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Abstract The sum (resp. the sum of squares) of the defects in the triangle inequalities
for the area one lattice parallelograms in the first quadrant has a surprisingly simple
expression.

Namely, let f (a, b, c, d) = √
a2 + b2+√

c2 + d2−√
(a + c)2 + (b + d)2. Then,

∑
f (a, b, c, d)2 = 2 − π/2, (�)

∑
f (a, b, c, d) = 2, (�)

where the sum runs by all a, b, c, d ∈ Z≥0 such that ad −bc = 1. We present a proof
of these formulae and list several directions for the future studies.
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1 History: Geometric Approach to π

What good your beautiful proof on the
transcendence of π : why investigate such
problems, given that irrational numbers do not
even exists?

Apocryphally attributed to Leopold Kronecker by
Ferdinand Lindemann

The digit computation of π probably is one of the oldest research directions in
mathematics. Due to Archimedes, we may consider the inscribed and circumscribed
equilateral polygons for the unit circle. Let qn (resp., Qn) be the perimeter of such
an inscribed (resp., circumscribed) 3 · 2n-gon. The sequences {qn}, {Qn} obey the
recurrence

Qn+1 = 2qnQn

qn + Qn
, qn+1 = √

qnQn+1

and both converge to 2π . However this gives no closed formula.
A major breakthrough was made by Euler, Swiss-born (Basel) German–Russian

mathematician. In his Saint-Petersburg Academy of Science talk (December 5, 1735)
and, then, paper (Euler 1740), he calculated (literally) that

∞∑

n=1

1

n2
= π2

6
. (1)

Euler’s idea was to use the identity

1 − z2

6
+ · · · = sin(z)

z
=

∞∏

n=1

(
1 − z2

n2π2

)
,

where the first equality is the Taylor series and the second equality is due to the fact
that these two functions have the same set of zeroes. Equating the coefficients in z2,
we get (1). This reasoning was not justified until Weierstrass, but there appeared many
other proofs. A nice exercise to get (1) is by considering the residues of cot(π z)

z2
.

We would like to mention here a rather elementary geometric proof of (1) which
is contained in Cauchy’s notes, (Cauchy 1821).

Let α = π
2m+1 . Then sin(nα) < nα < tan(nα) for n = 1, . . . ,m, see Fig. 1.

Therefore, cot2(nα) ≤ 1
n2α2 ≤ csc2(nα). Writing sin((2m+1)x)

(sin x)2m+1 as a polynomial in

cot x and using the fact that πn
2m+1 are the roots of this polynomial by Vieta’s Theorem,

we can find the sum of cot2 α and csc2 α for α = πn
2m+1 , n = 1, . . . ,m.

So, the above geometric consideration gives a two-sided estimate for 1
π2

∑m
n=1

1
n2

whose both sides converge to 1
6 as m → ∞.
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Fig. 1 An illustration for Cauchy’s proof about the sum of reciprocals of the squares of natural numbers

Fig. 2 The disc is inscribed into the square P0. Then, P1 is the only unimodular octagon circumscribing
D2, which can be obtained by corner cuts of P0

2 SL(2,Z)-Way to Cut Corners

Recall that SL(2,Z) is the set of matrices

(
a b
c d

)
with a, b, c, d ∈ Z and ad−bc = 1.

With respect to the matrix multiplication, SL(2,Z) is a group. We may identify such
a matrix with the pair (a, b), (c, d) ∈ Z

2 of lattice vectors. These vectors span the
parallelogram of area one and, consequently, give a basis of Z2.

Definition 1 A vector v ∈ Z
2 is primitive if its coordinates are coprime. A polygon

P ⊂ R
2 is called unimodular if

• the sides of P have rational slopes;
• two primitive vectors in the directions of every pair of adjacent sides of P give a
basis of Z2.

Example 1 The polygons P0 and P1 in Fig. 2 are unimodular.

Let P0 = [−1, 1]2, and D2 be the unit disk inscribed into P0, Fig. 2, left. Cutting all
corners of P0 by tangent lines to D2 in the directions (±1,±1) results in the octagon
P1, into which D2 is inscribed, Fig. 2, right.

Remark 1 Note that if we cut a corner of P0 by any other tangent line to D2, then
the resulting pentagon would not be unimodular. Then, a polygon’s property of being

123



514 N. Kalinin, M. Shkolnikov

unimodular is SL(2,Z)-invariant. This implies that if two sides of a corner are orthog-
onal to (a, b), (c, d) ∈ Z

2 with ad − bc = 1, then the only direction to cut this corner
in order to have two unimodular corners after this procedure is to use a line orthogonal
to (a + c, b + d).

Definition 2 For n ≥ 0, the unimodular polygon Pn+1 circumscribing D2 is defined
to be the result of cutting all 2n+2 corners of Pn by tangent lines to D2 in such a way
that Pn+1 is a unimodular polygon.

Note that passing to Pn+1 is unambiguous due to Remark 1.

Remark 2 limn→∞ Area(Pn) = π , limn→∞ Perimeter(Pn) = 2π .

Example 2 The primitive vector (1, 1) is orthogonal to a side S of P1, belongs to the
positive quadrant, and goes outside P1. Two vectors orthogonal to the neighboring to
S sides of P2 are (2, 1) and (1, 2).

Thus, we start with four vectors (1, 0), (0, 1), (−1, 0), (0,−1)—the outward direc-
tions for the sides of P0. To pass from Pn to Pn+1, we order by angle all primitive
vectors orthogonal to the sides of Pn . Then, for each two neighboring vectors, we cut
the corresponding corner of Pn by the tangent line to D2, orthogonal to their sum. In
particular, every line with a rational slope tangent to D2 contains a side of Pn for n
large enough.

We can reformulate the above observation as follows:

Lemma 1 For all a, b, c, d ∈ Z≥0 with ad − bc = 1, such that (a, b), (c, d) belong
to the same quadrant, there is a corner of Pn for some n ≥ 0 with sides orthogonal to
(a, b) and (c, d). In Pn+1, this corner is cropped by the line orthogonal to (a+c, b+d)

and tangent to D2.

The following lemma can be proven by a direct computation.

Lemma 2 In the above notation, the area of the cropped triangle is 1
2 f (a, b, c, d)2.

3 Proofs of (�) and (�)

The area of the intersection of P0\D2 with the first quadrant is 1 − π
4 . Therefore,

Remark 2 and Lemma 2 prove (�) in the abstract.

Definition 3 Let v be a primitive vector. We define the lattice length of a vector
kv, k ∈ R≥0, to be k.

In otherwords, the length is normalized in each direction in such away that all primitive
vectors have length one. Note that the lattice length is SL(2,Z)-invariant.

The lattice perimeter of Pn is the sum of the lattice lengths of its sides. For example,
the usual perimeter of the octagon P1 is 16(

√
2− 1), and the lattice perimeter is 4

√
2.

Lemma 3 The lattice perimeter of Pn

• tends to zero as n → ∞;
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Fig. 3 The plot of F and its corner locus (tropical analytic curve) C for a disc

• is given by 4
(
2−∑

f (a, b, c, d)
)
,where the sum runs over a, b, c, d ∈ Z≥0, ad−

bc = 1, (a, b) and (c, d) are orthogonal to a pair of neighboring sides of some Pk
with k < n.

Proof The second statement follows from the cropping procedure by a direct compu-
tation. To prove the first statement, we note that for each primitive direction w, the
length of the side of Pn orthogonal to w tends to 0 as n → ∞. Therefore, for each
N > 0, the sum of the lattice lengths of the sides of Pn orthogonal to w with |w| < N
tends to zero, and the rest part of the lattice perimeter of Pn is less than 2π

N because of
the definition of the lattice length. We conclude the proof by letting N → ∞. 	

Finally, (�) follows from Lemmata 1, 3.

4 Questions

One may ask what happens for other powers of f (a, b, c, d). There is a partial answer
in degree 3, which also reveals the source of our formulae.

For every primitive vector w ∈ Z
2, a tangent line to D2 orthogonal to w is given

by w · p + |w| = 0. Consider a piecewise linear function F : D2 → R defined as

F(p) = inf
w∈Z2\0

(w · p + |w|). (2)

Performing verbatim the analysis of cropped tetrahedra applied to the graph of F ,
one can prove the following lemma.

Lemma 4 4 − 2
∑

f (a, b, c, d)3 = 3
∫
D2 F.

Now we describe the general idea behind (�), (�). Denote by C ⊂ D2 the locus
of all points p where the function F is not smooth. The set C is a locally finite tree
(see Fig. 3). In fact, it is naturally a tropical curve (see Kalinin and Shkolnikov 2016,
2017). The numbers f (a, b, c, d) represent the values of F at the vertices of C and
can be computed from the equations of tangent lines.

Below we list some directions, which we find interesting to explore.

Coordinates on the space of compact convex domains For every compact convex
domain �, we can define F� as the infimum of all support functions with integral
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slopes, exactly as in (2). Consider the values of F� at the vertices of C�, the corner
locus of F�. These values are the complete coordinates on the set of convex domains;
therefore, the characteristics of � (for example, the area) can be potentially expressed
in terms of these values. How to relate these coordinates of � with those of the dual
domain �∗?
Higher dimensions We failed to reproduce this line of arguments “by cropping” for
three-dimensional bodies, but it seems that we need to sum up by all quadruples of
vectors v1, v2, v3, v4 such that ConvHull(0, v1, v2, v3, v4) contains no lattice points.

Zeta function We may consider the sum Z(s) = ∑
f (a, b, c, d)s as an analog of the

Riemann zeta function. We can prove that Z(s) converges as long as s > 1/2. Can we
extend this function for complex values of s?
Other proofs It would be nice to give another proof of (�), (�) with the methods
which were used to prove (1). Note that the vectors (a, b), (c, d) can be uniquely
reconstructed from the vector (a+c, b+d), and our construction resembles the Farey
sequence a lot. So we can think of f (a, b, c, d) as a kind of a measure on Q ∩ [0, 1],
and can integrate a function along it. Can we interpret f (a, b, c, d) as a residue of a
certain function at (a+b)+(c+d)i? The Riemann zeta function is related to integers;
could it be that f is related to the Gauss integers?

Modular formsWe can extend f to the whole SL(2,Z). If both vectors (a, b), (c, d)

belong to the same quadrant, we use the same definition. For (a, b), (c, d) from dif-
ferent quadrants, we could define

f (a, b, c, d) =
√
a2 + b2 +

√
c2 + d2 −

√
(a − c)2 + (b − d)2.

Then

∑

m∈SL(2,Z)

f (m) =
∑

a,b,c,d∈Z
ad−bc=1

f (a, b, c, d)

is well defined. Can we naturally extend this function to the C/SL(2,Z)? Can we
make similar series for other lattices or tessellations of the plane?
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