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Abstract The famous 4n2-inequality is extended to generic complete intersection
singularities: it is shown that the multiplicity of the self-intersection of a mobile linear
system with a maximal singularity is greater than 4n2μ, where μ is the multiplicity
of the singular point.
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To Askol’d Georgievich Khovanskii

1 Statement of the Result

Let (X, o) be a germ of a complete intersection singularity of codimension l and type
μ = (μ1, . . . , μl), where

dimX = M � l + μ1 + · · · + μl + 3.

We will assume the singularity to be generic in the sense of Sect. 2 below. The aim of
this note is to prove the following claim.

Theorem Let � be a mobile linear system on X. Assume that for some positive n ∈ Q

the pair (X, 1
n �) is not canonical at the point o but canonical outside this point. Then

the self-intersection Z = (D1 ◦ D2) of the system � satisfies the inequality
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multo Z > 4n2 multo X. (1)

Remark 1 (i) The assumption of the theorem means that the pair (X, 1
n �) has a

non-canonical singularity with the centre at the point o. Explicitly, for some
exceptional divisor R over X , the centre of which is the point o, the Noether–
Fano inequality

ordR � > n · a(R, X)

holds, where a(R, X) is the discrepancy of R with respect to X .
(ii) The self-intersection Z = (D1 ◦ D2) is the scheme-theoretic intersection of

any two general divisors in � which is well defined as � is free from fixed
components.

(iii) When multo X = 1, we get the standard 4n2-inequality, see Pukhlikov (2013,
Chapter 2). For that reason, we call the inequality (1) the 4n2-inequality as
well. The standard 4n2-inequality (for the non-singular case) was first shown
in Pukhlikov (2000) on the basis of the technique developed in Iskovskikh and
Manin (1971). Later a different proof was found byCorti (2000) and various gen-
eralizations of the 4n2-inequality were investigated (Cheltsov 2005b; Pukhlikov
2010), see Pukhlikov (2013, Chapter 2) for more details.

Note that in the smooth case (when multo X = 1) the 4n2-inequality holds for
dim X � 3without any additional assumptions. This is because the exceptional divisor
of the blow up of the point o on X is just the projective space, and in the projective
space it is very easy to bound multiplicities in terms of degrees. Unfortunately, it is not
so easy to do so (in the way we need) for hypersurfaces and complete intersections,
which generate the need for additional assumptions.

The author thanks the referees for a number of useful suggestions, especially for
spotting the insufficient lower bound for dim X in the first version of the paper.

2 Generic Complete Intersection Singularities

The germ (X, o) is given by a system of l analytic equations

0 = q1,μ1 + q1,μ1+1 + . . .

. . .

0 = ql,μl + ql,μl+1 + . . .

inCM+l , where 2 � μ1 � · · · � μl , l � 1 and the polynomials q j,i are homogeneous
of degree i in the coordinates z1, . . . , zM+l ; the point o = (0, . . . , 0) is the origin. We
denote by

μ = (μ1, . . . , μl)

the type of the singularity o ∈ X and set

μ = μ1 · · · μl = multo X
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to be the multiplicity of the point o (assuming the conditions of general position for
the first polynomials q1,μ1 , q2,μ2 , . . . , ql,μl , stated below). Set also

|μ| = μ1 + · · · + μl .

Recall that by assumption M � l + |μ| + 3. Let P � o be a linear subspace in CM+l

of dimension 2l + |μ| + 3. Denote by X P the intersection X ∩ P .

Definition 1 We say that the complete intersection singularity (X, o) is generic, if for
a general subspace P of dimension 2l + |μ| + 3 the singularity o ∈ X P is an isolated
singularity, dim X P = l + |μ| + 3 and for the blow up

ϕP : X+
P → X P

of the point o, the variety X+
P is non-singular in neighborhood of the exceptional

divisor Q P = ϕ−1
P (o), which is a non-singular complete intersection

Q P = {q1,μ1 = q2,μ2 = · · · = ql,μl = 0} ⊂ P2l+|μ|+2

of codimension l and type μ = (μ1, . . . , μl).

From now on, we assume that the singularity o ∈ X is generic. In particular, by
Grothendieck’s theorem on factoriality (Call and Lyubeznik 1994), X is a factorial
variety near the point o.

3 Start of the Proof

The idea of the proof is as follows. We use as a model the proof of the standard
4n2-inequality by means of the technique of counting multiplicities as it is given
in Pukhlikov (2013, Chapter 2, Section 2.2). First, we observe that by inversion of
adjunction, the existence of a non-canonical singularity R implies the existence of
another singularity E of the same pair (X, 1

n �) which satisfies a Noether–Fano type
inequality. The latter is somewhat weaker (but sufficient for our purposes). However,
the new singularity E has the crucial advantage that its centre on the blow up X+ of
the point o has a high dimension. This is done in the present section.

After that, in Sect. 4 we resolve the singularity E and use the assumptions on
the singular point o ∈ X to relate the multiplicities of the system � and its self-
intersection at the point o with the multiplicities of the strict transforms of � and
the self-intersection at the “higher storeys” of the resolution, at the centres of the
singularity E on those “higher storeys”.

This done, we apply the technique of counting multiplicities in word for word the
same way as in Pukhlikov (2013, Chapter 2, Section 2.2) and complete the proof.

Let us realize this programme.
For a general (2l + |μ| + 3)-subspace P set �P = �|P to be the restriction of

� onto P . By inversion of adjunction (Shokurov 1993; Kollár et al. 1993), the pair

123



Aleksandr V. Pukhlikov

(X P , 1
n �P ) is not canonical (for M > l + |μ| + 3, even non-log canonical, but we do

not need that.) Obviously,

Z P = Z |P = (Z ◦ X P )

is the self-intersection of the system �P and multo Z = multo Z P . Therefore, we
may (and will) assume from the beginning that M = l + |μ| + 3 and so P = CM+l ,
so that already the original singularity o ∈ X is isolated. Now we omit the index P
and write

ϕ : X+ → X

for the blow up of the point o and Q = ϕ−1(o) for the exceptional divisor, which is a
non-singular complete intersection of type μ in P2l+|μ|+2.

Now let � � o be a general linear subspace of dimension |μ| + 3. By the symbol

X� we denote the intersection X ∩ �. Clearly, o ∈ X� ⊂ � = C|μ|+3 is an isolated
complete intersection singularity of codimension l. Let ϕ� : X+

� → X� be the blow
up of the point o and Q� = ϕ−1

� (o) the exceptional divisor. Clearly Q� ⊂ P|μ|+2 is
a non-singular complete intersection of type μ (and codimension l).

Note that by the adjunction formula for the discrepancy we have the equality
a(Q�, X�) = 2.

For a general divisor D ∈ � and its strict transform D+ ∈ �+ on X+ we have

D+ ∼ −ν Q

for some positive integer ν (recall that we consider a local situation: o ∈ X is a germ).
Obviously, if ν > 2n, then

multo Z � ν2μ > 4n2μ

and the 4n2-inequality holds. For that reason, from now on we assume that

ν � 2n.

Setting D� = D|X� , we get D+
� ∼ −ν Q�. By the inversion of adjunction the pair(

X�, 1
n D�

)
is not log canonical at the point o, the more so not canonical, so for some

exceptional divisor E� over X� the Noether–Fano inequality

ordE� �� > na(E�, X�)

is satisfied. As ν � 2n and a(Q�, X�) = 2, we see that E� 	= Q� and E� is a non
log canonical (and so not canonical) singularity of the pair

(
X+

�,
1

n
D+

� + (ν − 2n)

n
Q�

)
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(the more so, of the pair
(
X+

�, 1
n D+

�

)
). Denote by �� ⊂ Q� the centre of E� on X+

�,
an irreducible subvariety in Q�.

Proposition 1 If codim (�� ⊂ Q�) = 1, then the estimate

multo Z � 8n2μ

holds.

Proof We note that multo Z = multo Z�. Arguing as in the proof of Proposition 4.1
in Pukhlikov (2013, Chapter 2) [see also Cheltsov (2005b, Section 1.7)], we get the
following estimate:

multo Z� � ν2μ + 4
(
3 − ν

n

)
n2μ,

and easy calculations complete the proof. 
�
Therefore we may assume that codim(�� ⊂ Q�) � 2.
Coming back to the variety X , we conclude that for some exceptional divisor E

over X with the centre at o the Noether–Fano type inequality

ordE � > n(2 ordE Q + a(E, X+))

is satisfied. Moreover, the centre � ⊂ Q of E on X has codimension at least 2 and
dimension at least 2l.

4 Resolution of the Singularity E

Consider the sequence of blow ups

X0 = X ← X1 = X+ ← X2 ← · · · ← X K ,

where ϕi,i−1 : Xi → Xi−1 is the blow up of the centre Bi−1 ⊂ Xi−1 of the exceptional
divisor E on Xi−1. In particular, B0 = o and B1 = �. Using the notations, identical
to those in Pukhlikov (2013, Chapter 2, Section 2.2), we set

Ei = ϕ−1
i,i−1(Bi−1) ⊂ Xi

to be the exceptional divisor, so that E1 = Q. As X1 = X+ is non-singular in
a neighborhood of E1, all subsequent varieties Xi are non-singular at the generic
point of Bi and all constructions of Pukhlikov (2013, Chapter 2, Section 2.2) work
automatically for the blow ups ϕi,i−1 with i � 2.

The last exceptional divisor EK defines the discrete valuation ordE .
We divide the sequence ϕi,i−1, i = 1, . . . , K , of blow ups into the lower part,

i = 1, . . . , L � K , corresponding to the centres Bi−1 of codimensions at least 3, and
the upper part, i = L + 1, . . . , K , corresponding to the centres Bi−1 of codimension
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two. As usual, we denote the strict transform of any geometric object on Xi by adding
the upper index i and set:

νi = multBi−1 �i

for any i = 2, . . . , K to be the elementary multiplicities. Let � be the oriented graph
of the resolution of the singularity E and pi j the number of paths from the vertex i to
the vertex j , pii = 1 by definition [see Pukhlikov (2013, Chapter 2, Section 2.2) for
the standard details]. We also set pi = pK i , i = 1, . . . , K . Now the Noether–Fano
type inequality takes the form

K∑

i=1

piνi >

(

2p1 +
K∑

i=2

piδi

)

, (2)

where ν1 = ν and δi = codim(Bi−1 ⊂ Xi−1) are the elementary discrepancies. By
the linearity of the Noether–Fano type inequality (2) and the standard properties of
the numbers pi j we may assume that νK > n (replacing, if necessary, EK by a lower
singularity E j for some j < K ). In order to proceed, we need the following known
fact.

Proposition 2 Let Y ⊂ PN be a non-singular complete intersection of codimension
l � 1, S ⊂ Y an irreducible subvariety of codimension a � 1 and B ⊂ Y an
irreducible subvariety of dimension al, where the estimate N � (l + 1)(a + 1) is
satisfied. Then the inequality

multB S � m

holds, where m � 1 is defined by the condition S ∼ m Ha
Y and HY ∈ A1Y is the class

of a hyperplane section of Y .

Proof for the case l = 1 was given in Pukhlikov (2002b). The argument extends
directly to the general case of an arbitrary l, see Suzuki (2015) (also Pukhlikov 2006;
Cheltsov 2005a). 
�

Applying Proposition 2 to a divisor in the linear system �1|Q , we conclude that
ν1 � ν2, since dim B1 = dim� � 2l. The inequalities

ν2 � ν3 � · · · � νK

are standard. We deduce that the upper part of the resolution of E is non-empty (that
is to say, L < K ) and the upper part of the graph � is a chain:

L ← (L + 1) ← · · · ← K ;

moreover, there are no arrows connecting either of the vertices L + 1, . . . , K with
any of vertices 1, 2, . . . , L − 1. [These are the standard consequences of inequalities
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νK > n and ν1 � 2n, see Pukhlikov (2013, Chapter 2, Section 2.2).] We do not need
this additional information for the proof of our theorem, but in particular geometric
problems it might be useful.

5 The Technique of Counting Multiplicities

Now everything is ready for the proof of the desired inequality (1). Take a general pair
of divisors D1, D2 ∈ � and set

Z = Z0 = (D1 ◦ D2)

to be their scheme-theoretic intersection, the self-intersection of the mobile linear
system �. Recall that the strict transform of an irreducible subvariety or an effective
cycle, or a linear system on some Xi is denoted by adding the upper index i . (This
notation silently implies that the irreducible subvariety or the effective cycle etc. is
sitting on a lower storey X j , j � i , of the resolution and that the operation of taking
the strict transform is well defined for that particular subvariety etc.) For i � 1 write

(Di
1 ◦ Di

2) = (Di−1
1 ◦ Di−1

2 )i + Zi ,

where the effective cycle Zi of codimension 2 is supported on Ei and so may be
viewed as an effective divisor on Ei . Thus for any i � L we obtain the presentation

(Di
1 ◦ Di

2) = Zi
0 + Zi

1 + · · · + Zi
i−1 + Zi .

For any j > i , where j � L , set

mi, j = multB j−1 Z j−1
i

and for i = 2, . . . , L set di = deg Zi in the same sense as in Pukhlikov (2013, Chapter
2, Section 2.2). For the effective divisor Z1 on E1 = Q we have the relation

Z1 ∼ d1HQ

for some d1 ∈ Z+, where HQ is the class of a hyperplane section of the complete
intersection Q ⊂ P4l+2. Following the procedure of Pukhlikov (2013, Chapter 2), we
obtain the system of equalities

μ(ν21 + d1) = m0,1,

ν22 + d2 = m0,2 + m1,2,

. . .

ν2i + di = m0,i + . . . + mi−1,i ,

. . .
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i = 2, . . . , L , where the estimate

dL �
K∑

i=L+1

ν2i

holds as usual, see Pukhlikov (2013, p. 53).

Proposition 3 (i) The inequality

d1 � m1,2

holds.
(ii) The inequality

m0,1 � μm0,2

holds.

Proof Part (i) follows from Proposition 2 as Z1 ∼ d1HQ and dim B1 � 2l. In order
to show part (ii), we note that (numerically)

(Z1 ◦ E1) ∼ 1

μ
m0,1H2

Q

as m0,1 = deg(Z1 ◦ E1), the cycle (Z1 ◦ E1) = (Z1 ◦ Q) being of pure codimension
2 on Q. Applying Proposition 2 to the cycle (Z1 ◦ Q), we get the inequality

m0,2 � mult�(Z1 ◦ Q) � 1

μ
m0,1,

which completes the proof of the proposition. 
�
The more so, m0,1 � μm0,i for i � 3 as m0,2 � m0,3 � · · · � m0,L .
Now set

m∗
i, j = μmi, j

for (i, j) 	= (0, 1) and m∗
0,1 = m0,1. Also set

d∗
i = μdi

for i = 1, . . . , L . We obtain the following system of equalities:

μν21 + d∗
1 = m∗

0,1,

μν22 + d∗
2 = m∗

0,2 + m∗
1,2,

. . .

μν2i + d∗
i = m∗

0,i + . . . + m∗
i−1,i ,

. . .
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where i = 1, . . . , L , and

d∗
L � μ

K∑

i=L+1

ν2i ,

where the integers m∗
i, j and d∗

i satisfy precisely the same properties, as the integers
mi, j and di in the non-singular case considered in Pukhlikov (2013, Chapter 2, p.
52–53). Now repeating the arguments of Pukhlikov (2013, Chapter 2, p. 52–53) word
for word, we obtain the inequality

(
L∑

i=1

pi

)

multo Z � μ

K∑

i=1

piν
2
i ,

which in the standard way implies the desired estimate

multo Z > μ · 4n2.

Proof of the theorem is completed.

Remark 2 The inequality (1) essentially simplifies the proof of birational superrigidity
of Fano hypersurfaceswith isolated singularities of general position given in Pukhlikov
(2002a). The cases of singular points of multiplicity μ = 3 and 4 in that paper are
really hard. The inequality (1) gives for the multiplicity multo Z at such points the
lower bound 12n2 and 16n2, respectively, which is more than enough to exclude the
maximal singularities over such points by the standard (in fact, relaxed) technique of
hypertangent divisors. More applications of the inequality (1) in the spirit of Eckl and
Pukhlikov (2014), Evans and Pukhlikov (2016) will be given separately.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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