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Abstract In this small paper we bring together some open problems related to the
study of the configuration spaces of tensegrities, i.e. graphs with stresses on edges.
These problems were announced in Doray et al. (Discrete Comput Geom 43:436–466,
2010), Karpenkov et al. (ARS Math Contemp 6:305–322, 2013), Karpenkov (The
combinatorial geometry of stresses in frameworks. arXiv:1512.02563 [math.MG],
2017), and Karpenkov (Geometric Conditions of Rigidity in Nongeneric settings,
2016) (by F. Doray, J. Schepers, B. Servatius, and the author), for more details we
refer to the mentioned articles.

Keywords Multidimensional continued fractions · Polyhedral surfaces · Integer
geometry

1 Notation and Definitions

1.1 Tensegrities

The subject of tensegrities was first considered by J.C. Maxwell in Maxwell (1864),
who started to investigate first questions regarding force-loads for frameworks. Nowa-
days tensegrities are one of the leading directions of study in modern theory of rigidity
(see, e.g., Connelly (1993) for further information). Let us recall several standard def-
initions.
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Definition 1.1 Fix a positive integer d. Let G = (V, E) be an arbitrary graph without
loops and multiple edges. Let it have n vertices v1, . . . , vn .

• A configuration is a finite collection P of n labeled points (p1, p2, . . . , pn), where
each point pi is in a fixed Euclidean space Rd .

• The realization of G with straight edges, induced by mapping v j to p j is called a
tensegrity framework and it is denoted as G(P). (Here we allow the realization to
have self-intersections).

• A stress w on a framework is an assignment of real scalars wi, j (called tensions)
to its edges pi p j .

• A stress w is called a self-stress if at every vertex pi we have

∑

{ j | j �=i}
wi, j (p j − pi ) = 0.

• A pair (G(P), w) is a tensegrity if w is a self-stress for the framework G(P).
• If wi, j<0 then we call the edge pi p j a cable, if wi, j>0 we call it a strut.

1.2 Configuration Space of Tensegrities and its Stratification

Denote by Bd(G) = (Rd)n the configuration space of all tensegrity frameworks. Let
W (n) denote the linear space with coordinates wi, j where 1 ≤ i, j ≤ n. It is clear that
dimW (n) = n2.

Definition 1.2 Consider a framework G(P) ∈ Bd(G) and denote by W (G, P) the
linear subspace of W (n) of all possible self-stresses for G(P). The space W (G, P) is
the fiber at P .

Definition 1.3 FibersW (G, P1) andW (G, P2) are said to be equivalent if there exists
a homeomorphism ξ : W (G, P1) → W (G, P2), such that for any w ∈ W (G, P1) we
have

sgn
(
ξ(wi, j )

) = sgn
(
wi, j

)

for every coordinate wi, j of w. Here sgn denotes the standard sign function.

The described equivalence relation gives us a stratification of Bd(G) = (Rd)n . A
stratum is by definition a maximal connected component of Bd(G) with equivalent
fibers. In Doray et al. (2010) we prove that all strata are semialgebraic sets.

Remark According to all known examples the majority of the strata of codimension k
are intersections of the strata of codimension 1 see e.g. Doray et al. (2010), Karpenkov
et al. (2013). So the most important case to study is the codimension 1 case.

Remark A stratification of a subgraph is a substratification of the original graph (i.e.,
each stratum for a subgraph is the union of certain strata for the original graph). Hence
the case of complete graphs Kn is universal. This is straightforward as each extra
edge contributes at least as much to dimensions of the fibers of a stratum as to the
dimensions of the fibers of adjacent strata (locally).
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Fig. 1 Stratification of B0
1 (K3) (left) and B0

1 (G1,2−3) (right)

Example 1.4 Let us consider a simple example of B1(K3), namely we study tensegri-
ties for a complete graph on three vertices and its realizations in the line. We assume
that the line has a coordinate, so each point of B1(K3) is associated with three coor-
dinates (x1, x2, x3).

First we study a particular case x1 = 0, which we denote by B0
1 (K3). The set

B0
1 (K3) has the following stratification (see Fig. 1, Left):

• 1 stratum of codimension two: the origin. Here all three vertices coincide and the
dimension of the fiber is 3.

• 6 strata of codimension one: some pair of vertices coincide. The dimension of fiber
is two.

• 6 connected components of full dimension correspond to triple of distinct vertices.
The dimension of a fiber is one.

It is clear that the dimension of thefiber for (x1, x2, x3) coincideswith the dimension
of the fiber (0, x2 − x1, x3 − x1) for every x1, x2, x3. Therefore, we have

B1(K3) = B0
1 (K3) × R

1.

Example 1.5 Let now G1,2−3 be the graph on three vertices v1, v2, v3 with the only
edge connecting v2 and v3. Then we have 1 stratum of codimension one defined
by p2 = p3 (with fibers of dimension 1) and two connected components in the
complement, i.e., where p2 �= p3 (with fibers of dimension 0). As in previous example
we have

B1(G1,2−3) = B0
1 (G1,2−3) × R

1,

where B0
1 (G1,2−3) is the stratification of the section x1 = 0 (see Fig. 1, Right).

2 Combinatoric Properties of Stratification

In Example 1.4 above we discussed a stratification of B2(Kn). The most important
information on the stratification contains its combinatorial structure, namely the list
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of strata of different dimensions and the adjacency diagram for the strata. For the
combinatorial description of B2(Kn) as in Example 1.4, for n = 2, 3, 4, 5 we refer
to Karpenkov et al. (2013). There is not much known about more complicated con-
figuration spaces. The next simplest and most interesting unstudied cases are listed in
the following problem.

Problem 1 Describe the combinatorics of B2(K6), B3(K4) and B3(K5).

As experiments show, for every codimension 1 stratum there exists a certain sub-
graph that locally identifies the stratum (i.e., for every point x of the stratum there
exists a neighborhood B(x) such that every configuration in B(x) has a nonzero self-
stress for the subgraph if and only if this point is on the stratum). This observation is
valid for all dimensions d.

Remark 2.1 An illustration here are the cases B1(K3) and B1(G1,2−3) ofExamples 1.4
and 1.5. Here both codimension 1 strata of B1(K3) corresponding to p2 = p3 are in
the union of the codimension 1 stratum of B1(G1,2−3). This is a general situation. In
particular for any graph G on n vertices the union of all strata for G is contained in
the union of all strata for Kn .

Let us say a fewwords about two-dimensional tensegrities. In the paper Doray et al.
(2010) one can find the classification of all strata of codimension 1 for n ≤ 8 points.
For further examples, see the papers of White and Whiteley (1983), and de Guzmán
and Orden (2004), Guzmán and Orden (2006). In the paper Karpenkov (2017) it was
shown how to approach every stratum for the case n = 9. The next case which contains
unknown strata is n = 10 (see also Problem 8 below).

Problem 2 Describe all the possible different types of strata for 10 points.

Problem 3 Compute the number of different types of strata for n points with arbi-
trary n.

In many cases the strata for different graphs coincide. So it is natural to ask the
following question.

Problem 4 Which subgraphs of Kn define the same stratifications?

Finally the following question remains open.

Problem 5 Find all strata of codimension more than 1 that are not defined as an
intersection of the closure of several codimension 1 strata.

Here we have only a trivial example of a graph on 2 vertices and one edge in the
plane. It has one generic stratum of full dimension and one stratum of codimension 2,
corresponding to two coinciding points.
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Fig. 2 The graph K3,3 and the corresponding geometric conditions

3 Geometric Conditions Defining Strata in R
2

Majority of known examples in the planar case are expressed in terms of Cayley
algebra. Recall that the objects of (planar) Cayley algebra are points and lines in the
plane. Cayley algebra has two major operations:

• join operation ∨ is defined for a pair of points. The resulting object is the line
joining these points.

• meet operation ∧ is defined for a pair of lines. The meet of two lines is the
intersection point of two lines.

For more information on Cayley algebras we refer to Doubilet et al. (1974), White
and McMillan (1988), Li (2008), and Karpenkov (2017).

It turns out that many geometric conditions can be expressed in terms of Cayley
operations. Let us illustrate this with the following example.

Example Let G = K3,3 be as in Fig. 2 (Left). A framework P = (p1, . . . , p6) admits
a non-zero tensegrity in R2 if and only if six points p1, p2, . . . , p6 are on a conic (see
Fig. 2, Middle). This condition is described via Cayley algebra as Pascal’s theorem:

q1, q2 and q3 are in a line for

⎧
⎨

⎩

q1 = (p1∨p2) ∩ (p4∨p5)
q2 = (p2∨p3) ∩ (p5∨p6)
q3 = (p3∨p4) ∩ (p6∨p1)

,

(Fig. 2, Right). Similar to Remark 2.1 the set of points of B(K3,3) that satisfy the above
condition is the union of several strata for B(K3,3). The statement of this example is
an exercise on surgeries on graphs introduced in Doray et al. (2010).

In fact in the above example, the property of 6 points to lie on one conic does not
depend on the order of these points. Therefore, there are 60 different Cayley algebra
systems defining the same stratum. This lead to the following important open problem.

Problem 6 Which Cayley algebra systems define the same strata?

This problem is a kind of a question on finding generators and relations for the set
of all conditions.

One of the main long-standing open problems on the Cayley strata description is
as follows.

Problem 7 Given a graph G. Does there exist a Cayley algebra system (or several
systems) describing the union of the codimension 1 tensegrity strata in the plane [i.e.,
the union of the codimension 1 strata of B2(Kn)]?
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Recently this problem was solved in a weaker settings of extended Cayley algebra
in Karpenkov (2017). Nevertheless it is not clear if it is possible to avoid additional
elements involved in the construction of Karpenkov (2017). Here is an example of a
graph for which the systems describing codimension 1 strata are not known.

Problem 8 Write (if exist) Cayley algebra systems defining the strata for the following
graph:

Currently this example is a strong candidate for a counterexample to Problem 7.
There is almost nothing known in multidimensional case.

Problem 9 Develop theory of geometric conditions for strata in multidimensional
case.

We refer to White and Whiteley (1983) for examples of geometric conditions in
dimension 3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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