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Abstract
In, Rizzardo andVan denBergh (An example of a non-Fourier–Mukai functor between
derived categories of coherent sheaves. arXiv:1410.4039, 2014) constructed an exam-
ple of a triangulated functor between the derived categories of coherent sheaves on
smooth projective varieties over a field k of characteristic 0which is not of the Fourier–
Mukai type. The purpose of this note is to show that if char k = p then there are very
simple examples of such functors. Namely, for a smooth projective Y over Zp with
the special fiber i : X ↪→ Y , we consider the functor Li∗ ◦ i∗ : Db(X) → Db(X)

from the derived categories of coherent sheaves on X to itself. We show that if Y is a
flag variety which is not isomorphic to P

1 then Li∗ ◦ i∗ is not of the Fourier–Mukai
type. Note that by a theorem of Toen (Invent Math 167:615–667, 2007, Theorem
8.15) the latter assertion is equivalent to saying that Li∗ ◦ i∗ does not admit a lifting to
a Fp-linear DG quasi-functor Db

dg(X) → Db
dg(X), where Db

dg(X) is a (unique) DG

enhancement of Db(X). However, essentially by definition, Li∗ ◦i∗ lifts to aZp-linear
DG quasi-functor.

Given smooth proper schemes X1, X2 over a field k and an object E ∈ Db(X1 ×k X2)

of the bounded derived category of coherent sheaves on X1×k X2 define a triangulated
functor

�E : Db(X1) → Db(X2) (1)

sending a bounded complex M of coherent sheaves on X1 to Rp2∗(E
L⊗ p∗

1 M),
where pi : X1 ×k X2 → Xi are the projections. Recall that a triangulated functor
Db(X1) → Db(X2) is said to be of the Fourier–Mukai type if it is isomorphic to �E

for some E .
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Let Y be a smooth projective scheme over SpecZp, and let X be its special fiber,
i : X ↪→ Y the closed embedding. Consider the triangulated functor G : Db(X) →
Db(X) given by the formula

G = Li∗ ◦ i∗

We shall see that in general G is not of the Fourier–Mukai type.

Theorem Let Z a smooth projective scheme over SpecZp, Y = Z ×Zp Z , X =
Y ×Zp SpecFp. Assume that

(1) The Frobenius morphism Fr : Z → Z, where Z = Z ×Zp SpecFp, does not lift
modulo p2.

(2) H1(X , TX ) = 0, where TX is the tangent sheaf on X.

Then G = Li∗ ◦ i∗ : Db(X) → Db(X) is not of the Fourier–Mukai type.

For example, let GLn be the general linear group over SpecZp, B ⊂ GLn a Borel
subgroup. Then, by Theorem 6 from Buch et al. (1997), for any n > 2, the flag
variety Z = GLn/B satisfies the first assumption of the Theorem i.e., the Frobenius
Fr : Z → Z does not lift on Z ×Zp SpecZ/p2Z. By Kumar et al. (1999, Theorem 2),
we have that H1(Z , TZ ) = H1(Z ,OZ ) = 0. It follows that H1(X , TX ) = 0. Hence,
by the Theorem, for n > 2, G : Db(X) → Db(X) is not of the Fourier–Mukai type.

Proof Assume the contrary and let E ∈ Db(X ×Fp X) be a Fourier–Mukai kernel of
G. By definition, for every M ∈ Db(X) we have a functorial isomorphism

G(M)
∼−→ Rp2∗(E

L⊗ p∗
1 M). (2)

By the projection formula (Hartshorne 1966, Chapter II, Prop. 5.6) we have that

i∗ ◦ Li∗ ◦ i∗(M)
∼−→ i∗(M)

L⊗ i∗(OX )
∼−→ i∗(M) ⊗ (OY

p−→ OY )
∼−→ i∗(M)

⊕i∗(M)[1]

In particular, if M is a coherent sheaf then Hi (G(M)) 
 M for i = 0,−1 and
Hi (G(M)) = 0 otherwise. Applying this observation and formula (2) to skyscraper
sheaves, M = δx , x ∈ X(Fp), we conclude that the coherent sheaves Hi (E) are set
theoretically supported on the diagonal �X ⊂ X ×Fp X . Applying the same formulas
to M = OX we see that p2∗(Hi (E)) = OX for i = 0,−1 and p2∗(Hi (E)) = 0
otherwise. In fact, every coherent sheaf F on X ×Fp X which is set theoretically
supported on the diagonal and such that p2∗F = OX is isomorphic toO�X . It follows
that H0(E) = H−1(E) = O�X . In the other words, E fits into an exact triangle in
Db(X × X)

O�X [1] α−→ E −→ O�X

β−→ O�X [2] (3)
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for some β ∈ Ext2OX×Fp X
(O�X ,O�X ). We wish to show that the second assumption

in the Theorem implies that β = 0, while the first one implies that β �= 0. For every
M ∈ Db(X), (3) gives rise to an exact triangle

M[1] αM−→ G(M) −→ M
βM−→ M[2] (4)

Our main tool is the following result. �
Lemma For a coherent sheaf M on X the following conditions are equivalent.

(1) βM = 0.
(2) G(M)

∼−→ M ⊕ M[1].
(3) There exists a morphism λ : G(M) → M[1] such that λ ◦ αM is an isomorphism.
(4) M admits a lift modulo p2 i.e., there is a coherent sheaf M̃ on Y flat over Z/p2Z

such that i∗M̃ 
 M.

Proof The equivalence of (1), (2) and (3) is immediate. Let us check that (3) is equiv-
alent to (4). By adjunction a morphism λ : G(M) → M[1] gives rise to a morphism
γ : i∗M → i∗M[1]. Note that M̃ := (cone γ )[−1] is a coherent sheaf on Y which is
an extension of i∗M by itself:

0 −→ i∗M
v−→ M̃

u−→ i∗M −→ 0. (5)

It suffices to prove that λ ◦ αM : M[1] → M[1] is an isomorphism if and only if M̃
is flat over Z/p2Z.

The exact sequence (5) gives rise to an exact triangle

Li∗i∗M → Li∗M̃ → Li∗i∗M → Li∗i∗M[1].

This, in turn, yields a long exact sequence of the cohomology sheaves

0 = L2i∗i∗M → L1i∗i∗M
L1i∗(v)−→ L1i∗M̃ → M

λ◦αM [−1]−→ M → i∗M̃
L1i∗(u)−→ M → 0.

It follows that the morphism λ ◦ αM is an isomorphism if and only if the morphisms

v and u from exact sequence (5) induce isomorphisms i∗M
∼−→ Ker(M̃

p−→ M̃),

Coker(M̃
p−→ M̃)

∼−→ i∗M . The latter condition is equivalent to the flatness of M̃
over Z/p2Z. �
We have a spectral sequence converging to Ext∗OX×Fp X

(O�X ,O�X ) whose second

page is H∗(X , Ext∗OX×Fp X
(O�X ,O�X )). In particular, we have a homomorphism

Ext2OX×Fp X
(O�X ,O�X ) → H0(X , Ext2OX×Fp X

(O�X ,O�X ))
∼−→ H0(X ,∧2TX ).

Let us check that the image μ of β under this map is 0. To do this we apply the
Lemma to skyscraper sheaves δx , where x runs over closed points of X . On the
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one hand, the evaluation of the bivector field μ at x is equal to the class of βδx in

Ext2OX
(δx , δx )

∼−→ ∧2Tx,X . On the other hand, by the Lemma, βδx = 0 since δx is

liftable modulo p2. Next, the assumption that H1(X , TX ) = 0 implies that β lies in
the image of the map

v : H2(X ,OX )
∼−→ H2(X , Ext0OX×Fp X

(O�X ,O�X )) → Ext2OX×Fp X
(O�X ,O�X ).

(6)

The map (6) has a left inverse u : Ext2OX×Fp X
(O�X ,O�X ) → H2(X ,OX ) which

takes β to βOX . But, by the Lemma, the later class is equal to 0 since OX is liftable
modulo p2. It follows that β is 0.

On the other hand, let 
 ⊂ X = Z ×Fp Z be the graph of the Frobenius morphism
Fr : Z → Z andO
 the structure sheaf of 
 viewed as a coherent sheaf on X . Then,
by our first assumption, the sheafO
 is not liftable modulo p2. Hence, by the Lemma,
βO


is not 0. This contradiction completes the proof. �
Remark Let X be a smooth proper scheme over Fp. The bounded derived category
Db(X) of coherent sheaves on X has a natural dg enhencement L par f (X) which is a
dg category over Fp whose homotopy category Ho(L par f (X)) is equivalent to Db(X)

[see, for example, (Toën 2007, §8.3)]. One has a functor

Ho(REnd
Fp

(L par f (X))) → End(Db(X)) (7)

from the homotopy category of Fp-linear dg quasi-endofunctors of L par f (X) to the
category of triangulated endofunctors of Db(X). According to (Toën 2007, Theorem
8.15) the dg category RHom

Fp
(L par f (X), L par f (X)) is homotopy equivalent to the

dg category L par f (X ×Fp X), so that the essential image of (7) consists of triangu-
lated endofunctors of the Fourier–Mukai type. On the other hand, any dg category
over Fp can be viewed as a dg category over Zp. In particular, one can consider the
dg category RHom

Zp
(L par f (X), L par f (X)) of Zp-linear dg quasi-endofunctors of

L par f (X). Functor (7) factors as follows.

Ho(REnd
Fp

(L par f (X))) → Ho(REnd
Zp

(L par f (X))) → End(Db(X)). (8)

Given a flat lifting Y of X over Zp one can view the functor Li∗i∗ as an object of
the category Ho(REnd

Zp
(L par f (X))). The construction from this paper is inspired

by the simple observation that for any X and Y (for example, one can take
X = SpecFp, Y = SpecZp) the Zp-linear dg quasi-functor Li∗i∗ is not in the
image of Ho(REnd

Fp
(L par f (X))).
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