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Abstract
We study the localization properties of the equal-time electron Green’s function in a
Chern insulator in an arbitrary dimension and with an arbitrary number of bands. We
prove that the Green’s function cannot decay super-exponentially if the Hamiltonian is
finite-range and the quantumHall response is nonzero. For a general bandHamiltonian
(possibly infinite-range), we prove that the Green’s function cannot be finite-range if
the quantum Hall response is nonzero. The proofs use methods of algebraic geometry.
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1 Introduction

QuantumHall Effect remains one of the most spectacular manifestations of the impor-
tance of topology in quantum physics. Integer QHE is observed in 2D materials in
high magnetic fields, but it has been realized early on that the role of the magnetic
field is mainly to induce a strong breaking of time-reversal symmetry, and that similar
physics can in principle occur in any insulating material when this symmetry is broken
(Haldane 1988). Such hypothetical materials are dubbed Chern insulators, since the
relevant topological invariant is the 1st Chern class of the vector bundle formed by the
wavefunctions of electrons in the valence band. The base of this bundle is a real torus
(the space of quasi-momenta).

While topology has foundmany applications in condensedmatter physics, algebraic
geometry has not been used much so far. In this note we explain how a well-known
result about algebraic vector bundles over algebraic tori can be used to prove interesting
no-go theorems about Chern insulators.
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Let B be a finite-dimensional Hilbert space (the band space). The Hilbert space of
a single electron in a d-dimensional crystal with band space B isH(B) = L2(T d , B),
where T d = R

d/(2πZ)d is the d-dimensional torus (the Brillouin zone). By Fourier
transform, we can also identify H(B) with �2(�, B), where � = Z

d ⊂ R
d is the

lattice of characters for T d .
A Hamiltonian for a single-electron system with band space B is a continuous

function H : T d → End(B) satisfying the Hermiticity condition H(p)† = H(p).
Here p is an affine coordinate on T d . Fourier transform maps H(p) to an operator Ĥ
on �2(�, B) with matrix elements

〈λ|Ĥ |λ′〉 =
∫

dd p

(2π)d
H(p)ei〈λ−λ′,p〉 (1)

A Hamiltonian H(p) is said to be finite-range if it has the form

H(p) =
∑
λ∈�0

h(λ)e−i〈λ,p〉, (2)

where �0 is a finite subset of � symmetric with respect to the origin, and the matrices
h(λ) ∈ End(B) satisfy h(λ)† = h(−λ). The last condition ensures that H(p)† =
H(p). The name “finite-range” refers to the fact that the corresponding operator Ĥ
on �2(�, B) has matrix elements

〈λ|Ĥ |λ′〉 =
∑

λ−λ′∈�0

h(λ − λ′), (3)

and thus for a fixed λ is nonzero only for a finite set of values of λ′.
Since the function H(p) is Hermitian, its eigenvalues are real for all p. A Hamil-

tonian H(p) is called gapped if its eigenvalues are nonzero everywhere on T d . In this
note we will only consider gapped Hamiltonians. Let P+(p) and P−(p) denote pro-
jectors to the positive and negative eigenspaces of H(p), respectively. Their images
define a pair of complex vector bundles over T d which we denote B+ and B−. If we
denote by B the trivial vector bundle over T d with fiber B, then clearly B+ ⊕B− = B.
Therefore the Chern characters of B+ and B− sum up to dim B. The Chern character
of B− controls the quantum Hall response of the system and thus is an important
physical quantity (Thouless et al. 1982). More precisely, it is the component of the
Chern character which sits in degree higher than zero that determines the quantum
Hall response. We will denote it ch>0(B−) = −ch>0(B+). If ch>0(B±) is nonzero,
one says that the gapped Hamiltonian H(p) describes a Chern insulator. The most
physically interesting case is d = 2, in which case ch>0(B±) reduces to the 1st Chern
class c1(B±). For a review of Chern insulators and other topological insulators see
Bernevig and Hughes (2013).

The spectral projector P−(p) also controls the localization properties of the elec-
trons in the state obtained by filling all negative-energy bands. Let us denote by
G(λ − λ′, t − t ′) the 2-point Green’s function. Then its value at t = t ′ is given
by the Fourier transform of P−(p):
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G(λ − λ′, 0) =
∫

dd p

(2π)d
ei〈λ−λ′,p〉P−(p). (4)

The decay rate ofG(λ−λ′, 0) for large |λ−λ′| is determined by the analytic properties
of P−(p) and vice versa. For example, P−(p) is a C∞ function of p if and only if G
decays faster than any power of |λ − λ′|. In fact, from the formula

P−(p) = 1

2π i

∮
C−

dE

E − H(p)
, (5)

where C− is a closed contour in the complex E-plane surrounding the set of negative
eigenvalues of H(p), we see that P−(p) is real-analytic if H(p) is gapped and real-
analytic.1 Since T d is compact, a real-analytic projector P−(p) can be analytically
continued to a finite-width neighborhood of T d in its complexification (C∗)d . Here
C

∗ = C\{0}. Therefore the equal-time Green’s function G corresponding to a real-
analytic gapped Hamiltonian decays at least exponentially:

||G(λ − λ′, 0)|| ≤ ge−|λ−λ′|/� (6)

for some constants g, � > 0. In such a case one says that the correlation length is
at most �. The lower bound of the set of all � for which (6) holds is a non-negative
number called the correlation length of the free system described by H(p). For any
real-analytic gapped H(p), the correlation length is finite, as we just showed.

The question we want to address is if non-zero ch>0(B±) is compatible with the
equal-time Green’s function decaying faster than any exponential. In other words, can
a Chern insulator have zero correlation length? In particular, can the Green’s function
G(λ−λ′, 0) of a Chern insulator be finite-range, i.e. vanish for |λ−λ′| > R for some
R? Of course, there are trivial examples of gapped Hamiltonians where this is true:
just take H(p) to be a constant non-degenerate Hermitian matrix h0, so that P−(p)
is a constant matrix as well, and G(λ − λ′, 0) is non-zero only for λ = λ′. But in this
case both B+ and B− are topologically trivial, so ch>0(B±) = 0.

There is a heuristic reason why a non-zero ch>0(B±) might be incompatible with
zero correlation length. It is well-known that a Chern insulator has gapless excitations
along a spatial boundary (Bernevig and Hughes 2013). Thus the correlation length is
infinite at the boundary. A scenario where the correlation length is zero in the bulk
and infinite at the boundary seems implausible.

For a general gapped Hamiltonian, we show that a finite-range equal-time Green’s
function implies ch>0(B±) = 0. Thus completely localized electrons are incompatible
with a nonzero quantum Hall response.

For a finite-range gapped Hamiltonian, we prove a stronger result: zero correlation
length implies vanishing ch>0(B±). Thus super-exponential localization is incompat-
ible with a nonzero quantum Hall response, provided the Hamiltonian is finite-range.

Despite the above no-go results, it might be possible to construct an infinite-range
gapped Hamiltonian with a zero correlation length and a non-vanishing quantum Hall

1 Real-analyticity of H(p) is equivalent to the requirement that the matrix elements 〈λ|Ĥ |λ′〉, λ, λ′ ∈ �,
decay exponentially as |λ − λ′| → ∞.
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response. Such a system would have the peculiar property that the correlation length
is zero in the bulk and infinite at the boundary.

The method of the present paper was applied in Fidkowski and Kapustin (2018)
to interacting systems to prove the vanishing of the quantum Hall conductance for
systems described by Commuting Projector Hamiltonians.

2 General Hamiltonian

Suppose there exist g > 0 and a > 0 such that

||G(λ, 0)|| < g exp(−a|λ|). (7)

Then the Fourier series

P−(p) =
∑
λ∈Zd

e−i〈λ,p〉G(λ, 0)

is an analytic function of p1, . . . , pd in a strip |Im pi | < a, i = 1, . . . , d. If the
estimate (7) holds for all a > 0, then P−(p) is an entire function of p1, . . . , pd . Since
it is also periodic in p1, . . . , pd with period 2π , it can be regarded as an analytic
function on (C∗)d with coordinates wk = exp(i pk), k = 1, . . . , d, wi �= 0. Here
C

∗ = C\{0}.
Suppose furthermore thatG is finite-range, i.e. there exists R > 0 such that |λ| > R

implies G(λ, 0) = 0. Then matrix elements of P−(p) are bounded from above by a
multiple of

Rd exp

(
R

d∑
i=1

|Im pi |
)

= Rd
d∏

i=1

|wi |±R .

(This is the “easy” direction of Paley-Wiener-type theorems, see e.g. Stein and Weiss
1971). Since P− is also an analytic function of w1, . . . , wd , Liouville’s theorem from
complex analysis implies that P− is a Laurent polynomial in w1, . . . , wd .

The bundle B− is the image of P− and thus extends to an analytic vector bundle
on (C∗)d . Since P− is an algebraic matrix-valued function, B− is an algebraic vector
bundle.

While any topological vector bundle on (C∗)d admits a (unique) analytic structure,2

any algebraic vector bundle on (C∗)d is trivial. This is a special case of a theorem of
Gubeladze (1987) (see also Corollary V.4.10 in Lam 2006) generalizing the famous
result of Quillen (1976) and Suslin (1976) that all algebraic vector bundles on Cd are
trivial. Thus B− is topologically trivial, and ch>0(B±) = 0.

Triviality of algebraic vector bundles over Cd and (C∗)d is a deep fact. For the
most physically interesting case d = 2, it is sufficient to show that c1(B±) = 0. Since

2 This follows from a theorem of Grauert (1957, 1958) (see also Theorem 5.3.1 in Forstnerič 2011) and
the fact that (C∗)d is a Stein manifold.
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c1 of a vector bundle equals c1 of its determinant line bundle, this fact follows from
triviality of algebraic line bundles on X , which is a direct consequence of the unique
factorization property of the ring of Laurent polynomials in several variables (recall
that isomorphism classes of algebraic line bundles are in bijection with the divisor
classes). Alternatively, one can use the fact that the closure of a divisor on (C∗)d
regarded as a sub-variety of Cd is a divisor on C

d , thus an algebraic line bundle on
X is a restriction of a line bundle on C

d , hence has trivial Chern class (here we used
smoothness of Cd to identify Cartier (locally principal) and Weil divisors on it. (For
a more detailed argument along these lines, see the proof of Theorem II.1.3 in Lam
2006).

3 Finite-Range Hamiltonian

Now suppose that H(p) is finite-range, while G(λ − λ′, 0) decays faster than any
exponential. We have seen in the previous section that the latter property implies
that P− is an analytic function on (C∗)d . We will now show that under this weaker
condition on P− we still have ch>0(B±) = 0 provided that the Hamiltonian is finite
range.

Lemma Let H be an algebraic function on X = (C∗)d with values in Matn(C). As
before, we assume that H(s) is a nondegenerate Hermitian matrix when s ∈ T d, so
the bundles B± on the compact torus T d and projectors P± : T d → Matn(C) are
well defined.

(a) If P± admits an analytic extension to X then the bundlesB± extend to an algebraic
vector bundle on X, hence B± is a trivial vector bundle.

(b) If P± admits a meromorphic extension to X then the determinant line bundles
det(B±) extend to an algebraic line bundle on X, hence c1(B±) = 0.

Proof (a) The analytic continuation of the Hamiltonian H(p) to (C∗)d is a regular
algebraic function with values in End(B). By definition, H(p) commutes with P±(p)
and thus their analytic continuations also commute. Hence H , regarded as an endo-
morphism of the trivial vector bundle B = B+ ⊕B−, preserves both sub-bundles. Let
H± denote the restrictions of H to B±. These are analytic endomorphisms of analytic
bundles B±. The characteristic polynomial

�(t) = det(t − H) (8)

decomposes as a product of characteristic polynomials of H±:

�(t) = �+(t)�−(t). (9)

�±(t) are monic polynomials in t whose coefficients are analytic functions on (C∗)d .
On the other hand, since H is algebraic, �(t) is a monic polynomial in t whose
coefficients are regular algebraic functions on (C∗)d . Liouville’s theorem then implies
that both �+(t) and �−(t) have regular algebraic coefficients.
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Consider�+(H). It is an algebraic endomorphismofBwhich preserves the decom-
position B = B+ ⊕ B−. It vanishes on B+ (thanks to the Cayley-Hamilton theorem).
Also, it is non-degenerate on B− away from points where a root of �+(t) is equal to
a root of �−(t). Such “bad” points form an algebraic divisor R in (C∗)d (given by
the vanishing of the resultant of the polynomials �+(t) and �−(t)). Thus when we
restrict �+(H) to (C∗)d\R, it becomes an endomorphism of B which annihilates B+
and is non-degenerate on B−. Thus the restriction of B− to (C∗)d\R can be identified
with the image of�+(H) and therefore is an algebraic sub-bundle of the trivial vector
bundle B on (C∗)d\R.

We showed that B− is an analytic vector bundle on (C∗)d which is algebraic on the
Zariski-open subset (C∗)d\R. A subbundle of a trivial bundle corresponds to a map
from the base to the Grassmann variety. By basic algebraic geometry, an analytic map
of complex algebraic manifolds which is algebraic on a Zariski open dense subset is
algebraic; thus B± is algebraic on the whole (C∗)d .

To check (b) observe that the factorization�(t) = �+(t)�−(t) exists by the above
argument even if the projectors P± are only assumed to extend to X meromorphically.
Thus the vector bundles B± extend to algebraic vector bundles on the complement
to R. Since a rational map from a normal variety to a projective one (in particular,
to a Grassmann variety) extends to a complement of a subvariety of codimension at
least two, we see that B± extend to algebraic bundles on X\S, co dim(S) ≥ 2. As was
pointed out above, for such an S the Picard group Pic(X\S) = Pic(X) is trivial, thus
the line bundles det(B±) are trivial. ��

Part (b) of the Lemma shows that c1(B±) = 0 for a finite range Hamiltonian
even if G(λ − λ′, 0) satisfies a weaker assumption than the faster than exponen-
tial decay: the latter is equivalent to existence of an analytic continuation of P±,
while here we only need to know existence of a meromorphic continuation. However,
the physical or analytic significance of that weaker condition remains to be under-
stood.
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