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Abstract In this paper, we will construct an example of a closed Riemann surface X
that can be realized as a quotient of a triply periodic polyhedral surface� ⊂ R

3 where
the Weierstrass points of X coincide with the vertices of �. First we construct � by
attaching Platonic solids in a periodic manner and consider the surface of this solid.
Due to periodicity we can find a compact quotient of this surface. The symmetries
of X allow us to construct hyperbolic structures and various translation structures
on X that are compatible with its conformal type. The translation structures are the
geometric representations of the holomorphic 1-forms of X. Via the basis of 1-forms
we find an explicit algebraic description of the surface that suggests the Fermat’s
quartic. Moreover the 1-forms allow us to identify the Weierstrass points.

Keywords Platonic surface · Triply periodic surface · Conformal structure

1 Introduction

In this paper we generalize the construction of infinite regular polyhedral surfaces
by Coxeter (1938). They introduced three triply periodic regular polyhedra whose
quotient surfaces by euclidean translations are surfaces of genus g = 3. In Schlafli
symbols, they are denoted as {4, 6|4}, {6, 4|4}, and {6, 6|3} where {p, q|r} represents
a regular polyhedron that is constructed by q regular p-gons at each vertex forming
regular r -gonal holes. We say a polyhedron is regular if there exist two following
symmetries: one that cyclically permutes the vertices of any face, and another that
cyclically permutes the faces that share a vertex. The polyhedral structures induce cone
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metrics. Furthermore the cone metrics induce a conformal structure on the underlying
Riemann surface. These three surfaces turn out to be polygonal approximations of well
known minimal surfaces, that also carry the same conformal structure. Specifically
{4, 6|4} and its dual {6, 4|4} serve as the approximation of Schwarz’s P-surface and
{6, 6|3} as Schwarz’s D-surface. Furthermore the vertices of {4, 6|4} coincide with the
Weierstrass points of the surface that it is conformally equivalent to (the square tiling
in Fig. 1).

This paper introduces an example of an infinite polyhedral surface that is also regular
in the sense that there are two different cyclic automorphisms that were mentioned
previously. Though these automorphisms do not act transitively in the euclidean sense
as the examples Coxeter and Petrie introduced, it shares many properties with them. It
is also triply periodic in euclidean space and results in a genus g = 3 Riemann surface
when quotiented by its maximal group of translations. Adopting the Schlafli symbols
this surface can be denoted as type {3, 8|3}.Herewe relax the definition of regularity on
the polyhedral surface to findmore symmetries on the underlyingRiemann surface.We
consider its hyperbolic structure and find all hyperbolic isometries on the underlying
surface. We show that the group of conformal automorphisms does act transitively on
the faces and vertices of the polyhedral surface. In Sect. 4 we show that our surface is
an eightfold cyclically branched cover over a thrice punctured sphere. This allows us
to find various other cone metrics and specifically those that are translation structures.
Thenwe obtain a basis of holomorphic 1-forms to compute theWronskimetric. For our

Fig. 1 Infinite regular skew polyhedra in 3-space {4, 6|4}, {6, 4|4}, and {6, 6|3}.Reprinted fromWikipedia,
the free Encyclopedia, by Tom Ruen, retrieved from https://en.wikipedia.org/wiki/Regular_polyhedron
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surface the Wronski metric coincides with the cone metric which allows us to identify
the conformal automorphism group and also find all Weierstrass points. The location
of the Weierstrass points tells us that the surface is not hyperelliptic. In particular, this
surface cannot be conformally equivalent to a triply periodic minimal surface due to
Meeks (1990).

Additionally what we find is an explicit algebraic description of the underlying
surface using holomorphic 1-forms, which gives us a quartic equation. The surface is
not only an eightfold cover over a thrice punctured sphere but also turns out to be a
fourfold branched cover over a 4-punctured sphere. Surprisingly after homogenization
and dehomogenization the quartic expression becomes the Fermat’s quartic. In other
words we introduce a triply periodic polyhedral realization of the Fermat’s quartic.

This surface serves as an examplewhich has a nice distribution ofWeierstrass points
where all Weierstrass points have the same weight. Furthermore it can be realized as
a triply periodic polyhedral surface; it is a non-hyperelliptic Riemann surface that has
translational structures, hyperbolic structure, and an algebraic expression that can all
be determined explicitly. Despite that it cannot be an approximation of any minimal
surface simply because it is not hyperelliptic.We havemany practical tools in studying
this surface due to the fact that it is a branched cover over a thrice punctured sphere.
An interesting example is the Klein’s quartic, a compact Riemann surface that has
the highest possible order automorphism group for genus g = 3. It is known to be a
sevenfold branched cover over a thrice punctured sphere (Karcher and Weber 1998).
However it is neither proved nor disproved whether it can be represented as an infinite
polyhedral surface.

We add the following remark that arose during a discussion with Jayadev Athreya.

Remark We provide a translation structure (X, ω1) on the underlying surface X with
a 1-form ω1 in Fig. 10. The cylinder decomposition of this surface tells us that it is a
Veech surface. We note in Sect. 5 that we get multiple translation structures. Another
translation structure (X, ω2) also suggests that the surface is Veech, in which case
we obtain a square-tiled surface. However the surface has two different translation
structures that both suggest the surface is Veech, with different Veech groups. This
implies that the surface sits on the intersection of two Teichmuller curves.

This paper is organized as follows:

• In Sect. 2, we construct a triply periodic polyhedral surface�.We take its quotient
via its periodicity in euclidean space and achieve a compact Riemann surface X.

• In Sect. 3, we study the hyperbolic structure of X by observing the hyperbolic tiling
of the fundamental piece of �. We discuss the geodesics on X, which later guides
us to finding hyperbolic automorphisms and in the end translation structures.

• In Sect. 4, we determine the automorphism group of X.

• In Sect. 5, we find translation structures on X,which give us holomorphic 1-forms
on the surface. This gives us an explicit algebraic description of this surface.

• In Sect. 6, we find all Weierstrass points of X and show that the set of Weierstrass
points coincides with the set of vertices on �.

The author would like to thank Matthias Weber for his support.
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Fig. 2 Cube inscribed in an
octahedron

2 The Construction of a Triply Periodic Polyhedral Surface

In this section we will build a triply periodic polyhedral surface � that embeds in
euclidean space by gluing regular octahedra in a periodic manner. To begin with we
can build a singly periodic polyhedral surface by gluing regular octahedra on their
parallel faces. This gives us a string of octahedra where the surface of the quotient
via its periodicity gives us a genus g = 1 torus. However our goal is to build a
triply periodic figure. For this purpose we build with two different types of regular
octahedra, both of the same dimensions. We let one type of octahedron (Type 1) be a
regular octahedron minus two opposite faces and the other type (Type 2) be a regular
octahedron minus four non-adjacent faces. We glue Type 1 and Type 2 octahedra on
their missing faces in an alternating order so that on every Type 1 octahedron we have
two Type 2 octahedra attached and on every Type 2 octahedron we have four Type 1
octahedra attached. We consider the surface of this figure and claim that the surface
constructed this way embeds in R3.

Theorem 2.1 The surface � that results from this construction embeds in R3.

Proof The idea is to place a regular octahedron in a regular cube and use the fact that
cubes tile space. We let the six vertices of the octahedron sit on the edges of the cube
so that they divide the edges with a ratio of 1:3 (Fig. 2). This ratio is achieved from
the fact that all Type 1 and Type 2 octahedra are of the same dimensions. Note that
two of the vertices of the cube that are truncated give us triangular cones. These cones
have the same dimension as one-eighth of the octahedron sitting inside the cube. We
can view this octahedron as a Type 1 octahedron, where we eventually put a Type
2 octahedron on these truncated vertices. By space-filling property of cubes, we can
place eight of these cubes around the truncated vertex to get Fig. 3.

However for the purpose of this paper we will need only four cubes around a vertex
so that no two cubes share faces with each other (Fig. 4).We place a Type 2 octahedron
where the four cubes meet.

Since Type 1 octahedra miss two parallel faces, we continue and attach a Type 2
octahedron on the opposite faces of each Type 1 octahedron (Fig. 5). Since the cubes
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Fig. 3 Eight Type 1 octahedra
attached to one Type 2
octahedron

Fig. 4 Four Type 1 octahedra
attached to one Type 2
octahedron

in which Type 1 octahedra are placed form a subtiling of R3, our surface too embeds
in R3.

This surface � is embedded in a tiling of cubes hence also triply periodic. In other
words, the surface is invariant under three independent translations. Hence we can
take the quotient of � via its maximal group of translations and get say �0 that is
required to span �. Now we prove that �0 is in fact the fundamental piece of � that
we present as the following Fig. 6.

Theorem 2.2 �0 is the smallest piece that is required to span � ⊂ R
3. We span the

triply periodic polyhedral surface via three independent parallel translations.

Proof Notice that this piece consists of four Type 1 octahedra and two Type 2 octa-
hedra. So in Fig. 6, there are six faces that are removed from the regular octahedra.
We will show that these six faces can be identified within themselves via parallel
translation.

Three of these faces belong to three different Type 1 octahedra and the rest belong
to the same Type 2 octahedra. We start from a face from one of the Type 1 octahedra.
Our goal is to find a face that can be identified with this face via parallel translation.
The Type 2 octahedra attached to this Type 1 octahedron do not have missing faces
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Fig. 5 Construction of �

Fig. 6 Fundamental piece, �0

that are parallel to the face we started with. Type 1 octahedra miss two parallel faces
so we go to the next Type 2 octahedron. The second Type 2 octahedron is missing a
face that is parallel to the face that we started from. These two faces can be identified
to each other via parallel translation, and in fact there are not parallel faces that are
closer to each other than this pair that can be identified.

One can see an order three rotational symmetry about the center of a face of a Type
2 octahedron. Hence the identification of the other four faces follows. Since Fig. 6 is
the smallest piece that can be translated to construct �, we call it the fundamental
piece. This piece is topologically a sphere with six holes. Identifying the six holes in
pairs gives us three handles on a sphere hence this surface becomes a genus g = 3
surface.

Alternatively we can consider the triangulation of � and count the number of
vertices, edges, and faces. This count also results the same genus where 12−48+32 =
2 − 2g, hence genus g = 3. ��
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Weused the fact that there is an order three rotational symmetry on�0.However one
can see that not all edges look similar in euclidean space. Hence the automorphism
group generated by euclidean symmetries does not act transitively on the surface.
However in the next section we deal with not only euclidean isometries but also
hyperbolic isometries on its abstract Riemann surface and consider a weaker definition
of regularity. We call the abstract surface X and will show that it is regular in the
hyperbolic sense. We can see on � that the valency at every vertex is the same hence
we have hope that the automorphism group of X would be at least vertex-transitive.
In the following sections, we will prove that the hyperbolic structure provides signs
that the abstract quotient surface X is actually regular under the group of hyperbolic
isometries.

3 Hyperbolic Structure on X

Our goal in this section is to see all the symmetries of X, that do not necessarily
appear in the euclidean sense. The polyhedral structure gives a hyperbolic structure
that is compatible with its conformal type. The fact that at every vertex the valency is
eight suggests that we tile the hyperbolic disk with (π

4 , π
4 , π

4 ) triangles. However, we
already know that the fundamental piece consists of 32 triangles hence we identify
the 32 triangles in Fig. 7.

We will show that the edges are identified via the geodesics on X. Before that we
discuss Petrie polygons on �. By a Petrie polygon, we mean a piecewise geodesic
connecting midpoints of the edges so that the “clipped” vertices lie alternatingly to
the left and the right of the geodesic (Fig. 8) (Coxeter and Moser 1980). In our case,
the Petrie polygons will automatically be smooth on �.

Theorem 3.1 All Petrie polygons on � correspond to a closed geodesic on X. Fur-
thermore, all Petrie polygons have the same length.

Proof Since Type 1 octahedra are formed by a chain of six triangles, the Petrie poly-
gons that remain in Type 1 octahedra form closed geodesics and are six triangles long.
For the other cases that do not remain in Type 1 octahedra, we can refer to Fig. 6 and
recall the proof of Theorem 2.2 where we identified missing faces on �0. Note that
given a pair of edges in �0 that are identified to each other, there is a Petrie polygon
on �0 that connects the two edges and passes six triangles. All Petrie polygons on �

are shown as dotted lines in Fig. 7 and they all have the same length.

Remark We can see in Fig. 7 that the set of geodesics is invariant under an order eight
rotation centered at the center vertex (Fig. 7). This shows that there is an order eight
automorphism on X even though it is not visible on �.

Now we prove that Fig. 7 is the hyperbolic description of X.

Theorem 3.2 The hyperbolic description of X is a 16-gon with edges identified as
shown.
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Fig. 7 Hyperbolic realization of
fundamental piece

Fig. 8 Petrie polygon

Proof The 16-gon bounded by the solid lines in Fig. 7 consists of 32 triangles. Tri-
angles with darker shading represent the Type 1 octahedra, where the rest represent
the Type 2 octahedra. However we already know from the previous theorem that all
Petrie polygons are closed and the dotted lines show how the edges of the 16-gon are
identified. ��

4 Automorphisms

We can see from Fig. 6 that there is an order three rotational symmetry on �0. In this
section, we will use the hyperbolic description of X to find all automorphisms of X,

that are not necessarily induced from its polyhedral structure in euclidean space. We
attempt to find all automorphisms that preserve vertices, edges, and faces on X. Once
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we show that Aut(X) acts transitively on these objects we will be able to conclude
that X is a regular surface (Jones 2015).

In order to show that Aut(X) acts transitively on the vertices, edges, and faces we
introduce the notion of a flag on X. We let a flag be a triple (v, e, f ) where f is a face
of X, e is one of the edges of f, and v is one of the two boundary points of e.With this
notion of a flag we will show that given two flags there exists an automorphism that
maps one flag to the other, which is equivalent to saying that Aut(X) acts transitively
on the vertices, edges, and faces of X. Since we are only interested in automorphisms
that preserve orientation once we choose a face f and one of its three edges e, we will
consider only one choice of v. In other words the flags may be of the shapes ↽ or ⇀

but we will not accept shapes ↼ and ⇁ as flags.
We will prove that we only need two generators to generate the automorphism

group that preserves flags on this surface. In Fig. 6, there is an order three symmetry
on � realized as the rotation about the center of a face of a Type 2 octahedron. This
symmetry induces also an order three rotational symmetry on X that fixes a center of
a triangle as we can see in Fig. 7. In fact, this order three rotation maps vertices to
vertices, edges to edges, and faces to faces hence we call this symmetry flag-transitive.

Recall the remark in the previous section that there is an order eight rotational
symmetry that fixed the center of the Fig. 7. This symmetry is also flag-transitive.
Notice that this is not induced from the polyhedral structure on � but comes from the
hyperbolic structure.

Theorem 4.1 Given two flags on X, there exists an automorphism that sends one flag
to the other. Moreover, |Aut(X)| = 96.

Proof In Fig. 9, there is an order eight rotation about the center of the tiling, we will
call this rotation a. This map sends flags to flags hence the group generated by a acts
transitively on flags. Secondly, we denote by b an order three rotation about the center
of one of the triangles and permutes its edges. The generator b also preserves flags
hence the group generated bya and b acts transitively onflags (Fig. 9).Additionally,we
can think of an involution that fixes the midpoint of an edge e.However ab = b−1a−1

represents such an involution so we claim that we only need a and b to generate
Aut(X).

We can label each flag with a word generated by a and b. The correspondence
between each word and each flag gives us concrete relations between generators. We
get a list of 96 distinct words which we list in Table 1. 96 also corresponds to the
number of flags, hence |Aut(X)| = 96 and specifically Aut(X) = 〈a, b | a8 = b3 =
(ab)2 = (a2b2)3 = (a4b2)3 = 1〉.
Remark By inspection of the identification of edges, X → X/〈a〉 is a cyclically
branched eightfold cover over X/〈a〉 which is a thrice punctured sphere. At each
branch point, the branching index is 1, 2, and 5. Another interesting example of a
cyclically branched cover over a thrice punctured sphere is the Klein’s quartic in
Karcher and Weber (1998), which is viewed as a sevenfold cover.

The automorphism group of the surface acts transitively on flags. In other words,
we say that the surface is regular in the hyperbolic sense. This implies that all 12
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Fig. 9 Automorphisms

a

b

1

vertices are in fact similar. We will use this fact in Sect. 6 to prove that all vertices of
� are Weierstrass points of X.

5 Holomorphic 1-Forms

In this section our goal is to find holomorphic 1-forms on X so that we can find an
explicit algebraic description of the surface. We find these 1-forms via cone metrics
on X, that give us translational structures that are compatible with its hyperbolic struc-
ture. Hence we seek for a flat polygon that describes the fundamental piece of X. We
map the hyperbolic triangles to euclidean triangles via Riemann mapping theorem
and Schwarz reflection principle so that the edges are identified by translations. First
we map the hyperbolic triangle of angles (π

4 , π
4 , π

4 ) to a euclidean triangle of angles
(π
8 , 2π

8 , 5π
8 ) as shown in Fig. 10. The translation structures are geometric representa-

tions of holomorphic 1-forms on X. Once we find a basis of holomorphic 1-forms we
can find an algebraic equation that describes this surface.

Following the identification of edges in the hyperbolic representation of X, we get
a flat 16-gon as in Fig. 10 where every pair of parallel edges is identified by translation.
Hence we get a translation structure defined everywhere except at the vertices of the
16-gon. In other words we put a canonical translation structure dz everywhere except
at the vertices. In the neighborhood of say the vertex p3 where the triangular angle is
5π
8 , the identification of edges says the cone angle is greater than 2π and hence the
vertex becomes a cone point. The cone angle is in fact 5π

4 × 8 = 10π that in local
coordinates we have charts behaving as z5. We take the exterior derivative and get
5z4dz, which corresponds to a holomorphic 1-form that has a zero of order four at p3.
Similarly we can calculate the cone angle at p1 to get to get 2π. Note that p2 has two
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Table 1 Automorphisms generated by a and b

1

a

a2 a2b a2b2 a2b2a

a3 a3b a3b2 a3b2a

a4 a4b a4b2 a4b2a a4b2a2 a4b2a3

a5 a5b a5b2 a5b2a a5b2a2 a5b2a3

a6 a6b a6b2 a6b2a a6b2a2 a6b2a3 a6b2a4 a6b2a5

a7 a7b

b

ba

ba2 ba2b ba2b2 ba2b2a

ba3 ba3b ba3b2 ba3b2a

ba4 ba4b ba4b2 ba4b2a ba4b2a2 ba4b2a3

ba5 ba5b ba5b2 ba5b2a ba5b2a2 ba5b2a3

ba6 ba6b ba6b2 ba6b2a ba6b2a2 ba6b2a3 ba6b2a4 ba6b2a5

ba7 ba7b

b2

b2a

b2a2 b2a2b b2a2b2 b2a2b2a

b2a3 b2a3b b2a3b2 b2a3b2a

b2a4 b2a4b b2a4b2 b2a4b2a b2a4b2a2 b2a4b2a3

b2a5 b2a5b b2a5b2 b2a5b2a b2a5b2a2 b2a5b2a3

b2a6 b2a6b b2a6b2 b2a6b2a b2a6b2a2 b2a6b2a3 b2a6b2a4 b2a6b2a5

b2a7 b2a7b

q1

q2 q3

p2

p3

p1

Fig. 10 Flat structure of the fundamental piece
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preimages hence we will denote them as p2 and p′
2.We get the cone angles 2π at each

point, which leads to a 1-form ω1 = (z− p3)4dz. We can map 	 q1 q2 q3 to two more
euclidean triangles 	 r1 r2 r3 and 	 s1 s2 s3 and get different translation structures
where 	 r1 r2 r3 has angles (π

4 , π
2 , π

4 ) and 	 s1 s2 s3 has angles ( 5π8 , π
4 , π

8 ). Then we
achieve 1-forms ω2 = (z − p1)(z − p2)(z − p′

2)(z − p3)dz and ω3 = (z − p1)4dz.
In the proof of the main theorem in Sect. 6, we use the orders of zero only at

p3. However one can find the canonical divisors of the basis of 1-forms by mapping
the hyperbolic triangles to euclidean triangles of different angles than the ones used
above. We achieve an explicit algebraic expression that describes the surface by doing
so and the equation is in itself interesting. Hence we display the canonical divisors of
the holomorphic 1-forms which form a basis and present the algebraic equation that
represents this surface.

(ω1) = 4p3
(ω2) = p1 + p2 + p′

2 + p3
(ω3) = 4p1

We then define holomorphic functions f, g : X → ˜C as follows.

( f ) :=
(

ω1

ω2

)

= −p1 − p2 − p′
2 + 3p3, (g) :=

(

ω3

ω2

)

= 3p1 − p2 − p′
2 − p3.

( f 3g) = −4p2 − 4p′
2 + 8p3, ( f g3) = 8p1 − 4p2 − 4p′

2.

After proper scaling of the functions we get

f 3g − 1 = f g3 ⇒ ω3
1ω3 − ω1ω

3
3 = ω4

2.

Theorem 5.1 The triply periodic surface � is a polyhedralization of the Fermat’s
quartic.

Proof Given X3Y − XY 3 = Z4, we dehomogenize the equation by setting Y = 1.
Then

Z4 = X3 − X = X (X − 1)(X + 1)

is a fourfold branched cover over a 4-punctured sphere branched at −1, 0, 1, and ∞.

Via change of coordinates we map these points to the fourth roots of unity and get
V 4 = W 4 − 1. After homogenization we get U 4 + V 4 = W 4.

6 Weierstrass Points

As an application of Riemann–Roch theorem, we can find Weierstrass points of a
surface from the basis of holomorphic 1-forms. At a generic point on a compact
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Riemann surface of genus g, there is a basis of 1-forms where the orders of zero at
that point gives a sequence 0, 1, . . . , g − 1. Otherwise there is a gap in this sequence.
For instance in our case we have zeros of order 0, 1, 4 at p1 and p3. We define the
weight of a point wtp by finding the difference of the two sequences. So in our case
the weight of the cone points p1 and p3 are both (0 − 0) + (1 − 1) + (4 − 2) = 2.
Points with positive weight are called Weierstrass points.

Weierstrass points carry information of the group of automorphisms on a Riemann
surface. Specifically all automorphisms preserveWeierstrass points and their weights.
At the end of Sect. 4 we mentioned that all vertices are similar due to the fact that
Aut(X) acts transitively on flags of X.

We will use the following theorem from Farkas and Kra (1991) to prove the main
theorem.

Theorem On a compact Riemann surface of genus g ≥ 1, there are finitely many
Weierstrass points. Moreover, the sum of weights of the Weierstrass points is (g −
1)g(g + 1).

Theorem 6.1 (Main Theorem) All vertices on � are Weierstrass points.

Proof Since our surface is of genus g = 3, the sum of weights over all points is
2 ·3 ·4 = 24. So far, we have found two points both with weight wtp = 2.However in
the previous section, we have shown that Aut(X) acts transitively on the vertices hence
the rest also have the same weight. Since we have 12 vertices in total, the weights add
up to 24. Therefore all vertices of � are Weierstrass points and there are no other
Weierstrass points. ��
Remark A compact Riemann surface of genus g ≥ 2 is hyperelliptic if the Weier-
strass points of zeros of order 0, 2, 4, . . . , 2g − 2. In other words the weight of every
Weierstrass point is (0−0)+ (2−1)+· · ·+ ((2g − 2) − (g − 1)) = (g−1)g

2 .A genus
g = 3 hyperelliptic surface should have eight Weierstrass points all of weight wt = 3,
which implies that X is not hyperelliptic. In Meeks (1990) it is proved that all mini-
mal surfaces of genus g = 3 are hyperelliptic. Therefore X cannot be an underlying
Riemann surface of any minimal surface due to the fact that it is not hyperelliptic and
� cannot be a polyhedralization of any minimal surface.
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