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Abstract Any planar shape P ⊂ C can be embedded isometrically as part of the
boundary surface S of a convex subset of R3 such that ∂P supports the positive
curvature of S. The complement Q = S\P is the associated cap. We study the cap
construction when the curvature is harmonic measure on the boundary of (Ĉ\P,∞).
Of particular interest is the casewhen P is a filled polynomial Julia set and the curvature
is proportional to the measure of maximal entropy.
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1 Introduction

A planar shape is a compact, connected subset of the Euclidean plane that contains
at least two points and has connected complement. Given a probability measure μ

supported on the boundary of a planar shape P , we investigate the existence of a
conformal metric ρ = ρ(z)|dz| on the Riemann sphere Ĉ so that

(i) P , with its Euclidean metric from R
2, embeds locally-isometrically into (Ĉ, ρ);

and
(ii) the curvature distribution ωρ = −� log ρ(z) on Ĉ is equal to the push-forward

of 4πμ under the embedding.
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If ρ exists, then it is uniquely determined up to isometry (c.f. Alexandrov 2005, §3.5,
Theorem 1]), and we will denote it by ρ(P, μ).

Alexandrov’s theorems on convex surfaces (Alexandroff 1942; Aleksandrov 1948;
Alexandrov 2005) assert that any abstract metrized sphere with non-negative curvature
is isometric to the boundary surface of a convex body in R

3 with its induced metric
(unique up to rigidmotions ofR3). In particular, themetrized sphere (Ĉ, ρ(P, μ))will
have a unique convex 3D realization. The convex body may be degenerate, meaning
that it lies in a plane and the sphere is viewed as the double of a convex planar region.
Conversely, the surface of any compact, convex body in R

3 (not contained in a line)
may be endowed with a complex structure and uniformized so that it is isometric
to the Riemann sphere with a conformal metric of non-negative curvature; see, e.g.
Reshetnyak (1993). Thus, the existence of ρ(P, μ) may be viewed as a problem of
“folding” the shape P into R

3 and taking its convex hull, in such a way that the
curvature of the resulting convex body is given by 4πμ.

The complement of P in (Ĉ, ρ(P, μ))will be called the cap of (P, μ) and denoted
by P̂μ. By construction, the metric on the cap is flat, so there is a locally isometric
development map

D : P̂μ → (C, |dz|).

We say the cap is planar if the development D is injective.
Our first observation is that there always exists a probability measure μ supported

on ∂P so that the metric ρ(P, μ) exists (see Sect. 2.1 for a simple but degenerate
construction). We also observe that not all caps are planar, and we give examples in
Sect. 2.

The harmonic cap. We are especially interested in the case where P is a connected
filled Julia set K ( f ) of a polynomial f : C → C and the prescribed measure μ is
the measure of maximal entropy supported on the boundary of K ( f ); see details in
Sect. 2.4. This metrized sphere was defined in (DeMarco 2003, Section 12) for an
arbitrary rational map f : P1 → P

1 of degree > 1. Questions about the features of its
3-dimensional realization were first posed by McMullen and Thurston.

To this end, we examine arbitrary planar shapes P ⊂ C, and we let μ be the
harmonic measure for the domain Ĉ\P relative to ∞. By definition, μ is the push-
forward of the Lebesgue measure on the unit circle S1 (normalized to have total mass
1) under a conformal isomorphism � : C\D → C\P; the measure μ is well defined
even if� is not everywhere defined on S1. In this setting, the metric ρ(P, μ) is simply
an extension of the Euclidean metric |dz| on P; it can be expressed in terms of the
Green function

GP (z) = log |�−1(z)|

for z ∈ C\P . Setting GP (z) = 0 for z ∈ P , we have

ρ(P, μ) = e−2GP (z)|dz|.
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Observe that the metric ρ(P, μ) is continuous on all of Ĉ: GP is continuous on C (by
solvability of the Dirichlet problem on simply-connected domains), and it grows as
γ + log |z| + o(1) as z → ∞ for some γ ∈ R. The cap P̂μ is called the harmonic
cap of P .

Theorem 1.1 Let P be any planar shape and let μ be the harmonic measure on ∂P,
relative to ∞. Let � : Ĉ\D → Ĉ\P be a conformal isomorphism with �(∞) = ∞.
A Euclidean development of the harmonic cap P̂μ is given by the locally univalent
function g : D → C defined by

g(z) =
∫ z

0
�′(1/x) dx .

Moreover, there exist planar shapes P for which the harmonic cap is not planar.

As an example, the harmonic cap of a closed interval is planar; its development is
shown in Fig. 6 for P = [−2, 2] where g(z) = z − z3/3. A non-planar example is
described in Sect. 2.3.

Theorem 1.1 allows one to appeal to the theory of univalent functions for conditions
on P that guarantee planarity of the harmonic cap. If the harmonic cap is planar, then
the construction can be iterated, to find the harmonic cap of the development of a
harmonic cap. It would be interesting to understand the properties of this dynamical
system on a class of planar shapes. (The closed unit disk is a fixed point of this
operation; see Example 4.1.)

Constructing a cap. Given the data of a conformal metric (Ĉ, ρ) with non-negative
curvature distribution, it is a notoriously difficult problem to construct the 3D real-
ization, even for polyhedral metrics (as we discuss below). But it turns out that a
development of a cap P̂μ in C can be easily produced on the computer.

For planar shapes that are Jordan domains with rectifiable boundaries, a cap P̂μ will
have boundary of the same length as ∂P . Aperimeter gluing of P and P̂μ is the bound-
ary identification (by arclength) between ∂P and ∂ P̂μ that produces (Ĉ, ρ(P, μ)).

Theorem 1.2 Let P be a planar shape with a piecewise-differentiable Jordan curve
boundary, and let μ be a nonnegative Borel probability measure supported on the
boundary of P. Let s be a counterclockwise, unit-speed parametrization of ∂P, and
write s(t) = ∫ t

0 e
iα(x) dx for a real-valued function α. If the cap P̂μ exists, then the

boundary of its Euclidean development is parameterized in the clockwise direction by

ŝ(t) =
∫ t

0
ei(α(x)−κ(x)) dx

where κ(t) = 4πμ(s(0, t]), and the perimeter gluing is given by s(t) ∼ ŝ(t), .

Given an arbitrary planar shape P , we can approximate it by a shape P ′ with
piecewise-differentiable Jordan curve boundary and approximate any given measure
μ on ∂P with a probability measure supported on the boundary of P ′. In this way,
Theorem 1.2 supplies a straightforward strategy to illustrate the caps. In practice, we
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Fig. 1 In blue, a square; in
orange, its harmonic cap, with
one attaching point indicated in
black. The perimeter gluing is
by arclength. There is a unique
realization of the glued shapes as
the boundary of a convex body
in R3. The harmonic measure on
the boundary of the square was
approximated by a discrete
measure supported on 500
points, using the Riemann
mapping function (Van Andel
and Bradshaw 2011) in Sage
(The Sage Developers 2016).
Image generated with
Mathematica (color figure
online)

Fig. 2 In blue, a polygonal approximation to the filled Julia set of f (z) = z2 − 1 with 211 vertices, the
preimages of z = 2.0 under f 11. The discrete probability measure that assigns equal mass to each of its 211

vertices approximates the harmonic measure on the filled Julia set. In orange, the polygonal cap associated
to this polygon with discrete curvature measure. There is a unique realization of the glued shapes as the
boundary of a convex body in R

3. Image generated with Mathematica (color figure online)

use polygonal approximations to the planar shape P with discrete curvature supported
on the vertices. See Figs. 1 and 2. A theorem of Reshetnyak states that weak con-
vergence of the curvature distributions as measures on Ĉ implies convergence of the
metrics (Reshetnyak 1993, Theorem 7.3.1; Rešetnjak 1960).

For polygonal planar shapes with arbitrary probability measures μ supported on
their vertices, our cap-drawing algorithm (which follows the proof of Theorem 1.2)
can be used to draw the parametrization ŝ, independent of the existence of the metric
extension ρ(P, μ). For many examples, the curve ŝ fails to form a closed loop or has
a shape that cannot be the boundary parametrization of any Euclidean development
of a cap (e.g., it may have positive winding number around a point in the plane, while
the boundary of a cap development, traversed in the clockwise direction, will wind
non-positively around all points). For example, if P is a triangle, there is a unique
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measureμ supported on the vertices of P that gives rise to a cap: any associated cap is
necessarily a triangle whose sidelengths are the same as those of P , implying the cap
is a reflected copy of P , the convex shape is degenerate, and μ(v) = (π − θ)/(2π)

where v is a vertex of P with internal angle θ . In general, the questions of when the
metric ρ(P, μ) exists and when the cap P̂μ is planar are quite delicate, even in the
polygonal setting.

Problem 1.3 For polygons of N sides, with side lengths {�1, . . . , �N } and internal
angle θi at each of its vertices vi , give an explicit description of the discrete curvature
distributions μ = {μi } supported on the vertices vi so that the metric ρ(P, μ) exists.
Provide conditions under which the polygonal cap P̂μ is planar.

Problem 1.3 is related to the geometry of the space of polygons with fixed side
lengths and no boundary crossings,which, to our knowledge, has never been described.
See Connelly et al. (2003) where it is proved that the space is connected and con-
tractible.

The 3-dimensional realization.Recall, byAlexandrov’s theorems (Alexandrov 2005;
Aleksandrov 1948; Alexandroff 1942; Pogorelov 1973), for nonnegative μ there is
a unique way to fold the Euclidean development of P and P̂μ to form the boundary
surface of a convex shape inR3.Wemay view the output of the cap-drawing algorithm,
as in Figs. 1 and 2, as paper cut-outs to be creased and glued to form the desired shape.
Unfortunately, the exact shape of the 3-dimensional realization is not at all clear from
the development alone. Even the set of folding lines inside P and P̂μ is a mystery
in general. Quoting from Alexandrov in translation (Alexandrov 2005, p.100), “To
determine the structure of a polyhedron froma development, i.e., to indicate its genuine
edges in the development, is a problem whose general solution seems hopeless.” But
in the case of harmonic measure on a planar shape, especially when the shape is the
filled Julia set of a polynomial, there may be specialized ways to attack the problem.

Not long ago, Bobenko and Izmestiev devised an illuminating and construc-
tive proof of Alexandrov’s realization theorem for polyhedral metrics (Bobenko
and Izmestiev 2008), implementing their algorithm and making it publicly avail-
able. Unfortunately, the algorithm was not practical for the polyhedra that closely
approximate the metrics for polynomial Julia sets (Bartholdi 2015). Laurent Bartholdi
modified their strategy to handle some dynamical examples, such as the filled Julia
set of f (z) = z2 − 1 shown in Fig. 3.

Formally, the convex 3D realization of (Ĉ, ρ(P, μ)) determines a Euclidean lam-
ination on the interiors of P and P̂μ, consisting of the geodesic line segments that
must be folded to form the 3D shape. We call this the bending lamination of the pair
(P, μ). If one also retains the data of the dihedral angles (the amount of the fold along
each leaf of the lamination), we obtain a measured lamination, uniquely determined
by the pair (P, μ). We leave the following as an open problem:

Problem 1.4 Suppose μ is the harmonic measure relative to ∞ on the boundary of a
planar shape P . Describe the (measured) bending lamination of (P, μ).

Other comments and acknowledgments. In the course of this project, we were
introduced to the vast literature of the computational geometry community. Quite a bit
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Fig. 3 Two views of Bartholdi’s polyhedral approximation to the 3D realization of the filled Julia set of
f (z) = z2 − 1 with its harmonic measure, computed with 211 vertices. An illustration of the filled Julia set
is superimposed onto the image. Graphic created with glc player

of research has gone towards visualizing the 3D realizations of Alexandrov’s convex
polyhedral metrics and related problems. Most notably, we mention that we learned
much from thework ofDemaine andO’Rourke and their co-authors; see, e.g. Demaine
and O’Rourke (2005), and Demaine and O’Rourke (2007).

We would like to thank Curt McMullen and, posthumously, Bill Thurston, for
introducing us to this problem and for many interesting conversations on the topic
over the past 15 years. In particular, the idea of representing a Julia set and its
cap as paper cut-outs is due to Thurston. Our perspective on caps and bending is
also inspired by the theory of pleated surfaces and Thurston’s study of spaces of
polyhedra (Series 2006; Thurston 1998) and the geometry of filled Julia sets for homo-
geneous polynomial maps (Hubbard and Papadopol 1994). We are grateful to Laurent
Bartholdi, Ilia Binder, Robert Connelly, David Dumas, and Amie Wilkinson for help-
ful discussions. Finally, we thank the anonymous referee for many thoughtful, useful
suggestions.

Our research was supported by the National Science Foundation and the Simons
Foundation.

2 Caps, Spirals, and Julia Sets

In this section, we observe that for every planar shape P , there is a probability measure
μ on its boundary so that the metric ρ(P, μ) on Ĉ exists, by simple constructions in
R
2.We provide examples to illustrate the failure of planarity of a cap.We conclude the

section with examples of harmonic caps coming from polynomial dynamical systems
f : C → C. Formal definitions and the proofs of our theorems will be given in Sects.
3 and 4.

2.1 The Naive Cap

Let P be a planar shape that is not contained in a line. Let P̄ be the convex hull of
P in the plane. The naive cap P̂ is the union of P̄ and a copy of each connected
component of P̄\P (the flaps), glued along their boundaries in ∂ P̄ . Then P and P̂
glue to determine a degenerate convex body, and the metrized sphere is a doubled
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Fig. 4 Left: a piece of a convex polygon (lying above the red and green line segments) minus two narrow
spiral channels (shown in orange and blue) that begin from adjacent edges of the polygon. Each channel
cut from the polygon is so narrow that we depict it as a curve. Right: a piece of its naive cap (again, above
the red and green segments) with the two spiral flaps reflected outward, illustrating a non-planar Euclidean
development (color figure online)

copy of P̄ . Its curvature is supported in the intersection of ∂P with ∂ P̄ . Unfolding
the flaps of the naive cap P̂ determines a Euclidean development. We can appeal to
the Uniformization Theorem or to Reshetnyak’s theorem on isothermal coordinates
(Reshetnyak 1993, Theorem 7.1.2) to conclude that this degenerate surface can be
represented as a conformal metric on the Riemann sphere Ĉ.

If P is an interval, then we can produce a cap by bending P into an L-shape in the
plane, introducing an angle at the midpoint of P , and then taking the convex hull of
this new shape in R

2. Viewing the resulting triangle as a degenerate convex body in
R
3, we produce a metrized sphere with three concentrated points of curvature, at the

two endpoints of P and at its midpoint. As P = ∂P in this example, we have shown
the existence of a probability measure μ supported in ∂P and giving rise to a metric
ρ(P, μ) on Ĉ. The developed cap P̂μ will be a rhombus. For example, if the angle is
chosen to be π/3, then the triangle will be equilateral, and μ will assign equal mass
to each of the three cone points.

2.2 The Naive Cap Is Not Always Planar

Start with a convex polygonal shape in the plane with an external angle of about π/16
at one vertex. Remove two very thin spiral channels from the polygon that begin on
adjacent edges of the polygon and spiral around one another, as in the left image of
Fig. 4. If the spirals are sufficiently intertwined, then the spiral flaps on the developed
naive cap will overlap. The right side of Fig. 4 shows the spirals reflected across the
edges of the polygon.

2.3 Non-planar Example for Harmonic Measure

For the harmonic cap, it is possible to construct an example similar to that of Sect. 2.2.
Indeed, very skinny channels removed from any planar shape will have negligible
harmonic measure, and so we can arrange for overlapping spirals in the cap.

More precisely, begin with a square planar shape and choose a tiny ε > 0. The
harmonic cap for the square is shown in Fig. 1. Now remove two very skinny spiral
channels from the square, emanating from a single edge, as in the left image of Fig. 5;
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Fig. 5 Left: two narrow spiral channels (shown in orange and blue) cut from the interior of a square planar
shape (a segment of which is shown in green). Each channel cut from the polygon is so narrow that we
depict it as a curve. Right: the two spirals on the exterior of the clover-shaped harmonic cap of the square,
illustrating a non-planar Euclidean development. A complete and accurate picture of the harmonic cap of
the square is shown in Fig. 1 (color figure online)

the openings of each channel should have width smaller than ε. The openings of the
two spiral channels can be placed at a specified distance apart from one another, so that
the harmonic measure of the interval between them is approximately equal to 1/32
of the total mass. (The number 1/32 is chosen because it is 1/4π times the curvature
of π/8 for the polygon vertex shown in Fig. 4). We can choose ε > 0 as small we
wish so that the harmonic measure along the spiral boundaries is almost 0. Indeed, as
the width of the spiral channels shrinks to 0, the domains Ĉ\P are converging in the
Carathéodory sense to the complement of the square; see, e.g., (Duren 1983, §3.1).

Recall that the boundary of the cap development is parameterized by the formula
of Theorem 1.2. The parametrization of the spirals on the cap, which will lie outside
the clover-like harmonic cap for the square, will be essentially equal to a reflection
of their original parametrizations (because κ will be essentially constant along their
boundaries, having chosen the harmonic measure of the spirals to be near 0). On the
other hand, the non-trivial portion of harmonic measure on the boundary of the square
between the spiral-channel openings will curve the boundary of the cap so the spirals
overlap. The change in tangent direction of the clover cap between the two attaching
points of the spirals will be π/8, by construction. See Fig. 5.

2.4 Polynomial Julia Sets

Now assume that f : C → C is a complex polynomial of degree d ≥ 2. Its filled
Julia set is

K ( f ) =
{
z ∈ C : sup

n
| f n(z)| < ∞

}
.

Assume that K ( f ) is connected, so it is a planar shape. A planar development of its
cap is given by the formula of Theorem 1.1. We can parameterize the boundary of the

123



Convex Shapes and Harmonic Caps

cap’s development for smooth or polygonal approximations to K ( f ) using Theorem
1.2.

The Green function for K ( f ) can be computed dynamically, as

G f (z) = lim
n→∞

1

dn
log+ | f n(z)|.

The harmonic measure μ f = 1
2π �G f is the unique measure of maximal entropy for

f , and its support is equal to the Julia set J ( f ) = ∂K ( f ) (Brolin 1965; Ljubich 1983;
Freire et al. 1983). The metric on Ĉ is defined by

ρ f = e−2G f (z)|dz|

for z ∈ C, with curvature distribution ω f = −� log ρ f (z) = 4πμ f .

Example 2.1 Let f (z) = z2. Then K ( f ) is the closed unit disk andG f (z) = log+ |z|.
The measure μ f is the Lebesgue measure on the circle. By symmetry, the harmonic
cap is also a closed disk of radius 1. It follows that the convex realization in R

3 is a
degenerate closed disk.

Example 2.2 Let f (z) = z2−2. Then K ( f ) is the real interval [−2, 2], and themetric
on the sphere and the Euclidean development of the harmonic cap can be computed
explicitly. The Riemann map from the complement of the unit disk to the complement
of K ( f ) is given by

� f (z) = z + 1

z
.

Applying Theorem 1.1, the cap is the image of the holomorphic function g : D → C

defined by

g(z) =
∫ z

0
�′

f (1/x) dx =
∫ z

0
(1 − z2) dz = z − z3/3.

See Fig. 6. The convex realization in R3 is degenerate.

Example 2.3 Let f (z) = z2+1/4.Apolygonal approximation to its filled Julia set and
the harmonic cap are shown in Fig. 7. The convex realization in R3 is nondegenerate;
indeed, if the filled Julia set were contained in a plane inR3, then its convex hull would
also lie in the surface, and then the curvature could not be supported on all of J ( f ).

3 Metrics and Curvature

In this section, we formalize the notions of curvature andmetric from the point of view
of Euclidean geometry, and we prove Theorem 1.2. In Proposition 3.1, we present an
asymptotic formula for curvature when the boundary of the planar shape is a smooth
Jordan curve, in terms of the circumference of small circles.
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Fig. 6 A Euclidean
development of the cap for the
real interval P = [−2, 2]
equipped with its harmonic
measure. The figure shown is the
image of the unit circle under
g(z) = z − z3/3, so the cusps lie
at z = ±2/3. To form the
metrized sphere, the cap is
folded in half along the segment
joining the cusp points, and the
interval P forms the seam. The
resulting convex body is
degenerate. See Example 2.2

Fig. 7 In blue, a polygonal approximation to the filled Julia set of f (z) = z2 + 1/4 with 211 vertices, the
preimages of z = 0.5 under f 11. The approximation to harmonic measure puts equal weight on each of the
211 vertices. In orange, the polygonal cap for this discrete curvature distribution. A single attaching point
is shown in black. There is a unique realization of the glued shapes as the boundary of a convex body in
R
3. Image generated with Mathematica (color figure online)

3.1 Polyhedra and Cone Angles

A convex polyhedron in R3 is the intersection of finitely many closed halfspaces. It is
said to be degenerate if it lies in a plane. When the polyhedron is non-degenerate and
bounded, its boundary surface is topologically a sphere, and the Euclideanmetric from
R
3 induces an intrinsic path metric on the sphere. If the polyhedron is degenerate and

bounded, but not contained in a line, we will still view its boundary as a topological
sphere, doubling the planar polygon and gluing along the polygonal boundary.

Abstractly, a convex polyhedralmetric on a 2-dimensional sphere is an intrinsicmet-
ric with non-negative curvature concentrated at finitely many points. In other words,
in a small neighborhood of all but finitely many points, the surface is isometric to a
region in R2. In a neighborhood of each of the finitely many cone points, the surface
is isometric to the point of a cone. The curvature of a cone point is equal to the angle
deficit at the point; that is, if the circumference of any small circle of radius r centered
at the cone point is equal to C(r), then the curvature is equal to (2πr − C(r))/r .

123



Convex Shapes and Harmonic Caps

By the Gauss-Bonnet formula, the sum of the curvatures over all cone points on the
sphere is equal to 4π .

Alexandrov (2005) examines the geometry of convex polyhedra in detail. He
presents his proof from Alexandroff (1942) that any abstract polyhedral metric on
a sphere is isometric to the boundary of a (possibly degenerate) convex polyhedron.
Furthermore, the polyhedron in R

3 is unique, up to Euclidean isometries.
Given a polyhedral metric on the sphere, and a simply-connected subset U of the

sphere minus its cone points, aEuclidean development ofU is a local isometryU →
R
2. Supposewe are given the image I ⊂ R

2 of a Euclidean development of a full-area,
simply-connected subset U of the sphere. Then, as a consequence of Alexandrov’s
theorem, the convex polyhedron in R

3 is uniquely determined by I and the gluing
along its boundary (that reconstructs the topological sphere). In particular, the planar
development and the gluing information will uniquely determine the edges of the
polyhedron and their dihedral angles in R3—information that is not locally apparent.

3.2 More General Metrics of Non-negative Curvature

Aleksandrov (1948) presents the proof of amore general realization result; see Chapter
1 of Pogorelov (1973) for a summary.Given any abstract intrinsic metric on the sphere
of non-negative curvature, it is realizable as the boundary of a (possibly degenerate)
convex body inR3.His argument relies on a convergence statement, first approximating
the metric by polyhedral metrics, realizing the convex polyhedra, and then showing
that the polyhedra converge to the desired convex body in R3.

Curvature is carefully treated byAlexandrov. It is defined by an additive set function
ω as follows. The curvature of a point is, as for a polyhedron, 2π minus the cone angle
of the point. That is,

ω({x}) = lim
r→0+

2πr − C(x, r)

r
(3.1)

where C(x, r) is the circumference of the circle of radius r centered at the point x .
The curvature of a geodesic line segment will always be 0. The curvature of a (small)
geodesic triangle is its internal angle surplus, defined as the sum of the internal angles
of the triangle minus π . The curvature of a more general region is computed by
triangulation. See (Pogorelov 1973, Chapter 1, page 18).

Reshetnyak,whowas a student ofAlexandrov, reformulatedAlexandrov’s theory of
metrics and curvature on a surface in complex-analytic language, expressing curvature
as a finite Borel measure (Reshetnyak 1993). We exploit this useful point of view in
Sect. 4.

3.3 Parametrization of the Cap

Suppose that a planar shape P is the closure of a Jordan domain with a piecewise-
differentiable boundary. Fix a nonnegative Borel measureμ on the boundary of P . Let
L be the length of ∂P . Let s be a piecewise-differentiable parametrization by arclength
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of the boundary of P , in the counterclockwise direction, and write

s′(t) = eiα(t)

for a piecewise-continuous function α : [0, L] → R. For t ∈ [0, L], we define a
curvature function κ : [0, L] → [0, 4π ] by κ(0) = 0 and

κ(t) = 4πμ(s(0, t]) (3.2)

for all t ∈ (0, L], so that κ is monotone increasing with κ(L) = 4π . Recall that
Theorem 1.2 asserts that, if the cap P̂μ exists, then its boundary can be parameterized
in the clockwise direction by

ŝ(t) =
∫ t

0
ei(α(x)−κ(x)) dx .

Proof of Theorem 1.2 Suppose first that P is a polygon in the complex plane and μ is
a discrete probability measure supported on the vertices of P . Denote the vertices of
P by v0, v1, . . . , vN = v0, oriented counterclockwise, and set

� j = |v j − v j−1|

to be the length of the j-th edge. We may assume for simplicity that v0 = 0 and
v1 = �1 lies on the positive real axis. Let θ j be the internal angle of P at vertex v j , so
that

N∑
j=1

(π − θ j ) = 2π

and

α(t) =
k−1∑
j=1

(π − θ j ) for
k−1∑
j=1

� j ≤ t <

k∑
j=1

� j

for each k = 1, . . . N . Thus P is parameterized by

s(t) =
∫ t

0
eiα(x) dx .

If P̂μ exists, then it has a polygonal boundary with the same edge lengths as P . We
label its vertices in the clockwise direction by v̂0, v̂1, . . . , v̂N = v̂0. We may assume
for simplicity that v̂0 = v0 and v̂1 = v1. The curvature condition implies that the
internal angle θ̂ j at vertex v̂ j must satisfy

4πμ(v j ) = 2π − θ j − θ̂ j .
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Therefore, the clockwise parametrization ŝ of P̂μ will satisfy ŝ′(t) = ei α̂(t) with

α̂(t) = −
k−1∑
j=1

(π − θ̂ j ) for
k−1∑
j=1

� j ≤ t <

k∑
j=1

� j

= α(t) −
k−1∑
j=1

4πμ(v j ) for
k−1∑
j=1

� j ≤ t <

k∑
j=1

� j

= α(t) − κ(t)

In other words, the parametrization of the boundary of P̂μ is given in a clockwise
orientation by

ŝ(t) =
∫ t

0
ei(α(x)−κ(x)) dx .

If P is an arbitrary planar shape with piecewise-differentiable boundary, and if μ

is any probability measure supported on the boundary of P , then the pair (P, μ) can
be approximated by a sequence of polygons (Pn, μn) so that the vertices of Pn lie in
∂P for all n, and μn is a discrete probability measure supported on the vertices of Pn .
We may construct the polygons Pn so that the arclength parametrizations sn of ∂Pn
converge uniformly to s and that the angle functions ρn → ρ uniformly. Furthermore,
by choosing the vertices of Pn carefully, we may assume that for every ε > 0, all
atoms of mass at least ε for μ are vertices of Pn and atoms of μn for all n ≥ n(ε) > 0.
In this way, we can also arrange that the curvature functions κn converge uniformly to
the curvature function κ . These choices for (Pn, μn) imply that the integrals

∫ t

0
ei(ρn(x)−κn(x)) dx −→

∫ t

0
ei(ρ(x)−κ(x)) dx

as n → ∞ for all t ∈ [0, |∂P|]. In other words, if the cap P̂μ exists, then the desired
boundary parametrization will be uniformly approximated by the curves ŝn defined
by

ŝn(t) =
∫ t

0
ei(ρn(x)−κn(x)) dx .

Note that the curves ŝn are not necessarily closed loops, as the approximating polygonal
caps P̂μn may not exist. 
�

3.4 Circumference and Curvature

If the boundary of the planar domain P and the measure μ are smooth enough, then
the curvature of Sect. 3.2 satisfies the following relation, as a consequence of Theorem
1.2.
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Proposition 3.1 Let P be a planar shape with boundary parametrized by arclength
by s : [0, L] → ∂P such that s is twice continuously-differentiable, and let μ be a
probability measure on ∂P which is absolutely continuous with respect to arclength
with a continuous density function. Suppose the metric ρ(P, μ) exists. For each x ∈
∂P, let C(x, r) denote the circumference of a circle in (Ĉ, ρ(P, μ)) centered at x of
radius r > 0. Then

lim
r→0+

2πr − C(s(t), r)

r2
= δ(t),

where s∗μ = δ(t) dt on the interval [0, L].
It is interesting to compare the statement of Proposition 3.1 to the formula (3.1) for

the Alexandrov curvature of a point,

ω({x}) = lim
r→0+

2πr − C(x, r)

r
,

and to the Bertrand–Puiseux formula for the Gaussian curvature κ when the metric on
a surface is smooth,

κ(x) = lim
r→0+ 3

2πr − C(x, r)

πr3

(Spivak 1979, page 147). In our setting, the curvature of the surface is supported on a
1-dimensional curve, so the circumference discrepancy is proportional to r2.

We begin with a simple geometric lemma.

Lemma 3.2 For real numbers R > r > 0, let A(R, r) be the arclength of the inter-
section of a closed disk of radius R and a circle of radius r centered at a boundary
point of the disk. Then

lim
r→0+

πr − A(R, r)

r2
= 1

R
.

Proof Assume the center of the radius r circle is at the origin in R
2, and the disk

of radius R is tangent to the x-axis at the origin. These two circles are given by the
equations x2 + (y − R)2 = R2 and x2 + y2 = r2. These two circles intersect in two

points: (±
√
r2 − r4

4R2 ,
r2
2R ). Hence, A(R, r) = r(π − 2 tan−1( r2√

4R2r2−r4
)). Then

lim
r→0+

πr − A(R, r)

r2
= lim

r→0+

2 tan−1
(

r2√
4R2r2−r4

)

r
= 1

R
.


�
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Proof of Proposition 3.1 The curvature function of Eq. (3.2) is computed as

κ(t) = μ(s(0, t]) =
∫ t

0
δ(x) dx .

For each t ∈ [0, L] and each small r > 0, the circumference C(s(t), r) is the sum
of the lengths of two circular arcs: the arc in P to the “left” of s(t) (relative to the
counterclockwise orientation on ∂P), whose length we will denote by Cr (t), and the
arc in P̂μ to the “right” of ŝ(t) (relative to the clockwise orientation on ∂ P̂μ), whose
length we will denote by Ĉr (t). Classical plane geometry tells us that the radius of
the osculating circle to the plane curve s at s(t) is 1/|s′′(t)| = 1/|α′(t)|, using the
notation of Theorem 1.2. Likewise, from Theorem 1.2, the radius of the osculating
circle to the plane curve ŝ at ŝ(t) equals 1/|ŝ′′(t)| = 1/|α′(t) − κ ′(t)|.

For α′(t) > 0, the osculating circle is to the left of s(t), so

lim
r→0

πr − Cr (t)

r2
= |α′(t)| = α′(t)

by Lemma 3.2. For α′(t) < 0, the osculating circle is to the right of s(t), so

lim
r→0

πr − Cr (t)

r2
= lim

r→0

πr −
(
2πr − A

(
1

|α′(t)| , r
))

r2
= −|α′(t)| = α′(t)

by Lemma 3.2. Thus limr→0
πr−Cr (t)

r2
= α′(t), regardless of the sign of α′(t). Simi-

larly,

lim
r→0

πr − Ĉr (t)

r2
= −(α′(t) − κ ′(t)) = δ(t) − α′(t)

regardless of the sign of α′(t) − κ ′(t). Hence,

lim
r→0

2πr − C(s(t), r)

r2
= lim

r→0

πr − Cr (t)

r2
+ lim

r→0

πr − Ĉr (t)

r2

= α′(t) + δ(t) − α′(t) = δ(t).


�

4 Harmonic Measure and Holomorphic 1-Forms

In this section, we present curvature in the setting of conformal metrics, allowing us to
use tools from complex analysis to address our geometric questions. This perspective
was first formalized by Reshetnyak (1993). We present the proof of Theorem 1.1 and
derive an alternative proof of the parametrization of the harmonic cap from Theorem
1.2. Finally, we revisit the general problem of existence of the metric ρ(P, μ) in
Proposition 4.2.
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4.1 Complex-Analytic Point of View

A smooth conformal metric on a domain in C can be expressed as

ρ(z)|dz|

for a smooth and positive function ρ. The metric has non-negative curvature ifU (z) =
− log ρ(z) is a subharmonic function.Workingwith amore general class ofmetrics,we
will only require thatU be subharmonic, not necessarily differentiable or everywhere
finite.Wewill also require that all pairs of points have finite distance from one another.
These requirements can be formulated in terms of the curvature of the metric, as we
explain below.

Formally, a conformal metric ρ on Ĉ is a (singular) Hermitian metric on the tangent
bundle T Ĉ � OP1(2), and the curvature form of the metric is the positive measure
given in local coordinates by

ωρ = −� log ρ

(with � = 2i∂∂̄ taken in the sense of distributions), so that

∫
Ĉ

ωρ = 4π.

In more classical terms, for a smooth metric ρ, the Gaussian curvature is computed
locally as

κρ = −� log ρ

ρ2 .

See, for example, (Ahlfors 1973, §1.5) or (Hubbard 2006, §2.2).
That U = − log ρ is subharmonic guarantees that the curvature form ωρ ≥ 0 as

a distribution. Finite diameter is guaranteed by the assumption that ωρ({z0}) < 2π
for all z0 ∈ Ĉ (Reshetnyak 1993, p. 100). Recall from Sect. 3.4 that concentrated
curvature, at points z0 ∈ Ĉ where 0 < ωρ({z0}) < 2π , corresponds to cone points in
the local geometry. Also in this setting, a computation shows that the circumference
C(z0, r) of a small circle around z0 of radius r > 0 will satisfy (Reshetnyak 1993,
Lemma 8.1.1)

lim
r→0+

2πr − C(z0, r)

r
= ωρ({z0}).

Conversely, every probability measureμ on Ĉwithμ({z}) < 1/2 for all z gives rise
to a conformal metric of finite diameter with curvature distribution 4πμ, unique up
to scale. Indeed, there is a one-to-one correspondence between probability measures
μ on Ĉ and their potentials, up to an additive constant, which can be viewed as
logarithmically-homogeneous, plurisubharmonic functionsGμ on the tautological line
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bundle C
2\{(0, 0)} → P

1; see, e.g., (Fornæss and Sibony 1993, Theorem 5.9) and
(DeMarco 2003, Section 12). The function Gμ will satisfy (2π)−1�Gμ(z, 1) = μ in
local coordinates z on Ĉ, and the conformal metric is expressed as

ρμ = e−2Gμ(z,1)|dz|.

The identification betweenmeasures and their potentials is continuous, taking the L1
loc

topology on potentials and the weak topology on measures. Moreover, convergence
of curvatures implies convergence of the metrics (Reshetnyak 1993, Theorem 7.3.1).

4.2 Harmonic Measure as Curvature

Let P be a compact, connected set in C containing at least 2 points, so that P is a
planar shape as defined in Sect. 1. Let GP : C → R be the Green function for P;
it is the unique continuous function on C satisfying (1) GP ≡ 0 on P , (2) GP (z) =
log |z| + O(1) for z near ∞, and (3) GP is harmonic on C\P . Then define a metric
on C by

ρP = e−2GP (z)|dz|.

By elementary potential theory, the function GP satisfies GP (z) = log(z)+ γ + o(1)
for z near ∞ for some real number γ , so the metric extends uniquely by continuity
across z = ∞. Note that this metric is flat (with 0 curvature) away from the boundary
∂P . Its curvature form ωP = 2�GP is equal to (4π times) the harmonic measure on
∂P (more precisely, the harmonic measure for the domain Ĉ\P , relative to the point
∞).

Example 4.1 Let P be the closed unit disk. ThenGP (z) = log+ |z| = max{0, log |z|},
and the curvature form ωP is arclength measure on the unit circle, normalized to have
total length 4π . By the symmetry of P , it is not hard to see thatAlexandrov’s realization
of (Ĉ, ρP ) will be the degenerate doubled flat disk.

4.3 The Harmonic Cap

Let P be any planar shape. Let� be the Riemannmap from the complement of the unit
disk to the complement of P , sending infinity to infinity. Consider the holomorphic
1-form

η = 1

(�−1(z))2
dz

on the complement of P . Since the Green function satisfies

GP (z) = log |�−1(z)|
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on Ĉ\P , we see that |η| is precisely the conformal metric ρP defined above, when
restricted to the complement of P . Recall that Theorem 1.1 asserts that a Euclidean
development of the harmonic cap of P is given by the locally univalent function
g : D → C defined by

g(z) =
∫ z

0
�′(1/x) dx .

It also asserts that there exist examples where the locally univalent g fails to be uni-
valent.

Proof of Theorem 1.1 Define F : Ĉ\P → C by

F(z) =
∫ z

∞
η =

∫ z

∞
1

(�−1(ζ ))2
dζ.

By definition, we have η = dF = F∗(dw), where dw is the standard holomorphic 1-
form on the plane. Since |η| is the desired conformal metric, and since |η| = F∗|dw|,
we conclude that F is a Euclidean development of the harmonic cap parametrized by
z in Ĉ\P . Now set ι(x) = 1/x . Then, to parameterize the cap by z ∈ D, we pull η

back to D by � ◦ ι, so that

D(z) =
∫ z

0
ι∗�∗η =

∫ z

0
ι∗

(
�′(ζ )

ζ 2 dζ

)
= −

∫ z

0
�′(1/x) dx .

The local invertibility of D is clear because D′(z) = −�′(1/x) �= 0 for all x ∈ D.
Our desired function is g(z) = −D(z), which is clearly an isometric presentation.

It remains to observe that there exist planar shapes P for which the development g
fails to be injective. We constructed such an example in Sect. 2.3, where P is a square
minus two thin spiral channels. 
�

4.4 Harmonic Cap Boundary Parametrization

Here we present an alternative proof of the cap parametrization in Theorem 1.2, in the
special setting of harmonic measure.

As in Theorem 1.2, assume that P has a piecewise-differentiable boundary which is
a Jordan curve parameterized by arclength by s : [0, L] → C. Recall that s′(t) = eiα(t)

for some piecewise continuous function α : [0, L] → R. Let � be a Riemann map
from the complement of the unit disk to the complement of P , sending infinity to
infinity. Then � extends to a homeomorphism from the unit circle to the boundary of
P . Define the conformal angle θ : [0, L] → R by

θ(t) := arg(�−1(s(t))).

Without loss of generality, we may assume θ(0) = 0 so that θ defines a homeomor-
phism from [0, L] to [0, 2π ]. It follows that the curvature function of (3.2) for the
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harmonic measure μ on ∂P is equal to

κ(t) = 4πμ(s(0, t]) = 2θ(t).

Therefore, from Theorem 1.2, we know that the parametrization of the boundary of
the harmonic cap is given by

ŝ(t) =
∫ t

0
ei(α(x)−2θ(x)) dx . (4.1)

Theorem 1.1 grants an alternate proof of (4.1). Indeed, with the g : D → C of
Theorem 1.1, a parametrization of the boundary of the harmonic cap is given by

ŝ(t) = −g(1/�−1(s(t))) = −g(e−iθ(t)).

Moreover, the derivative of g is g′(z) = �′(1/z), and therefore,

ŝ′(t) = −g′(1/�−1(s(t)))
−(�−1)′(s(t)) s′(t)

�−1(s(t))2

= −�′(�−1(s(t)))

−�′(�−1(s(t)))

s′(t)
�−1(s(t))2

= ei(α(t)−2θ(t)).

4.5 Metric Existence for General Measures

We conclude by returning to our original problem about the existence of a metric
ρ(P, μ), for the case where P is a planar shape with Jordan curve boundary and the
probability measure μ is arbitrary.

Suppose that J is a Jordan curve in Ĉ, cutting the sphere into Jordan domains A and
B. We may assume that 0 ∈ A and ∞ ∈ B. Suppose that ν is a probability measure
supported on J , and let

U (z) =
∫
C

log |z − w| dν(w)

be a potential function for ν with logarithmic singularity at ∞. The conformal metric

e−2U (z)|dz|

on C extends to Ĉ and has curvature distribution equal to 4πν. Since A is simply
connected, there exists a non-vanishing analytic function φ : A → C so that

U (z) = log |φ(z)|.
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The function φ is determined uniquely, up to postcomposition by a rotation. Set

fν(z) =
∫ z

0

dz

φ(z)2

for z ∈ A. Then fν : A → C is a locally-univalent Euclidean development of A into
the plane. It extends continuously to the boundary curve J . This proves the following
proposition.

Proposition 4.2 Let P be a planar shape with Jordan curve boundary, and let μ be
a probability measure supported on ∂P. The metric ρ(P, μ) on Ĉ exists if and only
if there is a pair (J, ν) of a Jordan curve bounding a region A in Ĉ and probability
measure supported on J so that fν(A) = P and ( fν)∗ν = μ.

When μ is the harmonic measure on ∂P , observe that we may take J = ∂P and
ν = μ in the statement of Proposition 4.2. Indeed, the potential function for harmonic
measure satisfies U ≡ 0 on P so that fν = Id.
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