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Abstract
Consider a swiveling arm on an oriented complete riemannian surface composed
of three geodesic intervals, attached one to another in a chain. Each interval of
the arm rotates with constant angular velocity around its extremity contributing
to a common motion of the arm. Does the extremity of such a chain have an
asymptotic velocity? This question for the motion in the euclidian plane, for-
mulated by J.-L. Lagrange, was solved by P. Hartman, E. R. Van Kampen, A.
Wintner. We generalize their result to motions on any complete orientable sur-
face of non-zero (and even non-constant) curvature. In particular, we give the
answer to Lagrange’s question for the movement of a swiveling arm on the
hyperbolic plane. The question we study here can be seen as a dream about celes-
tial mechanics on any riemannian surface: how many turns around the Sun a
satellite of a planet in the geliocentric epicycle model would make in 1 billion
years?

Keywords Ergodic theory · Lagrange problem · Swivelling arms

1 Introduction

As far as we know, the first models of our planetary system started appearing in the
4th century BC in Greece although the evidence of astronomical observations goes
back to the 16th century BC in Babylon. At the end of the 3rd century BC Apollonius
of Perga proposed a following geocentric model of the movement. All the planets are
following the trajectories which correspond to the sum of two circular movements.
First, each of the planets is moving around a corresponding point by forming a circle
which is called an epicycle. The centers of these epicycles are not fixed but also
moving around some point close to the Earth on the bigger circles called deferents.

In memory of my grandfather V. V. Beletskii, a mathematician and a poet.
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Both of these circular movements (of planets on epicycles as well as of the centers of
epicycles on deferents) are done with constant angular velocity. This model is called
a geocentric epicycle model of planetary motion. Of course, one can add the third
(fourth, fifth, etc.) set of circles in a similar way in order to obtain the epicycle model
for the satellites.

Greeks firmly believed that all movement can be described as a sum of perfect
circular movements and the epicycle model of planetary motion is one of the mut-
liple theories based on that belief. The idea of the decomposition of a movement
in a sum of circular ones, one can speculate, finds its place in mathematics much
later, in Fourier decomposition of a function into the sum of exponentials with dif-
ferent frequencies, see Ghys (2007) for more discussion. The epicycle model was
improved and largely used by Hipparchus of Rhodes, and, a couple of centuries later,
by Ptolemy.

The problem that we considerhere was formulated by Lagrange (1781/1782) much
later, in the XVIIIth century. He has also been studying planetary motion but his
model was very different from that of Ptolemy since he was working with the
force of gravity that Ptolemy had no idea of. Lagrange started with the N -body
problem: a set of N bodies is moving in the space with respect to gravitational
forces that the bodies exercise on each other. This model was first defined by New-
ton.

While studying N -body problem, Lagrange was interested in the variation of
the longitude of the perihelion for the orbit of a planet in such a system. Sur-
prisingly, the approximation of this variation in this difficult problem boils down
to a much simpler problem—the study of the asymptotic velocity of a satellite in
the geliocentric epicycle model. The geliocentric epicycle model is equivalent to
the geocentric model defined above but with the Sun in the center of the system
instead of the Earth. The reader will soon see that the problem we study below—
the Lagrange problem—is nothing more than indeed the study of the asymptotic
velocity of a satellite in the geliocentric epicycle model. Ptolemy would have liked
it.

Throughout this paper, the movement of planets will be studied not in the
euclidian but in the hyperbolic world. And also, in the approach of this arti-
cle, the radii of the epicycles are not necessarily considered small with respect
to the radius of the deferent. These may seem as one and then another unre-
alistic assumptions on the movement. As Poincaré (1911) writes in the chapter
on Astronomy in the Value of Science, if we are making assumptions, one more
assumption will not cost us much.1 As far as for utility, Poincaré gives a point
of view on astronomy which also, we think, applies to fundamental mathemat-
ics.

Astronomy is useful because it raises us above ourselves; it is useful because it is
grand; it is useful because it is beautiful; that is what we should say.2

1 puisque nous sommes en train de faire des hypothèses, une hypothèse de plus ne nous coûtera pas
davantage.
2 L’astronomie est utile, parce qu’elle nous élève au-dessus de nous-mêmes ; elle est utile, parce qu’elle
est grande; elle est utile parce qu’elle est belle; voilà ce qu’il faut dire.
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Epicycles in the Hyperbolic Sky 253

2 Lagrange Epicycle Problem

2.1 Statement of the Problem

Definition For the fixed numbers l1, . . . , lN ∈ R+ consider a map� from the N -torus
to the complex plane that sends a point θ = (θ1, . . . , θN ) ∈ T

N = R
N / (2πZ)N to

the point

�(θ) =
N∑

j=1

l j e
iθ j . (1)

We will call � a swiveling arm of type l = (l1, . . . , lN ) on the complex plane, see
Fig. 1. The intervals connecting the points 0 and l1eiθ1 as well as

∑k
j=1 l j eiθ j and

∑k+1
j=1 l j eiθ j , k = 1, . . . , N − 1 are called the joints of the swiveling arm.

The topology of �−1(z) for some fixed z ∈ C is an interesting question, consid-
ered, among others, by Haussmann in (1989, 2005), Kapovich and Milson (1995) and
Zvonkine (1997). We will add a simple linear motion to this geometrical construction
in a following way.

Fix N real numbers ω1, . . . , ωN ∈ R and consider a flow gt of the following
constant vector field X on the torus TN :

X =
N∑

j=1

ω j
∂

∂θ j
, ω j ∈ R. (2)

Then, a function z(t) = �◦gt (θ) : R+ → C defines a curve on the plane. The question
of Lagrange was the following: does z(t) have an asymptotic angular velocity and if
yes, is it possible to calculate its value as a function of the parameters l j and ω j?

Fig. 1 A swiveling arm of type (l1, l2, l3) on the plane. The numbers l j are the lengths of the intervals in the
arm.The angles θ j in Eq. (1) correspond to the angles that the intervals make with the horizontal direction
in a plane in the position �(θ)
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Definition Consider a curve

z(t) = � ◦ gt (θ), z : R+ → C, (3)

where �, T t defined above by (1) and (2) and let ϕ(t) be a continuous branch of the
argument arg z(t). Then the Lagrange problem on the plane is a question of studying
the limit (first, the question of its existence and then, its numerical value)

ω := lim
t→∞

ϕ(t)

t
(4)

as a function of parameters l j ∈ R+, ω j ∈ R and initial conditions θ ∈ T
N . We call

this limit asymptotic angular velocity ω.

Remark 1 Passage through zero of z(t). Note that at some moments of time t the
function z(t) may happen to be 0. Those are the moments when the swiveling arm
closes up into a polygon (possibly, a self-intersecting one). If this happens, the contin-
uous branch of the argument in the definition (4) of ω as it is given cannot be chosen.
But one can remedy to this fact: the function arg z(t) can be made continuous along
the curve z(t) (see explanations below). In what follows we place ourselves in this
setting.

First of all, if the setN = {t ∈ R+|z(t) = 0} is finite, then the limit (4) is obviously
well defined. Even if the cardinality of the setN is infinite, it is still a discrete set (by
analiticity of z).

Since z(t) is an analytic function, in the neighborhood U of its zero t0 ∈ N we
can write z(t) = a(t)(t − t0) for some a(t) analytic and a(t) �= 0 for t ∈ U , and
k > 0, k ∈ Z. We are searching for a continuous solution ϕ(t) of the equation

z(t) = r(t)eiϕ(t). (5)

For this, we set r(t) := s|a(t)|(t − t0)k where s = ±1 is determined by the choice
of the sign of r(t), for t < t0. Then

exp(iϕ(t)) = z(t)

r(t)
= s

a(t)

|a(t)|

is a well-defined function in the vicinity of t0. It is determined for t > t0 modulo
2π and also as a continuous real analytic function by its values for t < t0. Hence, by
induction based on the discreteness of N , one can conclude that ϕ(t) is determined
by its initial value ϕ(0).

Another way of looking at ϕ(t) is to say that it is defined as an integral:

ϕ(t) = ϕ(0) +
∫ t

0
Im

z′(s)
z(s)

ds. (6)
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The right-hand side of (6) is well-defined and analytic in the vicinity of any t0 ∈ N
(and hence, everywhere), since in U one can write

z′(t)
z(t)

= a′(t)
a(t)

+ k

(t − t0)
, (7)

and the second term in (7) is real.
The function ϕ(t) is an only solution of Eq. (5) with ϕ(t) differentiable (and hence,

r(t) as well). In the equation z′
z = r ′

r +iϕ′ the first term on the right-hand side diverges
but it does not count when one takes the imaginary parts.

We will use the integral representation (6) in a crucial way in Sect. 3, and along the
paper.

Lagrange himself considered only the simplest case of this problem of a swiveling
arm with two joints, N = 2. He proved that in a linear motion described above the
longer interval “wins” : the limit angular velocity exists, does not depend on an initial
condition θ ∈ T

2 and is equal to the angular velocity of the longer interval. That is, if
l1 > l2 then ω = ω1 and vice-versa, for l1 < l2 we have ω = ω2. In the case of equal
lengths l1 = l2 a direct computation gives ω = 1

2 (ω1 + ω2) taking into account the
Remark 1 above.

The argument of Lagrange can be easily generalized for any N to the case when
the length of one of the intervals (say, the one with the index j) is bigger than the
sum of the lengths of all other intervals. Then the limit angular velocity ω exists and
ω = ω j . Even more, the continuous branch ϕ(t) of the function arg z(t) has a linear
asymptotic behavior ϕ(t) = ω j t + O(1) when t → ∞ (Jessen 1954). This case being
quite simple, things do get much more complicated if the lengths of the intervals are
comparable.

2.2 Historical Remarks and Our Motivation

Suppose that the number of intervals N as well as their angular velocities and lengths
ω j ∈ R, l j ∈ R+, j ∈ [[1, n]], and also initial conditions θ ∈ T

N are arbitrary. In this
case, the question of the existence of limit angular velocity ω for Lagrange problem
is quite tricky. As Lagrange writes in Ref. (Lagrange 1781/1782), “Il est fort difficile
et peut-être même impossible de se prononcer, en général, sur la nature de l’angle
ϕ”.3 In 1945, following the works of Bohl (1909), Jessen and Tornehave have proven
together the existence of this limit for any initial data. But we still do not know how
to write out ω as a function of this data ω = ω

(
ω j , l j , θ

)
although some asymptotic

estimates exist, see Jessen and Tornehave (1945) for the survey of the question.
In general, the asymptotic angular velocityω depends on initial conditions θ ∈ T

N .
Although in the case when angular velocities ω j , j = 1, . . . , N are independent over
Q, it does not. The key idea is to replace the time average (4) by the space average.
Hartman et al. (1937) elegantly used this idea. They provided a calculation that gave
an expression for ω as a linear combination of ω j with coefficients given by some

3 “It is hard and maybe even impossible to say something on the nature of angle ϕ in the general case”
(English translation). Lagrange’s angle ϕ is the continuous branch of the argument ϕ(t) defined above.
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explicit space integrals. Note that Birkhoff’s ergodic theorem which is now classical,
appeared just 6 years before the work of Hartman–Van Kampen–Wintner. H. Weyl
did a considerable work in order to fill in all the technical details. In his 1938 article,
Weyl (1938) explains why the ergodic theorem can be applied in the Hartman–van
Kampen–Wintner case. The argument of Weyl is mostly topological.

Of course, the rational independence of ω j is crucial in the arguments since only
in this case the flow of the vector field (2) is ergodic. The Hartman–van Kampen–
Wintner-Weyl result gives a very beautiful geometric answer to the Lagrange problem
in the case when the number of joints is equal to three.

Theorem 1 (Hartman et al. 1937; Weyl 1938; Kornfeld et al. 1982) Consider the
dynamics of a swiveling arm of type l = (l1, l2, l3) with angular velocities ω j , j =
1, 2, 3 governed by a vector field (2), and a corresponding Lagrange problem on
the plane. Suppose that l j satisfy all of three strict triangle inequalities and ω j are
rationally independent. Then the asymptotic angular velocity ω exists, does not depend
on the initial condition θ ∈ T

3 and is equal to the convex sum

ω = α1

π
ω1 + α2

π
ω2 + α3

π
ω3, (8)

where α j are the angles in the triangle formed by intervals with sides l j , j = 1, 2, 3.
The angle α j > 0 is the angle opposite to the side of the length l j , j = 1, 2, 3, see
Fig. 2.

Remark 2 So one can see that still, in some way, a longer interval “wins”: its angular
velocity will be taken in a convex sum with a bigger coefficient.

The initial motivation for us was to understand the Lagrange problem on the hyper-
bolic plane. We will give proper definitions in Sect. 4 but the reader can easily make
her opinion about that since the definition of Lagrange problem actually uses only the
concepts of intervals (geodesic segments) and angles between lines, present in any
geometry.

Fig. 2 Lagrange problem on the plane in Hartman–van Kampen–Wintner case when ω1, ω2, ω3 are ratio-
nally independent. The asymptotic angular velocity ω is equal to a convex sum of ω j with coefficients
which are proportional to the angles α j , j = 1, 2, 3 in the triangle which is constructed from the joints of
the system
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A straightforward translation of the proof of Theorem 1 from Hartman et al. (1937)
for the hyperbolic geometry is possible but involves lots of quite tedious double inte-
grals computation. Our goal was to extract all geometrical ideas from the initial proof
of the Theorem 1 in order to find a new proof which will be easily translated to the
hyperbolic case, without computation.

2.3 Plan of the Paper

In Sect. 3 we remind the reader the classical proof of Theorem 1 that we repeat from
its wonderful exposition in Kornfeld et al. (1982) by adding the technical details. In
Sect. 4 we present a new way of looking at the Largange problem (see Sect. 4.1) and
give a new proof of the same Theorem 1, see Sect. 4.2. In Sect. 5 we adapt out proof
from Sect. 4 for constant curvature geometries (Sect. 5.1) as well as for non-constant
(but close to constant) curvature geometries (Sect. 5.2).

Setting From now on and till the end of the article, we will consider the case of a
swiveling arm with three joints such that the lengths of the joints l j , j = 1, 2, 3 verify
all three of strict triangle inequalities l1 < l2 + l3, l2 < l3 + l1 and l3 < l1 + l2. In
other words, there is no dominating interval whose length is bigger than the sum of
the two other lengths.

3 Classical Proof

In this section,wewill remind a reader of the proof of a generalization of the Theorem1
for the case of a sziveling arm with N joints on the plane.

Theorem 2 (Hartman et al. 1937; Weyl 1938; Kornfeld et al. 1982) Consider the
dynamics of a swiveling arm of type l = (l1, l2, . . . , lN ) governed by a vector field
(2) with the angular velocities of joints ω1, ω2, . . . , ωN independent over Q. Suppose
also that l j ∈ R+ are such that for all vectors of signs ε = (ε1, . . . , εN ) ∈ {−1, 1}N

the signed sum of the lengths l j is not equal to zero:
N∑

j=1

ε j l j �= 0. (9)

Then the solution ω of Lagrange problem on the plane exists, does not depend on the
initial condition θ ∈ T

N and

ω = q1ω1 + · · · + qN ωN ,

where qk ∈ [0, 1], k = 1, . . . , N are equal to the volumes of the subsets of the torus
T

N and are defined as follows:

qk = mesN

{
θ = (θ1, . . . , θN ) ∈ T

N | |l1eiθ1

+ · · · + lk−1eiθk−1 + lk+1eiθk+1 + · · · + lN eiθN | < lk
}

.
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Here mesN is the normalized Lebesgue measure on the torus TN .

The additional condition (9) in the formulation of the Theorem is motivated by the
following

Proposition 1 Consider a swiveling arm of type (l1, . . . , lN ) on the plane. Then, the
map � : TN → C defined by (1) in restriction to �−1(0) is a submersion if and only
if the condition (9) holds.

Proof By calculating explicitly the differential d�θ : RN → C � R
2 we obtain

d�θ = i
(

l1eiθ1 , . . . , lN eiθN
)

.

This 2× N matrix has its rank smaller than 2 if and only if the complex numbers l j eiθ j

are all R-proportional, in other words the corresponding vectors lie on the same line
passing by 0 ∈ C. One considers the restriction �|�−1(0). Conditions rk d�θ < 2
and �(θ) = 0 together are equivalent to the existence of the coefficients ε j ∈ {−1, 1}
such that

∑
j l jε j = 0 with eiθ j = ε j . Hence θ j = 0 (if ε j = 1) or θ j = π (if

ε j = −1). 	

Remark 3 Before starting a proof of the Theorem 2, let us first notice that it implies
Theorem 1. First, let us note that condition (9) holds true for l j that satisfy all three
triangle inequalities: the triangle with sides l j is a rigid form that cannot be flattened
into a line.

Theorem 2 gives

q3 = mes2
{
(θ1, θ2) ∈ T

2 | |l1eiθ1 + l2eiθ2 | < l3
}

. (10)

For any fixed θ1 one can easily see (as on the Fig. 3) that the measure in question
is equal to α3

π
(after renormalizing), i.e. it does not depend on θ1. Then the integration

with respect to θ1 will give q3 = α3
π
. Because of the symmetry of the answer with

respect to the exchange of the sides, we get the final answer (8).

Lemma 1 (A rotating systemof coordinates) Suppose that the limit asymptotic velocity
in the Lagrange problem exists for the dynamics of a swiveling arm of type (l1, l2, l3)
with angular velocities ω′

1 = 0, ω′
2 = ω2 − ω1 and ω′

3 = ω3 − ω1 and is equal to ω.
Then the limit asymptotic velocity exists as well for the dynamics of a swiveling arm
of the same type with angular velocities ω1, ω2, ω3 and is equal to ω1 + ω.

Proof The two systems described in the formulation, one with corresponding angular
velocities of joints (0, ω2 − ω1, ω3 − ω1) and another with (ω1, ω2, ω3), are related
by the rotation. Indeed, the position of the end point z2(t) of the second system at
time t is just the image of the position of the endpoint z1(t) for the first one under the
rotation by ω1t around 0. 	


Nowwe are ready to give the proof of Theorem 2. As we said above, the main ideas
are all described in Kornfeld et al. (1982) in a very clear and concise way but we find
it useful to present this argument here for the sake of completeness and clarity.
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Fig. 3 Let us fix some value θ1 corresponding to the position of the first interval (here θ1 = 0). On the
picture one can see the geometrical meaning of the set appearing in (10). The angles θ2 which give the points
(θ1, θ2) inside this set correspond to the position of the second joint such that the sum l1eiθ1 + l2eiθ2 stays
inside the circle of radius l3. These positions are marked by the angle range in the interval θ2 ∈ (−α3, α3).
The two “boundary” positions are those that correspond to the moments θ when�(θ) = 0. These moments
are the moments when a swiveling arm closes up into a triangle

Proof Step 1. Main idea: pass from the time average to the space average.
We are interested in the asymptotic behavior of the argument of the function z(t) :

R+ → C given by (3). Let us write out z(t) in the polar form, z(t) = r(t) expϕ(t). A
formal computation gives ln z(t) = ln r(t) + iϕ(t) and, by passing to a real part and
then taking a derivative with respect to t , we obtain the expression for the derivative
of the angle

ϕ̇ = Re

(
1

i

ż(t)

z(t)

)
. (11)

Here by ϕ(t) we understand a continuous branch of the argument and this compu-
tation gives a valid formula at least in the case when z(t) �= 0 ∀t ∈ R+.

The derivative ϕ̇ is precisely the quantity that is interesting for us since the asymp-
totic angular velocity ω is the ratio between the increment of the angle function ϕ(t)
on the long period of time T and T itself. That can be calculated by Newton–Leibniz
as

ω = lim
T →∞

ϕ(T )

T
= lim

T →∞
1

T

∫ T

0
ϕ̇(t)dt . (12)

Themain idea of Hartman, van Kampen andWintner was that instead of calculating
the time average (12), one can transform it to the space average of some function f .

Indeed, let us insert in Eq. (11) an explicit formula (1) for z(t). We obtain
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ϕ̇ = Re

(∑N
j=1 l ′jω j eiω j t

∑N
j=1 l ′j eiω j t

)
= Re

⎛

⎝
∑N

j=1 l jω j e
i(ω j t+θ

(0)
j )

∑N
j=1 l j e

i(ω j t+θ
(0)
j )

⎞

⎠ . (13)

Here l ′j = l j e
iθ(0)

j where θ (0) =
(
θ

(0)
1 , . . . , θ

(0)
N

)
∈ T

N is a vector corresponding

to the initial position of the swiveling arm.
Let us define f : TN → R as

f (θ) := Re

(∑N
j=1 l jω j eiθ j

∑N
j=1 l j eiθ j

)
. (14)

Then, in previous notations, (13) can be rewritten simply as ϕ̇ = f
(

T tθ (0)
)
and

hence ω (if it exists) is represented by the limit

ω = lim
T →∞

1

T

∫ T

0
f
(

gtθ (0)
)

dt . (15)

The idea is to apply the ergodic theorem for the flow T t to substitute the limit (15)
by the space integral in order to write ω = ∫

TN f (θ)dθ . This is actually true but now
let us prove it properly: the difficulty is that the denominator in the definition (14) of
the function f explodes when �(θ) = 0.

Step 2. Justifying the use of ergodic theorem.

First note that the function f : TN → R defined by (14) is integrable. Indeed, to
prove this it is sufficient to prove that the function 1

�
is integrable. By Proposition 1,

� : TN → C is a submersion on �−1(0) which has codimension 2. Hence in the
neighborhood of any pole of f (equivalently, zero of �), there is a complex chart
w ∈ C on the local plane, transverse to �−1(0) in which �(w) = w. Hence the
reciprocal 1

�
is integrable since 1

|w| ∈ L1
locC.

The function f is integrable but is not continuous since the denominator �(θ) can
be 0. By averaging the function f on the part of the trajectory of gt ranging from time
0 to time T0 ∈ R, T0 > 0, we get a continuous function on the torus f̃ ∈ C(TN ):

f̃ (θ) := 1

T0

∫ T0

0
f ◦ gt (θ)dt .

The proof of the continuity of the function f̃ uses the Remark 1. Indeed, the curve
gt (θ) for t ∈ (0, T0) and the analogical curve for a close θ have the property that one
of them goes through zero and another does not but the argument change is the same
(modulo π ) since it is defined by the change of the slope of a tangent line to such a
curve. Note also that the time averages as well as space averages of the functions f
and f̃ coincide.
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Indeed, for the space averages since gt is a measure-preserving flow,

∫

TN
f̃ (θ) =

∫

TN

1

T0

∫ T0

0
f ◦ gt (θ)dtdθ =

∫ T0

0

1

T0

∫

TN
f ◦ gt (θ)dθdt

=
∫ T0

0

1

T0

∫

TN
f (θ)dθdt =

∫

TN
f (θ)dθ . (16)

And for the time averages f∞(θ) and f̃∞(θ), analogously, we get

f̃∞(θ) := lim
T →∞

1

T

∫ T

0
f̃ ◦ gt (θ)dt = lim

T →∞
1

T

∫ T

0

1

T0

∫ T0

0
f ◦ gt+τ (θ)dτdt

= 1

T0

∫ T0

0
lim

T →∞
1

T

∫ T

0
f ◦ gt+τ (θ)dtdτ = f∞(θ). (17)

Note that the flow gt is uniquely ergodic (since ω j are rationally independent4) and
f̃ ∈ C(Tn) hence the space averages of f̃ coincide with time averages of f̃ for all
(and not only almost all) values of θ ∈ T

N . Hence the same is true for the function f
and the limit (15) can be written as a space average for all θ ∈ T

N . Hence we obtain
that the limit for any initial position of the swiveling arm z(0) ∈ C is just given by the
space integral that can be explicitly calculated.

Step 3. Calculation.

Denote B j := B(θ1, . . . , θ j−1, θ j+1, . . . , θN ) := �(θ) − l j eiθ j . This quantity does
not depend on θ j . Then,

∫

TN
f (θ)dθ = Re

∫

TN

∑
j ω j l j eiθ j

∑
j l j eiθ j

dθ1 . . . dθN =
N∑

j=1

ω j l jRe
∫

TN

eiθ j dθ1 . . . dθN∑
j l j eiθ j

=
N∑

j=1

ω j l jRe
∫

TN−1

∫ 2π

0

eiθ j dθ j

l j eiθ j + B(θ1, . . . , θ j−1, θ j+1, . . . , θN )
dθ1 . . . dθ j−1dθ j+1 . . . dθN

=
N∑

j=1

ω j l jRe
∫

TN−1

∫ 2π

0

1

il j

∂ ln(B j + l j eiθ j )

∂θ j
dθ1 . . . dθ j−1dθ j+1 . . . dθN

=
N∑

j=1

ω jRe
∫

TN−1

∫ 2π

0

1

i

∂ ln(B j + l j eiθ j )

∂θ j
dθ1 . . . dθ j−1dθ j+1 . . . dθN .

Now note that the internal integral over θ j is equal to 1 if 0 is inside the circle of
center B j and radius l j , in other words if l j > B j and 0 otherwise. So from this we
deduce that

4 The same assumptions about ω j hold for the Theorem 3 and the swiveling arm on the hyperbolic plane.
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∫

TN
f (θ)dθ =

N∑

j=1

ω jmesN−1
{
θ : B(θ1, . . . , θ j−1, θ j+1, . . . , θN ) < l j

}
. 	


4 Adapted Proof: Evaluation of the Dipolar Form

Let us consider a map arg : C̃ → R from the covering space of a punctured complex
plane, C̃ → C

∗. This map gives an argument of a complex number different from 0.
For any analytic curve γ : R → C on the plane the restriction of this argument map
on this curve γ by argγ : R → R gives a map that defines the argument arg γ (t) of the
point on the curve. Each time we use this notation we suppose taking the continuous
branch of the argument function (see the Remark 1 for the case when γ passes through
0).

For the case of Lagrange problem, we will be interested in taking as a curve γ

a trajectory z(t) of the flow � ◦ T t , as in (3). This trajectory can be seen as a map
z : R+ → C. The map � : TN → C transports the singular 1-form d arg z on the
complex plane to a 1-form on the torus that we will denote β := �∗d arg z and call
the Lagrange form. This form β is singular since �−1(0) �= ∅. Indeed, for the case of
three joints in the Lagrange problem, the set �−1(0) corresponds to the set of θ when
the swiveling arm closes up into a triangle. In what follows, we will study regular and
singular parts of Lagrange form β and we will find a geometrical way to calculate its
time average limT →∞ 1

T

∫ T
0 z∗β. This time average can be seen as an average of the

image of the form β transported by the map z but also it is exactly equal to the limit
angular velocity ω we are interested in.

4.1 Dipolar Form and Its Properties

In this Subsection we will first prove some statements about the integration of regular
1-forms along the orbits of vector fields. Second, we will define a dipolar form βsing
on the torus - a specific singular form that will encode the singularities of the form
β. We will see that the dipolar form contains all the important geometric information
for the calculation of ω. The idea is simple: the important changes of the argument
occur only when the swiveling arm passes by zero. In other words, they occur when
a trajectory of the vector field (2) passes by the singularities of the dipolar form.

Lemma 2 Consider a manifold M with a measure μ on it and a uniquely ergodic
flow gt : M → M of a vector field X on M, the measure μ being the only invariant
measure. Then, the following assertions hold:

1. For any point θ ∈ M and for any continuous function f ∈ C0(M,R) there exists
a limit of time averages limT →∞ 1

T

∫ T
0 f ◦ gt (θ)dt and this limit does not depend

on the point θ ∈ M and is equal to the space average
∫

M f dμ.
2. For f̄ = f + X(h), where h ∈ C1(M,R) is any continuously differentiable

function on M, the time average of f̄ coincides with that of f .
3. For any closed 1-form β on M define the function f := β(X). Then the space

average
∫

M f dμ depends only on the cohomology class of β.
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4. Let M = T
N and X be given by (2). Then for any smooth 1-form β holds∫

M β(X) =< [β], [ω1, . . . , ωN ] >. Here [β] ∈ H1(TN ,R) and [ω1, . . . , ωN ] ∈
H1(T

N ,R) denotes the sum of standard coordinate circles with coefficients
ω j ∈ R. We denote as 〈·, ·〉 the pairing between cohomology and homology.
Note that [β] has a representative βreg ∈ [β] with constant coefficients β j ∈ R:

βreg = ∑N
j=1 β j dθ j and

∫
M β(X) = ∑N

j=1 β jω j .

Proof 1. The existence of the limit and its independence from the initial point θ ∈ M
follows from Birkhoff’s ergodic theorem.

2. The difference between time averages of f and f̄ can be rewritten by Newton–
Leibniz. Since g is a bounded function, we obtain

lim
T →∞

1

T

∫ T

0
X(h) ◦ gt (θ)dt = lim

T →∞
h(gT (θ)) − h(θ)

T
= 0. (18)

3. We have to prove that the space average
∫

M β(X)dμ does not change if β is
replaced by β̄ = β + dh where h ∈ C1(M,R). This can be deduced from (2):
indeed, the space average

∫
M β̄(X)dμ is equal to the corresponding time average

(by ergodic theorem), and then one applies (18) to finish the argument.
4. The first statement is the application of (3) to this particular case M = T

n ,
X = ∑

j ω j
∂

∂θ j
. Each form β ∈ H1(TN ,R) has a representative with constant

coefficients since H1(TN ,R) ∼= R
N . And hence

∫
TN β(X) for a smooth form β is

equal to the corresponding value for its cohomology representative with constant
coefficients. 	

Now let is fix two distinct points a, b ∈ C. Let us consider a followingmultifunction

f on the complex plane: f (z) = arg z−a
z−b . This multifunction can not be defined on

all of the plane in a continuous way although it is well defined outside a large enough
ball B(R) = {|x | ≤ R} containing a and b, see Fig. 4.

Let us choose a function f̄ : C → R such that f̄ = f in C\B(R) and f̄ ∈ C∞.
Then h = f − f̄ is a multifunction such that h = 0 in C\B(R).

Definition (Dipolar form) A dipolar form is a singular 1-form dh on the complex
plane.

Fig. 4 For the multivalued
function f (z) = arg z−a

z−b
outside the big ball B(R)

containing points a and b one
can define a continuous
determination of f as an angle
between two rays connecting z
to a and to b correspondingly
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4.2 New Proof of Theorem 1

Let us consider the Lagrange form β on the torus: our goal is to understand its time
average along the orbits of a linear flow T t on the torus TN . What was said before
in this Section, can be applied to any dimension but from now on we will study the
particular case N = 3. First of all, by Lemma 1, one can reduce dimension to 2 and
suppose that the system is governed by the field (2) with ω1 = 0.

From now on we will look at the map � as at the map from a 2-torus to C, and the
Lagrange form β will be considered as a form on a 2-torus as well (wewill speak about
the reduced Lagrange form in this case). This torus T2 is equipped with coordinates
(θ2, θ3) that correspond to the angles that the second and the third joint make with a
horizontal direction.

As we have already seen in the proof of Sect. 3 as well as in the Sect. 4.1, the
important increments of the argument of z(t) are those corresponding to the passages
through zero. In other words, the singular set�−1(0) is of importance in the Lagrange
problem. In the case when ω1 = 0 the set �−1(0) consists of two different points
A, B ∈ T

2 that correspond to the positions of the swiveling arm depicted on Fig. 5.
One can note that

A = (−π + α3, π − α2), B = (π − α3, π + α2). (19)

Now, the dipolar form that we defined on C in Sect. 4.1 can be transported to a
1-form on T

2 in such a way that its singularities a, b are transported to the points
A, B ∈ T

2. For this, we will choose a disk on the torus containing the points A, B and
transport the dipolar form on the plane to the form that we denote βsing.

Fig. 5 Two positions of the swiveling arm of type (l1, l2, l3) corresponing to the situations when this
swiveling arm forms a triangle. These two positions correspond to the points A, B ∈ T

2 that have the
following coordinates (θ2, θ3) ∈ T

2: A = (−π +α3, π −α2) and B = (π −α3, π +α2). These coordinates
are the counter-clockwise oriented angles that the joints of the arm form with horizontal direction. They
are explicitely marked on the picture
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Fig. 6 The torus T2 of positions (θ2, θ3) of a swiveling arm of type (l1, l2, l3) for the movement in the
vector field (2) with ω1 = 0. Points A, B ∈ T

2 correspond to the positions when the arm forms a triangle.
Here α2, α3 are the corresponding angles of this triangle. A choice of a disk containing the points A, B
fixes a dipolar form βsing on T2 with two logarithmic singularities

Remark 4 This dipolar form on the torus depends on the choice of the disk containing
A, B ∈ T

2. We will fix this choice as shown on the Fig. 6.

Then we have a following

Lemma 3 Consider the dynamics of a swiveling arm of type (l1, l2, l3) with l j , j =
1, 2, 3 satisfying all three strict triangle inequalities, in a vector field (2) with ω1 = 0.
Let A, B ∈ T

2 be as in (19) and let us fix a choice of a dipolar form βsing (depending
on a disc containing A, B ∈ T

2) in T
2 as defined above. Then there exists a unique

form βreg ∈ H1(T2,R) with constant coefficients and a function f ∈ C1(T2) such
that β = βreg + βsing + d f .

Remark 5 Different choice of a circle containing A, B would provoke a different form
βsing, and hence, different form βreg.

Proof First, δ := β − βsing is a smooth 1-form on the torus. Indeed, when a point
θ ∈ T

2 makes a loop around the point A (respectively, B) on the torus, the argument
of the end of the swiveling arm grows (or, respectively, diminishes) by 2π exactly
as a value of the dipolar form. This means that the points A, B ∈ T

2 cannot be the
singularities of δ nor can be any other point. This form δ has its representative βreg in
a family of forms with constant coefficients since H1(TN ,R) ∼= R

N . Hence δ − βreg
is a differential of a smooth function. 	


Now we are ready to give a new proof of Theorem 1.

Proof Suppose that ω1 = 0. Then the Lagrange problem is equivalent to the study
of the time average of the reduced Lagrange form β along the orbits of the reduced
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Fig. 7 For θ1 = 0 fixed, the movement on a torus T2 corresponding to the circle {θ3 = 0} is described by
the picture on the left. The second joint makes a circle movement: in this case the end of the systemmakes a
circle movement as well, and this is a circle with the center l1 + l3 and radius l2. One can easily notice that
this circle cannot contain 0 if the triangle inequality l2 < l1 + l3 holds. The picture on the right describes
the increment of the argument along the circle {θ2 = π}: analogously, the end of the system moves along
the circle with the center l1 − l2 and radius l3. In this case, on the contrary, this circle contains 0

vector field Xred := ω2
∂

∂dθ2
+ω3

∂
∂dθ3

. This time average by Lemma 3 is a sum of time

averages for βsing, βreg and d f , f ∈ C1(T2). For the last one, the part (1) of Lemma 2
gives that the time average of d f along the flow is equal to the space average which
is zero by Stokes Theorem since ∂T2 = 0.

Step 1. Calculate the time average of the regular part.

Following the part (4) of Lemma 3 we see that the time average of βreg = β2dθ2 +
β3dθ3, β2, β3 ∈ R is its evaluation on the reduced vector field Xred. As already noticed
in Lemma 3, βreg depends on a choice of a topological disk containing points A and
B or, equivalently, on the choice of the homotopy path γ connecting A and B. The
disk was fixed once and for all once we defined βsing, see Fig. 8. Let us choose the
generators of cohomology H1(T2,R) in such a way that they do not intersect this
disk.

We choose these paths as shown on Fig. 8: one of them is horizontal and another
one is vertical.

Geometrically, β2 corresponds to the increment of arg z(t) when θ3 = 0 and θ2
makes one turn. In this case, the argument does not change because of triangle inequal-
ity, |l2| < |l1|+|l3| and the turning second vector will never get around 0 if the first and
the third one are pointing in one direction, see Fig. 7. Analogously, β3 = 1 because
the argument changes by 2π when the third interval is making one turn and the second
is fixed, pointing in the direction θ2 = π . Hence the time average of the regular part
of Lagrange form is equal to

〈
βreg, [ω2, ω3]

〉 = ω3.

Step 2. Calculate the time average of the dipolar part.Consider a path γ connecting
the points A and B that is chosen on the Fig. 8 and contained in the disk where the
dipolar form is non-zero. Note that all the paths inside this disk joining A and B are
homotopic (as paths with fixed extremities). The important observation is that the time
average of the dipolar form is equal to the flux of the vector field X through this path.
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Fig. 8 One can choose a path γ connecting the points A and B on the two-torus as shown on the picture.
This path consists of one horizontal and one vertical part which correspond to the complete rotation of the
second joint and then, to the complete rotation of the third joint to reach B from A. This path is contained
in the disk that was chosen previously for the definition of the dipolar form βsing. Any path between A and
B in this disk has the same homotopy type as γ . The flux of the vector field Xred through this path is equal
to the evaluation of βsing on X . The circles {θ3 = 0} and {θ2 = π} are chosen as generators of H1(T2,R)

that do not intersect γ in order to define βreg correctly

The intuition behind this statement is that the argument of arg z(t) changes by 2π
(grows or diminishes in dependence of the direction) only if the trajectory z(t) crosses
the path between A and B. A formal argument is the following.

Consider a rectangle which is obtained from γ when pushing with gε, see Fig. 9.
The flux of the vector field is the area of this rectangle. We can apply the ergodic
theorem to this rectangle (since its boundary has measure zero) to get that the flux
of X is equal to the time average of dipolar form almost everywhere. To get that the
needed limit exists everywhere (and not almost everywhere), we use the fact that the
linear flow on the torus is equicontinuous (and even more, it preserves distances). The
points which are close to each other will meet the rectangle R in close points (the
exceptions exist but are very rare, see Fig. 9).

What is left is a calculation of the flux of the vector field X = [ω2, ω3] through γ .
On the first segment of the path when θ3 remains constant and equal to π − α2, the
flux depends only on the vertical component of the field (2), ω3. The trajectories of X
are transverse to the path and intersect it from the left to the right, so the flux on this
interval of the path is equal to − 2π−2α3

2π ω3. Analogously, the flux through the vertical

component of the path is equal to 2α2
2π ω2.

We calculated the time average of the dipolar part. Let us note that the dipolar part
and the regular part are intimately related. An important remark about the calculation
of the periods of a regular part of the form β is the following. The numbers β2, β3
calculated above are the periods of the form βreg. To calculate them, we integrate
this form on the paths in T

2 which correspond to the first and second generator of
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Fig. 9 The calculation of the flux of X through γ is equivalent to the calculation of the area of the rectangle
R defined as a set covered by the trajectories of the flow gt . The points A and B are marked as well as their
images by gε : gε(A) and gε(B)

cohomology H1(T2,R). What is important is that those paths are chosen in a way
not to intersect the path γ that is connecting the singularities. Only in this case the
evaluation of a regular part will give us the correct quantity corresponding to the time
average of the form β − βsing.

Step 3. Sum them up. By adding up the evaluations of βreg and βsing, we obtain:
ω = α2

π
ω2 + α3

π
ω3 in the case when ω1 = 0. By passing back to the system where

ω1 �= 0, see Lemma 1, we obtain the answer in the general case:

ω = ω1 + α2

π
(ω2 − ω1) + α3

π
(ω3 − ω1) =

3∑

j=1

α j

π
ω j . 	


5 Non-zero Curvature

Lagrange problem can be considered on any riemannian surface S which is oriented
(in order to define the angular velocities and rotations) and complete (in order to be
able to connect the points on this surface by geodesic paths).

Indeed, let us fix some point x0 ∈ S and fix the lengths l j ∈ R+, ω j ∈ R+, j =
1, . . . , N and θ (0) =

(
θ

(0)
1 , . . . , θ

(0)
N

)
∈ T

N . We will define the dynamics of a swivel-

ing arm of type (l1, . . . , lN ) based at x0 under the flow of the vector field (2) given by
ω j with the initial condition defined by θ (0). Let us proceed as follows.

Choose an angle coordinate on the fiber of unitary tangent bundle T 1
x0

∼= S
1. Con-

sider a geodesic interval of length l1 coming out from x in the direction equal to
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Fig. 10 A swiveling arm on the oriented compete surface S of non-constant curvature

θ
(0)
1 + ω1t . Then in its endpoint x1 the circle T 1

x1 S has a privileged point (corre-
sponding to the continuation of the movement along the geodesic). Then, one can
define a geodesic interval of length l2 emanating from x1 ∈ S in the direction equal
to θ

(0)
2 + ω2t counted from this privileged point and so on. The ending point xn of

such a construction is called the end of the swiveling arm of type (l1, . . . , lN ) on the
riemannian surface S at time t under the flow of the vector field (2). This ending point
defines a curve z(t) : R+ → S. See Fig. 10.

Definition Suppose that there exists a complex chart on the surface S such that the
curve {z(t)|t ∈ R} is contained in a bounded ball B(x0, R). The Lagrange problem on
the oriented and complete surface S is a study of the existence of the limit (4) in this
chart as well as its value as a function of l j ∈ C, ω j ∈ R and initial condition θ (0).

Remark 6 If the lengths l j , j = 1, . . . , N are small enough then an open chart (such
that the corresponding complex structure is compatible with the metric, and hence the
angles can be measured accordingly) in the definition of the Lagrange problem on S
exists.

5.1 Constant Curvature Lagrange Problem: Redefining the Angles

Note that there is an important difference between the definition of the Lagrange
problem on a general surface we have given above and the definition of Lagrange
problem on the plane given in Sect. 2.2. Indeed, the plane has a specialty of having
a globally defined horizontal direction and the angles θ j for the Lagrange problem
on the plane are measured with respect to this direction. Since on the general surface
a choice of such a direction is impossible, the angle coordinates θ j of the swiveling
arm are measured with respect to the positions of previous joints, see Fig. 10. For the
euclidian plane these two sets of coordinates are related in an obvious way by a linear
transformation.

Proposition 2 Consider a swiveling arm on R
2 with N joints. Suppose that

(θh
1 , . . . , θh

N ) ∈ T
N are the angles that the joints make with the horizontal direc-

tion and (θ1, . . . , θN ) ∈ T
N are the angles that the joints make with the direction of
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Fig. 11 Different ways to define the coordinates θ j ∈ S
1, j = 1, . . . , N : on the left, with respect to the

common horizontal direction, and on the right, with respect to the previous joint

the previous joint in the system. Then those two sets are related by a following linear
relation:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1

θ2

...

...

θN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

1 −1 0 . . . 0

...
...

. . .
. . .

...

0 1 −1 . . . 0

0 0 . . . 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θh
1

θh
2

...

...

θh
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consequently, if one replaces the coordinates θh
j by the coordinates θ j , the resulting

limit velocity in Theorem 1 is equal to

ω = α1

π
ω1 + α2

π
(ω1 + ω2) + α3

π
(ω1 + ω2 + ω3) = ω1 + ω2

α2 + α3

π
+ ω3

α3

π
.

Proof Straightforward, see Fig. 11. 	

Theorem 3 Consider a Lagrange problem on a constant curvature surface S which is
either the sphere S2 of radius 1 or the hyperbolic plane H2 for N = 3. For a swiveling
arm with N = 3 joints of type (l1, l2, l3) based at a point x0 ∈ S and the flow of vector
field (2) suppose the following:

1. l j , j = 1, 2, 3 satisfy all three strict triangle inequalities,
2. ω1, ω2, ω3 ∈ R+ are rationally independent.

In the case S = S
2 suppose in addition that

∑3
j=1 l j < π .

Then, there exists a triangle � on S with the lengths of sides equal to l j , j = 1, 2, 3.
Denote its angles correspondingly α j , j = 1, 2, 3 (its angles are uniquely defined by
the lengths of its sides). Then, the asymptotic angular velocity ω exists and is equal
to

ω = ω1 + π − α1

π
ω2 + α3

π
ω3. (20)
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Remark 7 The result of this Theorem can be rewritten in the terms of the area A of the
triangle �. Indeed, the formula (20) is equivalent to

ω = ω1 + α2 + α3 ± A

π
ω2 + α3

π
ω3. (21)

for the hyperbolic (+A) and spherical (−A) cases.
Note that the answer given by (20) is a general answer for all constant curvature

geometries, see Proposition 2 for the euclidian case.

Proof We can suppose that ω1 = 0 since the argument of Lemma 1 still works
for spherical and hyperbolic geometry in which Lagrange problem has rotational
symmetry. Consider a movement of the swiveling arm in the reduced vector field
ω2

∂
∂θ2

+ ω3
∂

∂θ3
. Here θ j are the new coordinates defined in the beginning of this Sec-

tion corresponding to the angles between the direction of a joint number j and the
direction of a previous joint in a swiveling arm.

Here we will simply repeat the proof of Theorem 1 from Sect. 4.2 modulo some
minor changes. All the notions are defined analogously: Lagrangian 1-form β, its
regular and singular (dipolar) parts, βreg and βsing. The only difference is that the
coordinates θ j , j = 2, 3 on the torus T2 are not the same as before (see Fig. 11) so
one has to recalculate the evaluations of βsing and βreg but the geometrical essence of
the argument does not change.

Note that if the lengths of the joints verify three strict triangle inequalities and if, in
the case S = S

2, the sum of the lengths is smaller than the distance between the north
and south poles, there exists a triangle with the sides of lengths l j , uniquely defined
up to isometry. We denote α j its angles. Then, the coordinates of singularities of β

change: we replace the Fig. 5 by the Fig. 12. One can see that now the singularities
have the following coordinates: A(−π + α3,−π + α1) and B(π − α3, π − α1). A
path γ from A to B is chosen in a way shown on the Fig. 13 (analogue of Fig. 8).

Then, the evaluation of Lagrange 1-form is a sum of the evaluations of singular and
regular parts, the evaluation of a singular part will give

− 2π − 2α3

2π
ω3 − 2α1

2π
ω2. (22)

The regular part with constant coefficients can be written as βreg = β2d θ̃2 +β3d θ̃3
and by calculating its periods, one obtains β2 = β3 = 1.

By adding the evaluations of βreg, βsing and ω1 (which signifies the returning back
to the initial system where the first joint turns), one gets the final answer. 	


5.2 Non-constant Curvature: Kite Property

In this section,wewill solve theLagrange problemon a non-constant curvature surface
S for a swiveling arm with 3 joints based at some point x0 ∈ S.

The two main obstructions for the argument that we elaborated for the constant
curvature case are the following:
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Fig. 12 Two positions
corresponding to the singular
points A, B of the dipolar form
βsing (and, accordingly,

Lagrange form β) on S = H
2

(or S = S
2). These positions

correspond to a swiveling arm
that closes up into a triangle
with the sides of lengths
l j , j = 1, 2, 3 and the angles of
values α j , j = 1, 2, 3. This
permits to calculate the
coordinates of A, B which are
defined as angles between the
present direction of the joint and
the positive direction of the
previous joint. We suppose that
the coordinate is growing when
the angle changes
counterclockwise

Fig. 13 A path of integration γ for a singular part βsing of Lagrange form. The green paths
{
θ̃3 = 0

}
and

θ̃2 = π are useful for the calculation of the periods of the regular part βreg of Lagrangian 1-form

1. The geometry on the arbitrary riemmanian surface S is not isotropic: for a fixed
base point x0 the geometry in different directions in T 1

x0 S varies. This means that
it will not be possible to restrict ourselves to the case ω1 = 0 since the Lagrange
problem does not have a rotational symmetry.

2. For three positive numbers l1, l2, l3 that satisfy all three of the strict triangle
inequalities there is no guaranty that the triangles with such lengths of sides are all
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Fig. 14 Fix a direction ϕ ∈ T 1
x0 S and consider a geodesic ray emanating from x0 ∈ S in this direction.

By the (l1, l2, l3))-kite property of the surface S in the point x0, one can exhibit two triangles �+(ϕ) and
�−(ϕ) glued one to each other along the side of length l1, forming a kite. These kites change their forms
while ϕ varies in T 1

x0 . For example, their angles depend on ϕ as well

isometric, and hence, have the same angles. And, moreover, if one fixes a position
I ⊂ S, x0 of a first joint on the surface S, one does not guaranty that there are only
two positions of a swiveling arm that closes up in a triangle with one of the sides
coinciding with I as on Figs. 5 and 12.

We were able to overcome the first obstruction by considering the Lagrange form
as a form on T

3 and not on T
2 as before. The second one is much trickier and we

restrict ourselves to the case when it does not cause any problems: in the case when
the lengths of the joints are small enough (Fig. 14).

Definition (Kite property for the oriented and complete surface S) Fix a triple of three
positive numbers (l1, l2, l3) ∈ R

3+, verifying all of three strict triangle inequalities.
Consider an orientable complete riemannian surface S with a point x0 ∈ S on it. The
surface S verifies a kite property in the point x0 ∈ S for the triple (l1, l2, l3) if for any
direction ϕ ∈ T 1

x0 S there exist two triangles �+ and �− on S with the sides of lengths
l1, l2, l3 such that

• �+ and �− have a common vertex in x0
• For both �+ and �−, the side of length l2 does not contain x0
• �+ ∩ �− is a segment on the surface of length l1 coinciding with one of the sides
of both triangles and this segment lies on a geodesic γ going out from x0 in the
direction ϕ: γ (0) = 0, γ̇ (0) = ϕ.

• The couple of triangles (�+,�−) is a unique couple with the properties listed
above.

We fix the notations by saying that �+ (�−, correspondingly) is a triangle which
is lying on the left (on the right) from the geodesic associated to (x0, ϕ) ∈ T 1S.
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Fig. 15 There are two points in the intersection of two circles which are the boundaries of convex balls
B(x0, l3) and B(x1, l2). These two points correspond to the positions of a swiveling arm that closes up into
a triangle with the of lengths l1, l2, l3

Remark 8 For the proofs of Theorems 1 and 3we use nothingmore than a kite property
for S = R

2,H2 or S2. On a general surface S there is no hope for the kite property to
hold for any triple of lengths.

Proposition 3 Fix a complete oriented riemannian surface S. Then there exists some
constant C(S) > 0 such that ∀x0 ∈ S the kite property for swiveling arms based at
x0 holds for all triples l = (l1, l2, l3) ∈ R

3+ such that their lengths are small enough,
|l|∞ = max j l j ≤ C(S).

Proof This follows from the convexity of small discs: there exists a uniform constant
C(S) > 0 such that all the disks of radii smaller than C(S) are strictly convex, Sakai
(1996). Take a triple (l1, l2, l3) in such a way that |l|∞ ≤ C . Let us fix ϕ ∈ T 1

x0 S and
construct a unique geodesic γ from the Definition of kite property: γ (0) = x0, γ̇ = ϕ.
Let x1 := γ (l1). Consider two disks: B(x0, l3) and B(x1, l2). By convexity, they will
intersect in exactly two points, see Fig. 15. 	


Theorem 4 Consider the Lagrange problem on an arbitrary oriented and complete
riemmanian surface S for a swiveling arm with N = 3 joints of type (l1, l2, l3) based
a some point x0 ∈ S and the flow of vector field X = ∑3

j=1 ω j
∂

∂θ j
, see (2). Suppose

the following:

1. l j , j = 1, 2, 3 satisfy all three strict triangle inequalities
2. |l|∞ := max j (l j ) ≤ C(S, x0) where C is a constant from Proposition 3
3. ω1, ω2, ω3 ∈ R+ are rationally independent.

Then, for any ϕ ∈ T 1
x0 S there exist the triangles �+(ϕ) and �−(ϕ) with the

properties described above in the definition of kite property. Denote the angles of
these triangles correspondingly α±

1 (ϕ), α±
2 (ϕ), α±

3 (ϕ).
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Then, the asymptotic angular velocity ω exists and is equal to

ω = ω1 + ω2
π − ᾱ1

π
+ ω3

ᾱ3

π
,

where ᾱ j = ᾱ+
j + ᾱ−

j

2
and ᾱ±

j = 1

2π

∫

T 1
x0

S
α±

j (ϕ) dϕ, j = 1, 2, 3.

Here ᾱ±
j are the average values of the absolute values of the angles in triangles with

the sides of lengths l j in the kite property, see Fig. 14 with respect to the direction of
the first interval. Here the parameter ϕ comes from the definition of a kite property.

Proof The idea is to adjust the proofs from Sects. 4.2 and 5.1 that dealt with constant
curvature to a non-constant curvature case. We will still consider the Lagrange 1-form
β and its regular and singular parts βreg and βsing but they are now all 1-forms on T

3

and not T2. The singular set S of βsing (and, respectfully, β) has changed: for each
plane �ϕ := {θ1 = ϕ ∈ Tx0 S} the intersection of S with this plane consists of two
points that correspond to the positions of a swiveling arm closing up into a triangle:

S ∩ �ϕ = {A(ϕ), B(ϕ)} .

These points exist since the kite property holds, see Proposition 3, and their coordinates
can be represented as

A(ϕ) = (−π + α−
3 (ϕ),−π + α−

1 (ϕ)
)
,

B(ϕ) = (
π − α+

3 (ϕ), π − α+
1 (ϕ)

)
,

by the same argument as in the proof of Theorem 3. Hence, for smal |l|∞ the singular
set S is a union of two circles. The asymptotic velocity ω is given by the evaluation
β[X ] which is the sum of two numbers: the evaluation of the regular part and that of
the singular parts. The first one is a space integral and the second one is a flux through
a surface with a boundary S, i.e. a cylinder, see Fig. 16. We will represent it as a union
of paths with fixed θ1.

Fix θ1 = ϕ. Since {A(ϕ)|ϕ ∈ T 1
x0 S} and {B(ϕ)|ϕ ∈ T 1

x0 S} are two closed circles,

the θ̃1-component of the vector field X will not give any contribution to the evaluation
of a singular part. Then, the flux is calculated exactly as in (22). Taking into account
that α+(ϕ) �= α−ϕ we have that the evaluation of βsing on the vector field X for θ1 = ϕ

gives

−2π − α+
3 (ϕ) − α−

3 (ϕ)

2π
ω3 − α+

1 (ϕ) + α−
1 (ϕ)

2π
ω2.

By integration over T 1
x0 S, we obtain

〈
βsing, [X ]〉 = −π − ᾱ3

π
ω3 − ᾱ1

π
ω2.
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Fig. 16 This figure represents a fondamental domain of the torus T3. The evaluation of βsing is equal to the
flux of X through the surface of the cylinder foliated by intervals θ1 = const

The evaluation of the regular part βreg = β1d θ̃1+β2d θ̃2+β3d θ̃3, β1, β2, β3 ∈ R is
given by its periods β1, β2, β3 that we can calculate by integrating βreg on three circles:
correspondingly, {(ϕ, π, 0)|ϕ ∈ S

1}, {(0, ϕ, 0)|ϕ ∈ S
1} and {(0, π, ϕ)|ϕ ∈ S

1}.
Each one of these circles is disjoint from the cylinder of singularities, Moreover,

there is a torus containing this cylinder disjoint from these three circles. This is clear
for the two last paths since θ1 = const and this follows from the 2-dimensional pictures
drawn before, see for example Fig. 13. The first circle neither does not intersect the
cylinder since this corresponds to a degenerate position that is never approached by
continuous curves {A(ϕ)} and {B(ϕ)}, ϕ ∈ T 1

x0 S. One can easily see that in all of three
cases, β j = 1, j = 1, 2, 3 and hence

〈
βreg, [X ]〉 = ω1 + ω2 + ω3. By summing up

two contributions we get the final answer. 	
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