Theorem 2.1):

βS
i,m(S/I ) =

{
dimK H̃i−2(L<m; K) if m ∈ L I ,

0 otherwise.

Here, H̃i−2(L<m; K) denotes the reduced simplicial homology of the order complex
of L<m\{0̂L} = {n ∈ L\{0̂L} : n < m}. Motivated by this formula, the Betti poset
was introduced in Clark and Mapes (2014).

Definition 2.2 Let L be a finite atomistic lattice. The Betti poset of L is the subset

B(L) := {m ∈ L : H̃i−2(L<m; K) 
= 0 for some i}.

Note that B(L) might depend on K. If I ⊆ S is a monomial ideal, then we set
B(I ) := B(L I ).

It turns out that the Betti poset of a monomial ideal contains the same homological
information about the ideal as the lcm-lattice:

Theorem 2.3 [Theorem 5.3 of Tchernev and Varisco (2015), Theorem 2.1 of Clark
and Mapes (2014)] The Betti poset B(I ) of a monomial ideal I ⊆ S determines the
structure of the minimal free resolution of S/I . In particular, it determines the Betti
numbers and the projective dimension of S/I .

Given these results, it seems natural to ask whether the part of 2.1 concerning the
Stanley projective dimension also extends to the Betti poset:

Conjecture 2.4 The Betti poset of a monomial ideal I determines the Stanley projec-
tive dimension of S/I and I .

More precisely, if I ⊆ S and I ′ ⊆ S′ are two monomial ideals in two polynomial
rings S and S′ such thatB(I ) ∼= B(I ′), then it holds that spdimS S/I = spdimS′ S′/I ′
and spdimS I = spdimS′ I ′.
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Remark 2.5 (1) 2.4 seems a natural conjecture to us, and we have some evidence
for it. Nevertheless, we are far from being convinced that this conjecture really
holds. Moreover, it is possible that 2.4 holds for S/I but not for I , or vice versa.
In the sequel, all statements about quotients S/I depend only on the part of 2.4
concerning quotients, and similarly all statements about ideals I depend only on
the other part of 2.4.

(2) We know from Ichim et al. (2016) that pdim S/I = spdim S/I for all ideals with
up to five generators. Hence 2.4 holds for quotients of those ideals. Similarly,
using the complete enumeration of lcm-lattices of ideals with four generators in
Ichim et al. (2016), we verified 2.4 for ideals with up to four generators.

(3) As mentioned above, the counterexample to the Stanley conjecture by Duval et
al satisfies sdepth S/I = depth S/I − 1. Given Theorem 3.1 below, one could
try to amplify the defect to also obtain a counterexample to 2.4. One possibility
would be to consider S/I ⊗K S/I . However, while the depth is additive under
this operation, the Stanley depth is only superadditive, i.e.,

sdepth M ⊗K N ≥ sdepth M + sdepth N

for S-modules M, N , see (Bruns et al. 2010, Proposition 2.10) or also (Rauf
2010, Theorem 3.1). So this does not immediately yields counterexamples to our
conjecture.

3 Discussion of the Conjecture

3.1 An Important Consequence

In this section we prove the following result.

Theorem 3.1 If 2.4 is true, then for any monomial ideal I ⊂ S, it holds that

sdepth S/I ≥ depth S/I − 1 and

sdepth I ≥ depth I.

Before we give the proof of Theorem 3.1, we collect some statements that we will
use. If L is atomistic lattice and a ∈ L , then the rank of a is the number of atoms
below it. Further, recall that an element a ∈ L is called meet-irreducible if it cannot
be written as a meet of two elements b, c which are distinct from a. If a ∈ L is meet-
irreducible, then the subposet L\{a} is again a lattice. The following is a special case
of Katthän (2015, Lemma 6.4).

Lemma 3.2 Let p ∈ N, L be a finite atomistic lattice and a ∈ L meet-irreducible. If
rk a < 2p, then it holds that spdimI L ≤ max{p, spdimI L\{a}}.

Recall that the length � = �(L) of a finite poset L equals the maximal length of a
strictly ascending chain l0 < l1 < · · · < l� in L .
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Theorem 3.3 [Corollary 2.5, Katthän and Seyed Fakhari (2015)]For a finite atomistic
lattice L, it holds that

spdimQ L ≤ �(L) and

spdimI L ≤ �(L) − 1.

The following proposition summarizes several results of Katthän (2015) in a form
which is suitable for the present purpose.

Proposition 3.4 Let I ⊆ S be a monomial ideal and let p := pdim S/I . Then there
exists a monomial ideal I ′ ⊆ S′ in some polynomial ring S′ which satisfies the fol-
lowing properties:

(1) pdim S′/I ′ = pdim S/I and (thus) pdim I ′ = pdim I ,
(2) spdim S′/I ′ ≥ spdim S/I and spdim I ′ ≥ spdim I ,
(3) the length of B(I ′) is p, and finally
(4) B(I ′) is the face poset of an acyclic simplicial complex.

Proof Let k be the number of generators of I . Consider the set L of isomorphism
classes of atomistic lattices with k atoms. This is a finite poset, where the order is
given by setting L ≥ L ′ if there is a surjective join-preserving map L → L ′. Consider
the subposet L(p) ⊆ L of all lattices L such that pdimQ L = p. Clearly, L I ∈ L(p).
As this is a finite poset, we can find a maximal element L ′ ∈ L(p) with L ′ ≥ L I .
Such a lattice is called maximal in Katthän (2015). Let further I ′ ⊂ S′ be a monomial
ideal with L I ′ = L ′. By construction, it holds that pdim S′/I ′ = pdim S/I , and by
Theorem 2.1 it holds that spdim S′/I ′ ≥ spdim S/I and spdim I ′ ≥ spdim I .

For the remaining parts of the claimwe recall the description of themaximal lattices
from Katthän (2015). By the Theorems 4.3 and 4.5 of Katthän (2015), there exists a
(p − 1)-dimensional simplicial complex � on k vertices whose (p − 2)-skeleton is
complete and which is K-acyclic, such that

L ′ ∼= {F ⊆ [k] : �|F isK-acyclic}.

Further, the Betti poset of I ′ coincides with the face poset of � (cf. Katthän 2015,
Corollary 4.4). So the last claim follows and for the penultimate claim we note that
�(B(I ′)) = dim� + 1 = p. �

Proof of Theorem 3.1 Let p := pdim S/I . We may replace the ideal I by the ideal I ′
of Proposition 3.4 without changing the validity of the claim. Let L ′ := B(I ′) ∪ {1̂},
where 1̂ is a new maximal element. By part (4) of Proposition 3.4, L ′ is an atomistic
lattice with B(L ′) = B(I ′). So we can find another monomial ideal I ′′ ⊂ S′′ in
some polynomial ring with L I ′′ = L ′. By our assumption on 2.4, it follows that
spdim S′/I ′ = spdim S′′/I ′′ and spdim I ′ = spdim I ′′.

Note that the length of L ′ equals p+1. Hence, using Theorem 3.3 we can conclude
that

spdim S′/I ′ = spdim S′′/I ′′ ≤ �(L ′) = p + 1 = pdim S′/I ′ + 1.
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So the claim for S′/I ′ is proven.
It remains to show the claim for I ′. If p = 2, then it holds that sdepth I ′ ≥ depth I ′

by Katthän (2015), Corollary 7.2 (see also Katthän and Seyed Fakhari 2015, Lemma
4.3). So we may assume that p > 2. We will use 3.2. For this, note that L ′ is a graded
poset of rank p+1. Hence every element a ∈ L ′ of rank p is meet-irreducible. Further,
p > 2 implies that rk a = p < 2(p − 1).

So we conclude with 3.2 that spdimI L
′ ≤ max(p − 1, spdimI L

′\{a}). Iterating
this procedure, we can remove all elements of rank p from L ′ and obtain a lattice L̃
of length p. In conclusion, we have that

spdim I ′ = spdimI L
′ ≤ max(p − 1, spdimI L̃)

≤ max(p − 1, �(L̃) − 1) = p − 1 = pdim I ′.

�


3.2 An Explicit Version of the Conjecture

We believe that the following more explicit formulation might be helpful in proving
2.4.

Conjecture 3.5 Let I ⊂ S = K[x1, . . . , xn] be a squarefree monomial ideal,
let further I ′ := (I : xn) and assume that B(I ) ∼= B(I ′). Then it holds that
sdepth S/I = sdepth S/I ′, or equivalently spdim S/I = spdim S/I ′. Similarly, it
holds that sdepth I = sdepth I ′, or equivalently spdim I = spdim I ′.

Proposition 3.6 3.5 is equivalent to 2.4.

The construction of M(B) in the following proof is taken from Section 6 of Tchernev
and Varisco (2015).

Proof 3.5 is clearly a special case of 2.4, so we only need to prove one implication.
Let I ⊆ S be a monomial ideal and set L := L I . Denote by A ⊂ L the set of

atoms of L and let further �(A) be the boolean algebra on A. There is an injective
meet-preserving map j : L → �(A), which maps an element to the set of atoms
below it. We consider L as a subset of �(A) via j .

Let B := j (B(I )) and let further M(B) ⊂ �(A) be the set of all meets in �(A) of
subsets of B. Here, we consider themaximal element of�(A) as themeet of the empty
set. Then M(B) is an atomistic lattice (Tchernev and Varisco 2015, Lemma 6.1), and
the inclusion M(B) ⊆ L preserves the meet. Further, it holds that B(M(B)) = B by
Tchernev and Varisco (2015, Proposition 6.5).

We order the elements a1, . . . , ar of L\M(B) be decreasing rank and set Li :=
L\{a1, . . . , ai }. This way, we obtain an increasing chain

M(B) = Lr � Lr−1 � · · · � L0 = L

of lattices,where all the inclusions aremeet-preserving (cf.Katthän 2015, Lemma3.7).
It is easy to see by induction on i that B(Li ) = B(L) for all i . Indeed, this is obvious
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for i = 0. For i > 0, it holds that ai+1 /∈ B(L) = B(Li ), and hence the arguments
given in Lemma 3.8 and Remark 3.9 of Katthän (2015) show that B(Li+1) = B(Li ).

Fix an i such that 0 ≤ i ≤ r . It follows from Ichim et al. (2014, Theorem 3.4)
that there exists a squarefree monomial ideal J ⊂ S′′ in some polynomial ring S′′
and a variable x ∈ S′′, such that Li ∼= L J and Li+1 ∼= L(J :x). Thus, 3.5 implies that
spdimQ Li = spdimQ Li+1 and spdimI Li = spdimI Li+1. As this holds for all i , we
arrive at the conclusion that

spdim S/I = spdimQ L = spdimQ M(B)

and

spdim I = spdimI L = spdimI M(B).

Now let I ′ ⊂ S′ be a second monomial ideal with B(I ) ∼= B(I ′). This clearly implies
that M(B(I )) ∼= M(B(I ′)), and hence that

spdim S/I = spdimQ M(B(I )) = spdimQ M(B(I ′)) = spdim S′/I ′

and similar for spdim I . �

Remark 3.7 (1) Note that the inequalities sdepthS S/I ≤ sdepthS S/I ′ and also

sdepth I ≤ sdepth I ′ are clear, because every Stanley decomposition of S/I and I
restricts to a Stanley decomposition of S/I ′ and I ′, respectively. So the difficulty
is to extend a Stanley decomposition of S/I ′ or I ′ to a Stanley decomposition of
S/I or I .

(2) For 3.1, it would be enough to prove 3.5 (and thus 2.4) for those ideals which
actually appear in the proof of Theorem 3.1. In particular, one may assume that the
minimal free resolution of I is supported on the Scarf complex, and that the latter is
a stoss complex in the sense of Katthän (2015), i.e. an acyclic (p−1)-dimensional
simplicial complex with a complete (p− 2)-skeleton, where p = pdim S/I . Note
that such a resolution is a truncation of the Taylor resolution.

(3) The assumption that I is squarefree is inessential, as it does not affect the lcm-
lattices. One may further assume in 3.5 that all generators of I have the same
degree, cf. (Ichim et al. 2014, Proposition 5.12).

It seems desirable to understand the implications of the condition B(I ) ∼= B(I ′) in
3.5. One possible approach is to consider the Hilbert series of S/I . Recall that it is
given by

H(S/I ; t1, . . . , tn) = 1

(1 − t1) · · · (1 − tm)

∑

m∈Zn

tm
∑

i≥0

(−1)iβi,m(S/I ),

where we write tm = tm1
1 · · · tmn

n . Now the condition B(I ) ∼= B(I ′) implies that the
Hilbert series of S/I ′ has the same “shape”, in the sense that no further cancellation of
terms occurs. As Stanley decompositions can be seen a decompositions of the Hilbert
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series, this might imply that the Stanley decompositions are also similar. However, the
following example shows that it is not enough to consider this “shape” of the Hilbert
series.

Example 3.8 Let S = K[a, b, c, x, y] and consider the following two ideals

I1 := (a2x2, b2x2, c2x2, a2b2c2, abcxy)

I2 := (a2x2, b2x2, c2x2, a2b2c2, abcx)

in S. One can easily compute that pdim S/I1 = 4 and that pdim S/I2 = 3. Further,
both ideals have only five generators, so their Stanley projective dimensions coincide
with the respective projective dimensions (Ichim et al. 2016). In particular, their Betti
posets are nonisomorphic and their Stanley projective dimensions differ. Further, using
the algorithm of Ichim and Zarojanu (2014), we computed that spdim I1 = spdim I2.

On the other hand, their Hilbert series have the same “shape”. The reason is that
for all elements m ∈ B(I1)\B(I2) it holds that

∑
i≥0(−1)iβi,m(S/I1) = 0.

3.3 Generic Ideals

In this section we show that a weak version of 2.4 holds for generic ideals in the sense
of Miller et al. (2000).

Proposition 3.9 Let I ⊂ S be a generic monomial ideal. Let further I ′ ⊆ S′ be a
further monomial ideal, such that there is a surjective join-preserving map L I → L I ′
and assume that B(I ) ∼= B(I ′).

Then it holds that spdimS S/I = spdimS′ S′/I ′.

The addition assumption that there is a map L I → L I ′ is not a severe restriction,
because in our proof of Theorem 3.1 we only consider this situation.

Proof Let p = pdimS S/I . Recall that the Scarf complex of I is the subset�(I ) ⊆ L I

of those elements which can be written as a join of atoms in a unique way. In general,
the Betti poset contains the Scarf complex, and in the generic situation these two
coincide. So every element of the Betti poset of I is a join of atoms in a unique way.
But then this also holds for I ′, and hence B(I ′) = �(I ′) as well. In particular, there
exists an element a ∈ �(I ′) of rank p = pdimS S/I = pdimS′ S′/I ′.We can construct
a surjective join-preserving map from L I ′ to a boolean algebra on p atoms by sending
every element b ∈ L I ′ to the set of atoms below b ∧ a. The boolean algebra on p
atoms can be considered as lcm-lattice of an ideal J generated by p variables, and the
latter has Stanley projective dimension p. Hence we conclude with Theorem 2.1 that
spdimS′ S′/I ′ ≥ p. On the other hand, the Stanley conjecture holds for S/I (as I is
generic), so spdimS S/I ≤ p. Hence, using again Theorem 2.1 it follows that

p ≤ spdimS′ S′/I ′ ≤ spdimS S/I ≤ p,

so the claim follows. �
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