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Abstract
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1 Introduction
1.1 Summary

This paper is a sequel to Finkelberg and Tsymbaliuk (2017), where we initiated the
study of shifted quantum affine algebras. Recall that the shifted quantum affine algebra
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U} depends on a coweight 1 of a semisimple Lie algebra g, and in case = 0 it is
just a central extension of the quantum loop algebra U, (Lg) over the field C(v). Let
us represent u in the form © = A — o, where A is a dominant coweight of g, and « is a
sum of positive coroots. Also, let us assume from now on that g is simply-laced. Then
A encodes a framing of a Dynkin quiver of g, and o encodes the dimension vector of
a representation of this quiver. Let A? stand for the quantized K -theoretic Coulomb
branch of the corresponding 3d N = 4 SUSY quiver gauge theory. It is a C[v, v~ !]-
algebra, and we denote A . := A" ®¢(y ,-1] C(v). One of the main motivations for
our study of shifted quantum affine algebras was the existence of a homomorphism
5?7 s UH [zfl, ...,zﬁl] — AP .. where N is the total dimension of the framing.
We conjectured that this homomorphism is surjective and also conjectured an explicit
description of its kernel. In other words, we gave a conjectural presentatlon of Af. .

by generators and relations as a truncated shifted quantum affine algebra U -

It is very much desirable to have a similar presentation for the genuine quan-
tized K-theoretic Coulomb branch A" (e.g. in order to study the non-quantized
K -theoretic Coulomb branch at v = 1). To this end, it is necessary to construct an inte-
gral form (a C[v, v~']-subalgebra) 814 [z, . . ., Zil] c UtA!, ... ,zﬁl] such that
5?‘7 (L[‘,,L [zfl, R zﬁl]) = A" and the specialization ilﬁf:l[z;:l, e, zﬁl] is a com-
mutative C-algebra. Then A” would be represented as an explicit quotient algebra
e

In the present paper, we restrict ourselves to the case g = sl,, and pro-
pose a definition of the desired integral form i,[“[zl ,...,zﬁl]. It possesses a
PBWD (Poincaré-Birkhoff—Witt— Drmfeld) C[v, v_']-base, cf. Tsymbaliuk (2018).
We prove the surjectivity of @5 : $(4 (7', ...,z5'1 — AY in Theorem 4.15.
Unfortunately, we are still unable to say much about the kernel ideal of
5?7 sy [z;—Ll, . zf,l] — AV in the general case. The only case when we were
able to determine the kernel ideal explicitly is g = sl,, u = 0, A = nw,—1 (a
multiple of the last fundamental coweight) Then the corresponding truncated shifted
quantum affine C[uv, v~ !]-algebra il is isomorphic to an integral form i, (sl,) of an
extended version U, (sl,) of the quantrzed universal enveloping algebra of sl,,. More
precisely, the Harish-Chandra center Z of Uy (sl;,) is isomorphic to the ring of symmet-

n ~
ric polynomials ((C(v)[zlil,..., ,ﬂ;l]) /@12, — 1), and Uy (sl,) 1= Uy(sl,) @z

Cw)z',...,zt"/(z1 -2, — 1), cf. Beilinson and Ginzburg (1999). The corre-
sponding integral form 4, (sl,) = flv (slp) N Uy(sl,) of the non-extended quantized
universal enveloping algebra Uy (sl,) is nothing but the RTT integral form U5 (sl,).
It is free over C[v, v—!] and admits a PBW basis. The truncation homomorphism
U,?[z;—Ll, cel, z,ﬂfl] — 17,, (5[ ) factors through Jimbo’s evaluation homomorphism
Uy (Lsl, )[z ., Z, 1] U,,(s ») of Jimbo (1986), and ilo[z . ] is noth-
ing but the pull -back of the RTT integral form of U, (Ls[ )[z1 T ] along the
.z, ] — Uy(Lsl, )[ N i +11 1n fact, our definition of the
integral form Sk [z1 e N ] for general u was found as a straightforward gener-
alization of the RTT integral form expressed in terms of a PBWD basis.
Note that U, (sl,,) possesses three different integral forms:

projection UO[Z1 Y
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200 M. Finkelberg, A. Tsymbaliuk

(a) Lusztig’s U ®z C of (Lusztig 1990a, 0.4);

(b) Lusztig’s 4O ®7z C of (Lusztig 1993, 29.5.1) (its specialization at v = 1 is the
commutative ring of functions C[SL(n)]);

(©) il;“ (sl,) (its specialization at v = 1 is the commutative ring of functions on the
big Bruhat cell of SL(n)). It is dual to (a) with respect to a natural C(v)-valued
pairing on U, (sl,).

We expect that 41, (Lsl,) is dual to the integral form of Chari and Pressley (1997) and

(Grojnowski 1994, §7.8) of U,(Lsl,) with respect to the new Drinfeld pairing, cf.

(Grojnowski 1994, Lemma 9.1).

Finally, recall that in Finkelberg and Tsymbaliuk (2017) we have constructed the
comultiplication C(v)-algebrahomomorphisms (incase g = sl,) Ay 1, : Ul tha
U ® UL for any coweights j11, i12. We prove in Theorem 4.23 that this coprod-
uct preserves our integral forms, and induces the C[v, v~!]-algebra homomorphisms
Ay T LR Tl ST

To simplify the exposition of the paper, we start by establishing the ratio-
nal/homological counterparts of the aforementioned results, proved earlier in Kam-
nitzer et al. (2018a, b) using different techniques.

In Appendix A, we collect the relevant results on shifted Yangians and Drinfeld—
Gavarini duals, which are used in Sect. 2. Our objectives are twofold. First, we establish
the PBW property for the Drinfeld—Gavarini dual (Proposition A.2) and apply it to
the Yangians (Theorems A.7, A.10). Second, we identify two different approaches
(of Kamnitzer et al. 2014; Braverman et al. 2016; Finkelberg et al. 2018) towards
dominantly shifted Yangians of semisimple Lie algebras (Theorem A.12).

In Appendix B, we provide a short proof of the well-known PBW property for the
Yangian Y5 (g), since the original proof of Levendorskii (1993) contains a gap.

1.2 Outline of the Paper

e In Sect. 2.1, we recall the RTT Yangians Y;"(gl,), Y;"(sl,) and their C[h]-
subalgebras Y}'(gl,), Y}'(sl,). Since the terminology varies in the literature, we
shall stress right away that the former two are quantizations of the universal
enveloping U (gl,[t]), U(sl,[7]) (see Remark 2.2), while the latter two quantize the
algebras of functions on the congruence subgroups GL(n)[[t ! 14, SL(n)[[t’l]]l (see
Remark 2.4) and can be viewed as the Drinfeld—Gavarini dual Gavarini (2002) of the
former, see Appendices A.1, A.6.

In Sect. 2.2, we recall the standard definition of the quantum minors and the quantum
determinant of 7' (z), as well as the description of the center ZY. )51“ (gl,). All of this is
crucially used in Sect. 2.10.

In Sect. 2.3, we recall the RTT evaluation homomorphism ev™ : Y;"(gl,) —
U(gl,) as well as the induced homomorphism between their C[%]-subalgebras
ev™ 1 Yi'(gl,) — U(gl,). The main result of this subsection provides a “mini-
malistic description” of the kernels of these homomorphisms, see Theorems 2.15 and
2.17 (the former is essentially due to Brundan and Kleshchev 2006).

In Sect. 2.4, we recall the Drinfeld Yangians Yj(gl,) and Yj(sl,). The isomor-

phism Y : Yx(gl,) — Yg“(g[”) (see Theorem 2.18) is due to Iohara (1996) and is
essentially a Yangian counterpart of Ding and Frenkel (1993). Following Kamnitzer
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et al. (2014), we define their C[h]-subalgebras Y3 (gl,,), Y (sl,), and the main result
identifies the former with Yrr:t(g[n) via the isomorphism Y, see Proposition 2.21 (a
straightforward proof'is sketched right after it, while a more conceptual one is provided
in Appendix A.6).

In Sect. 2.5, we recall the evaluation homomorphism ev : Yj(sl,) — U (sl,) of
Drinfeld (1985) and verify its compatibility with ev™ via Y, see Theorem 2.25.

In Sects. 2.6 and 2.7, we recall two alternative definitions of the shifted Yangian
Y,, for a general shift ;4 and for a dominant shift u, respectively (u is an element
of the coweight lattice). The fact that those two approaches are indeed equivalent for
dominant shifts is the subject of Theorem 2.31, the proof of which is presented in
Appendix A, see Theorem A.12.

In Sects. 2.8 and 2.9, we recall two key constructions of (Braverman et al.
2016, Appendix B): the homomorphism CD%L s Yyulzi, oo zn] — Zlh of Theo-
rem 2.34, which factors through the quantized Coulomb branch Aj giving rise to

. =A . . .
the homomorphism & P Y,lz1, ..., 28] = Ap. The main result of this subsection,

Proposition 2.36 due to Kamnitzer et al. (2018b), establishes the surjectivity of 6:\;
in type A. An alternative proof of this result is outlined in Remark 4.16 and crucially
utilizes the shuffle realizations of Y3 (s(;,), Yr(sl,) of (Tsymbaliuk 2018, §6).

In Sect. 2.10, we prove a reduced version of the conjectured description (Braverman
etal. 2016, Remark B.21) of Ker(@fj) as an explicit truncation ideal 3:\7 in the particular
case u = 0, A = nw,—1 (which corresponds to the dimension vector (1,2, ..., n—1)
and the framing (0, ..., 0, n)), see Theorem 2.39. An alternative proof of this result
was given earlier in Kamnitzer et al. (2018a). The key ingredient in our proof, The-
orem 2.41, identifies the reduced truncation ideal ng"_' with the kernel of a certain
version of the evaluation homomorphism ev. This culminates in Corollary 2.44, where
we identify the corresponding reduced Coulomb branch A with the integral form of
the extended (in the sense of Beilinson and Ginzburg (1999)) universal enveloping
algebra of sl,,.

o In Sect. 3.1, we recall the RTT integral form ' (gl,) following Faddeev et al.
(1989); Ding and Frenkel (1993). The latter is a C[v, v’l]-algebra, which can be
thought of as a quantization of the algebra of functions on the big Bruhat cell in
GL(n) (see (3.5) and Remark 3.15) as v — 1.

In Sect. 3.2, we recall the RTT integral form (' (Lgl,) following Faddeev et al.
(1989), Ding and Frenkel (1993). The latter is a C[v, v~']-algebra, which can be
thought of as a quantization of the algebra of functions on the thick slice "Wy of
(Finkelberg and Tsymbaliuk 2017, 4(viii)) (see (3.10) and Remark 3.26) as v — 1.

In Sect. 3.3, we recall the RTT evaluation homomorphism ev™ : L (Lgl,) —
$%(gl,). The main result of this subsection provides a “minimalistic description” of
the kernel of this homomorphism, see Theorem 3.7.

In Sect. 3.4, we recall the Drinfeld-Jimbo quantum U,(gl,), Uy(sl,) defined
over C(v), and an isomorphism Y : Uy(gl,) = U (al,) ®cpy.,-1] C() of
Ding and Frenkel (1993) (see Theorem 3.9). We introduce C[v, v~!]-subalgebras
$hy (gl,), Uy (sl,) in Definition 3.10, and identify the former with £ (gl,,) via Y, see
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202 M. Finkelberg, A. Tsymbaliuk

Proposition 3.11. Finally, linear Clv, v~ 1]-bases of I, (gl,), Yy (sl,) are constructed
in Theorem 3.14.

In Sect. 3.5, we recall the Drinfeld-Jimbo quantum loop algebras
Uy(Lgl,), Uy(Lsl,) defined over C(v), and an isomorphism Y : Uy(Lgl,) =
UM (Lgl,) ®cyy.p-1] C(v) of Ding and Frenkel (1993) (see Theorem 3.17). Follow-
ing Tsymbaliuk (2018), we introduce Clv, v"]-subalgebras Uy (Lgl,), Uy (Lsl,) in
Definition 3.19, and identify the former with £{;'(Lgl,,) via Y, see Proposition 3.20.
Finally, based on Theorem 3.25 (proved in Tsymbaliuk 2018), we construct linear
C[v, v—!]-bases of L, (Lgl,), Uy (Lsl,) in Theorem 3.24.

In Sect. 3.6, we recall the shuffle realizations of U, (Lgl,) and its integral form
7 (Lgl,) as recently established in Tsymbaliuk (2018), see Theorems 3.28, 3.30 and
Proposition 3.29. This is crucially used in Sect. 4.

In Sect. 3.7, we recall the evaluation homomorphism ev : Uy (Lsl,) — Uy(gl,) of
Jimbo (1986) (see Theorem 3.32) and verify its compatibility with (a C(v)-extension
of) ev™ via Y, see Theorem 3.33.

In Sect. 3.8, we recall the standard definition of the quantum minors and the quantum
determinant of 7% (z), as well as the description of the center of U7 (gl,). All of this
is crucially used in Sect. 4.3.

In Sect. 3.9, we slightly generalize the algebras of the previous subsections, which
is needed for Sect. 4.3.

e In Sect. 4.1, we recall the notion of shifted quantum affine algebras of Finkelberg
and Tsymbaliuk (2017): U, and U,?d’”[zlil, cey zil] (depending on a coweight ).
We introduce their C[v, v~!]-subalgebras 3", y2* [zfl, e zil] and construct
linear C[v, v~']-bases for those in Theorem 4.4. We also recall the homomorphism
CT),% : Sd’M[ZTI, ...,zﬁl] — .,‘Nlll’rac[zlil, el zﬁl] of Finkelberg and Tsymbaliuk
(2017) (see Theorem 4.1).

In Sect. 4.2, we recall the notion of the (extended) quantized K -theoretic Coulomb

branch AP (which is a C[v, v_l]-algebra) and the fact that &5% gives rise to a homo-

morphism 5% : de’”[zfl, ce Zﬁl] — A" ®¢[y.p-1] C(v). In Proposition 4.9 we
prove that the integral form iﬁd’“ [zlil, cee zﬁl] is mapped to A" under 5%, which is

based on explicit formulas (4.6, 4.7). In Theorem 4.11, we provide a shuffle interpre-
tation of the homomorphism 5% when restricted to either positive or negative halves
of U2+ [ZI—LI, . zﬁl]. In Proposition 4.12, we combine this result with the shuffle

description of the integral forms L(; (Lgl,), L5 (Lgl,) to compute 5,% -images of cer-
ad,;ur_+1
v LZy

tain elements in [ . zil]. Combining this computation with the ideas of

Cautis and Williams (2018), we finally prove that 5/% : ilid’“[zftl, e zil] — A% is
surjective, see Theorem 4.15.

In Sect. 4.3, we prove a reduced version of the integral counterpart of (Finkel-
berg and Tsymbaliuk 2017, Conjecture 8.14), see Conjecture 4.17, which identifies
Ker(@%) with an explicit truncation ideal 3% in the particular case © = 0, A = nwy,—1
(which corresponds to the dimension vector (1,2,...,n — 1) and the framing
0, ...,0,n)), see Theorem 4.18. The key ingredient in our proof, Theorem 4.19,
identifies the reduced truncation ideal Zgw”_] with the kernel of a certain version
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of the evaluation homomorphism ev. This culminates in Corollary 4.22, where we
identify the corresponding reduced quantized Coulomb branch A® with the extended
version (in the sense of Beilinson and Ginzburg (1999)) of 4, (sl,,).

In Sect. 4.4, we prove that the C(v)-algebrahomomorphisms A, ., : SO thy

2 ® Uy of (Finkelberg and Tsymbaliuk 2017, Theorem 10.26) generalizing
the Drinfeld-Jimbo coproduct on U, (Lsl,) give rise to C[v, v_l]-algebra homomor-
phisms A, i, 6772 5 (65 @ (U37H2 see Theorem 4.23. We also prove that
the integral forms 43"° are intertwined by the shift homomorphisms of (Finkelberg
and Tsymbaliuk 2017, Lemma 10.24), see Lemma 4.31.

o In Appendix A.1, we recall the notion of the Drinfeld-Gavarini dual A’ of a Hopf
algebra A defined over C[], see (A.1, A.2).

In Appendix A.2, following the ideas of Gavarini (2002), we establish a PBW
theorem for the Drinfeld—Gavarini dual A’ of a Hopf algebra A satisfying Assump-
tions (As1)—(As3), see Proposition A.2. This yields an explicit description of A’.

In Appendix A.3, assuming that the Hopf algebra A is in addition graded (see
assumption (As4)), we identify its Drinfeld-Gavarini dual A" with the Rees algebra
of the specialization Ap—; with respect to the filtration (A.10), see Proposition A.4.

In Appendix A.4, we briefly recall the Yangian Y; = Yj(g) of a semisimple Lie
algebra g (generalizing the case g = sl, featuring in Sect. 2) and its key relevant
properties.

In Appendix A.5, we verify that the aforementioned Assumptions (As1)—(As3) hold
for Y, hence, Proposition A.2 applies. This culminates in the explicit description of
the Drinfeld—Gavarini dual Y;, (thus filling in the gap of the description of Y} given
just before (Kamnitzer et al. 2014, Theorem 3.5)) and establishes a PBW theorem for
it, see Theorem A.7. The validity of the assumption (As4) for Y and Proposition A.4
yield a Rees algebra description of Y7, see Corollary A.S.

In Appendix A.6, we verify that Assumptions (Asl)—(As3) hold for the RTT
Yangian Y,ri“(g[,,). This gives rise to the identification of its Drinfeld—Gavarini dual
Yt (gl,)" with the subalgebra Y} (gl,,) of Definition 2.3, as well as establishes the
PBW theorem (that we referred to in Sect. 2) for the latter, see Theorem A.10. As an
immediate corollary, we also deduce a new conceptual proof of Proposition 2.21.

In Appendix A.7, we compare two definitions of dominantly shifted Yangians for
any semisimple Lie algebra g: the Rees algebra construction of Section 2.6 (following
the approach undertaken in Braverman et al. (2016); Finkelberg et al. (2018)) and the
subalgebra construction of Sect. 2.7 (following the original approach of Kamnitzer
et al. (2014)). Our main result, Theorem A.12 (generalizing Theorem 2.31 stated for
g = sl,) provides an identification of these two definitions.

In Appendix A.8, we introduce one more definition of the shifted Yangian and prove
in Theorem A.17 that it is equivalent to the Rees algebra construction.

e In Appendix B.1, we state a simple but useful general result, Lemma B.1, relating
the specializations of the graded C[/]-algebra at i = 0 and & = 1. This is needed for
Theorem B.2.

In Appendix B.2, we recall the basic facts about ¥ = Yp—1.
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204 M. Finkelberg, A. Tsymbaliuk

In Appendix B.3, we establish the PBW theorem for Y (thus filling in the gap of
Levendorskii (1993), though our proof is different), see Theorem B.2, which allows
us to immediately deduce the PBW theorem for the Yangian Y, see Theorem B.3.

2 Shifted Yangian

This section is a rational/cohomological prototype of Sects. 3, 4.

2.1 The RTT Yangian of gl,, and s(,

Let & be a formal variable. Consider the rational R-matrix

A h
Rra(2) = Ry (2) = 1 — ;P 2.1

which is an element of C[A]®¢ (End C")®2, where P = > Eij®Ej; € (End Cn)®2
is the permutation operator. It satisfies the famous Yang-Baxter equation with a spectral
parameter:

Rrat;lZ(“)Rrat;B(u + U)Rrat;23 (v) = Rrat;23(U)Rrat;l3(u + U)Rrat;12(l4)' (2.2)

Following Faddeev et al. (1989), define the RTT Yangian of gl,, denoted by
Y{"(gl,), to be the associative C[h]-algebra generated by {tl.(;) }Ell/ -, Subject to the

following defining relations:
Rrat(z — w)T1 () T2 (w) = To(w) T1(2) Rrat(z — w). (2.3)

Here T (z) is the series in z~! with coefficients in the algebra Yf*(gl,) ® End C",

defined by T'(z) = Zi’j 1ij(2) @ Ejj with 1;;(2) :==8;; +h ), tl-(jr)z_’. Multiplying
both sides of (2.3) by z — w, we obtain an equality of series in z, w with coefficients
in Y1 (gl,) ® (End C")®2.

Let  ZY["(gl,) denote the center of  Y/"(gl,). Explicitly,
ZY["(gl,) ~ C[hlld1, da, ...] with d, defined via qdet T'(z) = 1 + hy o1drz™,
see Definition 2.9 and Proposition 2.10.

For any formal series f(z) € 1 + %(C[h][[z_l]], the assignment

T(@) v~ f()T(2) (2.4)

defines an algebra automorphism of Y} (gl,,).

Definition 2.1 The C[/]-subalgebra Y} (sl,) of Y["(gl,) formed by all the elements
fixed under all automorphisms (2.4) is called the RTT Yangian of sl,.

Analogously to (Molev 2007, Theorem 1.8.2),! we have a C[h]-algebra isomor-
phism
Yit(al,) = Yit(sly) ®crny ZY (aly). (2.5)

1 We note that the C-algebras of loc.ciz. are the quotients of their C[A]-counterparts above by (5 — 1).
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Hence, there is a natural projection 7 : Yj"(gl,) — Yj"(sl,) with Ker(r) =
(di,da,...).
(r)

Remark 2.2 Note that the assignment ¢; ;> Eij - 1"~ gives rise to a C-algebra iso-

morphism Y;"(gl,,)/(h) = U (gL, []). This explains why Y[ (gl,) is usually treated
as a quantization of the universal enveloping algebra U (gl,[¢]).

Definition 2.3 Let Y}'(gl,) be the C[h]-subalgebra of Y'(gl,) generated by
(Y 2]
ij

1<i,j<n’

Let us note right away that (2.4) with f(z) € 1 + %(C[h][[z_l]] defines an
algebra automorphism of Y}'(gl,). As in Definition 2.1, define Y}'(sl,) to be the
C[h]-subalgebra of Y‘gt(g[n) formed by all the elements fixed under these automor-
phisms. We also note that the center ZY}'(gl,) of Y}'(gl,) is explicitly given by
ZY N (gl,) ~ C[hl[hdy, hda, .. ] (clearly {hd,},>1 C Y}'(gl,)). Finally, we also have
a C[h]-algebra isomorphism Y1 (gl,,) >~ Y['(sl,) ®cn) ZY} (gl,), cf. (2.5). Hence,
there is a natural projection 7 : Yi'(gl,,) — Y}'(sl,) with Ker(7) = (hdy, hda, .. .).
Remark2.4 In contrast to Remark 2.2, we note that the assignment
htl.(jr) — t};) gives rise to a C-algebra isomorphism Y (gl,,)/(h) ~ C[ts;)]g}’ j<n-In
other words, Y\ (gl,,) can be treated as a quantization of the algebra of functions on the

congruence subgroup GL(n)[[t~!]]; := the kernel of the evaluation homomorphism
GLM)[[t~'1] = GL®).

2.2 Quantum Minors of T(2)

We recall the notion of quantum minors following (Molev 2007, §1.6). This generalizes
qdet T'(z) featuring in Sect. 2.1, and will be used in the proof of Theorem 2.41. For
1 <r <n,define R(zy, ..., z) € (End C"®" via

R(z1,...,2/) = (erl,r)(Rr72,rRr72,r71) <o (Ryy -+ Ry2) with
Rij = Ruay;ij(zi — 2).
The following is implied by (2.2) and (2.3), cf. (Molev 2007, Proposition 1.6.1):

Lemma 25 R(z1,...,z.)T1(z1) - - Tr(2p) = T (zr) - - - T1 (1) R(21, - - - s 2p).

Let A, € (End C")®" denote the image of the antisymmetrizer oex, (— 1) -0 €
C[Z,] under the natural action of the symmetric group X, on (C")®". Recall the
following classical observation, cf. (Molev 2007, Proposition 1.6.2):

Proposition2.6 R(z,z —h,...,z— (r — k) = A,.
Combining Lemma 2.5 and Proposition 2.6, we obtain the following

Corollary 2.7 We have

AT (z=h) - T,(z=(r—Dh) = T.(z—(r—Dh) - - - Ta(z =) T1 () Ar. (2.6)
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The operator of (2.6) can be written as t,f :Zr’ (2) ® Eqy.py ® - -+ ® Eg, 5, With
tgll.':.'g:(z) € Y%‘(g[n)[[z_l]] and the sum taken over all ay,...,a,,b1,...,b, €

a7 .
Definition 2.8 The coefficients ZZI] l‘;" () are called the quantum minors of T (z).

In the particular case » = n, the image of the operator A, acting on (C")®" is 1-
dimensional. Hence A, T1(z) - - - T (z — (n — 1)h) = A, - qdet T (z) with qdet T'(z) €
Yo (g1,)[[z~'11. We note that qdet T'(z) = #-"(z) in the above notations.

Definition 2.9 qdet T (z) is called the quantum determinant of T (z).

Since 1;j(z) € &; + hY™(gl,)[[z7'1l, it is clear that qdet T(z) € 1 +
hY}*(gl,)[[z~']]. Hence, it is of the form qdet T(z) = 1+ hY .. d,z”" with
d- €Y ;L“(g[n). The following result is well-known, cf. (Molev 2007, Theorem 1.7.5):

Proposition 2.10 The elements {d,},>1 are central, algebraically independent, and
generate the center ZY}"(gl,) of Y} (gl,). In other words, we have a C[h]-algebra
isomorphism ZY}"(gl,)) ~ C[h][d}, d>, . . .].

2.3 The RTT Evaluation Homomorphism ev'*t

Definition 2.11 Let U (gl,,) be the universal enveloping algebra of gl,, over C[A].

Recall the following two standard relations between Y,‘;L“(g[n) and U (gl,,):

(1)

Lemma 2.12 (a) The assignment E;j > L gives rise to a C[h]-algebra embedding

L2 U(gl,) < Yi'(gl,).

)

(b) The assignment i = 8, 1E;ij gives rise to a C[h]-algebra epimorphism

ev™ : Yi'(gl,) — U(gl,).

rtt

The homomorphism ev™ is called the RTT evaluation homomorphism.

Remark 2.13 (a) The composition ev™ o ¢ is the identity endomorphism of U (gl,,).

(b) Define T := Zi’j Ei; ® Eijj € U(gl,) @ End C". Thenev™ : T'(2) > 1 + %T.

Let U(gl,,) be the C[%]-subalgebra of U (gl,,) generated by {/ix}cgr, . It is isomor-
phic to the h-deformed universal enveloping algebra:

Ulgl,) = T(gl,)/(({xy — yx = hlx, Y]}z yeqr, )

where T (gl,,) denotes the tensor algebra of gl,, over C[/]. We note that the homomor-
phisms ¢ and ev™ of Lemma 2.12 give rise to C[/]-algebra homomorphisms

¢: U(gl,) < Yi'(gl,) and ev™ : Y}'(gl,) — U(gl,). 2.7
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The PBW theorems for Y. ,ri“ (gl,,) (see Proposition A.9, cf. (Molev 2007, Theorem
1.4.1)) and U (gl,,) imply the following simple result:
Lemma 2.14 Ker(ev™ : Y}"(gl,) — U(gl,)) is the 2-sided ideal generated by

(r)yr=2

(6 NZi jzn

However, we will need an alternative description of this kernel Ker (ev''"), essentially
due to (Brundan and Kleshchev 2006, Section 6) (by taking further Rees algebras).
Theorem 2.15 Let I denote the 2-sided ideal of Y} (gl,) generated by {tl(q)},zg. Then
Ker(ev™ : Y (gl,) — U(gl,)) = I.

Proof Recall that (2.3) is equivalent to

(z —w)[tij (2), trw(w)] = Atxj (@)t (w) — txj (W)t (2))

forany 1 <1, j, k,! < n, which in turn is equivalent to (cf. (Molev 2007, Proposition
1.1.2))

min(r,s)
W =n S (R ), )
a=1
where we set tl.(;)) = Rl -
eSeti = j =k=1,1> 1,5 = 1in (2.8) to get [tl(?,tl(ll)] = tl(;). Hence

2
yNscr
eSeti=j=1=1k>1s=1in(28) toget[s”, 1] =
2
s
eSeti=1=1,j=k=2,5=1in(28)toget[t5,15,)] = 17 — 13
{l‘z(;)}rzz cl.
One can now apply the above three verifications with all lower indices increased
by 1. Proceeding further step by step, we obtain {tl.(/.r) }Elz j<n C 1L
This completes our proof of Theorem 2.15. ' O

Likewise, the PBW theorems for U(gl,) and Y}'(gl,) [see Theorem A.10, cf.
(Molev 2007, Theorem 1.4.1)] imply the following result:
Lemma 2.16 Ker(ev™ : Y‘gt(g[n) — Ul(gl,)) is the 2-sided ideal generated by
(Y
ij

1<i,j<n’

—t,g). Hence

. Hence

The following alternative description follows immediately from Theorem 2.15:

Theorem 2.17 Ker(ev™ : Y} '(gl,) — U(gl,)) = Y'(gl,) N 1.

2.4 The Drinfeld Yangian of gl,, and s(,

Following Drinfeld (1988) [cf. Iohara (1996), Molev (2007)], define the Yan-
gian of gl,, denoted by Yx(gl,), to be the associative C[h]-algebra generated by
{el.(r>, fi(r), c;r)}rzo with the following defining relations:

I<i<n,0<j<n
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é,;r)’;_j(v):l 0,
'el_(r+1) (s)] [ (r) g(s+1)] Ci;/h< ) (s)+e(r)e(r)>

) € € ey

[ (r+1 t s+1 ciith 3 s
fi(r )’ fl(/v)il _ I:fl(r)’ fl(,Y )] - _ ”2 <fl(”)fl(,?) + fl(,s‘)fl(r)> ,

[, 0
C; ), l(r)] = (=6 + 8j,i+l)e;r)v [Cj( ), f,-(r)] =i — 3j,i+l)fi(r)’

[ (s+1 1
C;H_ )’ ei(r)] _ I:é,J(_s)’ ei(r-i- )] —h. <_8ji§;S)e,(r)+5j,i+1/2 . (é.j(s)el(r)_’_ei(r)é.;s))) ,
1 ; 1 ; ; ;
[0, 1O 70 = (5 £ =810072 - € 10+ £0e))

_ei(r)» -fi(/S)] — 8ii/h£r+S)’

-el.(r), el-(,s)] =0 and [fl-(r), fi(/s)] =0if ¢;;y =0,
e [ef? e ]|+ [e [el o] = 0if i = -1,
£, [fi(rz)7 fl_gs)]] i I:fi(rz)’ [fi(n)’ figs)]] =0if ¢;r = —1,

reN

1<i<n

(2.9)

where (c;;r )l. —; denotes the Cartan matrix of s[, and {h(r)} are the coefficients

of the generating series h;(z) = 1 + thzo hl@ —=1 determined via h;(z) :=

(¢i(2))"'¢i41(z — h/2). Here the generating series ¢;(z), fi(z) (1 < i < n) and
¢j(2) (1 < j < n) are defined via

ei(z) = hZel@z—’_l, fiz) = hz 0277 ) =14 hZ{}r)z_r_l.

r>0 r>0 r>0

The C[h]-subalgebra of Y5(gl,,) generated by {e(r) f(r) h(r)}1<l<n is isomorphic
to the Yangian of sl,,, denoted by Y (sl,,). To be more precise, this recovers the new
Drinfeld realization of Yy (sl,), see Drinfeld (1988). The latter also admits the original
J-presentation with generators {x, J (x)}es1, and a certain list of the defining relations
which we shall skip, see Drinfeld (1985).

To relate Y gt(g[n) and Yy (gl,), consider the Gauss decomposition of 7'(z) of
Sect. 2.1:

T(z)=F() - G(z)- E@).

Here F(z), G(z), E(z) are the series in z~! with coefficients in the algebra Y%‘ (gl,)®
End C" which are of the form

F(z) = ZE,,+ZfU(z> Eij, G@) =Y ) Ei,

i>j

E(z) = ZEll+ZelJ(Z) Eij.

l<]
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Theorem 2.18 (Iohara 1996; cf. Ding and Frenkel 1993) There is a unique C[h]-
algebra isomorphism

T : Ya(gh,) = Yi(l,)
defined by
€i(2) > eiis1(@+ih/2), fi@) = firri@+ih/2), (@) > gj(z+jh/2). (2.10)

As an immediate corollary, Y%t (gl,,) is realized as a C[/1]-subalgebra of Y (gl,,). To

describe this subalgebra explicitly, define the elements {E W F OEC) }r20 of Yr(gl,)

o' aveAt
via
) =[..[.» ©7 .. O
E“.7+°‘§+I+"'+°‘ly o [ [er ’ej+l]’ 1€ ]v
(r) 0) (ONE) (2.11)
ijJrO%lJr...m,Y = [fl [ j+1’fj ]]

Here {alY}f‘:_ll are the standard simple roots of sl,, and AT denotes the set of positive
roots, At = {a% + o}y -+ 0 i<jziznt-

Definition 2.19 (a) Let Y (gl,,) be the C[h]-subalgebra of Yj(gl,) generated by

HFLE(C) hEO1 =’ u{h;?”}rzo . 2.12)
ol et 7 Ji<j<n

(b) Let Yy (sl,,) be the C[h]-subalgebra of Yy (sl,) generated by

0

U {hhlf’)}rzo . (2.13)

1<i<n

(r)
0. nEQ)

r=
Y

eAt

Remark2.20 The subalgebra Yp(gl,) is free over C[h] and the ordered PBW
monomials in the generators (2.12) form its basis. This can be derived similarly to The-
orem 3.24, cf. (Tsymbaliuk 2018, Theorem 6.8). An alternative proof (valid for all
Yangians) is provided in Appendix A, see Theorem A.7.

Proposition 2.21 Yj(gl,) = T‘l(Yg‘(g[n)).

The proof of Proposition 2.21 follows immediately from Proposition 2.22 and
Corollary 2.23 below. To state those, let us express the matrix coefficients of
F(2), G(z), E(z) as series in z~! with coefficients in Y,r{t(gI,,):

eij@=hYy el fi@=hY fPr7 g =1+hYy gl
r>1 r>1 r>1
(2.14)
The proof of the following result is analogous to that of Proposition 3.21 (actually
it is much simpler), and we leave details to the interested reader:
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Proposition 2.22 Forany 1 < j < i < n, the following equalities hold in Yg“(g[n):

1 1
ejin@ = [ei@.eln ] i@ =[hs @] @13
Corollary 2.23 Forany 1 < j <i <nandr > 1, the following equalities hold:

r () €] )]
€jitl = [ " [ej,j+l’ ej+1,j+2] v ’ei,i+l] )

) (1) M ") (210
r r

fiv1; = [ i+l [ J+2, 41 fj+1,j]"']‘
Remark 2.24 A more conceptual and computation-free proof of Proposition 2.21 is
provided in the end of Appendix A.6.

2.5 The Drinfeld Evaluation Homomorphism ev

While the universal enveloping algebra (over C[A]) U (g) is always embedded into the
Yangian Y5 (g), in type A there also exists a C[]-algebra epimorphism

ev: Yr(sl,) — U(sly,)

discovered in (Drinfeld 1985, Theorem 9). This homomorphism is given in the J-
presentation of Y3 (sl,,). We shall skip explicit formulas, referring the reader to Drinfeld
(1985) and (Chari and Pressley 1994, Proposition 12.1.15).

Define s; € Yy (sl,) via

h
swzﬁn—zm@f, (2.17)

so that
1 1
[si, e = civel ™, sty £ = —cin gV,

As a result, Yx(sl,) is generated by {el.(o), fi(o) , sl};‘;ll. We will need the following
explicit formulas:

eV(efo)) =Eiit1, eV(ﬁ(O)) = Ei+1,i, ev(s)) = g(wzhl — Epks — ExnEp),
(2.18)
where hy = E|| — Ey», wp = E1; + Ex» — %In, I, = E;1 + -+ E,;,. The last
equality of (2.18) is verified by a straightforward computation (sketched in Appel and
Gautam 2017, §5.7).

Let ¥ : U(gl,) — U(sl,) be the C[h]-algebra epimorphism defined by
yX) = X — tr(n—X) - I, for X € gl,. We also define a C[h]-algebra embedding
T Yr(sl,) — Y ;EL“ (gl,,) as a composition of an automorphism of Yj(sl,) defined by
ei(z) — ei(z — h), fi(z) — fi(z — h),hi(z) — h;i(z — h), a natural embedding
Yp(sl,) <= Yn(gl,),and the isomorphism Y : Y(gl,) —> Y;"(gl,) of Theorem 2.18.
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The key result of this subsection establishes the relation between the evaluation
homomorphism ev and the RTT evaluation homomorphism ev™ of Lemma 2.12(b):

Theorem 2.25 The following diagram is commutative:

Yh(sl,) ——> Y™(gl,)

l‘“’v evml (2.19)

Usly) «— U(l,)

Proof 1t suffices to verify 7 (ev™ (Y (X))) = ev(X) forall X € {el.(o), fl.(o), sl}?:_ll.

This equality is obvious for el.(o), fi(o), hence, it remains to verify it for X = s7.

Note that Y (h1(z)) = g1(z — h/2) "' g2(z — h/2). Using the notations of (2.14),
this implies

S 0 1 1
Y =g — g1,

1 1
2 1 n @, 8 —8& 2 2
T(hi))=h((g§))2—g§)g§)+—2 ] >+(g§)—g§)),

so that
~ h a 1 1 1 2 2
T =3 (@ =@+ — ") + (87 - 5?).
On the other hand, considering the Gauss decomposition of the matrix 1 +47z~1 =

ev™(T (2)) of Remark 2.13(b), we find ev : g\ s Eyp, ¢? > 0, g
En, géz) + —hE3 E13. Therefore, we obtain

eV (Y (s1)) = Z(E%l — E5 + Ex — E1j —2E2 E)
= g(Efl — E3, — EnEy — Ex Ep).
Applying ¥, we finally get
PV (T(s1) = ;(wzhl — EnnkEs — E2Ep) = ev(sy),

due to the last formula of (2.18).
This completes our proof of Theorem 2.25. O

2.6 The Shifted Yangian, Construction |

In this subsection, we recall the notion of shifted Yangians following (Braverman et al.
2016, Appendix B).
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First, recall that glven a C-algebra A with an algebra filtration F*A = c
F~'Ac F°A C F'A C ... which is separated and exhaustive (that is, ﬂkaA =0
and Uy FKA = A), we deﬁne the Rees algebra of A to be the graded C[h]-algebra
Rees/ A := Ds R FK A, viewed as a subalgebra of A[%, i™'].

Following (Braverman et al. 2016, Definition B.1), define the Cartan doubled Yan-
gian Yoo = Yoo (sl,) to be the C-algebra generated by {E,.(r), Fl.(r), Hi(s)}iilljnezl with
the following defining relations:

[ &) 6] _

HH] ]_0,

[ () O] _ g gO+r=D
_Ei ’ F] :I - 8”Hi N

(D g0 [ ped] _ U (o o o g0 o
HO B - [H2 B ] = L(8E) +EVHY).

- Cii
H(S"Fl) F(") _ H-(S), F(r"!‘l):l — _ U (Hl(S)Fj(r) + F](r)Hl(S)> ,

2
Cii ’ ’
E(”+1) E(r) _ E(r) E(V +1) — %(EI(V)EY) + Ejr )E,(r))7 (220)
(r+1) (r) _ (r) 0 'H) _ _ﬂ (r) () (") = (r)
[F0 RO = [F ] = 2(Fl. FO+FORD),

[~ ()] _ " O] i —

_El. ,Ej ]—Oand [Fl. ,Fj ]—OlfC,.,—O,

[ (1) () ") ) [ =TT — _
_El.l,[El.z,Ej ]]—i—[Eiz,_Ei‘,Ej ]]_Olfc,-j_—l,

(0 [t ) ) [peD ) -
(0[R2 FO) ]+ [F2 [ F ] = 0 e = 1.

Fix a coweight p of sl, and set b; := «; (u). Following (Braverman et al. 2016,
Definition B.2), define Y, = Y, (sl,,) as the quotient of Y, by the relations Hi(r) =0
forr < —b; and Hi(_bi) =1.

Analogously to (2.11), define the elements {Egv), F(r)}r>€1A+ of ¥, via

a\/
(r) o (r) M )]
Ea§+a§+1+~~+aiv = [ o [Ej ’ E,/+1] s By ] ) -
FO — | FO D O (2.21)
oot bt T T RN ER :

Choose any total ordering on the following set of PBW generators:

L 4 ] i

The following PBW property of Y,, was established in (Finkelberg et al. 2018, Corol-
lary 3.15):

Theorem 2.26 (Finkelberg et al. 2018) For an arbitrary coweight |, the ordered PBW
monomials in the generators (2.22) form a C-basis of Y.
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Fix a pair of coweights 1¢1, w2 such that ;1 + o = . Following (Finkelberg et al.
2018, §5.4), consider the filtration F3 Y, of ¥, by defining degrees of the PBW
generators as follows:

deg ES) = o'(u1) +r, deg FY) = o’ (u2) +r, deg H"” = /() +r. (2.23)

More precisely, F M 11, Yy 18 defined as the span of all ordered PBW monomials whose
total degree is at most k.
According to Finkelberg et al. (2018), this defines an algebra filtration and the Rees

algebras Rees'imy 1, are canonically isomorphic for any choice of 41, 12 as above.

Definition 2.27 Define the shifted Yangian Y, = Y, (sl,) via Y, = Rees 11 Y.

2.7 The Shifted Yangian with a Dominant Shift, Construction Il

Let us now recall an alternative (historically the first) definition of the dominantly
shifted Yangians proposed in Kamnitzer et al. (2014). Fix a dominant coweight p of
sl, and set b; := o (u) (the dominance condition on w is equivalent to b; > 0 for
alli).Let Y, p be the associative C[/]-algebra generated by {e}r) , fi(r), hlg‘v")}qz?fjléTb"
with the following defining relations: o

-hl(s), h&s’):l -0,

o o] R i = jand r 4+ = —b;
ei ,f/ :|: . )
L 0, otherwise
'hlg—bn r>] (r)
G+ 0 () <r+1> _cijh o o e
st [” J = (e +n?).
—b;
[h( ) f(r)] _Cl]f( r)
G+, () ((r+1) _cijho g ")y OO (2.24)
1] = [ = =S (0 ),
<r+1> (r) ") (r+1> Cizﬁ QIR IR GOIR (S|
J-le | =5 (e + ).
)

f(r+1) f(r ] [f(r) f(r +1):| Clj <f(r)f(r) fj(r’)fi(r)) ’

el-(r), e;-r )] 0 and [ l(r) ;.r,)] =0if¢;j =0,

e, [elgm, eﬁ-r/)]] + [el-(m, [e,?rl), eﬁ-r/)]] =0if ¢;; = —1,

[fi(”)7 [fi(rz), f/(r’>]] " [fi(rz)7 [ﬂm)’ f/(r’>]] —0if ey = —1.
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Remark 2.28 The main differences between (2.24) and (2.20) are: (1) all indices r, s
are shifted by —1, (2) h appears in the right-hand sides to make the equations look
homogeneous.

Analogously to (2.11, 2.21), define the elements {e(r) f(c)}rzo +of Yy pvia

oV Jav JaveA
) [ Lo o1 o
Cojra ey [ [ef ’ef+1]’ i ]
) 0) © £ @2
Choose any total ordering on the following set of PBW generators:
0 0 i)ySi=—bi
Y20 UYL U E D (2.26)

The following is analogous to Theorem 2.26:

Theorem 2.29 For an arbitrary dominant coweight u, the ordered PBW monomials
in the generators (2.26) form a basis of a free C[h]-module Y, p.

Proof Arguing as in Finkelberg et al. (2018, Proposition 3.13), it is easy to check
that Y,  is spanned by the ordered PBW monomials. To prove the linear inde-
pendence of the ordered PBW monomials, it suffices to verify that their images are
linearly independent when we specialize 7 to any nonzero complex number (cf. our
proof of Theorem A.9). The latter holds for 2 = 1 (and thus for any /& # 0, since
all such specializations are isomorphic), due to Theorem 2.26 and the isomorphism
Yun/(h—1) =Y, O

Following Kamnitzer et al. (2014, §3D,3F),2 we introduce the following:
Definition 2.30 Let Y;L be the C[/]-subalgebra of Y, , generated by
r=>0 r>0 si >—Dbj
eV ulne ) ol
{ Ca aveAt Ja a¥eAt o) i=izn-1
The following is the main result of this subsection:

Theorem 2.31 For any dominant coweight u, there is a canonical C[h]-algebra iso-
morphism

Y, ~Y,.

This provides an identification of two different approaches towards the dominantly
shifted Yangians (which was missing in the literature, to our surprise). A proof of this
result, generalized to any semisimple Lie algebra g, is presented in Appendix A.7, see
Theorem A.12.

2 Letus emphasize that (Kamnitzer et al. 2014, Theorem 3.5) is wrong, as pointed out in Braverman et al.
(2016). That is, it does not include a complete set of relations, except when g = sl;.

@ Springer



Shifted Quantum Affine Algebras: Integral Forms in Type A 215

2.8 Homomorphism CDZ

Let us recall the construction of (Braverman et al. 2016, Appendix B) for the type

A1 Dynkin diagram with arrows pointing i — i + 1 for 1 <i <n — 2. We fix

a dominant coweight A and a coweight p of sl,, such that A — u = Z?:_II a;a; with

a; € N, where {oz,} 1 are the simple coroots of sl,,. We set ag := 0, a,, := 0. We also

fixasequence A = (w;,, ..., wjy ) of fundamental coweights, such that Z?’:l Wi, = A.
Consider the C-algebra

7])15"7555‘11'

T +1
A =Clzy, ..., vl (wir, ui o (i — wi s +m) l<i<n—1,meZ

with the defining relations [u r, wjs] = :l:8,]8”u . Define Wy(z) := 1, W,(z) =
1, and

ig=i a; SFEr
Zi@)= [] G-z-1/2, Wi@:=[]ec-wi), Wi, =[] G-wiy.
1<s<N r=1 1<s<a;

2.27)
We define a filtration on A by setting deg(z;) = 1, deg(w; ) = 1, deg((w;,, —
wi s +m)” hy=—1 deg(u ) = 0, and set Ap := Rees A. Explicitly, we have

~ —1.\1 i
Ap 2 Clh)z1. vl wi g UE B (i — wig +mh) ) S50

with the defining relations [ul - Wjs] = N8 ulj[r1
Remark 2.32 By abuse of notation, for a generator x which lives in a filtered degree k
(but not in a filtered degree k — 1) we write x for the element /¥ in the corresponding

Rees algebra.

We also need the larger algebra Y, [z1, ..., zny] := Y, ®c Clz1, ..., zy]. Define
(r)yr>1
}

new Cartan generators {A; '}, _, via

]_[j_i(z— 1/2)% HI (A (z—1/2)

Hi(z) = Zi(z) - 24i (7 — 1)i Ai(@Ai(z—1)

, (2.28)

where H;(z) =z + Y, H"z7" and A;(z) == 1+ p— AP 7" The gen-
erating series E;(z), Fj(z) are defined via E;(z) := Zrzl Ei(r)z_’ and F;(z) =

Zr>1 F " z "
The followmg result is due to (Braverman et al. 2016, Theorem B.15) (for earlier
results in this direction see Gerasimov et al. 2005; Kamnitzer et al. 2014):

Theorem 2.33 (Braverman et al. 2016) There exists a unique homomorphism
A ~
Dy Yulzi, .o vl — A
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of filtered C-algebras, such that

Ai(2) = 27 W(2),

Ei@) s — Z Zi(w; Wi (w;,, —1/2) !

—l (z — wi,r)Wi,r(wi,r) Lre

a
! Wi+1(u}ir+1/2)
Fi(z) ’ “
i(2) ; (z—=wi, —DW; (w; ) "

We extend the filtration F;: 1 ON Y, to Y,lz1, ..., zy] by setting deg(zy) = 1,

and define Y, [z1,...,zn] = Rees r1.m Y,lz1, ..., zn] (which is independent of
the choice of 1, 2 up to a canonical isomorphism). Applying the Rees functor to
Theorem 2.33, we obtain

Theorem 2.34 (Braverman etal.2016) There exists a unique graded C[h][z1, ..., zn]-
algebra homomorphism

CIJ% 2 Yulzt, .o vl — ﬁh,

such that

Ai(2) = 27 Wi (2),

@
N Zi(wi ) Wimi Wiy = h/2)

E, _ s u u. .,
i(2) — Z (z — wi,r)Wi,r(wiJ) v

r=1
ai

Wl+](wl rt h/Z)
Fi(2) = Z (Z—wiy — Wi, (Wi,

Remark 2.35 Following Remark 2.32, we note that the deﬁning formulas of W;(z),
W; »(z) in Ap, are given again by (2.27). In contrast, Z; (z) = '1°<_;<N —zs — h/2),
cf. (2.27).

2.9 Coulomb Branch

Following Braverman et al. (2016, 2019), let A denote the quantized Coulomb
branch. We choose abasis wy, ..., wyin W = @?;1] Wi such that wy € W; , where i

are chosen asin Sect. 2.8. Then Ay, is defined as A, 1= HOEV)xTwo e (RGL(V),N)»

where Rgr(v)N is the variety of triples, Ty is the maximal torus of GL(W) =
]_[;‘:_1l GL(W;), and GL(V) = ]_[l'-'z_l1 GL(V;). We identify H;W pt) = Clzy, ..., zn]
and  HZ. (pt) = C[A]. Recall a CI[A][z1,...,zn]-algebra embedding
25! Anr < Ap, which takes the homological grading on Ay, to the above
grading on Ap.
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According to Braxerman et al. (2016, Theorem B.18), the homomorphism CD%L :

Y,lz1,...,2n] — Ap factors through Ap. In other words, there is a unique graded

C[Ah]lz1, . . ., zy]-algebra homomorphism 5L :Yulzi, ..., zv] = Ap, such that the
@, L~

composition Y, [z1, ..., zZn] 4 Ar ﬂ) Ap coincides with CD

The following result is due to Kamnitzer et al. (2018b, Corollary 4.10) (see
Remark 4.16 for an alternative proof, based on the shuffle realizations of Yj(sl,),
Y, (sl,) of Tsymbaliuk (2018, §6)):

Proposition 2.36 (Kamnitzer et al. (2018b)) 5/% 2 Yulzi, .o 2n] = Ap is surjec-
tive.

Lemma2.37 Forany 1 < j <i <nandr > 1, the following equalities hold:

A () _ o yi—j+l]
CD’L(E(X +a 41t +a>_( D

j—l(wj,r Q)Hk Wk, rk(wk-H kel T2 i
> 7 sz<wk )W) Huk e
I<rj<a; [Mk=j Wire (k) k=j k=j
1<ri <a;
(2.29)

A (r) i
q)“ <Fu§+a§+l+--'+a}/> =D

Tl it Whor, k=1, + OWip1(wiy, + 5 :
% Z k=j+1 rk A Tk—1 2/ i1 2 ‘(wj,rj +h)r—1 . H“k,rk-

1<r, <a/ 1_[;(:1‘ Wk,r'k (wk,rk) k=j
1<r, <a;
(2.30)
Proof Straightforward computation. O
Remark 2.38 For1 < j <i < n, we consider a coweight ;; = (0,...,0,@;1,...,

@;1.0,...,0) (resp. 15, = (0.....0,@F.....o/.0,....0) of GL(V) =

; A¥
GL(V}) X -+ x GL(V,_1). The corresponding orbits Gré’]:(v), GrG’]i(V) C GrgLv)
are closed, and let R, . i R;\* denote their preimages in the variety of triples Rgr(v),N-
Then, Lemma 2.37 1mphes

®, (Eé?wv,w..ﬂ ) = (=DH (S + T N Ry 1
J J
i+1
@, (F R ) = (D)X= % (e (Q) + BT N Ry, ).
J J i
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2.10 Explicit Descriptionfor 4t = 0, 1 = n®@p,_1

Following Braverman et al. (2016), define the fruncation ideal Jﬁ as the 2-sided
ideal of Y, [z1, ..., zn] generated over C[A][z1, . .., zy] by {A;”}Da” . This ideal

I<i<n—1

is discussed extensively in Kamnitzer et al. (2014). The inclusion J% - Ker(dbﬁ)
is clear, while the opposite inclusion was conjectured in Braverman et al. (2016,
Remark B.21). This conjecture is proved for dominant x in Kamnitzer et al. (2018a).

The goal of this subsection is to provide an alternative proof of a reduced version
of that equality in the particular case u = 0, A = nw,—1 (sothat N =nanda; =i
for 1 < i < n;recall that ag = 0,a, = 0). Here, a reduced version means that
we impose an extra relation Y /_; z; = 0 in all algebras. We use J;”"~" to denote
the reduced version of the corresponding truncation ideal, while gg“’"—‘ denotes the
resulting homomorphism between the reduced algebras.

The forthcoming discussion is very close to Brundan and Kleshchev (2006) and
Webster et al. (2017), while we choose to present it in full details as it will be gener-
alized along the same lines to the trigonometric counterpart in Sect. 4.3.

Theorem 2.39 Qg“’"fl _ Ker(ggw"*l).

Our proof of this result is based on the identification of the reduced truncation ideal
ng"" with the kernel of a certain version of the evaluation homomorphism ev, which
is of independent interest.

Recall the commutative diagram (2.19) of Theorem 2.25. Adjoining extra variables

{zi}!_, subject to }7_, z; = 0, we obtain the following commutative diagram:

Ya(sb)lzt, .. r 20l /(X 2) ——— Ush)lz1s ..., 20/ (X 2)

ﬁ ﬂ 2.31)

Y@z znl/ (D 7))~ Uz ... 2al /(X 20)

where U (gl,)[z1, ..., 2,1/ zi) := U(gl,) Qcrn) ClAllz1. - - ., 221/ (3 zi) and the
other three algebras are defined likewise.

Recall the isomorphism Y} (gl,) >~ Y}"(sl,) ®cn) ZY"(gl,) of (2.5), which
after adjoining extra variables {z;}!_, subject to > /| z; = 0 gives rise to an alge-
bra isomorphism Y3 (gl,)[z1, ..., 221/ z) = Yj'(sly) ®cay ZY5(gl,) ®cra
ClAllz1, -, znl/Q_ zi). Let A, (z) denote the quantum determinant of the matrix
zT (z), which is explicitly given by Zn(z) = z(z —h)(@z —2h)---(z — (n —
1)h) - qdet T(z). According to Proposition 2.10, the center ZY;"(gl,) is a poly-
nomial algebra in {cz}ﬁl, where gr are defined via z‘”Zn(z + ”z;lh) =1+
Ry ,o1drz™". Let J be the 2-sided ideal of Y["(gl,)[z1. ..., 2.]/(3 z/) gener-
ated by {57,},>n U {57, - h‘ler(—hzl,...,—hzn)}le, where e, (e) denotes the
r-th elementary symmetric polynomial. The ideal J is chosen so that z7"A,(z +
iolpy — [P, (= ") e M Let o YRl [zrs e 2]/ 2
Y{'(sly)[z1, - .., 221/ (D zi) be the natural projection along J. Set X, := evit(d,)
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(note that X, = O for r > n). Then, the center of U(gl,)z1,-..,2,1/_zi) is
isomorphic to C[A][z; ..., Zn, X1, ..., X,,]Z(Z ).

Recall the extended enveloping algebra U (sl,,) of Beilinson and Ginzburg (1999),
defined as the central reduction of U(gl,)[z1,--.,2,1/(Q_ zi) by the 2-sided ideal
generated by {X, — hle (—hz1, ..., —hzp)}!_, (the appearance of sl, is due to
the fact that X; = 0). By abuse of notation, we denote the corresponding projec-
tion U(gl,)lz1, ..., 2,1/ zi) — 17(5[”) by 7 again. We denote the composition

it ~
Y gz, - zal/ (O 2i) s Uzt -zl /(T z) > Ulsly) by & It
factors through 7 = Y (gl)[z1. ..., 221/ QX z)) — Y (sb)lz1. ... 221/ zi)s
and we denote the corresponding homomorphism Y/ (sl,)[z1, ..., 2,1/ (}_zi) —
U (sl,) by ev™ again. The algebra U (sl,) can be also realized as the central
reduction of U(sly)[z1, ..., 2,1/(Q_ zi) by the 2-sided ideal generated by {)_(, —
hle.(=hzi, ..., —hz,)}'_,, where X, = y(X,), see Sect. 2.5. We denote the cor-
responding projection U (s(,)[z1, ..., 2,1/ _ zi) — U(sl,) by 7 again. Finally, we

denote the composition Y, (sl [z1. . .., 21/ (X 2i) = Ushy)lzt, - ... zal/(X 2) =
U (sl,) by ev.
Summarizing all the above, we obtain the following commutative diagram:

Yr@blzr, ..o zal/ (X zi) ——> U(sly)

I 1

Y@l er . 2nl/ (D 7)) —s T (s (2.32)

= |
Yzt e 2al/(D 20) ——s T(sl,)

We note that the vertical arrows on the right are isomorphisms, as well as the com-

position 7 o Y : Y5 (sL)[z1, . . ., 2n)/ (X zi) = YU (sl)[z1, - . . 2a]/(D_ zi) on the
left.

The commutative diagram (2.32) in turn gives rise to the following commutative
diagram:

YrGholz . ]/ z) —— D)

I i
Yz znl/ (D 2) —s Di(sl,) (2.33)
Yt (z1 - 2l (D 20) —s T(sly)

_Here we use the following notations:
e U(sl,) denotes the reduced exiended version of U(sl,), or alternatively it can be
viewed as a C[R]-subalgebra of U (sl,) generated by {Ax}csr, U {hzi}7_,.
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o Yr(sly)lz1, ..., 20/ 2i) := Yr(sly) ®crm ClAllz1, - - -, 201/ (O zi), or alterna-

tively it can be viewed as a C[h]-subalgebra of Yy (sl,)[z1, ..., 2,1/(Q_ zi) generated
by {ﬁE;C), hFOEC)}ZE(E)M U {hhlgr)}g?m U {fiz;}!_,. Following our conventions of

Remark 2.32, we shall denote fiz; simply by z;.

o YR (gl)lz1, -, zal/ (X 2) := Yyl ®cpm Clhllzr, - ., 221/ (X zi), or alter-
natively it can be viewed as a C[h]-subalgebra of Y;"(gl,)[z1, ..., 2,1/ zi)

(r)}rzl
ij J1<i,j<n

generated by {Az U {hz;}!_,. Here we denote hz; simply by z; as above.

Remark 2.40 Note that Y in (2.33) is well-defined, due to Proposition 2.21 (see also
our discussion in Appendix A.6).

Theorem 2.41 J;”" ' = Ker (ev : Yx(sly)[z1, ..., 241/ zi) — [[NJ(EI,,)).

Proof In the particular case u = 0,A = nwy—_j, we note that Z;(z) = -+ =
Zy2@) = 1,Zy1) = [Timi(c —h/2 —z) and g = k (1 <k < n— 1). Let
us introduce extra currents Ay(z), A,(z) via Apg(z) := 1, A, (z) = ]_[?:1(1 — 25/2).
Then, formula (2.28) relating the generating series { Hy (z)}Z;} to {Ak(Z)}Z;I can be
uniformly written as

@= ™ A1 = DA = 3)
&z — Wk Ac@) Az = 1)

Hi(z) = forany 1 <k <n-—1. (2.34)

Let Ax(z) denote the k-th principal quantum minor tllllj (z) of T(z), see Defini-
tion 2.8. According to Molev (2007), the following equality holds:

Ako1@ + 5 R Az + 52
Ar(z + 5 n) Az + S h)

T(H(2)) =

This immediately implies

Ak—1(z + 520 Az + )
A+ 52 Az + 5

Y (Hy(z)) =

Generalizing An(2), deﬁne~Zk(z) as the k-th principal quantum minor of the matrix
zT (z). Explicitly, we have Ax(z) = z(z —h) - - - (z — (k — 1)h) - Ax(z). Then, we get

A1z + 52 W Ae1 2 + 552 1)

Y (Hy(2)) = —= =
) = e+ B + 5lh)

Finally, define Ak(z) =7k Zk (z+ kz;lh). Then, the above formula reads as

(z — By . A1z = DAz - b
Kz — wk Av(@ Az —h)

Y (Hy(2)) =
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By abuse of notation, let us denote the image (A (2) by Ar(z) again. Note that
A, (z) = An(2), due to our definition of 7. Combining this with (2.34), we obtain the
following result:

Corollary 2.42 Under the isomorphism

7o Yrhlar. ..., znl/(@r + -+ 2n) > Ysl)lz1. ... 2]/ 4+ 2n),

the generating series Ay (z) are mapped into Ak (2), that is, T o T(Ak(z)) = Ak(z).

Define T € U(sly) ® End(C") viaT:= (¥ ® D(T) with T = 3, , Eij ® Ejj €
U(gl,) ® End(C") as in Remark 2.13(b). Set T(z) := zlI, + hT. Denote the k-th
principal quantum minor of T(z) by ﬂ],z (z). The following is clear:

N _ k—1
U (Ar(2) = ¥ (z + Th) . (2.35)

Combining Corollary 2.42 with (2.35) and the commutativity of the diagram (2.33),
we get

Corollary 2.43 &(A")) = 0 forany | <i <n—1,r > i. In particular, Iy €
Ker(ev).

The opposite inclusion ng”’l 2 Ker(ev) follows from Theorem 2.17 by noticing
that A1(z) = 111(z) and so (7 o ?)—1(“(1)) = AY) € ng"_] forr > 1.
This completes our proof of Theorem 2.41. O

Now we are ready to present the proof of Theorem 2.39.

Proof of Theorem 2.39 Consider a subtorus T}, = {g € Tw|det(g) = 1} of Ty,

and define A, := H.(GL(V)XTW)ONC (RoLvy.N), so that Ay ~ Ap/(Q_ zi). After

imposing > z; = 0, the homomorphism gg‘”"—] YRzt znl/ Q) —
/Th/(z z;) is a composition of the surjective homomorphism §8w"" : Yu(sly)lzi,
s 201/ Q" zi) — Ay, (see Proposition 2.36) and an embedding 75" Ap —
Ar/(X zi), so that Ker(®)”"™") = Ker(®,”""). The homomorphism &' fac-
tors through @ : T[~J(5[,,) — Ay, (due to Theorem 2.41), and it remains to prove the
injectivity of ¢. Note that ¢ is compatible with the gradings, and it is known to be an
isomorphism modulo the ideal generated by 7, zy, . .., z,, see e.g. (Braverman et al.
2017, Theorem 4.12): namely, both sides are isomorphic to the ring of functions on
the nilpotent cone N C sl,,. To prove the injectivity of ¢ it suffices to identify the
graded characters of the algebras in question. But both graded characters are equal to
char C[N] - char (C[. z1. - . ., 22/ (X 20)).

This completes our proof of Theorem 2.39. O

Corollary 2.44 The reduced quantized Coulomb branch Ay, is explicitly given by Ay, >~
U(sly).
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3 Quantum Algebras
3.1 The RTT Integral Form of Quantum g,
Let v be a formal variable. Consider the R-matrix R = R" given by
n
R=v"! ZEii ® E;; -I-ZEii ®Ej;+ (! - U)ZEij ® Eji (3.1
i=1 i#j i>]

which is an element of C[v, v~!] ®¢ (End C*)®?. It satisfies the famous Yang-Baxter
equation

R12R13R23 = Ro3R13R2,

viewed as the equality in C[v, v~'] ®c (End C*)®3.

Following Faddeev et al. (1989), define the RTT integral form of quantum gl
denoted by LI (gl,,), to be the associative Cl v, v~ !]-algebra generated by {z.
with the following defining relations:

J’ljljl

F _—
t”t” =1 for 1<i<n,

t = =1;=0 for 1<j<ix=<n, (3.2)

+r+ _ ot —m— _ p—p— —mt _ -
RTl Tt =T,,T"R, RT[ T, =T, T[ R, RI[ T, =T,' T R.

t

Here T% are the elements of the algebra [M(gl,) ® End C", defined by 7+ =
Z i ® E;j. Thus, the last three defining relations of (3.2) should be viewed as

equahtles in U (gl,,) ® (End C™)®2,

For completeness of the picture, define R € C[v, v 11 ®c (End C")®? via’
n
szZEii®Eii+ZEii®Ejj+(v_v_1)ZEij®Eji- (3.3)
i=1 i#j i<j

Lemma 3.1 The following equalities hold:
B+t +7+%  PT—T- -r—5  Prtr— -+ 5
RT'T," =T,"T"R, RI[T, =T, T R, RI|T, =T, T R. 34
Proof Multiplying the last equality of (3.2) by R~! on the left and on the right, and
conjugating further by the permutation operator P = Z Eij @ Ej; € (End Ccm®?,

we get

(PRT'P YT T, =1, 1,7 (PR PTY).

3 Let us note right away that this R is denoted by R in Ding and Frenkel (1993, (2.2)) and Molev (2007,
§1.15.1).
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Since R = PR™'p~! (straightforward verification), we obtain the last equality
of (3.4).
The other two equalities of (3.4) are proved analogously. O

Note that specializing v to 1, i.e. taking a quotient by (v — 1), R? specializes to the
identity operatorI = Z i Eji®E;; € (End C")®2, hence, the specializations of the

generators tl ; pairwise commute. In other words, we get the following isomorphism:
(gl / @ = D=CIS, b=/ (55T = 1)) (35)
We also define the C(v)-counterpart U," (gl,) := ' (gl,) ®cpy.p-1] C(0).

3.2 The RTT Integral Form of Quantum Affine gl,,

Consider the trigonometric R-matrix Ryig(z, w) = (z, w) given by

trlg

n
Ryig(z, w) := (vz — v w) Z Eii ® Eii + (z — w) Z Eii ® Ej;

i=1 i#]
+(v—v Nz Z E;®Eji+@—v Hw Z Eij®Ej (3.6)
i<j i>j

which is an element of C[v, v™'] ®c (End C")®2, cf. (Ding and Frenkel 1993, (3.7)).
It satisfies the famous Yang-Baxter equation with a spectral parameter:

Rtrig;lZ(uv U)Rtrig;l3(u, w)Rtrig;23(U, w) = Rtrig;23(vv w)R[l‘ig;l:’O(uv w)Rtrig;IZ(u, v).

3.7

Following Faddeev et al. (1989), Ding and Frenkel (1993), define the RTT integral

form of quantum loop g[n, denoted by U'(Lgl,), to be the associative C[v, v -
algebra generated by {t ()Y . with the following defining relations:

1<i,j<n

£E[016F[01 =1 for 1 <i <n,

1101 =1;[01=0 for 1 < j <i <n,

Ruig(z, w)T{F ()T, (w) = To7 (w) T} (2) Ruig (2. w), (3.8)
Ruig(z. w) Ty (2 T5 (w) = Ty, (w) T} (2) Ruig (2, w),

Ruig(z. w) T ()T (w) = T," (w) T} (2) Ruig (2., w).

Here T*(z) are the series in z¥l with coefﬁments in the algebra ilm(L gl,) ® End C",
defined by T%(z) = 20 j tl (z) ® E;j with t;; (z) = Zr>0 i 147177, Thus, the
last three relations should be v1ewed as equahtles of series in z, w with coefficients in
U (Lgl,) ® (End C")®2,

In contrast to Lemma 3.1, we have the following result (cf. (Gow and Molev 2010,

(2.45))):
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Lemma 3.2 Forany €, €' € {£}, the following holds:

Ruig(z. )T ()T5 (w) = T5 (w)Tf (2) Ruig (2. w). (3.9

Proof Multiplying the last equality of (3.8) by R;ié(z, w) on the left and on the
right, and conjugating further by the permutation operator P = Zi’ JEij®Ej €
(End C")®?, we get

(PRy (2 w) PO )Ty (2) = Ty ()T} (w) (PR (z, w)PH).

Combining this with the equality

Ruig(z, w) = (vz — v 'w)(vw — v '2) - PRt;i;(w, P

we derive the validity of (3.9) for the only remaining case € = +, ¢ = —. O

Note that specializing v to 1, i.e. taking a quotient by (v — 1), Rg‘ig (z, w) specializes
to (z —w)l = (z —w) Zi,i Eii ® Ejj € (End C™)®2, hence, the specializations

of the generators tét[:tr] pairwise commute. In other words, we get the following
isomorphism:

r>0 k<

L Lgh)/ =1 = C b~/ (oL 101 0w 101 - 1L, )
(3.10)

We also define the C(v)-counterpart Uy (Lgl,) := U (Lgl,) ®cpy.p-1] C(0).

<j.izn

3.3 The RTT Evaluation Homomorphism ev'*t

Recall the following two standard relations between UM (Lgl,) and $('(gl,),
cf. Lemma 2.12.

Lemma 3.3 The assignment tl.ij — tl.ij [0] gives rise to a C[v, v~ ']-algebra embedding
U (gl,) < AN (Lgl,).

Proof The above assignment is compatible with defining relations (3.2), hence, it gives

rise to a C[v, v~ !]-algebra homomorphism ¢ : U (gl,,) — LU (Lgl,). The injectivity

of « follows from the PBW theorems for U5 (gl,,) and U™ (Lgl,) of (Gow and Molev

2010, Proposition 2.1, Theorem 2.11). O

Lemma3.4 Fora € C%, the assignment T (z) > T — alT=z7 ', T ()~ T~ —
a~—'T*z gives rise to a C[v, v—'1-algebra epimorphism

evit UM (Lgl,) — UM (gl,).
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Proof The above assignment is compatible with defining relations (3.8), due

to (3.2), (3.4), and the equality Ryie(z, w) = (z — w)R + (v — v hHzP relating

the two R-matrices, cf. (Hopkins 2007, Lemma 1.11). The resulting homomorphism

S (Lgl,) — LM (gl,) is clearly surjective. i
We will denote the RTT evaluation homomorphism ev'" simply by ev"

Remark3 5 (a) For any a € C*, the homomorphism ev'[" equals the composition of
v™ and the automorphism of £ (Lgl,) given by Ti(z) — TE@a 7).

(b) The composition ev'[' o¢ is the identity endomorphism of U (gl,,) for any a € C*.

The PBW theorems for U5 (gl,,) and L6 (Lgl,) of (Gow and Molev 2010, Propo-
sition 2.1, Theorem 2.11) imply the following simple result, cf. Lemma 2.14:

Lemma 3.6 The kernel ofev'" is the 2-sided ideal generated by the following elements:

r>1
i s ) g s g 1|2
U{sim+ oL g-n+ o) . (3.11)
=J

However, we will need an alternative description of this kernel Ker(ev'"), cf. The-
orem 2.15:

Theorem 3.7 Ker(ev™) = U (Lgl,) N 1, where I is the 2-sided ideal of U (Lgl,,)
generated by {t}[s], t;;[—s1}s=2 U {t];[11 + [0, t;,[—11 + £, [O1}.

Proof Note that the ideal 7 is in the kernel of C(v)-extended evaluation homomorphism

vt UM (Lgl,) — Ult(gl,), hence, the inclusion U (Lgl,) N1 C Ker(ev™). To
prove the opposite inclusion Ker(ev™) C U™ (Lgl,) N 1, it suffices to verify that all
elements of (3.11) belong to 1. We write x = yifx —yel.

e Verification of t1+j[r] elforal j>1,r > 1.

Comparing the matrix coefficients (vi ® v1] - - - |[v1 ® v;) of both sides of the equal-
ity (3.9) with € = €' = +, we get (vz — v~ ') ()], (w) = (z — W), (W)t} (2) +
(v — v_l)wtf’l(w)tf’j (z). Evaluating the coefficients of z~"w! in both sides of this
equality, we find

_”_1t1+1[’"]t1+j[0] =~ 1011 [r] + (0 — v~ e 015 17]
157101 [155[01, 1 [F11,1
:>tl+j[r]: 11 vl/_ v_lu ‘

We claim that [tfrj[O], tfrl[r]],,q € I.Thisisclearforr > lastf1 [r] € I.Forr =1,we
note that [#5(0], £} [111,-1 = =[15(01, 113 (01,1 = = (110D ™" - [£1[01, £5[01],-1

(t1+] () Finally, comparing the coefficients of z'w? (instead of z 7" w') in the above
equality, we immediately find [tﬁ [0], t1+j [0]],-1 = 0. This completes our proof of the

remaining inclusion tfrj[l] el.
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e Verification oft [slelforall j > 1,5 >2.

Comparing the matrlx coefficients (vi ®v; i |-+ |v 1 ® v1) of both sides of the equal-
ity (3. 9) with € = ¢/ = +, we get (z — w)t”(z)t (w) + (v — v_l)zt (z)tn(w)
(vz — w)t (w)tll(z) Evaluating the coefficients of z~ "w® in both sides of this
equahty, we ﬁnd

—h P11+ (@ — v~ DI+ 105101 = =o' 1105 ]
[lll[l"], ]1[1]]1)1 lll[O]

v—ov!

=+ 1] =

We claim that [t”[r] t ([1ly-1 € I forr = s —1 > 1. This is clear for r > 1
as tU[r] € I. For r = 1, we note that [tll[l] [1]],, 1= —[#,[0], /1[1]],, 1=
—(@t1on=" [+[ 1, {1 [011y-1 - (¢, 101)~". Finally, companngthecoefﬁc1ents of 20w
(instead of z~"w?) in the above equality, we immediately find [t 11,4 1[()]],, 1 =0.
This implies the remaining 1nclu810nt 2lel.

e Verification of t22[s el foralls > 2.
Comparing the matrix coefficients (v @ v1| - - - |v] ® v2) of both sides of the equal-
ity (3.9) with € = ¢/ = +, we get

(z — w)ts; ()t (w) + (v — v Hwt| (2155 (w)
= (z — w)th (w)5 (2) + (v — v Hwrf} (W)t (2).

Evaluating the coefficients of z~*w! in both sides of this equality, we find

— 1 [s165101 + (v — v~ 1)1} [s1235[0]
= —15[0165, [s1 + (v — v~ )} [0165 51
Since t1+1 [s], t2+1 [s] € I for s > 2 by above, we immediately get the inclusion t;i[s] €
1.
o Verification of t3,[1]+ t3,[0] € 1.
Comparing the matrix coefficients (v> @ v1| - - - |[v] ® v2) of both sides of the equal-
ity (3.9) with e = —, ¢/ = +, we get

(z — wity; (Dt w) + (v — v~ Hwt]; () (w)
=(z— w)tE(w)t{l () + (v — v_l)wtfr1 (W)1ty,(2).

Evaluating the coefficients of z0w? in both sides of this equality, we find

— 15, [0185 111 + (v — v~ 1)1 [011,5[1]
= — 15 [1165,[0] + (v — v~ ")z}t [111,[0].

Since t1+2[1], tlﬁ[l] +1,;[0] € 1, we immediately get the inclusion t2+2[1] +1,[0] € 1.
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e Verification oft [1141¢; 1[O el forall j > 1.
Comparing the matrlx coefﬁc1ents (v1 ®vj]|---|v; ®v1) of both sides of the equal-
ity (3.9) with e = +, ¢/ = —, we get

(@ — w15 w) + (@ — v Dt} 1 (w) = @z — v w) W)t ().
Evaluating the coefficients of z0w? in both sides of this equality, we find
t”[l]t [0] + (v — v_l)t (12, 10] = vr; 1[O]t“[l]

101, (011,17 [0
Since t1+1[1] + 1,,[0] € I, we get t]."’l[l] ? W On the other hand,
comparing the matrix coefficients (v; ® v;|---|v; ® v1) of both sides of the equal-
ity (3.9) with € = €' = —, we get (z — w)t}; ()17, (w) + (v — v’l)zt_l(z)tl_l(w) =
(vz — v~ w)t 1 (w)t;; (z). Evaluating the coefficients of z'w? in both sides of this
equality, we ﬁnd

1101471101+ (v — v~ )17, [01¢1[0] = i, [0]¢7, 0]
_ [153[01, 5, 1011, -t410]

v—ov!

- tj_l [0] =

Hence, the inclusion tjﬁ[l] + t;l [0] e 1.
One can now apply the above five verifications with all lower indices increased
by 1 to prove the inclusions t2] [r],t 5ls], t33[s] t33[1] + 135[0], 12[1] + tﬂ[O] el

for any j > 2,r > 1,5 > 2 Proceedlng further step by step, we obtain
{t+[r], 1 (s, ”[s]}lr: 522 U {t+[1] +1;;[01}i<j C I. The proof of the remaining
inclusion {tﬁ[ rl,t; =]t [ s]}:]l S>2 U {t —1] +t+[0]}l<] C I is analogous
and we leave details to the 1nterested reader.

This completes our proof of Theorem 3.7. O

3.4 The Drinfeld-Jimbo Quantum gl,, and s{,

Following Jimbo (1986), define the quantum gl,,, denoted by U, (gl,,), to be the asso-

ciative C(v)-algebra generated by {E;, F;, t;, £ I}E{ f: with the following defining
relations:
i =1y =0, e =1y,
tjEi — v_‘sji+5j,i+lE.tj’ th. — vsji_aj.iJrlEtj’
Ki— K

EiFy — FyEi =8y —— = (3.12)

El‘Eif = Ei’Ei and EE/ = E/E 1f Cii’ — 07
E’Ey — v+ v WEEvE; + E/E? =0if ¢jp = —1,
F}Fyr— (0 + v )FFyF + FyF} = 0if ¢;p = —1,
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where K; 1= ti_lt,-+ 1 and (Cii’)?i_/1=1 denotes the Cartan matrix of sl,,.

Remark 3.8 We note that our generators E;, Fj, t]il correspond to the generators
fi. ei, v of Ding and Frenkel (1993, Definition 2.3), respectively.

The C(v)-subalgebra of U, (gl,,) generated by {E;, Fi, Kl.il}::ll is isomorphic to
the Drinfeld-Jimbo quantum sl,,, denoted by U,(sl,), see Drinfeld (1985), Jimbo
(1986).

The following well-known result was conjectured in Faddeev et al. (1989) and
proved in Ding and Frenkel (1993, Theorem 2.1):

Theorem 3.9 (Ding and Frenkel 1993) There is a unique C(v)-algebra isomorphism

Y : Uy(gl,) = Uy (gl,)

defined by
=+ -+
AR t. T
IS N Jifiitl . il (3.13)
J 7j v— ! vl —vp

As an immediate corollary, il{,“(g[n) is realized as a Clv, v_l]-subalgebra
of Uy(gl,). To describe this subalgebra explicitly, define the elements {E; ;y1,
Fiy1,j1<j<i<n of Uy(gl,) via

Ejiv1:= W—v OIE, - [Ejt1, Ejlyr - 1y,
Jii+ B [ Jjt+ J v (3.14)
Fi,j =0 —v)[--[F;, Fiy1lv, -+, Filv,
where [a, b]y := ab — x - ba. In particular, E; ;11 = (v — v~ DE; and Fir1: =

w1 —v)F,.

Definition 3.10 (a) Let 4(,(gl,,) be the Cl[v, v_l]-subalgebra of Uy(gl,,) generated by
{Ejiv1, Fiv1,jh<j<i<n Y {tji]}lgjgn. (3.15)
(b) Let U, (sl,,) be the C[wv, v_l]-subalgebra of Uy(sl,) generated by
(Eji+1s Fratjhzjzion UK izicn. (3.16)

Proposition 3.11 l,(gl,,) = T~ (LM (gl,)).

This result follows immediately from Proposition 3.12 and Corollary 3.13 below.
To state those, define the elements {€; ; 1, fi+1,j}1<j<i<n Of U5 (gl,) via

5. — + Fily ot +
€ji+l = t]jtj,i—i-l’ fiv1,j = ti+1,jt‘

Iz (3.17)
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Proposition 3.12 Forany 1 < j < i < n, the following equalities hold in U} (gl,):

. [éiiv1.€jily—1 = [fijs fisrilo
ejitl = —————, fixij="—g .
vV—v v=l—w
The proof of this result is analogous to that of Proposition 3.21 below (and actually
it can be deduced from the latter by using the embedding ¢ : $*(gl,) < UM (Lgl,)
of Lemma 3.3).

Corollary 3.13 Eji ZT_I(éj’,'_H), Fiy,j= T_l(f,-_H,j)for any 1< j <i <n.

Proof Forafixed1 < i < n,this follows by adecreasing induction in j. The base of the
induction j = i isdueto (3.13), while the induction step follows from Proposition 3.12.
O

or j = j',i < i'. Likewise, we order {Fit1,jh1<j<i<n sO that Fiyy; > Fyyy
if j < j,orj = j',i < i Finally, we choose any total ordering of the Cartan
generators {f;}1<j<p of Uy(gl,) (or {K;}1<ij<n of Uy(sl,)). Having specified these
three total orderings, elements F' - H - E with F, E, H being ordered monomials in
{Fit1,j}1<j<i<n» {Ej i+1}1<j<i<n» and the Cartan generators {tj.tl}lsjfn of U, (gl,,)

We order {E; ;i1}1<j<i<n in the following way: E; ;11 < Ej vy if j < j',

(or {K iil }<i<n of Uy (sl,)), respectively, are called the ordered PBW monomials (in
the corresponding generators). The proof of the following result is analogous to that of
Theorem 3.24 below and is based on Proposition 3.11, we leave details to the interested
reader.

Theorem 3.14 (a) The ordered PBW monomials in {F; 11, ;, tkil , Ej’i+1}}§];§?<nf01’m
a basis of a free Clv, v~ -module Uy (gl,).

(b) The ordered PBW monomials in {Fiy1 j, Kkil, Ejj.;.]}}él;;;n form a basis of a
free C[v, v—"1-module $4,(s,).

Remark 3.15 We note that 4, (gl,,) >~ $£'(gl,) quantizes the algebra of functions on
the big Bruhat cell in GL(n), that is $,(gl,,) /(v — 1) >~ C[N_T N, ], due to (3.5) and
the PBW theorem of (Gow and Molev 2010, Proposition 2.1). Here N_ (resp. Ny)
denotes the subgroup of strictly lower (resp. strictly upper) triangular matrices, and T
denotes the diagonal torus of GL(n).

Remark 3.16 For a complete picture, let us recall in which sense U, (gl,) is usually
treated as a quantization of the universal enveloping algebra U(gl,). Let Uy (gl,)
be the C[v, v~!]-subalgebra of U,(gl,) generated by {tfl};?:l and the divided

powers {Ei(m), Fl.(m)}le According to Lusztig (1990b, Proposition 2.3(a)) (cf.

Jimbo (1986)), the sluil;;l’:gebra Uy (gl,) (resp. U7 (gl,)) of Uy(gl,) generated by
{Fi(m)}rlnfiLn (resp. {El.(m)}rlnfiln) is a free C[v, v—!]-module with a basis consist-
ing of the ordered products of the divided powers of the root generators F/ 4, =
[---[Fj, Fjtilv, ..., Fily (resp. E},i+1 = [Ei,....[Ej41, Ejly-1...1,-1). Spe-

cializing v to 1, we have tjg = 1 in a C-algebra U;(gl,) = Uy(gl,)/(v — 1).
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Specializing further #; to 1, we get a C-algebra isomorphism Uy (gl,,)/({¢; — )7:1) ~
U(gl,), under which £, ;| (=) Ej i1, Fl, = DIV Eiq1 ;.
3.5 The Drinfeld Quantum Affine gl,, and s[,

Following Drinfeld (1988), define the quantum loop g[,,, denoted by U, (Lgl,), to be

the associative C(v)-algebra generated by {¢; ,, fi.r, ¢ i, s, ®; 7S}1€<?<Yn€$ ,, With the

following defining relations (cf. (Ding and Frenkel 1993, Definition 3. 1))

[¢5(2). 5 )] =0, g7 9T =1,

(z = v w)e; (D)er (w) = (V' z — w)ey (w)ei (2),

i’z — w) £i (2) fir(w) = (2 — V' w) fir (w) f; (2),

(vz — v ') (z — vw) 1 g6 (2)er (w) = (z — w)*7 (vz — )i+ e; (W) (2),
(z — w)’ (vz = W)+ S (2) fi(w) = (vz — v )P (2 — VW) fi () (2),
e, o)l = 5 (2) (0 0 - v @),

ei@er (w) = ep(w)ei(z) and £ (2) fir(w) = fir(w) fi (2) if ciir =0,

lei(z1), [ei (z2), eir(w)],-1 ]y + [ei (22), [ei (z1), e (W) ]y-1]y = 0if ¢;r = —1,

Lfi(zD), [fi(z2), fir(w)]y=11o + [fi(z2), [fi (z1), fir(w)]y-1]y = Oif ¢;r = —1,
(3.18)

where the generating series are defined as follows:

i (2) == Zeiﬂ_r* fi(@) = Z firz ", wl-i(z) = prfﬂz“, 8(z) = Zz’,

rez. rez s>0 rez.

and wii(z) = 2 550 wifﬂﬁs is determined via wii(z) = (gol.i(z))_lgoil(v_lz).
We will also need Drinfeld half-currents e (z), f*(z) defined via

@ =) e @ i==Y ez fT@Q=Y fir T @==Y fir

r=0 r<0 r>0 r=<0

sothate;(z) = € (2) —¢; (2), fi(2) = fT(2) — f ().

The C(v)-subalgebra of U, (Lgl,) generated by {e; -, f; r, lpl%iv}gi%j,fN is isomor-
phic to the quantum loop sl,;, denoted by U, (Lsl,). To be more precise, this recovers
the new Drinfeld realization of U, (Lsl,), see Drinfeld (1988). The latter also admits
the original Drinfeld-Jimbo realization with the generators {E;, F;, K iil Yiem (here
[n] :={0,1,...,n — 1} viewed as mod n residues) and with the deﬁyjng relations
exactly as in (3.12), but with (c;;/); i7¢[] denoting the Cartan matrix of s[,. We prefer
to keep the same notation U, (Lsl,) for these two realizations. However, we will need
an explicit identification which expresses the Drinfeld-Jimbo generators in terms of
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the “loop” generators (featuring in the new Drinfeld realization), see Drinfeld (1988),
Jing (1998):
E: i . . +1 + .
i eio, Fi> fio, K =y for i € [n]\{0},
+1
Ky =i o
Eg > (=0) "2 [ i faoles o fuetoo g V_1.00

Fo > (=0)" - [en—1,0. - . [e20, €111yt - Tyt - Ui 0, -

(3.19)

The relation between the algebras U, (Lgl,) and U;"(Lgl,) was conjectured in
Faddeev et al. (1989) and proved in Ding and Frenkel (1993, Main Theorem). To state
the result, consider the Gauss decomposition of the matrices Ti(z) of Sect. 3.2:

T*(z) = F¥(z) - G*(2) - EX(2).

Here fi(z), éi(z), Ei(z) are the series in zF! with coefficients in the algebra
UM (Lgl,) ® End C" which are of the form

F*@)=) Ei+) f;@-Ej, G*@) =) & () Eu,
i i>j i
Ei(z) = ZE{,‘ + Zélij(z) . Eij.

i<j
Theorem 3.17 (Ding and Frenkel 1993) There is a unique C(v)-algebra isomorphism
Y : Uy(Lgl,) = UM(Lgl,)
defined by

~+ i Ft i
e, (v'z) fi, (') - ;
@) T [FR) e SRS gF@ e ). (.20)

Remark 3.18 To compare with the notations of Ding and Frenkel (1993), we
note that our generating series e;(z), f,-(z),q)j.[(z) of Uy(Lgl,) correspond to

— (i + i .
f}’;fv_i), );Lfv_? , k;.F(v/ z) of Ding and Frenkel (1993, Definition 3.1), respectively.

Likewise, our matrices T (z) and 7~ (z) of Sect. 3.2 correspond to L™ (z) and L™ (z)
of Ding and Frenkel (1993, Definition 3.2), respectively. After these identifications,
we see that Theorem 3.17 is just Ding and Frenkel (1993, Main Theorem) (for the
trivial central charge).

As an immediate corollary, ilﬁ,“(Lg[n) is realized as a Clv, v_l]-subalgebra

of Uy(Lgl,). To describe this subalgebra explicitly, define the elements {EYI) 1
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F s, of Uy(Lgl,) via

(r) v!
Ej ,+1 (v )[ei,O, T, [ej-i-l,()vej,r]v*l "']v*lv

) 1 @:21)
Fiy =@ =0l [fjr fi+1.0lo, - fiole
These elements withr = 0, 1 played an important role in Finkelberg and Tsymbaliuk

(2017, Section 10, Appendix G). We also note that E; "

i,i+
F:(-?l = =i

= (v — v_l)ei,, and

Definition 3.19 (a) Let &1, (Lgl,) be the C[v, v~!]-subalgebra of U, (Lgl,) generated
by

(r) (r)
{E] i+1° Ft+1 J

(b) Let U, (Lsl,) be the Clv, v’l]—subalgebra of Uy(Lsl,) generated by

N <ian U072 (3.22)

1<j<i<n 1<j<n

" 0
(E F

Jui+ i, /}reZ i U{w,':f:is}seN . (3.23)

1<j<i<n 1<i<n

The following result can be viewed as a trigonometric counterpart of Proposi-
tion 2.21:

Proposition 3.20 I, (Lgl,) = T~ (L% (Lgl,)).
The proof of Proposition 3.20 follows immediately from Proposition 3.21 and

C~orollarz 3.23 l)elow. To state those, let us express the matrix coefficients of
F*(2), G=(2), E*(2) as series in zT! with coefficients in M (Lgl,):

&) = Ze(’) ;&)= Z~(r) -,

r>0 r<0
F+ _ F(r)_— F— _ F(r)_—
fi@=3 77" fj@=3 fj,
r>0 r<0
+
=g+ &g .
r>0

The following result generalizes (Finkelberg and Tsymbaliuk 2017, Proposi-
tion G.9):

Proposition 3.21 Forany 1 < j < i < n, the following equalities hold in U (Lgl,):

5(0)
~ [ i, l+l’ (Z)]v 1 —~ [e, ,+1a ji(Z)]v*l
ej’H_l(Z) #7 e,/,i+1 Z T, (324)
i+ #(0) e FO)
cp _ [fij @), fiyyilo P _ [fij (@), fiyyilo 305
l-_,'_l,j(z = —I)_l v 5 i+l,j(z = —I]_l — . ( . )
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Proof For any 1 <i < n, we proceed by an increasing induction in j.

o Verification of the first formula in (3.24).
Comparing the matrix coefficients (v; ® v;|---|v; ® v;41) of both sides of the
equality (3.9) with € = € = +, we get

(z—-w)gtﬁﬂq§+lﬁu)+-ﬁ)—-v_Uij&)gZ+lﬁu)

= @ —wi i@+ @ —v Hwyf it @.
Evaluating the terms with w'! in both sides of this equality, we find
—1 @65, 101 = =1, 1101 (2) + (0 — v~ DF 01, (2).

Note that t; (z)t; [0] = v_lti'l.' [O]t;; (z). To see the latter, we compare the matrix

coefficients (v; ® v;|---|v; ® v;) of both sides of the equality (3.9) with ¢ = ¢’ =
+, and then evaluate the terms with w! as above. Combining this with t:’i 41 [0] =
~+~(0 ~(0
gl.JrefJ.)+1 = tiJ{[O]eE,i)H, we deduce
~(0) +
le; st (D]
+ L1 Vi v
Gin@ = —" = (3:26)
Recall that

=@+ ) [0 08,
I<k<j—1

i@ =2 0+ Y @i, 6.
1<k<j-1

Let us further note that &)

i 141 commutes with fj*,; (z) (since by the induction assumption

the latter can be expressed via fs('s)_ | Which clearly commute with éfol.) 4 fors < j)
50 ot
and with g;" (z) for k < j. By the induction assumption % =¢ ;1)

for k < j. Hence, we get

j—1
e L+ ) [ @ @
k=1

- ~(0 -
L E I8, @

v—ov!

J—1

+) [0 @, @,
k=1

which implies the first equality in (3.24).
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e Verification of the second formula in (3.24).
Comparing the matrix coefficients (v; ® v;|---|v; ® v;41) of both sides of the
equality (3.9) withe = —, ¢/ = +, we get

(2 — w5 @1 (W) + @ = v Dzt @, (w)

=(z— w)tt t+1(w)t (D+@w—v l)wt+(w)tj iv1(2)-
Evaluating the terms with w'! in both sides of this equality, we find
—1 (@1 101 =~ 11015 2) + (@ — v~ )01, ().

Note that tj_i (z)t; 0] =v! tl.Jir [O]tj_i (z) (which follows by comparing the matrix coef-
ficients (v; ® v;| - - - |v; ® v;) of both sides of the equality (3.9) with e = —, € =+,
and then evaluating the terms with w! as above). Combining this with ti‘”'i 0] =

~ 0 0
+()1—t+[0]()

8i i+ iit1> We obtain

0
[é fﬁﬂ,t,l(z)],, !

— (3.27)
vV—0V

ti i1 =

This implies the second equality in (3.24) via the same inductive arguments as above.
e Verification of the first formula in (3.25).

Comparing the matrix coefficients (v;41 ® v;|---|v; ® v;) of both sides of the
equality (3.9) withe = —, ¢/ = +, we get

(@ —wit @ w) + (0 — v Hwr; (1] (w)

= (@ —wit ), @)+ v — v ), ;@)
Evaluating the terms with z° in both sides of this equality, we find
171110085 w) + (0 — v D008, (w) =~ )i (0],

Note that #;; [0] i (2) = 1+1 ](z)t [0] and ¢;; [O]t+(z) vt+(z)t [0]. To see

ij
these equahtles we compare thé matrix coefﬁments (v,+1 ® vil-- |v ; ® v;) and
(i ® ;| - - - |vj ®v;) of both sides of the equality (3.9) with € = +, ¢’ = —, and then
evaluate the terms with w® as above. Combining this with ¢, i1, ;[0 = :(J?)] ; gi— =
fl(fz)l ;1,7 [0], we deduce
t+(IU) f(o)
+ . i+1, l
tl+1 j(w = W (328)
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Recall that

)= fTwEim + Y fif wgd w)Ew),
I<k<j—1

)= gi @+ Y i wEh ek w).
1<k<j-—1

We further note that f y1,; commutes with é,j} (z) (since by the induction assumption

(o )

the latter can be expressed via e, . which clearly commute with fl(o) cfors < j)

and with gk (w) for k < j. By the induction assumption % = l+1 (W)
for k < j. Hence, we finally get
L EFw + Y fgf el w)
1<k<j-—1
7(0) ~+
_ ). Sl - &7 @) - e
e ST g i w),
I<k<j-1
which implies the first equality in (3.25).
e Verification of the second formula in (3.25).
Comparing the matrix coefficients (v;4+1 ® v;|---|v; ® v;) of both sides of the

equality (3.9) with e = ¢/ = —, we get

(= w15 W) + (v — v hwi; (@t )

= (= w)t;; Wi, ;) + W — v Dz (w7, ().
Evaluating the terms with z° in both sides of this equality, we find
—171,,1006; (w) + (0 = v~ D1 [0l 5 (w) = =1 (W)t ;[0].

Note that #;; [O]tlJrl ](z) lit, ](z)t [0] and ¢;; [O]t (2) = vt (z)t [0]. To see

these equahtles we compare thé matrix coefﬁments (v,+1 ® v,|~ |v ; ® v;) and
(vi ® vi| -+ |v; ® v;) of both sides of the equality (3.9) with € = e/ = —, and then
evaluate the terms with w® as above. Combining this with iyl fl(f:)] 8 =

fl(ﬂ)l ;1.7 [0], we obtain

15 (w), ffﬁi,

: (3.29)
v —v

liy,j(w) =

This implies the second equality in (3.25) via the same inductive arguments as above.
This completes our proof of Proposition 3.21. O
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Corollary 3.22 Forany 1 < j <i < n andr € Z, the following equalities hold:

Pty oo 0 0o
Gt = @V G Ly e G bt bt
A O L ERRY VI SN TR A '
it = jrtge Jitajedv s Jig e

Combining these explicit formulas with (3.20), we obtain

Corollary3.23 Forany 1 < j <i < nandr € Z, we have the following equalities:

EV)

= DTy @ ), FY

Fh By = 0w m D . (D)

+1,j

We now apply Proposition 3.20 to construct bases of Ll,(Lgl,) and 4, (Lsl,). It

. . . g, ifr>0
will be convenient to relabel the Cartan generators via ¢; , = Lreoo ,
Pi s ifr <0
+ .
T, ifr>=0 _ —
Yir = wlﬁr .., so that (§0i,0)71 = 90 (wi,O)71 = V¥, o- We order the
Y., ifr <0 ’ ’

}rEZ

elements (£}/} I<j<i<n in the following way: Ef),, = E;t/,?/ﬂ if j < j/,or

Jrit+l Jiitl —

j=j,i <i',orj=j,i=ir <r' Likewise, we order {Fi(fr)w
that F\7) = F) i j < jloorj=jLi<ilorj=j,i=ir<r.
Finally, we choose any total ordering of the Cartan generators {¢; s }312% <n of Uy (Lgl,)

(or {¢;, S}SEZ of l,(Lsl,)). Having specified these three total orderings, elements

1<i<n

F-H-E with F, E, H being ordered monomials in { 7" /.}rEZ (EV) et

i+1,jI1<j<i<n’ Ji+1I1<j<i<n’
and the Cartan generators {goj,s}‘iegin of L, (Lgl,) (or {‘/fivs}‘iian of Ly (Lsly,)),
respectively, are called the ordered PBWD monomials (in the corresponding genera-

tors).

}}’EZ SO

1<j<i<n

Theorem3.24 (a) The ordered PBWD  monomials in {Fi(:-)l,j’ Ok 55

,SEZL . _
E;TSH}E;?SK"’]S,{S’ form a basis of a free C[v, v~ ']-module $4,(Lgl,,).
. . SEL
(b) The ordered PBWD monomials in {Fi(jr)l,j’ Yk.s, Ej‘r,z?+1}r1£§§i<n,1§k<n form a

basis of a free Clv, v~ -module 31, (Ls,).

This result generalizes (and its proof is actually based on) (Tsymbaliuk 2018, The-
orems 2.15, 2.17, 2.19). To recall these theorems in the full generality (which is
needed for the further use), let us generalize the elements { Ej(’l) 1 Fiﬁ,ﬁﬁ%gkn
first. For every pair 1 < j < i < n and any r € Z, we choose a decomposition

r=j,....r;) € Z/ such thatr = r; +rj41 + - - + r;. We define
) ~1
Ejiti() == @—=v )i, [ejtirjs il lp-1s

Fi+],j(£) = (v_l —v)[--- [fj,r.,w fj+1,rj+1]v7 T, fi,ri]v~

i - = - o= (r) (r)
In the particular case rj = r,7j41 = -+ = r; = 0, we recover E} ;.\, F;\

of (3.21).
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Let Uy (Lgl,) and U, (Lgl,) be the C(v)-subalgebras of U,(Lgl,) generated
by {(fi,}€4_ and {e; r}l<%<n, respectively. Let £~ (Lgl,) and 7 (Lgl,) be the

1<i<n
C[v, v~ ']-subalgebras of 4,(Lgl,) generated by {Fl(_:)lj}qi%gm and
{Ejrl) 1 Hi%fi _,,» Tespectively.

Theorem 3.25 (Tsymbaliuk 2018) Forany 1 < j < i < nandr € Z, choose a
decomposition r as above.

(a) The ordered PBWD monomials in {E;, ,+1(r)}1<j<l<n form a basis of a free
Clv, v~']-module 3 (Lgl,,).

(b) The ordered PBWD monomials in {E;, ,+1(r)}l<j<l<n form a basis of a C(v)-
vector space U, (Lgl,).

(¢) The ordered PBWD monomials in {E*‘l»j(f)}qes%skn form a basis of a free
Clv, v~ ']-module 3 (Lgl,).

(d) The ordered PBWD monomialsin {Fj 1, ; (D}ﬁi%sknforma basis of a C(v)-vector
space U (Lgl,).

(e) The ordered PBWD monomials in { F’ t+1 /,gok,s,
of the quantum loop algebra U,(Lgl,,).

(r) }r SEZ

Jitl 1<j§i<n,1§k§nformabas1s

Proof of Theorem 3. 24 Due to Theorem 3.25, it suffices to verify that all unordered
products E( l+1<p ’is Fl(fr)l It E(rl)JrlFl(Jrl ., are equal to C[v, v~!]-linear
combmatlons of tfle ordered PBWD monomlals The verification for the first two
cases is simple. Indeed, we can always move (p o to the left or to the right acquir-
ing an appropriate power of v. As for the other Cartan generators, it is more
convement to work with another choice of Cartan generators h s 1 defined via

¢y (z) =g /oeXP(ZDo ', 1s2T%). These generators satisfy 51mple commutation

relatlons [hj s»eir]l = c,j,r se s Lhjrs, firl = —c(i, J' r,8) firys for
certain c(i, j/, r,s) € C[v, v~!]. Therefore, Eﬁ ,)+1hj’,s_hj’,sE;fl?+1 isaC[v, v1]-

linear combination of the terms of the form £ ; 11 (r + s) for Various decompositions

of r +s mto the sum of i — j + 1 integers, hence, the claim for EV) h j.s- The case

J, z+l
of i j 1s analogous.

Thus it remains to verify that E (r) iF (s) , is a C[v, v~!]-linear combination of the

ordered PBWD monomials. First, let us note thatif j > i’ or j' > i, then E (r)F (,s), =

F,('YszErz) and the latter is already an ordered PBWD monomial. Hence, from now on
we shall assume i > j,i > j’. There are four cases to consider: (1) r > 0,s > 0,
2)r <0,s >0,3)r >=0,5s <0,4r <0,s < 0. For simplicity of the current
exposition, we shall treat only the first case, while the proof is similar in the remaining
three cases. Thus, we assume r > 0, s > 0 from now on. The proof will proceed by
an increasing induction in r + s, then by an increasing induction in j’, and finally by
an increasing induction in r.

Our proof is based on Proposition 3.20. In particular, applying Corollary 3.23 to
E; (.r? F.(f),,, the question is reduced to the proof of the fact that e(r) firy i) isa Clv, v~

llnear combination of monomials in the generators {eE’Z, fe (..), g’f , g£°)} (ordered
accordingly).
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~ ~ i—1 = ~ ~ . . .
' Rl;cau that t;(z) = gj(z)e; @+ i, fj';(z)g;'(z)e; (z), which immediately
1mplies

j=1 ri4+r+4r3=r

TERLT D A SR S U e A

0<r'<r k=17r1>0,r2>0,r3>0

where g?,({o) denotes g,j. Likewise,

J'=1
) = fLghw) + ) fil g el (w)
k=1

implies

, ) J' =1 si+sr+s3=s
sl=F0h+ Y e+ Y fVedPer. (334

0<s'<s k'=151>0,52>0,53>0

Applying formulas (3.33, 3.34), let us now evaluate the product t;;[r]tlfj,[s] and
consider the corresponding unordered terms (we shall be ignoring the Cartan gener-

ators g¥, gS') since they can be moved to any side harmlessly as explained above).

Besides for &' f(,v), all other terms will be either of the form &' f(,c), with k' < j" or
Jt g ji Ji'k

of the form éﬁf,.) ~.(S.,) with 7’45’ < r+s. By the induction assumption, the latter terms
are C[v, v~!]-linear combinations of the ordered monomials. Therefore, it suffices to
prove that so is t; [r]t;,rj,[s].

To verify the latter, we start by comparing the matrix coefficients
(v ®vir|---|v; ® vj) of both sides of the equality (3.9) with € = € =+

(z— w)t;(z)t,fj/(w) +@—v Dzt (Z)t;/(w)

= (z = w)i, (@) + 0 — v Hzi )l @),

1—r

Evaluating the coefficients of z' ~"w™* in both sides of this equality, we obtain

z;[r]zjj,[s] =@—v Dl [s]t;fj,[r] —(—v Heh [r]t;;,[s]
+ + + + + +
e = e Ls 4+ 1 17 [slef 1] = 67, s + 10 = 1.
(3.35)

Let us now consider the unordered monomials appearing in each summand of the
right-hand side of (3.35). First, we note that all the unordered monomials appearing
in the last three summands are of the form éﬁf/.) f.(s./) witheitherr’ =r — 1,5’ = s+ 1
or with ¥’ +s’ < r + s, hence, they are C[v, v~ !]-linear combinations of the ordered
monomials by the induction assumption. Let us now consider the unordered terms
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appearing in t;rl. [r]t;rj/ [s].If i’ > i, then clearly all the unordered terms are of the form

~(r ) f ) with ' + 5" < r + s, to which the induction assumption applies. If i’ < i,
then all the unordered terms in t+ [r]t+ [s] are either as above (to which the induction

assumption applies) or of the form e ~(r) f Fs)

~(r) U f /(,i) f (,i) e(,r) (forany k < j) Wthh is an ordered monomial. Therefore, we have

withk < j. Asi > i’ > j > k, we have

eventually proved that tl+l [r]t; [s] is a C[v, v~ !]-linear combination of the ordered

monomials. Swapping r and s, we obtain the same result for tJr [s]t+,[r]

(r)f(S)
i

Combining all the above, we see that e is a C[v, v—!]-linear combination

of the ordered monomials, hence, E;.,?Fi(f;/ is a C[v, v_l]-hnear combination of the
ordered PBWD monomials.
This completes our proof of Theorem 3.24. O

Remark 3.26 We note that $l,(Lgl,) ~ UJ'(Lgl,) quantizes the algebra of func-
tions on the thick slice "Wq of (Finkelberg and Tsymbaliuk 2017, 4(viii)), that is,
Uy(Lgl,)/( — 1) = C[MWo].

Remark 3.27 For a complete picture, recall that U, (Lsl,) is usually treated as a quan-
tization of the universal enveloping algebra U (Lsl,), cf. Remark 3.16. Let U, (Lsl,)
be the Clv, v_l]-subalgebra of Uy(Lsl,) generated by {Kil}je[n] and the divided

powers {El.(m), Fl.(m)}lm;n1 Specializing v to 1, we have K? = 1 in a C-algebra
Ui (Lsl,) = Uy(Lsl, )/(v — 1) Specializing further K; to 1, we get an algebra
isomorphism Uj(Lsl,)/({(K 1) jem)) = U(Lsly,). However we are not aware of

the description of U, (Lsl,) i 1n the new Drinfeld realization. In particular, it would be
interesting to find an explicit basis of U, (Lsl,,) similar to that of Theorem 3.24.

3.6 Shuffle Algebra and its Integral Form

In this section, we recall the shuffle realizations of U, (Lgl,), 4, (Lgl,) established
in Tsymbaliuk (2018). Set X, k,_) = Zk; X -+ X X, forky, ..., ky—1 € N.

Consider an N*~!-graded C(v)-vector space S = @k—(kl N S,(("), where

----- n I)E
S,(( ") consists of X -symmetric rational functions in the variables {x; ,}i;:;ﬁ’ We also
fix a matrix of rational functions (¢;, j(z))l =1 by setting ¢; j(z) = —i. Let us

now introduce the bilinear shuffle product x on S™: given F € S,({ " and G € S((Zn),
define FxG € S(n)@ via

(F*G)(xl,l, ey XLk 4€y5 -5 Xn—1,15 -+ xn—l,kn,1+£n,1) = k! -E!X

. /
1<i’<nr'>ky

1<r<k; k/<r <kjr+L;s
Symzhg <{ lr}1<l<n) ({xl r }1<, <n ) : 1_[ 1_[ Ci,i/(xi,r/xi’,r/)

1<i<n r<k;

(3.36)

@ Springer



240 M. Finkelberg, A. Tsymbaliuk

Here k! = ]_[7:_11 k;!, while for f € C({x; 1, ..., Xim }1<i<n) We define its sym-
metrization via

Symy (f) =

m m'

' Z I (Xioi(1ys - - s Xioymi) i<i<n) -

This endows S with a structure of an associative C(v)-algebra with the unit 1

(n)
S(0 ..... 0)°

We will be interested only in a certain C(v)-subspace of S, defined by the pole
and wheel conditions:
e We say that F € S,((”) satisfies the pole conditions if

F&L o X1k y)

= 2 1 <kit1
H?:] Hrgk,-H— (xi,r - xi+1,r’)

, where f € (C(v) [{xiﬂf)}}gf’;f])zk. (3.37)

e We say that F € S,({") satisfies the wheel conditions if

F({x; ,}) =0once x; ,, = VXjte s = v2x,-,,2 for some €, i, r(, 12, s, (3.38)

where e € {£1}, 1 <i,i+e<n, 1 <ri,rp <ki, 1 <5 <kite.
Let S,E") C S,((") denote the C(v)-subspace of all elements F satisfying these two
conditions and set §™ := D ep-1 S,E"). It is straightforward to check that the C(v)-

subspace S C S™ is x-closed. The resulting associative C(v)-algebra (S ) *) is
called the shuffle algebra. 1t is related to U, (Lgl,) ~ U, (Lsl,) via (Tsymbaliuk
2018, Theorem 3.5), (cf. (Negut 2013, Theorem 1.1)):

Theorem 3.28 (Tsymbaliuk 2018) The assignment e; , +—> xi”l (1 <i<n,rel)

gives rise to a C(v)-algebra isomorphism W : U, (Lgl,) —> S,

For any k € N*~!, consider a C[v, v~!]-submodule 6,(;1) - S,En) consisting of all
integral elements, see Tsymbaliuk (2018, Definition 3.31). Set S .= @kethl 6,((")

(itis a C[v, v~']-subalgebra of S™ as follows from Theorem 3.30 below). While we
skip an explicit definition of G as it is quite involved, let us recall its relevant
properties that were established in Tsymbaliuk (2018, Proposition 3.36):

Proposition 3.29 (a) For any 1 < £ < n, consider the linear map () : st 5 g
given by
ke

P (N Z50) =[] (1-20))  F (550 for Fes ken,
r=1
(3.39)
Then
FeB"™ « (F)e&™, (3.40)
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(b) For any k € N*"! and a collection gi({xi,r}fizl) e Clv, v_l][{xiirl}fizl]zki
(1 <i < n), set

—1 -2 -1 ki
1—1;::1 Hlir#r’fki (xi,r -0 -xi,r’) : H?:I 8i <{xi,r}rl:1>

n—2 ry1=<r'<kis
l_[izl 151’5]{,‘1 (xi,r - xi+l,r’)

F = (v_vfl)k1+~~+k,,_1 .

(3.41)
Then F € 62").

According to Tsymbaliuk (2018, Theorem 3.34), the isomorphism ¥ of Theo-
rem 3.28 identifies the integral forms $4> (Lgl,) C U; (Lgl,) and 8™ c §™:
Theorem 3.30 (Tsymbaliuk 2018) The C(v)-algebra isomorphism
v Uy(Lgl,) = S™  gives rise to a Clv, v ']-algebra isomorphism
> (Lgl,) = 6™,

We will crucially use this result in our proofs of Theorems 4.4, 4.15, 4.23.

Remark 3.31 For an algebra A, let A°P denote the opposite algebra. The assign-
ment fi, — e, (1 < i < n,r € Z) gives rise to a C(v)-algebra
isomorphism U,=(Lgl,) <> U; (Lgl,)°® and a C[v, v~']-algebra isomorphism
US (Lgl,) — U5 (Lgl,)°P. Hence, Theorems 3.28 and 3.30 give rise to a C(v)-
algebraisomorphism W : U~ (Lgl,) —> S™-°P andaC[v, v~']-algebraisomorphism
W Us(Lgl,) = G&™-°P (by abuse of notation, we still denote them by W).

3.7 The Jimbo Evaluation Homomorphism ev

While the quantum group U, (g) is always embedded into the quantum loop algebra
Uy(Lg), in type A there also exist homomorphisms Uy, (Lsl,) — U,(gl,), discovered
in Jimbo (1986). These homomorphisms are given in the Drinfeld-Jimbo realization
of Uy(Lsly).

Theorem 3.32 (Jimbo 1986) For any a € C*, there is a unique C(v)-algebra homo-
morphism

ev, : Uy(Lsl,) — Uy(gl,)
defined by

Ei > E;, Fir> F;, KX+ KF fori € [n]\{0},

K(:)tl . Klqcl . I(;F_ll, 42
Eo > (=)0 " a [ [Fi, Faly, -, Fyotly - 178 '

n

Fors (=D)"v"'a ™  [Ey_y, - [E2, Erly-t -+ 1yt - tit.

The key result of this subsection identifies the evaluation homomorphism ev, with

the restriction of C(v)-extended evaluation homomorphism ev!]' of Lemma 3.4.
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Theorem 3.33 The following diagram is commutative:

Us(Lsly) —— UM™(Lgl,)

l evgll (3.43)
Uv (g[n) % Ull;n(g[n)

Proof Tt suffices to verify Y~ (ev'"(T(X))) = ev,(X) for all X € (E;, Fi, K }ie[n)-
The only nontrivial cases are X = Eq or Fp, the verification for which is presented
below.

o Verification of Y~ '(ev™ (T (Eo))) = eva(Ep).
According to (3.31), we have

TFD (1)
[ L f20le, o fa1000) = _(1_)— I

v vv—vl)’

On the other hand, we have ¢/ [1] = f(l) = f(l) #1101, so that evg‘(fn(ll)) =

()" Note that Y=1((5f)~") = 7!, while Y~'(t;)) = (' —v) -
[- - [F1, Falys -+ Fuztle - tl_l, due to Corollary 3.13. Combining all the above
with (3.19), we finally obtain

T @™ (Y (E)) = (D" " Ma-[---[F, Faly, -, Facily - 11 1, =eva(Eo).

e Verification of T_l(evgt(T(Fo))) = ev,(Fp).
According to (3.31), we have

T(E( 1)) vé( 1]
T([en—1,0,--- . [e2,0,e1,—1]p-1 - 1p-1) = =
v—v v—v~
On the other hand, 7, [—1] = gl_ein ) = tl_l[O]einl), so that evg"(éigl)) =
U@~ Note that Y71 ((t)™") = #, while Y7 () = (v — vty -
[Eno1, -+, [E2, E1]y-1 -+ - 1,-1, due to Corollary 3.13. Comblmng all the above
with (3.19), we finally obtain
T (evi (Y (Fo)))
= (=D""Ma™ i [Epr (B2 Edlyr o Dyet 1]y = eva(Fo).
This completes our proof of Theorem 3.33. O

We will denote the evaluation homomorphism ev simply by ev.
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3.8 Quantum Minors of T=(2)

We recall the notion of quantum minors of T%(2) following Molev (2007, §1.15.6)
and Hopkins (2007, Chapter 5) (though a slight change in our formulas is due to a
different choice of the R-matrix). For | < r < n, define R(z1, ..., z,) € (End C")®"
via

R(z1,...,2/) = (Rr—l,r)(Rr—Z,rRr—Z,r—l) <+ (R -+ R12) with
Rij := Ruyig;ij(zi, 2j)-

The following is implied by the Yang—Baxter Eqgs. (3.7) and (3.9):
Lemma3.34 R(z1,....z)T (z) - TF(z) = TE () - TR, - - 2).

Consider the v-permutation operator P’ € End(C" ® C") given by

=Y Ei®Ei+vY E;®E;+v 'Y E;®E.

i i>j i<j

It gives rise to the action of the symmetric group %, on (C")®" with transpositions
(i,i + 1) acting via Pi’ji . (the operator P? acting on the i-th and (i + 1)-st factors
of C"). Define the v-antisymmetrizer A? € (End C")®" as the image of the anti-
symmetrizer ) ex, (=1)? - o € C[Z;] under this action of X, on (C"H®r, Recall
the following classical observation [(cf. (Molev 2007, §1.15.6) and (Hopkins 2007,
Lemma 5.5)]:

) =1
Theorem3.35 R(z,v%z,..., v Vo) =[]o o, (0% —0*)z 7 AL

Combining Lemma 3.34 and Theorem 3.35, we obtain the following

Corollary 3.36 We have

ATEQT (0%2) -+ T V) = TF@ Vo) - T () T () AL
(3.44)

The operator of (3.44) can be written as Y ta‘ a, (D) ®Eq p ® - ® E,, p, with

ZZI] “arid ) e UM (Lgl,)[[zF']] and the sum taken overallaj,...,ar,by,...,b. €
{1,...,n}.

Definition 3.37 The coefficients t“1 a’ (z) are called the quantum minors of T*(z).

In the particular case r = n, the image of the operator A? acting on (C")®" is 1-

dimensional. Hence A”Ti(z) Ti(vz(’1 D7) = A} -qdet Ti(z) with qdet T%(z) €

il‘,',“(Lg[,,)[[ﬁl]]. We note that qdet T%(z) = t]1 ;’ i(z) in the above notations.
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Definition 3.38 qdet T (z) is called the quantum determinant of T*(z).

Define di, € Ui(Lgl,) via qdet T*(z) = Y, dx,z7". The following result is
a trigonometric counterpart of Proposition 2.10:

Proposition 3.39 The elements {ditr}rzo are central, subject to the only defining rela-
tion dy dy = 1, and generate the center ZUM(Lgl,,) of U (Lgl,). In other words,
we have a C[v, v—'1-algebra isomorphism

ZUM(Lgl,) 2 Clv, v "[{dT, }r201/(df dy — 1).

3.9 Enhanced Algebras

In this section, we slightly generalize the algebras of the previous subsections as well as
various relations between them. This is needed mostly for our discussions in Sect. 4.3.

o Let ill,ft’/(g[n) be a C[v, v_l]-algebra obtained from il{,“ (gl,,) by formally adjoin-

ing n-th roots of its central element ¢ := t1+1 b= (g o)7L that s,

S (gl,) = 4(gl)[+E1/7]. Tts C(v)-counterpart is denoted by U™ (gl,,). Like-
wise, let U,/, (gl,,) be a C(v)-algebra obtained from Uy (gl,) by formally adjoining
n-th roots of its central element ¢ := ¢; ...1,, that is, U;(g[n) = U,,(g[n)[til/”].
Then the isomorphism of Theorem 3.9 gives rise to a C(v)-algebra isomorphism
T UL (al,) = UM (gl,).

e Let ilf,“’/(Lg[n) be a C[v, v~']-algebra obtained from $%(Lgl,) by formally
adjoining n-th roots of its central element ¢[0] := t]ﬁ [0]...1,[0] = (t;00]...
= [0D)~!, that is, U (Lgl,) = UM(Lgl)[(¢[0])*/"]. Tts C(v)-counterpart
is denoted by U,ftt’,(Lg[n). Likewise, let U,/,(Lg[n) be a C(v)-algebra obtained
from U,(Lgl,) by formally adjoining n-th roots of its central element ¢ :=
000 = @1 @)L that s, U,(Lgl,) = Uy(Lgl,)[¢*'/"]. Then
the isomorphism of Theorem 3.17 gives rise to an algebra isomorphism
T : UL (Lgl,) => UM (Lgl,).

o Let U,"j‘d(s[n) be a C(v)-algebra obtained from U,(sl,) by adding extra gen-
erators {¢;"'}7_] subject to K; = ]_[;’;} q&;’", GE; = VIEpi, ¢;F; =
v % Fipi, ¢ip; = ¢ ;. Then, the natural embedding Uy (sl,) — Uy,(gl,) gives
rise to a C(v)-algebra embedding U,"j‘d(s[n) — U;,(g[n) via ¢; — 1‘1_1 ...ti_l i

e Likewise, let Ul",‘d(len) be a C(v)-algebra obtained from U, (Lsl,) by adding extra
generators (¢} subject to ¥ 1y = [Tj21 ;" i (2) = ¥} ()i, die; (2)
= I)Sijej (@i, ¢i fj(z) = v % fi@¢i, ¢pi¢;j = ¢;¢;. Then, the natural
embedding U,(Lsl,) — U,(Lgl,) gives rise to a C(v)-algebra embedding
U;'j‘d(Ls[n) — U,;(Lg[n) via ¢; Pro---%io- Qi

e The homomorphisms ev™, ev of Sects. 3.3, 3.7 extend to the homomorphisms of
the corresponding enhanced algebras, so that (3.43) gives rise to the commutative
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diagram
UM (Lsl,) —— U, (gl,)

lr le (3.45)
’ rtt ’
Uyt (Lgl,) —— U (gl,)

o Let UM (Lsl,) (resp. ilﬁ,tt’/ (Lsly,)) be the quotient of $L(Lgl,,) (resp. ilf,n’/(Lg[n))
by the relations gdet 7%(z) = 1 (resp. qdet T*(z) = I, ¢[0D'/" = 1). We
denote its C(v)-counterpart by US" (Lsl,) (resp. U,fn’/ (Lsly)). Clearly Ui (Lsl,) ~
S (Lsl,), UM(Lsl,) ~ UM (Lsl,).

e The composition

UM(Lsl,) < U,(Lgl,) —=> U™ (Lgl,) — U™ (Lsl,) (3.46)

is a C(v)-algebra isomorphism.

e Analogously to Definition 3.19, let $424(Lsl,) be the C[v, v~!]-subalgebra of
U2d(Lsl,) generated by {E;rJ?H, Fl.(fr)l’j}qggknU{lpfis}sé?mu{qbiﬂ 11~ Then
the C(v)-algebra isomorphism (3.46) gives rise to a C[v, v~!]-algebra isomor-
phism

$09(Lsl,) = 4 (Lsl,). (3.47)

e Define the generating series ¢+ (z) = ¢ + > r>1 9427 with coefficients in the

algebra U, (Lgl,) (or U,;(Lg[n)) via ot (z) 1= [T, <pf(viz) (so that p& = @T1).
It is straightforward to check that all ¢4, are central elements of U,(Lgl,) (or
U,/)(Lg[n)). Moreover, it is known that the center ZU,;(Lg[n) of U;(Lgl,,) is a
polynomial algebra in {¢+,, (pil/ "}r>1 and

U, (Lgl,) ~ UM (Lsl,) ®cw) ZU,(Lgl,).
The latter in turn gives rise to a trigonometric counterpart of (2.5):
U™ (Lgl,) ~ UM (Lsl,) ®c) ZUM (Lgl,), (3.48)

where Ulr,n’/ (Lsl,) is viewed as a subalgebra of U,fn’/ (Lgl,) (rather than a quotient)

via (3.46).

4 K-Theoretic Coulomb Branch of Type A Quiver Gauge Theory

4.1 Homomorphism 5:1
Let us recall the construction of Finkelberg and Tsymbaliuk (2017, §7) for the type
Aj—1 Dynkin diagram with arrows pointing i — i 4+ 1 for 1 <i <n —2. We use the

same notations A, u, A, N, a; as in Sect. 2.8 (in particular, we set ap := 0, a; := 0).
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246 M. Finkelberg, A. Tsymbaliuk

Consider the associative C[v, v~!]- algebraA" generated by{Dl W il/ Z}EEZ" 1
such that D;, ,Wl/ S 1/ ZD, ~» while all other generators palrwrse com-

mute. Let A? be the 1oca11zat10n of AY by the multiplicative set generated by

(Wi, — v”’w,-’s}}gffjéz U {1l — v"},ez\ o). We define their C(v)-counterparts

fl}’m = AV ®cpp.p-1] C(v) and ﬁ}’rae = AV ®clv,v-1] C(v). We also need the

larger algebras ﬁ”[zfl,...,zil] = AV ®crv.v-17 Clv, v’l][zfl,.. zﬁl] and
Av 1z 2 = A ®cwy CWIZ',....z5'1.  Define

Wo(z): —1 W (2):=1, and

Zi(z) = ]__[ (l_iﬁ) Wi (2) :=]_[(1—W;r>,

1<s<N r=1

S#EF )
Wi () = 1_[ (1 - W;’S> .

1<s<a;

To state (Finkelberg and Tsymbaliuk 2017, Theorem 7.1), we need the follow-
ing modifications of U, (Lﬁ[n). First, recall the simply-connected version of shifted
quantum affine algebra U,"" introduced in Finkelberg and Tsymbaliuk (2017
§5(@i)), which is a (C(v) algebra generated by {e; ,, fi,, w s+ w_ o (w o)~ 1

Z.sF>0,57 >~
(wi,bi) 1}?;;:1 5= , where b; = () as in Sect. 2.6 with {a }l’f:ll denot-

ing the simple positive roots of sl,. Finally, we deﬁne Uad“ (7., 25" as
a (C(v)[zI—Ll, .. ] -algebra obtained from U,™ ”“[z e N = et ®C(v)
(C(v)[zlil, A N ]by adding generators {(¢,-+)il, (¢; )il}?;ll subject to the follow-
ing extra relations:

iy =i

vh=6D" T]eH™" o™ [] ' v, =6 []eH™,

J—i 1<s<N j—i
[0, 65 1=0, ¢SUS (2) = ¥§ ()05, dfer(z) = v e (),
o5 fir(2) = v fu(2)pS (4.1)

forany 1 <i,i’ <n—1lande, € € {£}.

Theorem 4.1 (Finkelberg and Tsymbaliuk 2017) There exists a unique
(C(v)[zlil, e ,zil]-algebra homomorphism

G . 1 £ qv o[£l +1
Dy [zi ] — Afac [z1 veesZy ]

such that
aj—1

12 o (Wi ZiWir) .
e LT [T 2o () w0

z Wi (Wi )
r=1

e (z) =
v —
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aj+1

a; b
—1/2 VWi, 1
fi@) — 2 l_[ t+1/t Z ( l,r) W Wi1(ow; ) D; r,

r=1 <

aj—1 aj+1

ot o T Tt (s Mt ot 1)
it i—1,t l+1t Wi(Z)Wi(Ufzz) s

t=1

(¢+)il N HWil/Z il s l—[WJFl/Z
9 l .

t=1

We write y ()T for the expansion of a rational function y (z) in z ', respectively.

Remark4 2 We note that the algebras USC’“ and U,?d’“ [zlil, .. zﬁl] were denoted
USC and uad [z e, Zﬁl] in Finkelberg and Tsymbaliuk (2017). Moreover, we

used a sllghtly dlfferent renormalization of ¢;” in loc.cit.

In analogy with Definition 3.19, let us introduce integral forms of the shifted quan-
tum affine algebras U,"" and de’“[zlil, Lz

Definition 4.3 (a) Let 43 " be the C[v, v~!]-subalgebra of U, " generated by

rEZ,A‘fZO,s? >—b;

) " |€? + - ol -
{ St Tt I<j<i<n w’vﬂ* wl’_si (1/11’0) (wl’b') 1<i<n—1

4.2)

(b) Let Llid’“[zfl,...,zﬁl] be the (C[v,v’l][zfl,...,zil]—subalgebra of

U HZE L 2] generated by

{E(r) F(V) }I‘GZ U ¢+ w— S;r>O’Si7>_bi U {(¢+):|:1 (¢—):tl}n_l
Jji+1 Ti4l,j l<j<i<n i,s;r’ i,—s; i g .

i=1"
4.3)

1<i<n—1

Here the elements E§ l) i F z(-?l j

on the collections {Eﬁrl) 41 I Z% <i<n and {Fl(jf1 j }ﬁi%skn which were introduced right
before Theorem 3.24, and choose any total orderlng on the corresponding Cartan gen-
erators. We introduce the ordered PBWD monomials (in the corresponding generators)

accordingly. The following result generalizes Theorem 3.24 to the shifted setting.

are defined via (3.21). Recall the total orderings

Theorem 4.4 (a) The ordered PBWD monomials in the elements (4.2) form a basis of
a free Clv, v~ ]-module $4;".

(b) The ordered PBWD monomials in the elements (4.3) form a basis of a free

Clo, v "IzE, . 25 omodule B (25, .. ZE1.

Proof We will provide the proof only of part (a), since part (b) is proved analogously.
Following Finkelberg and Tsymbaliuk (2017, §5(i)), consider the C(v)-subalgebras

U™ and Uy of Uy generated by {e; 1157,y and {fi. 1157, respec-

tively, and let U, % be the C(v)-subalgebra of Uy~ generated by the Cartan
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generators. According to Finkelberg and Tsymbaliuk (2017, Proposition 5.1), the

multiplication map m : Uy~ ® Uﬁc’”;o ® U — U™ is an isomor-
phism of C(v)-vector spaces, and the subalgebras U, "=, U,***” are isomorphic
to Uy (Lsl,) =~ U,y (Lgl,), U, (Lsl,) ~ U, (Lgl,), respectively. Combining this
with Theorem 3.25(b,d), we immediately see that the ordered PBWD monomials in
the elements (4.2) form a basis of a C(v)-vector space U, """

Therefore, as noted in the very beginning of our proof of Theorem 3.24, it suffices
£ g0 g0 RO
FAE= N s B Rl W E ) Gl A O
equal to C[v, v~ !]-linear combinations of the ordered PBWD monomials. The first
two cases are treated exactly as in our proof of Theorem 3.24. Hence, it remains to

prove the following result:

to verify that all unordered products E;rl) 41 wﬁ Lo ¥ , are

Proposition 4.5 All unordered products E;rl)H Fi(,SJzLj, are equal to C[v, v™')-linear

combinations of the ordered PBWD monomials in the algebra Uy"".

The proof of Proposition 4.5 proceeds in four steps and is reminiscent of Finkelberg
and Tsymbaliuk (2017, Appendix E).

Step 1: Case u = 0.

The fact that E;rl) "

PBWD monomialsin U ,fc’o follows essentially from Theorem 3.24. To be more precise,
recall the “extended” algebra $(;"*'(Lgl,) of (Gow and Molev 2010, (2.15)): it is
defined similarly to il{,“ (Lgl,), but we add extra generators {(tl.jiE [op-! };7: | and replace
the first defining relation of (3.8) by

Fl.(/i)l 7 equals a C[v, v~ !]-linear combination of the ordered

651018 101 = £ [01¢5[01, £5[01(55 10D ™" = (15[0D) 45701 = 1.

Set Uy "™ (Lgl,) = " (Lgl,) ®cpy.p-1] C(v). Likewise, let UsO(Lgl,) be a
C(v)-algebra obtained from U,(Lgl,) by formally adding generators ((pfo)_l and

ignoring ¢f0¢;_f0 = 1. Then, the isomorphism Y of Theorem 3.17 gives rise to the
C(v)-algebra isomorphism

T U (Lgl,) —=> Uy (Lgl,).

Hence, the arguments from our proof of Theorem 3.24 can be applied without any
changes to prove Proposition 4.5 for u = 0.

Step 2: Reduction to Uy~*. §
Consider the associative C(v)-algebra U, " (resp. its C[v, v~ !]-subalgebra £ "),
defined in the same way as U, el (resp. as 67 but without the generators
{(wi‘f'o) -1 Wi, )y~ ! };:11 ,sothat U, " is the localization of U;,“* by the multiplicative
set S generated by {1#3'0, Vib: };’:_11 .Hence, Proposition 4.5 follows from its counterpart
for U,
(r) (s)
jivtFign
combinations of the ordered PBWD monomials in the algebra Uy "

Proposition 4.6 All unordered products E , are equal to C[v, v™']-linear
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We define the C(v)-subalgebras US™ ™, UsH = 75H0 of U5* accordingly.
Analogously to Finkelberg and Tsymbaliuk (2017, Proposition 5.1), the multi-
plication map m : U™~ @ US*0 @ U~ — " is an isomorphism
of C(v)-vector spaces, and the subalgebras Uy~* =, Uy~ are isomorphic to
Uy (Lsly) =~ Uy (Lgl,), Uy (Lsl,) >~ U, (Lgl,), respectively. Combining this with
Theorem 3.25(b,d), we see that the ordered PBWD monomials form a basis of a C(v)-
vector space U;SH . The following result generalizes the key verification in our proof
of Theorem 3.24:

Lemma 4.7 Proposition 4.6 holds for u = 0.
T Fl
nation of the ordered PBWD monomials in USC’O. Hence, it suffices to show that none
of these ordered monomials contains negative powers of either 1//;&) or ¥; ;. Assume
the contrary. For 1 <i < n and € € {#£}, choose Nf € N so that —Nf is the minimal
of the negative powers of lpi o among the corresponding summands. Without loss of

generality, we may assume that N~ > 0. Set y := ]_[;’:_11 ((1/11.4"0)1\7r (wiTO)Nf) es.

Proof According to Step 1, E , € UsS? equals a C[v, v~!]-linear combi-

Multiplying the equality in US*"? expressing E;rl) +1 Fl.(,izl’ jasaClo, v~ !]-linear com-
sc,0

bination of the ordered PBWD monomials by ¥, we obtain an equality in Use”.
Specializing further ¥, to 0, gives rise to an equality in UsS ™" (as before, w
denotes the first fundamental coweight). As N~ > 0, the left-hand side specializes to
zero. Meanwhile, every summand of the right-hand side specializes either to zero or to
an ordered PBWD monomial in U 207! Note that there is at least one summand which
does not specialize to zero, and the images of all those are pairwise distinct ordered
PBWD monomials. This contradicts the fact (pointed out right before Lemma 4.7) that
the ordered PBWD monomials form a basis of a C(v)-vector space Uﬁc’_w‘. Hence,
the contradiction.

This completes our proof of Lemma 4.7. O

Step 3: Case of antidominant p.

For an antidominant ¢, consider a C(v)-algebra epimorphism 7, : U3 — U3
defined by

eir = e, fir = fir wi_f—s = W:—Sv

T, ifs > —b;

Ipi_fs = {WL_X n l

) o forl<i<n,reZ,seN.
0, if otherwise

Using Lemma 4.7, let us express E;rl) +1Fi(’:)-l,j’ as a Clv, v_l]—linear combination

of the ordered PBWD monomials in U, and apply 7, to the resulting equality
. r7se,0 o K K

in U;©". Since nM(E§f3+1F}(’:)—1,j’) = Eﬁ.fl?HFi(,:zl’j, and 7, maps ordered PBWD
monomial in U,‘?C’O either to the ordered PBWD monomial in U, " or to zero, we see
that Proposition 4.6 holds for antidominant .

Step 4: General case.
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Since Proposition 4.6 holds for antidominant u (Step 3) and any coweight can be
written as a sum of an antidominant coweight and several fundamental coweights wy,
it suffices to prove the following result:

Lemma 4.8 If Proposition 4.6 holds for a coweight u, then it also holds for the
coweights u +wy (1 <€ <n—1).

Proof Recall the shift homomorphism ¥t ay —wp.0 : Uy — Uy* [cf. (Finkel-
berg and Tsymbaliuk 2017, Lemma 10.24, Appendix E)] defined explicitly via

Cirt> e r— Bi,ﬁei,r—l, fi,r = fi,rv W:Z = W,-Ts - 51’,@1#,-371,

Ipijs = wiﬁs - (Si»fwitsfl’

where we set wZ_l :=0and Vi ppt1 = 0 in the right-hand sides.
. ) . & SC, pu+wp (SC, L r .
First, we note that 7,4, —w,,0y ) C 7. Indeed, F; s clearly
fixed by I 4wp,—w,,0, While E;rg_H is either fixed if £ < j or £ > i) or is

mapped to E( 3+] — E;it1(r — 1) for a certain decomposition of r — 1 (cf. for-
mula (3.32) and the discussion preceding it), and is therefore still an element of
437", due to Theorem 3.25(a). Hence, applying our assumption to U,"", we see

that {4 wp, —ay, o(Eﬁrl) ki (2 1 ,) equals a C[v, v~!]-linear combination of the ordered

PBWD monomials in UEC *#_ On the other hand, let us write E;rl)H F(,Y_il jrasa C(v)-

linear combination of the ordered PBWD monomials in U 30 e (such a presentation
exists and is unique as the ordered PBWD monomials form a basis of a C(v)-vector
space USHeny:

EVIOFS o= D FaVivy E@ B p0), 4.4
aptpm

where Fy, Y, . range over all ordered monomials in {F.('.) Loy, (waL),
ﬂ /3 ’ o0 o0

SC, u+we ;>

respectively, while E(a, g + , B7) are elements of Uy and only finitely many

of them are nonzero. From now on, we identify Uyt rtoc= o U; (Lsl,) =~
U,fc = L[SC Hrer= U (Lsl,) >~ SC #= Thus, it remains to verify the inclu-
sions

E(a, ,3 B ) € 847 (Lsl,) forall o, BT, . 4.5)

The proof of (4.5) utilizes the shuffle interpretations of both the subalgebras
U, (Lsly,), $15 (Lsl,) and the restriction of the shift homomorphism @44, —w;,0 :
UEHHe6> 5 U391~ Recall the C(v)-algebraisomorphism W : U (Lsl,) <> S
of Theorem 3.28, which gives rise to a C[v, v !]-algebra isomorphism
U 4> (Lgl,) —> &™), see Theorem 3.30. By the above discussion, applying
Ltwp,—wy,0 to the right-hand side of (4.4), we get a C[v, v~ !]-linear combination
of the ordered PBWD monomials. Recall that {44, —e,,0 fixes all Fy, maps 1//;+
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to itself plus some smaller terms (wrt the ordering) and maps wﬁ__ to itself (with the

indices of ¥,  shifted by —1) plus some smaller terms (wrt the ord;ring). Furthermore,
according to Finkelberg and Tsymbaliuk (2017, Proposition 1.4), the homomorphism

v 7SC, ;> M SCL > .. . . . .
Ditwr—wp.0 * Uy M 267 5 U577 is intertwined (under the above identifications

of UM "’@‘>, 731 with U (Lsl,) ~ S™) with the graded C(v)-algebra homo-
morph1sm 2 S — S of (3.39). According to Proposition 3.29(a), f € &™ if
and only if 1, (f) € &™) Hence, a simple inductive argument (for every o, we use a
descending 1nduct10n in ’3+ and then a descending induction in 87) implies (4.5).
This implies the validity of Proposition 4.6 for the coweight u+wy (1 < £ < n—1).
O
This completes our proof of Theorem 4.4. O

4.2 K-theoretic Coulomb Branch

Following Braverman et al. (2016, 2019) and using our notations of Sect. 2.9,
consider the (extended) quantized K-theoretic Coulomb branch A" =
K(GL(V)XTw)O xCx (RGL(V) N)

Here GL(V) is a certain 2"~ !-cover of GL(V) and C* is a two-fold cover of C*,
as defined in Finkelberg and Tsymbaliuk (2017, §8(i)) . We identify Kry, (pt) =
Clzi',....,z5'] and Kz« (pt) = <C[v,~v—1]. Recall a Clv, v [z, ..., z3']-
algebra embedding z*(1,) ™! : AY — A"[zfl, e Zﬁl] of Finkelberg and Tsym-
baliuk (2017, §8(1)).

Set Af . == A’ ®¢pp.p-1] C(v). According to Finkelberg and Tsymbaliuk (2017,
Theorem 8.5), the homomorphism <I> Ly “[z zﬁl] — fl;’rac[zfl, .. zil]

factors through Afrac (embedded via Z*(L*) ]) In other words, there is a unique

. = . .
homomorphism &, : yadn [zfl, .. ] — AP, such that the composition
*)»
LGN 1~ . =
ad, “[Zl ). ZN A SAR L —— AL [zfl, . Zil] coincides with ®;.

L=
Our next result establishes a certain integrality property of the homomorphism @ :

Proposition 4.9 @ (ilvd “[ ...,zil])) c AP
As the first ingredient of the proof, let us find explicit formulas for 5;\;(E§rl) +1)s
ik ).

Lemma4.10 Forany 1 < j <i < nandr € Z, the following equalities hold:

i—1 ag

3L (g™ 1/2 w12
Bu(E =D ﬂwzzHH H ey
t=1 k=jt=1 t=1

l+r i
l_[ Dk e’

-1 i—1 -1
Wit Wi e ) T Wi, 07 Wiy )

x Y HZk(Wk )

i
1<r; <“/ Hk:j Wk,rk (Wk,rk) k=j Wi r;

l<r, <a;

(4.6)
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@ v T T %
~h + _
q)ll(Fl-H])_( l)l Tl H l_[
k=j+1t=1
e j1 Whor, OWk— 1 Wi 1 OWi ) wy e
D AN Arasm—— A | LY .7)
[k Wer W) e "
1<r1<a, k=j Wk.ri \Wk,ry j)
1<r,<al
Proof Straightforward computation. O

This lemma may be viewed as a trigonometric counterpart of Lemma 2.37.

Proof of Proposition 4.9 By explicit formulas of Theorem 4.1, we clearly have

5&((¢6)i1) e AV for ¢ = 4. Since Fd;;\j(l/fjiis) are Laurent polynomials in

1 2 1<t<aq; . . . _ .
{w / :h <i;Z’ | Wwith coefficients in C[v, v 1][zil .. zﬁl] and are symmetric in

l/Z}a,

each family {w (1 <i < n), we immediately get T (1/// 1,) € AY. Hence, it

remains to verify the inclusions Fm (E(r) ), D (F(r) yeAvforalll < j<i<n

Jui+1 i+1,j
andr € Z.
Recall the setup of (Finkelberg and Tsymbaliuk 2017, §8(i)). For 1 < j < i <n,
we consider a coweight A;; = (0,...,0,@j1,...,®;1,0,...,0) (resp. )‘71' =
,...,0, w;."l, s @, 0,...,0)) of GL(V) = GL(V1) x -+ x GL(V,-1). The

*

corresponding orbits Grg’i(v), Grg’iw) C GrgL(v) are closed (they are products of
the minuscule orbits, isomorphic to P4~! x ... x P%~1) Their preimages in the
variety of triples Rgr(v),N are denoted by R, i Rkjfi, respectively.

Then the right-hand side of (4.6) equals

1/2

7 (1) (( D det - det)? - det!/] - det; - owﬁl(—r—l)&owil(l)),

4.8)
while the right-hand side of (4.7) equals

2 () (( DI p T e [ det {7 O (r — DR oml(l))
4.9)
Here det; stands for the determinant character of GL(Vj), while O, | (s) stands for

the class of the line bundle O(s) on Grey, | =~ P! and everything is pulled back to
Ry (similarly for Oy, (). o

To prove the main result of this subsection, let us obtain shuffle descrip-
tions of the restrictions Eﬁ : aGl’”;>[zftl, .. ] — Afrac[zfl, ey zﬁl] and
5?7 : Uf,’d’”x[zfl,.. ] — Afmc[z1 e, N 1. In other words, evoking
the isomorphism ¥ : U, (Lg[,,) — §™ of Theorem 3.28 and the isomorphism
W Uy (Lgl,) —> S™-°P of Remark 3.31, we compute the resulting homomorphisms
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A . ~
@y S L 2 U Ly — ARl 2y
(4.10)
and
3 ) ~
i Rk Op[zil zﬁl] ~ Ufj‘d’“‘[zfl, ...,zﬁl] — A}’rac[zlﬂ, .. zﬁl]
4.11)
. . -1
Forany 1 <i <nand 1 <r < q;, we define V;, r(z) = %{S’Z), Y (z):=
W We also recall the functions ¢; j(z) = =2 Y of Sect. 3.6.

Theorem 4.11 (a) For any E € S(n)[z?l, e, Zil], its image under the homomor-
phism CI>* of (4.10) equals

i

1 kz*’kz
%(E)_v Zl lk‘(kl l)(v_v 1) Z, lk,l_ll_[W +1

i=1r=I

m® eN n—1 ai m
x 2 TTTTIT ¥ 2 Pwin - E [ 0720 D) 1cic
(1)+ +m(l) =k i=1r=1p=1 11<<pr<<”(:;>
"D e =k
n—1 a;
<ITIT IT & Pwi o722 Dy
i=lr=l<p < py<m®
n—1 1<pz<m()
X 1_[ 1_[ 1—[ ;Y—il(v*Z(prl)W”“v—z(pzfl)win)
i=1 1<r1#rn=<a; 1<]71<m()
n—2 1<r<a; 1<P2<m<) a1 a
x H l_[ 1_[ §z+1 (2P Dy 0P Dy HHD_mr
i=1 1<r1<aj4 lSplﬁmS_i]-H) iml =1
4.12)

(b) For any F € S(n) Pz il, . ,Zﬁl], its image under the homomorphism 5%
of (4.11) equals

n—1 a;
Bi(F) = (1 - o) ZE S T [Tw,
i=1r=1
mEUEN n—1 a; m,
x > [TTITITY, @ Pwin - F | 0> wi} 1<izn
et =k i=1r=1p=1 ]:’:n‘;;)

(ln ])+ —+m (n l)_k
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1 _ _
x 1_[ 1_[ 1_[ é.i,i (v2(p2 1)Wi,rv v2(p] l)Wi,r)

n—1 1<p2<m£)

-1 —1,.2(pa—1 2(p1—1
x I1 I1 (,, G 2P Dy, 02 )Wi,r1)>
i=1 1<r1#r<a; 1<m<m(l)

(i)
n—2 1<r=<aqg; 1<P2<m2 a;

<[T TI [T @7 w027 Dwi ) - Ii_“_[D

1
i=11<r1<aj4+1 1<p1<m(’+]) i=1r=1

(4.13)

Proof (a) Let us denote the right-hand side of (4.12) by ®(E). A tedious straightfor-
ward verification proves ® (ExE’) = @ (E)O(E’), thatis, ® is a (C(v)[zlil, e zﬁl]-
algebra homomorphlsm On the other hand, S [z1 ey z%l] is generated over
(C(v)[z1 oo Zy ]by its components {Sfl’,l)},’.‘zl1 with 1; = (0,...,0,1,0,...,0) €
N'=1 (here 1 stays at the i-th coordinate), due to the isomorphism
U U7 (Lgl,) = S™. Comparing (4.12) with the formulas of Theorem 4.1, we
immediately get O(E) = N;\j(E) for E € Sﬁ” (1 < i < n). Hence, we have
O(E) = &% w(E) forany E € s [z1 s zil]. This completes our proof of Theo-
rem 4.1 l(a)

(b) The proof of Theorem 4.11(b) is completely analogous. O

Forany 1 < j <i <n,avectork = (0,...,0,kj,...,k;,0,...,0) € N*~! with
1 <ki <ag (j <€ <1i),acollection of integers )/( e€eZ (j <¢ <i),and a col-
lection of symmetric Laurent polynomials gy ({x¢, r}r ) € Clo, v_l][{xir] }k‘ ]Zk/

(j < £ < i), consider shuffle clements E € S,E”) and F € S,En) P given by:

Fo= (_1)22;1,- kekgt1 DZZ:,» kz(szl)(v _ v—l)Zi:,- kg

i ke —k i k
Hl[:j ngrl;ﬁ/‘zﬁkg (xt’-,rl —v 2y ra) He j r// 1 Z"r o 'Hé:j 8¢ (Ul,r}/:l)

X
1<rm<k
T2 THEn = (xen = Xer1)

(4.14)
and
Fim (= 1)K ke g Xl ke htken =200 (= 1) T ke

i ke vetltkes—ke
y l_[e:j nlff}#mfkg(x[’rl —v 2y ) l_[g j H 1%¢,r l_[g ]gé( XZ r}, 1)

1<r2<ke41
Hl:j Hlfrl <ke (x(’,,rl - x(+l,r2)

(4.15)
These elements obviously satisfy the pole conditions (3.37) as well as the wheel
conditions (3.38), due to the presence of the factor Hl€=j ]_[15” <k, (Xt —v’zxg,rz)

in the right-hand sides of (4.14, 4.15). Moreover, E ¢ 6,((") and F ¢ G,((")'Op, due to
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Proposition 3.29(b). These elements are of crucial importance due to Proposition 4.12
and Remark 4.14, which play the key role in our proof of Theorem 4.15 below.

Proposition 4.12 (a) For Ee 6,((") given by (4.14), we have

=TT [Twi

{=j—1r=1
I<s<aj— Wj Ls s&Jy Wy s
e (1= %) TS IR, (1 - e
<D ’

v¢]e Wy g
Jic{l,.. aj}|Jj| kj 1_[@ ]HreJl We,)

Bt a1 =ki

XHHZZ(WKV) 1_[1_[ Lr ng {Wﬁr}rejg Hl_[D
t=j

{=jreld; {=jreld; l=jredy

’S\>’

(4.16)
(b) For F € 6,({")’0[) given by (4.15), we have

I1<s<aj+i Witl.s s¢Je We,s
nre],- (1 T ow, HZ Jj+1 Hrelg 1 T oowe—g,
i s¢Jg We,s
Il 1 1=k [Te—; IT25, (1 - W@,,)

JiCll, i | Ji | =ki

i
Xl_[l_[ o l_[g(f WErreJ( l—[nDEr

l=jrely l=jrely

4.17)

Proof The proof is straightforward and is based on (4.12, 4.13). Due to the presence
of the factor Hll:j ]_[15”#25,([ (Xe.r; — V" %x¢.,,) in (4.14, 4.15), all the summands
of (4.12, 4.13) with at least one index mﬁe) > 1 actually vanish. This explains why the
summations over all partitions of k, into the sum of a; nonnegative integers in (4.12,

4.13) are replaced by the summations over all subsets of {1, ..., a¢} of cardinality &
in (4.16, 4.17). O

Remark 4.13 In the particular case kg = 1,y = (r + D)é¢,j — 8¢, 8¢ = 1 for

j < £ < i, the element E of (4.14) coincides with W((—1)i~ /E(r)H) Likewise, in
the particular case ky = 1, yy = (r — )8y, j +d¢,i, g¢ = 1 for j < € < i, the element

F of (4.15) coincides with W((—1)!/vi+1=/=2 F), ;). Hence, Proposition 4.12
generalizes Lemma 4.10.

Remark4.14 Forany 1 < j <i <nandk € N~ as above, we consider a coweight
kji = 0, 00wy @1 0, 0) (respok; = (0, 0.0y o
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.,0)) of GL(V), generalizing a coweight A;; (resp. kjfl.) from our proof of

Proposition 4.9. The preimages of the corresponding orbits Gré’i(v), Grgﬁ(v) in the
variety of triples Rgr(v),N are denoted by Ry, fR , respectively. Similarly to (4.8,

4.9), the right-hand sides of (4.16, 4.17) equal Z*(L*) I of the appropriate classes in
K (GLOV)xTip)o x> (fR ), K (GLOV)xTiw) o x T (R ;). Moreover, any classes in these
equivariant K -groups can be obtained this way for an appropriate choice of symmetric
Laurent polynomials gg.

Our next result may be viewed as a trigonometric/K -theoretic counterpart of
Proposition 2.36 as well as a generalization of Finkelberg and Tsymbaliuk (2017,
Theorem 9.2) and Cautis and Williams (2018, Corollary 2.21):

— . ..
Theorem 4.15 CD* : ilid’“[zfl, ... ,zil] — AV is surjective.

Proof We need to prove that K (GL(V)XTW)ON(CX(pt) together with RHS of (4.8,

49) generate K (GL(V)xTw)o 1T~ (RGL(v),N)- Recall the filtration by support on

K GLOV)xTip)o x> (RGL(v),N) defined in Braverman et al. (Braverman et al. 2019,
§6(1)) (strictly speaking, it is defined on the equivariant Borel-Moore homology
H(GLV)xTw)oxC* (RoL(vy,N), but the definition works word-for-word in
the case of K-theory). It suffices to prove that the associated graded
gr K (GL(V)xTw)oxC* (ReLv)N) = D, K GLW)xTw)o¥C* (R, is generated by the
right-hand sides of (4.16, 4.17) together with K(GML(V)xTW)o &= (pt). Now the cone
of dominant coweights of GL (V) is subdivided into chambers by the generalized root
hyperplanes (Braverman et al. 2019, §5(i)). Recall that the generalized roots are either
theroots w; , —w; s (1 <i <n, 1 <r # s <a;) of gl(V) or the nonzero weights
Wir, Wi —witls (1 <i<n, 1 <r<a;, 1 <s <ajs) of its module N. Hence
a chamber is cut out by the following conditions:

(a) For any pair of adjacent vertices i, j, we fix a shuffle, i.e. a permutation o
of {1,...,a;,a; +1,...,a; +aj} suchthat o(b) < o(c)if 1 < b < ¢ < qg; or
aj < b < ¢ < a; + aj. Then we require )»,(7') < )‘1(5{) if o(b) > o(a; + V'), and
WD = if o (b) < o (@i +b).

(b) For any vertex i we fix a number 0 < d; < a; and require )»l(,’) > 0 for
1<b fdi,and)\g) <Oford; <b <a;.

So the chambers are numbered by the choices of shuffles for all the adjacent pairs
(i,j = i £ 1) of vertices and the choices of numbers d; for all the vertices. The
intersection of a chamber C with the lattice of integral coweights is generated by the
collections of fundamental coweights (wb )) and the collections of dual coweights

(@) (we allow 0 < b;, ¢; < a;) such that

(a) for any pair of adjacent vertices (i, j) and the corresponding shuffle o, we
have o(b) > o(c) forany 1 < b < b;, a; + b; < ¢ < a; + a; as well as for any
1<b=<a —ci,a+aj—cj<c=<a +aj.

(b) For any vertex i and the corresponding number d;, we have b; < d; < a; — c;.

For any interval [j,i] = {j,j + 1,...,i} < {l,...,n — 1}, we con-
sider collections of coweights «;; = (0,...,0, zzrj,kj,...,wi,ki,o, ...,0) and
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/c;’fl. = (0,...,0, w/k ,...,wi’fki,O,...,O). According to Remark 4.14, any

class in K(GL(V)XTW)OXCX(RK;), K(@(V)XTW)ON@X(RKJ.,.) lies in the image of

il?,d’M £ .. zﬁl] under 5%. According to the previous paragraph, for any chamber

C, the equivariant K -groups K (GL()xTw)ox T~ (Rex,) and K GLO)xTy)o x> (Re;:)

(we take all the collections «j;, k7 generating C) generate the subring

*
~ ~ L >,
B, cc KCEWXTwoxC (R, ) of gr KCLW*xTwoxC (Rey ) N). Indeed, if A, u
lie in the same chamber C, then (w*c)) * (7%c,) = 7*(ca * ¢y) (as in (Braver-

man et al. 2019, §6(i)), 7 stands for the projection R; — GréL(V)) for any classes
¢, € K (GLOV)xTw)o xC* (Gr)éL(V))’ cu € K (GLW)xTw)o xC* (GrgL(V))' And the
equivariant K-theory of Grgyv) is generated by the equivariant K-groups of prod-
ucts of fundamental orbits by the argument in the beginning of the proof of Cautis and
Williams (2018, Corollary 2.21). Hence, the appropriate classes in (4.16, 4.17) gener-
ate the entire associated graded ring gr K (GL(V)xTw)o % T (RGL(v).N) (cf. (Bullimore
etal. 2017, §6.3), especially the last paragraph).

This completes our proof of Theorem 4.15. O

Remark 4.16 The above proof of Theorem 4.15 follows the one of Cautis and Williams
(2018, Corollary 2.21), but crucially relies on the construction of certain elements of
the integral form $13 [z}, . . ., z&'] whose shuffle realization is given by explicit for-
mulas (4.14, 4.15) (let us emphasize that the explicit formulas for W™ 1(E ), W™ 1(F )
are not known). The same argument can be used to obtain a new proof of Propo-
sition 2.36. To this end, let W™ > 207 be the rational shuffle algebra and its
integral form of Tsymbaliuk (2018, §6). Similar to Theorems 3.28, 3.30, there is a
C[h]-algebra isomorphism W : Y}~ (s[,,) —> W which gives rise to a C[/i]-algebra
isomorphism W : Y; (sl,) —> 2™ see Tsymbaliuk (2018, Theorems 6.20, 6.27).
Then, forany 1 < j <i <n,avectork = (0,...,0,kj,...,k,0,...,0) € \Ga
with 1 < k; < ap (j < € < i), and a collection of symmetric polynomials
g@({xg,r} D € Clall{xe,, ), ke 1]2’% (j <€ < i), consider shuffle elements Ee Qﬂ(")

and F € QI],(C ")-p given by:

‘ ' k
[Toe; Tli<ry sy <t ey — Xery + 1) - ]_[é:j ge{xer ;o))

E = pXi=ike.
’ i—1 pylsra<kes:
I—[E:j ngn <k¢ (xE,rl - x5+1,r2)

(4.18)

and

7ok i Thengne, Gon = 2en +0) - [M7—; ge(vxe, e D

i—1 pl<ra<keqq
Hz:,‘ 1_[1<r1<kg (Xe.r; = Xet1.2)

(4.19)
These are the rational counterparts of the elements in (4.14, 4.15). Similar to Propo-
sition 4.12, we have the following explicit formulas (generalizing Lemma 2.37,
cf. Remark 4.13):
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(D%(\IJ_I (E)) — (_1)22:,‘ kl‘+ziz;‘],' keket

I1<s=<aj—

<s=<aj- I i—1 ryséde
Hre]; (wj,r —Wj-1,s — %) . nz:j Hrej“_l (Weg1,r — wes — *)
« J
i s¢Jy
Tty V1T =k [Tz [T 20, (we,r — wes)

JicL.ai Vil 1=ki

x l_[ [T zewer - l_[g[({w[)}rejg) l—[ [Tvuz )

t=jrely t=jrely
(4.20)
and
W~
(W (F))
l<s<a; i
_ Hresj‘,ia iy —wigns + 5 Tliej Hiﬁj; (e —wes + 3)
Jicu f‘..’ 10} 1=k [T, Hreh (we,r —wes) 4.21)
Jic{l,...ai bl Ji |=ki
X Hg[( We,r rEJ[) ]_[ 1_[ Uer |-
2 t=jrely

4.3 Explicit Descriptionfor gt = 0,1 = n®,_1

Following Finkelberg and Tsymbaliuk (2017, §7(ii)), consider new Cartan generators
{Aliir}qz(l)q of U,?d “[zl sy zﬁl] which are uniquely characterized by A?,EO =

(‘7’1 )~ and

I A*(v“))+

+ —
Y (2) = ( i(2) AT QAT 22)

ZS vz A '\
1//;(2) _ l( )I—[l<§‘<N S 1—11 i , (422)
(—z/v)% W) A,- (Z)A,- (v—2z)
where we set A (@) =3, A7 irﬁr and Z; (z) := l—[’1°<_s’<N(1 )

Following Flnkelberg and Tsymbahuk (2017 §8(iii)), define the truncatzon ideal
ju as the 2-sided ideal of U ”[zl R 54 =11 generated over (C(v)[z1 e Zy vy
the following elements:

AfoAEL, — (=D AF, AT (—D%AT_ (0<r<a<s). (423)

—-12 2

1
Wi (2), A7) = T w
H (4= —) Hence fJ C Ker((DM) The opposite inclusion is the subject of
Flnkelberg and Tsymbaliuk (2017, Conjecture 8.14).

For any A, 1, we have <I> A+(z) — ]_[r LW,
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Let us now formulate an integral version of this conjecture. Define the 2-sided ideal

3,% of il?,d’u[zlil, e zﬁl] as the intersection 3% = ﬂ,% N uﬁd’“[zlﬂ, ce zﬁl]. We
also note that 5%(Llﬁd’“[zf1, e zil]) C A”[ZI—LI, e z%l], due to Proposition 4.9
and the inclusion z* (1) "1 (A?) C A”[zfl, e zﬁl].

Conjecture 4.17 J%L = Ker (5% :uﬁd’“[zfl, ...,zﬁl] — ﬁ”[zfl, . ,zﬁl]) for all
A, U

The goal of this subsection is to prove a reduced version of this equality in the
particular case © = 0, A = nw,—1 (sothat N =nanda; =i for 1 <i < n;recall
that ap = 0, a, = 0). Here, a reduced version means that we impose an extra relation
[T/, zi = 1in all our algebras. We use J,”" " to denote the reduced version of the
corresponding truncation ideal, while égw”‘l denotes the resulting homomorphism

between the reduced algebras.
Theorem 4.18 3, ' = Ker(égwn—l)‘

Our proof of this result is based on the identification of the reduced truncation ideal

ng"*l with the kernel of a certain version of the evaluation homomorphism ev, which

is of independent interest.
Recall the commutative diagram (3.45). Adjoining extra variables {zijEl }7_, subject

to []/_, z = 1, we obtain the following commutative diagram:

UM(Lsh)IZ, .. 25 /(T2 — 1) —— Uyallz ... 25 /(Tz - 1)

l* le
/ rtt 7
Ut (Lal)lzt, . 25/ (Tz - 1) —— U @l . 2P/ [Tz - D)

4.24)
where

U@z .z /([ [z — D=0, L) ®cw COz....z7/ ([ [z — D
i=1

and the other three algebras are defined likewise.

Recall the isomorphism US™ (Lgl,) ~ U (Lsl,) ®cqw) ZUL™ (Lgl,) of (3.48),
which after adjoining extra variables {z;tl }i_, subject to []/_; z; = 1 gives rise to an
algebra isomorphism

Ut (Lgl )z 2@z — 1)
UM (Lsl,) ®cw) ZUM (Lgl,) @cwy COZE, ..., 25 /@ .. .2, — 1),

where Z U,ﬁtt’/ (Lgl,) denotes the center of U,ﬂn’,(Lg[”).
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Let A,jf(z) denote the quantum determinant gdet 7% (z) of Definition 3.38, and
set Af(z) := A(v'7"z). According to Proposition 3.39, the center ZU,ftt’/(Lg[n)
is isomorphic to the quotient of the polynomial algebra in {(623:)1/ n, c;'it,}rzl by the
relation (ﬁg')l/” (cfo_)l/’1 =1, that is,

ZUM™ (Lgl,) ~ C)U@ED ", dE,1r=11/(dg)H " @dy) V" — 1),
where c?itr are defined via A,df(z) = Zr>0 c?itrzj” and (c?i)l/” = (t[0DF/". Let J be

the 2-sided ideal of U{tt’/(Lg[,,)[zfl, e, / (ITzi — 1) generated by the following
elements:

ﬂ

dt,, dPHV" =1 (s > n),

df — (e, ....za). d° — (=D'z1...20e,(z7 ... 7" (1 =7 <n),

where e, (e) denotes the r-th elementary symmetric polynomial. The ideal d is chosen
sothat Af(z) = [Tj—; (1 —z,/2) € dllz~ 1 and A}, (2) — [Ty—; (zs —2) € d[[]]. Let

UM (L2 2 @z — 1)

Ut (Lst)[ZE . 2 @z - 1)

be the natural projection along J. SetXl/" = ev”‘((d*)l/") X .— —evm((c;’(;)l/”),
and X, = ev'(dt) = (- 1)”evm(d:,, 4) for 0 < r < n, where the last equal-
ity follows from the explicit formulas for ev™ (which also imply ev(df,) =
0 for s > n). Then, the center ZUM (gl)zt',.... 251/ (21 ...24 — 1) of
UM glolzE . 2@z — 1) s isomorphic o Cw)lzE', ...,z x,)/",
X1, Xt X””]/(X”"X +1 z1 - .

Define the extended quannzed unzversal envelopmg U; pad (sl,) as the central reduc-
tion of U, 2 (gl )[z1 T £11/([Tz — 1) by the 2-sided ideal generated by

1/n 1/n

(X ) — XML TTNX) — (=D ez zw) (0 <7 < n),

cf. Beilinson and Ginzburg (1999) (the appearance of sl, is due to the fact that
Y~!(Xo) = 1). By abuse of notation, we denote the corresponding projection

Uzt ..., 251/ ([Tzi—1) — U(sl,) by 7 again. Likewise, define U5 (s1,,)
as the central reduction of Urtt /(g[,,)[zfl, R szl]/(]_[ z— 1) by the 2-sided ideal
Un _poxm o1 x, — (<1 e, .. Lz By abuse of nota-
tion, we denote the corresponding projection U,fn’/(g[n)[zl N =2 V] (]_[ zi—1)—»

generated by {X,

U (st,) by 7 again. We denote the composition Up" (Lg[ ER 5oy V]
1z - D o e’ @Iz, ...,z /([ Tz — D I oM (s1,) by ev'''. Note
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that by construction it factors through 7 : Um’/(Lg n)[zil e ﬂEl]/(]_[ zi—1) -
Ulr)n,’ (Ls[n)[zfl, e n /(]_[z — 1), and we denote the correspondmg homo-
morphism UM (Lst)[z, ..., 25/ ([Tz — 1) — U™ (sl,) by &v™ again.

Likewise, we denote the composition U{‘j‘d(Ls[ )[zftl,..., z, ]/(I—[zl -1 =

Uyl ... zE/([z — 1) 5 U¥(sl,) by &.
Summarizing all the above, we obtain the following commutative diagram:

UM (Lsl)[zE .. 2/ (Tz - 1) —— Tsl,)

v o

, ayttt ~ ’
U Loz oz [Tz = ) = T el @429)
lﬂ |

U (LstolzE Lz (T2 — 1) —— T3 (sl

Due to the isomorphism Uf}d (Lsl,) = Ulf)n,’ (Lsl,) of (3.46), the composition of the
left vertical arrows of (4.25) is an isomorphism:

mo X UMLs)izr, ..., zE /@ .z — 1)
= UM (Lst2E, . 2 @z - ).

The commutative diagram (4.25) in turn gives rise to the following commutative
diagram:

W(Lst)[ZE, .z [Tz - 1) —— 42(sly)
lr le
W Lal iz 2 (T - D) —s TV 6t (426)
S (Lal) L2 (T2 — 1) — s T (sl

and the composition 7 o Y on the left is again an algebra isomorphism.

Here we use the following notations:
o 04(Lsl)zy", ... zE /(T2 — D) = U9(Lsl,) ®cpyp-1y Clv, v 112, .o,
z,jfl]/(l—[ zi — 1), or alternatlvely it can be defined as a C[v,v"!]- subalgebra

Of Uad(L5[ )[Zil ]/(Hzl —_ 1) generated by {E§r3+]s Fl(:_)] ]}1€<%<1<n
WisghiZicn U @il o e
.ull')tt (Lg[n)[zl Lz ]/(1_[ zi — 1) = gt (Lgl,) ®cpy.p-11Clv, v_l][Zlil, ceey

zjl]/ (ITzi = 1) or alternatively it can be viewed as a C[v, v_l]-subalgebra of
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UM (Lgl)izf", ..., 251/ ([Tzi — 1) generated by {tif[ir]}reN _u{@e[opE/nu

1<i,j<n
{Z:|:1 n

l 1
o {11 (Lsl, Mz, ..,z /([Tzi — 1) is defined similarly

° iJ.“d (shy) denotes the reduced extended version of §( »(gl,,), or alternatively it can be
v1ewed as a(C[v v l] -subalgebra of Uad(s[ ) generated by{Ej i+1, Fit1,jhi<j<i<nY
{d):l:l}n 1 U {Z

° ilf,n (sl,) denotes the reduced extended version of ilm (gl,), or alternatively it can
be viewed as a C[v, v~']-subalgebra of U,ﬁtt (sl,) generated by {tﬁ}ﬁjzl U {rt/myu
{Z:I:I n

i=1"
Consider a natural projection

s 0L 2z iz — 1) N Lsl) [ 2 @z = 1)
(4.27)
whose kernel is a 2-sided ideal generated by {q&i+ ¢, — 1}7:_11. Let év denote the

composition ev o ». The following result can be viewed as a trigonometric counterpart
of Theorem 2.41:

Theorem 4.19 J,”"~' = Ker (e~v :il?,d’o[z]il, Lz (lz - — ﬂﬁd(s[n)).

Proof In the particular case © = 0, )t = nw,—1, We note that Z1(z) = --- =
Zn2@)=1,2Z,_1(2) = l_[s ](1_ —1 =), Zl(Z) —Zn 2(z) =1, Zn I(Z)
[T, — ";;Z). Let us introduce extra currents Agt(z), £(2) via Aa—L(z) =
1A (2) :==[15-,(1 — 2¢/2), A, (z) = [15_,(zs — 2). Then, formula (4.22) relating
the generating series {wki (z)}z;% to { Af (z)}’,:;ll can be uniformly written as follows:

A, 094G 071D
AF @A (v 27)

V@) = forany 1 <k <n-—1. (4.28)

Denoting the sc-images of wki (2), A,f(z) again by wki (2), Aki(z), we will view (4.28)
from now on as an equality of the series with coefficients in the algebra
UM (Lst)izE, .. zE/(Tz - D).

Let A,jf(z) denote the k-th principal quantum minor tll.'v'_',f;i(z) of T*(z), see Defi-
nition 3.37. According to Molev (2007), the following equality holds:

A 0 R )AL (v
Af (k) AT (v 17kz)

TWE ) =

Generalizing A,jf(z), define Aki(z) = A,f(vl_kz). Then, the above formula reads as

Af_l(v_lz)ﬁfﬂ(v_lz)
Af(@AF (v 22)

T(WiE @) =
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By abuse of notation, let us denote the image N(Aki (z)) by A,ﬁc(z) again. Note that

AF(z) = AF(z), due to our definition of 77. Combining this with (4.28), we obtain
the following result:

Corollary 4.20 Under the isomorphism

mo Y U (Lsty)zy' .. (@2 — 1)
= U (Lsl) (25 L 2 2z - ),

the generating series Af (z) are mapped into A;—L (2), that is, w o T(A;—L(z)) = Af(z).

Combining this result with the commutativity of the diagram (4.26) and the explicit
formulas ev'™(TH(2)) =TT — Tz~ !, ev' (T~ (2)) = T~ — Tz, we get

Corollary 4.21 J)”"~' C Ker(év).

The opposite inclusion 7"‘0”’1 D Ker(év) follows from the equality €V = &V o ,
the obvious inclusion Ker(%) C 3"w” ', the commutativity of the diagrams (4.25,
4.26), and Theorem 3.7 by noticing that Ali(z) = tlil (z) and so

(o M) [ ]) = AT, € (3" for r > 1,

(T[ OT) (tll[:tl] +t1:ﬁ[0]) = A]iil +A 10 c %(ann 1)

This completes our proof of Theorem 4.19. O

Now we are ready to present the proof of Theorem 4.18.

Proof of Theorem 4.18 Recall the subtorus 7y, = {g € Tw|det(g) = 1} of Ty, and

define AY 1= KCLVxTioxC Ry 1) \), so that A® =~ Av/(l‘[z,- —1). After
1mposmg ]_[z, = 1, the homomorphism &, Pren - ad 0[Z ]/(]_[ zi—1) —

A"[z1 R ]/ [z — 1) is a composmon of the surjectlve homomorphism
D! - g(ad: 0[z1 s n ]/(]_[z —1) — A" (see Theorem 4.15) and an embedding
()7 AT s AV L 2 /([ Tz, , s0 that Ker(@)“"") = Ker(@("").

The homomorphism Cbow” ' factors through ¢ : uad (sl) — A" (due to Theo-
rem 4.19), and it remains to prove the injectivity of ¢. Since both il‘,’)d (sl,) and A" are
free C[v, v—!]-modules, Ker@) is a flat C[v, v—!]-module. Hence, to prove the van-
ishing of Ker(¢), it suffices to prove the vanishing of Ker (¢, : ﬁﬁd (0n) = Afa)-

To this end we will need the action of Uf,‘d (Lsl,) onthe localized Ty -equivariant K -
theory of the Laumon based complete quasiflags’ moduli spaces £, see e.g. (Finkelberg
and Tsymbaliuk 2017, §12(v)). This action factors through the evaluation homomor-
phism and the action of U,; (gl,) on the Ty-equivariant K-theory in question, see
(Finkelberg and Tsymbaliuk 2017, Remark 12.8(c)). According to Braverman and
Finkelberg (2005, §2.26), the resulting U;, (gl,,)-module is nothing but the universal
Verma module. It is known that the action of U,; (gl,,) on the universal Verma module
extends uniquely to the action of the extended quantized universal enveloping U ; (gl,),
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and the latter action is effective. This implies that the resulting action of U f}d (sl,) on
the localized Ty, -equivariant K-theory in question is also effective. According to
Bulhmore et al. (2018) the K-theoretic Coulomb branch Ag, . acts naturally on the
T},-equivariant K - theory in question, and the action of U} pad (sl,) factors through the
homomorphism ¢, : Uf,‘ (sly) — Af,. (see Finkelberg and Tsymbaliuk (2017,
Remark 12.8(c))). Hence, $frac is injective.
This completes our proof of Theorem 4.18. O

Corollary 4.22 The reduced quantized K -theoretic Coulomb branch AP is explicitly
given by AV ~ $139(s,)).

4.4 Coproduct on L5

In this subsection, we verify that the C(v)-algebra homomorphisms
Apy s ST 5 03" @ U" constructed in Finkelberg and Tsymbaliuk
(2017, Theorem 10.26) g1ve rise to the same named C[v, v_l]—algebra homomor-

. sc, sc, sc,
phisms A, 4, @ 4y HITH2 _ §fM & §5H2 n other words, we have

Theorem 4.23 For any coweights iy, ua, the image of the Clv, v~']-subalgebra
PR UM ynder the homomorphism Ay, belongs to the Clv, v1]-
subalgebra 4" QUM € Uy @ U, M2, This gives rise to the Cv, v—']-algebra
homomorphism

Am,uz :uic,/uﬂtz - uic,m ®Llf,°’“2.

Before proving this result, let us recall the key properties of A, ,,. Define integers
by == (1), ba,i := o (uz) for 1 < i < n. The homomorphism Ag o essentially
coincides with the Drinfeld-Jimbo coproduct A on U, (Lsl,).

If 11 and p1o are antidominant (thatis, by ;, b ; < 0 for all i), then our construction
of Ay, ., in Finkelberg and Tsymbaliuk (2017, Theorem 10.22) is explicit and is
based on the Levendorskii type presentation of antidominantly shifted quantum affine
algebras, see Finkelberg and Tsymbaliuk (2017, Theorem 5.5). To state the key prop-
erty of Ay, ., (for antidominant w1 and u2) of Finkelberg and Tsymbaliuk (2017,
Propositions H.1, H.22), we introduce the following notations:

eLet U, and U, be the positive and the negative Borel subalgebras in the Drinfeld-
Jimbo realization of U, (L5 ), respectively. Explicitly, they are generated over C(v)
by {ei o0, (1& )il F(l)} and { f; o, (W, 0)il E( l)}l | » Tespectively.

° L1kew1se let U;SH" “2 * and USC HLHZT be the C(v)-subalgebras of USC”“Jr“2
generated by {e; o, (w )il F(l)} and { f; p, ;. (¥} brithy, l)i] E( 1)}1 | » Tespec-

tively. Here the element E]( is defined via E( b = (v— 1)[€n71,b21,,_1, RN
[€2,5y55 €1,y —11p=1 -+ 1y-1.

Proposition 4.24 (Finkelberg and Tsymbaliuk 2017) (a) There are unique C(v)-
algebra homomorphisms

+ .77t 5 SC, (1, 125+ - o s [JSCH1 12—
]MI,M2 : U” UU ’ J,lu,uz N Uv Uv ’ (429)
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such that

+ <. . + + H (1) .
Juyn ©€ir 7> €ir, 1/fi70 — 1//1.’0, F,/ = F, for1<i<n-1,r>0,

- . f . - = (=1 (=1
Ty *Jis = Jistoris Vio = Vig gm0 Eln " Ely

for 1 <i<n-1,5<0.

(b) The following diagram is commutative:

vE L U @UE

l-/»jt:lyuz ljjl.0®~’(fﬂz (430)
sc,myuz;i Auyiy Usc,m,O;i ® Usc,O,uz;i
We shall crucially need the so-called shift homomorphisms t, ,, ,, of Finkelberg

and Tsymbaliuk (2017, Lemma 10.24) (which are injective due to Finkelberg and
Tsymbaliuk (2017, Theorem 10.25, Appendix I)):

Proposition 4.25 (Finkelberg and Tsymbaliuk 2017) For any coweight . and antidom-
inant coweights vy, vy, there is a unique C(v)-algebra embedding

Loy @ US> ot (4.31)
defined by

i) > (1—z2 )™ We(2), i) > (1 =27 )™ 4 fi(2),
YiE@) > (1= e vy )

In Finkelberg and Tsymbaliuk (2017), we used these shift homomorphisms to
reduce the construction of A, ,, for general ji1, u; to the aforementioned case of
antidominant w1, u by proving the following result:

Proposition 4.26 (Finkelberg and Tsymbaliuk 2017) The homomorphisms
{A L 10 1,0 exist and are uniquely determined by the condition that they coincide
with those constructed before for antidominant (1, |12 and that the following diagram
is commutative for any antidominant vy, vo:

A

sc, 1+ 112
UI} M1 K2

Usc;ﬂl ® USC,MZ
Jfﬂvvsz llpl,ﬂ,ul By, ,0 (432)

A
sc, v+, K1tV pptry sc, v sc, v
Uv H1+p2+vi+v Uv H1t+vi ® Uv Hn2+v2

Having summarized the key properties of the coproduct homomorphisms A, ., of
Finkelberg and Tsymbaliuk (2017), let us now proceed to the proof of Theorem 4.23.
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Proof of Theorem 4.23 The proof proceeds in three steps (cf. our proof of Theorem 4.4).

Step 1: Case 1 = 2 = 0.

Under the embedding Y : Uy(Lsl,) < UM (Lgl,), the Drinfeld-Jimbo coproduct
A on Uy(Lsl,) is intertwined with the C(v)-extension of the RTT-coproduct
AT Mgl — UM(Lgl,) ® UM(Lgl,) defined via AT™(T*(z)) = T*(2) ®
T*(2), see Ding and Frenkel (1993). As the Y -preimage of ilﬁ}‘(Lg[n) coincides
with i, (Lsl,) (due to Proposition 3.20 and the equality4 Uy(Lsly) = Uy(Lsl,) N
Uy (Lgl,)), weobtain A (U, (Lsl,)) C LUy (Lsl,) @y (Lsl,). Thisimmediately implies
the result of the theorem for (1 = 2 = 0, since Ag o essentially coincides with A3

Step 2: Case of antidominant i1, 2. o

Forany 1 < j <i <nandr = (rj,...,1y) € Zi=J*1 recall the elements
Ejit1(r) € 4 (Lgl,) = 43 (Lsl,) =~ 87" and Fiyy () € U5 (Lal,) >
U (Lsly) =~ sy 2= defined in (3.32). We start with the following result:

Lemma4.27 (a) Ifrj, 11, ..., 7 > 0, then Ay, (Ejiv1 (1) € Uy "' @ 14,712,
(bs)C If rj < brj,rjy1 < bij+1,....1i =< b1, then Ay 1, (Figp1,j(r) €
SEOHT @ geH2

Proof (a)Ifr € Ni=/+! thenclearly E; ;1+1(r) € U Niy(Lsl,). As AU C Uf®
Uj and Ay (Lsl,)) C Uy(Lsl,) @ Uy(Lsly,) (see Step 1), we get A(E; i+1(1)) €
(U, N Uy(Lsly)) ® (U, N Uy(Lsl,)). Combining the commutativity of the dia-
gram (4.30) with the equality j;l,ﬂz (Eji+1(r)) = Ejiy1(r), it remains to prove
the inclusion b (U, N Uy (Lsl,)) C LYY for antidominant vy, vy. The lat-
ter follows from Finkelberg and Tsymbaliuk (2017, Lemma H.9)° and the following
result:

Lemma 4.28 The CJv, v_l]—subalgebra U,}L N Uy (Lsl,) of Uy(Lsly) is generated by

{E(r) }rEN ) U {F(r) }I’>Q ) U {1//‘1 . (1// ):I:I}S>Q

Jri+1<j<i<n +1,j01<j<i<n 1<i<n-®

Proof Recall the embedding Y : Uy(Lsl,) < UIM(Lgl,). Note that the Borel
subalgebra U, of Uy,(Lsl,) coincides with the Y-preimage of the C(v)-subalgebra

4 The equality ty (Lsl,) = Uy(Lsl,) N Uy (Lgl,) immediately follows from Theorem 3.24.
5 To be more precise, one needs to replace $&1(Lgl,,) C UL (Lgl,) by le eXt(Lg[ ) C U,l;tt eXt(Lg[,,)
introduced in Step 1 of our proof of Theorem 4.4, while iy (Lsl,) C Uy(Lsly,) should be replaced by
i/[sc.O c Usc,O

v v N
6 Here we refer to the equalities J‘JE»VZ(E(’lJrl) = E(rl)Jrl jvl v (Fl(i)1 D= F:(JSr)l i f:q,vz('l'i_f—s) = 1//1.';
forany 1 < j <i <nandr > 0,s > 1. Actually, in Finkelberg and Tsymbaliuk (2017, Lemma H.9)
we proved those only for » = 0,s = 1. However, since the matrix ([¢; J],,) -1 —1 is non-degenerate, for

every 1 < i < n there is a unique C(v)-linear combination of {(w;ro)_ 1//+ " 1 , denoted by h

such that [hJ'1 ejrl =3dijejrv1, [hI.J'1 firl = =8ijfjre1-As ]VI vz(h:,l) = hl_1 and the elements
O M
Joi+1D T4l

obtain the claimed equalities jvl (E;rl)_H) = E§r1)+1 le V2(Fz(j—)1 ]) Fz(j—)l j

The remaining equality ]vl v (1//1+r) = 1//+ follows from ¢+ =@—-v 1)[e, 0, fislfors > 1.

ET) L F® . can be obtained by iteratively commuting E';

. 1 . .
Jivr Fign; with ji e immediately

foranyr>Os>1
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Ut (Lgt,) of UM (Lgl,) generated by {tl.j[r]}reN -, Ul 10171}, . Evoking the

1<i,j<n

Gauss decomposition of 77 (z), we see that the C[v, v ]-subalgebra ilm +(Lg [,) =

Uyt (Lgl,) N Y(Lgl,) is generated by {Nﬁrfﬂ}?gskn {f,(fr)l ,}ﬁi‘}q@
{gir), (g)*"}}z)_,. Combining this with Corollary 3.23 and the above equality
Uy (Lsl,) = Uy(Lsl,) N4, (Lgl,) yields the claim. O

This completes our proof of part (a).
(b) The proof of part (b) is completely analogous and utilizes homomorphisms j,-,
instead. O
Let us now prove

Ay Wy HITH2) LS @ (G512 (4.33)

for antidominant p1, wo by induction in —u1 — 2. The base of induction, u; = uy =
0, is established in Step 1. The following result establishes the induction step:

Proposition 4.29 [f (4.33) holds for a pair of antidominant coweights (1, [L2), then
it also holds both for (ju1, w2 — w¢) and (L1 — we, (L2) forany 1 <€ <n — 1.

Proof We will prove this only for (i1, up — wy), since the verification for the second
pair is completely analogous. Forany 1 < j <i < n and r € Z, we pick a particular

decomposition r = (rj,...,r;) € 7Zi—7+1 with rj+---+r; =r asfollows: we set
ri=r,rjy1=---=r;=0ifl < jord >i,andwesetry =r,rj=---=ri_| =
ro41 ::rl=01f‘]§£§l

Identifying $,°717#%7 ~ §>(Lsl,) ~ 4> (Lgl,), Theorem 3.25(a) guar-
antees that the ordered PBWD monomials in E;;+1(r) form a basis of a free
C[v, v ]-module £L;*' T#2*~ Let us now apply the morphisms of the commutative
diagram (4.32) with vi = 0,v2 = —wy to the element E; ;11(r). As Ej ;1 1(r) €
YT Gur assumption guarantees that Apyn(Ejiv1 () € U @ 712,
Meanwhile, for any coweight x and antidominant coweights v}, v}, we have

/! /!
sc, 8¢, vy +v,
Lu,ui,vé(uv M) C iUy 5

(4.34)
since every generator E; ;11(r) (resp. Fiy1 j(r) or I/Ii) is mapped to a C-linear
combination of elements of the form E; ;11 (r') (resp. Fiy1 i (r") or w ) for various
r’,s’. Thus, we obtain

Apy o= Uy +p0,—w,0(Eji+1(1)))

_ (4.35)
=Md® l,uz,fwg,())(A/l.],/Lz (Ej,i+1 () € ui&#l ® u?)&llz o,

If ¢ < jor € > i, then ty4uy —wp,0(Ejit1(r)) = Ejit1(r), and so
Apy -y (Ejiv1(r) € us”“ ® Uy 27 due to (4.35). If j < £ < i, then
by +pn,—wp, O(Ej i—H(f)) = ] ir1(r)— E] H—l(r 1), hence, AMI u— wg(Ej it1(r)—
Ejisir=1) € I, @ 4,77, due to (4.35). Combining this with
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Ay po—oy (Ejip1(r)) € Uy @ U, 27 for r > 0, due to Lemma 4.27(a), we get
Ay pr—ay (Ejip1(r) € M @ 14,7727 for any r € Z. This completes the proof
of the inclusion

Apy - (Ejig1(r)) € U @ UiH#279 forany 1 < j <i <n,r € Z.

The proof of the inclusion

Apy -y (Figr,j(r) € PH @ U270 forany 1 < j <i<n,r el

is analogous. However, to apply Lemma 4.27(b), we need another choice of decom-
positions r. Forany 1 < j < i < n and r € Z, we pick a decomposition

r = (rj,....,r) € Zi—I+! with rj +---+r; = r as follows: we set r; =
r—bl,j+1 —--~—b1,,-,rj+1 = bl,j+1,...,r,~ = bl,i if ¢ < ] or { > i, and we
setrp = r —bl’j — . _bl,é—l —bl,g_;_l — .. —bl,,',rj = bl’j,...,r@_l =
bio—1,re+1 =brg+1, ... ri=by;if j <€ <i.

Finally, we note that

Aty pr—on Wy sz = 0W;)) = A0y —00p,0) (Apuy iy (W) € LM @LLEH27

(4.36)
Therefore, Ay, us—ay ('/fij,ts — (Si’gwiji,71) e Uy @ Uy 2T This implies (after a
simple inductionins fori = £)that A, 1, —w, (Wijf?) e Uy M @uUy M2 for any i, s.

Thus, the images of all generators of $1,"*! 727 under A, 4,—w, belong to

UM @ Uy H2 T This implies the validity of (4.33) for the pair (1, uo — w¢). O

This completes our proof of Theorem 4.23 for antidominant r41, 2.

Step 3: General case.
Having established (4.33) for all antidominant 11, ©> (Step 2), the validity of (4.33)
for arbitrary w1, uo is implied by the following result:

Lemma 4.30 If (4.33) holds for a pair of coweights (j11, [L2), then it also holds both
for (1, 2 + we) and (ju1 + wg, o) forany 1 <€ <n — 1.

Proof We will prove this only for (w1, uy + wg), since the verification for the
second pair is completely analogous. The commutativity of the diagram (4.32)
implies the following equality: Ay, i, (i 4potwr,—wp,0(Ejiv1()) = (Id ®
Lot —wp,0) Dy oty (Eji41(r))). Tts left-hand side belongs to $6, ! @ 14,72,
due to (4.34) and our assumption. However, the argument identical to the one used in
Step 4 of our proof of Theorem 4.4 yields the following implication:

(1d ® L1yt —0,0) (X) € WO @ L2 —5 X € LM @ ghicrater,

This completes our proof of the inclusion Ay, uy+a, (Ej.i1+1(r) € Ly @y 2T,
The verification of inclusions A, ., 4w, (Fit1,j (1)), AH],MZ"FQ)Z(w[iS) ey " ®

uic,uz-ﬁ-wz f}c,/x1+uz+wf

is analogous. Hence, the images of all generators of { under
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Ay jatep belong to L6771 @ 5727 This implies the validity of (4.33) for the
pair (w1, U2 + wg). |

This completes our proof of Theorem 4.23. O

We conclude this subsection with the following result:

—1 (uic,u+m+vz) — o

Lemma4.31 Forany i, vy, v2, we have Liviwm

Proof Since Loy va v ) O Lvivy = Lvy+0! i) for any coweight x and antidom-
inant coweights vy, va, vi, vé, it suffices to verify the claim for the simplest pairs
(vi = —wy¢,v» =0)and (vi = 0,v) = —wy), 1 < £ < n — 1. In both cases, the
inclusion

X € Up™M 1y 0y 0y (X) € LPHFIT2Y C 4000

has been already used in Step 3 above and follows from the argument used in Step 4
of our proof of Theorem 4.4. The opposite inclusion is just (4.34).
This completes our proof of Lemma 4.31. O
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Appendices By Alexander Tsymbaliuk and AlexWeekes.

Appendix A: PBW Theorem and Rees Algebra Realization for the Drinfeld—Gavarini
Dual, and the Shifted Yangian

In Kamnitzer et al. (2014), dominantly shifted Yangians were defined for any
semisimple Lie algebra g, generalizing Brundan—Kleshchev’s definition Brundan and
Kleshchev (2006) for gl,. Two issues with the definition given in Kamnitzer et al.
(2014) are now clear:

(a) Kamnitzer et al. (2014, §3C) recalled Drinfeld—Gavarini duality, and an explicit
description of the Drinfeld—Gavarini dual based on the discussion in Gavarini
(2002, §3.5). However, additional assumptions seem necessary in order for this
description to be correct.

(b) Applying the explicit description of (a), a presentation of the dominantly shifted
Yangians was given in Kamnitzer et al. (2014, Theorem 3.5, Definition 3.10). But
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it was incomplete, as it does not include a full set of relations. In fact, writing
down a complete (explicit) set of relations seems very difficult (at least, in terms
of new Drinfeld generators).

We rectify (a) in Proposition A.2, which is of independent interest. We then verify that
this result applies to the Yangian, yielding Theorem A.7. This proves that the set of
generators given just before Kamnitzer et al. (2014, Theorem 3.5) is indeed correct.
We also verify that Proposition A.2 applies to the RTT Yangian Y;L“(g[n), which
implies an identification of its Drinfeld—Gavarini dual with the subalgebra Y}'(gl,,)
of Definition 2.3, establishes the PBW theorem for the latter (that we referred to in
Sect. 2), and provides a conceptual proof of Proposition 2.21.

Another definition of the shifted Yangian (for an arbitrary, not necessarily dominant,
shift) as a Rees algebra was given in Finkelberg et al. (2018, §5.4) and Braverman et
al. (2016, Appendix B(i)), precisely to avoid the issues mentioned above. This raises

Question: Are these two definitions of the shifted Yangians equivalent for dominant
shifts?

We answer this question in the affirmative in Theorem A.12, which generalizes
Theorem 2.31 for any semisimple Lie algebra g.

We conclude this appendix with one more equivalent definition of the shifted Yan-
gians, see Appendix A.8, in particular, Theorem A.17.

A.1 Drinfeld’s Functor

Let a be a Lie algebra over C. Assume that A is a deformation quantization of the
Hopf algebra U (a),’” over C[A]. In other words, A is a Hopf algebra over C[/], and
there is an isomorphism of Hopf algebras A/hA >~ U (a).

Denote the coproduct and the counit of A by A and €, respectively. For any n > 0,
let A" : A — A®" be the n-th iterated coproduct (tensor product over C[A]). It is
defined inductively by A? = ¢, A! = id, and A” = (A ® id®"~2) o A"!. Define
8, A — A®" via

8, = (id —)®" o A", (A.1)

Drinfeld (1986) introduced functors on Hopf algebras, which have been studied
extensively in work of Gavarini, see e.g. Gavarini (2002). In particular, the Drinfeld-
Gavarini dual of A is the sub-Hopf algebra A’ C A defined by

A'=laeA:8,(a)el"A®" foralln e N}. (A.2)

As in the second part of the proof of Gavarini (2002, Proposition 2.6):
LemmaA.1 Foranya,b € A, we have [a, b] € hA'.

The dual A’ can be defined for any Hopf algebra A over C[/]. However, the case of
the greatest interest is precisely when A/hA =~ U (a). In this case, one can prove that

7 Here U (a) denotes the universal enveloping algebra of a over C, in contrast to Definition 2.11.
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A’ is a deformation quantization of the coordinate ring of a ‘dual’ algebraic group.
This is a part of the quantum duality principle, see Gavarini (2002, Theorem 1.6)
(called Drinfeld—Gavarini duality in Kamnitzer et al. (2014, §3C)).

A.2 PBW Basis for A’

We will now make some additional assumptions on A. Suppose that there exists a
totally ordered set (J, <), and elements {x;};c5 C A. By an (ordered) PBW monomial,
we mean any ordered monomial

Xip - Xip € A (A.3)
with £ € Nandi; < ... <i,. Assume that:

{xi}ieg lifts a basis {X;};¢g for a, (Asl)
A is free over C[h], with a basis given by the PBW monomials in {x;};c9, (As2)
foralli € J, we have hx; € A’. (As3)

We will use the multi-index notation x* to denote a PBW monomial []; 4 x;" in
the PBW generators x;. We write |«| = Zi <q o; for the total degree of x“. Finally,
for a € U(a) we denote by d(a) its degree with respect to the usual filtration, i.e. the
maximal value of || over all summands x* that appear in a.

In Gavarini (2002, §3.5), an explicit description of A’ is given in the formal case,
i.e. when working with complete algebras over C[[/]]. The next result is inspired by
this description, but with the aim of working instead over C[%].

Proposition A.2 Suppose that A satisfies Assumptions (As1)—(As3). Then A’ is free
over C[h], with a basis given by the PBW monomials in the elements {hx;};cq. In
particular, A" C A is the C[h]-subalgebra generated by {hx;};c7.

In the proof, we will make use of Etingof and Kazhdan (1996, Lemma 4.12) (cf.
(Gavarini 2002, Lemma 3.3)):

LeTma A3 Let a € A’ be non-zero, and write a = h'b where b € A\hA. Then
a(b) < n.

Proof of Proposition A.2 Let ¢ € A’. By assumption (As2), we can write ¢ =
Zk,a ck,ahkx"‘ for some ¢, € C which are almost all zero. Since A’ is an alge-

bra, by assumption (As3) we know that h*x* € A’ whenever k > |a|. Subtracting all
such elements from ¢, we conclude that the element

a= Z cralfx® € A (A.4)

k,ock<|a|
Assume that a # 0. Choosing

n = min{k : Jo such that k < || and ¢, # O}, (A5)
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we can write a = A'b, where

be Y cnax®+hA. (A.6)

an<|o|

From assumption (Asl) it follows that

b= > chaX® € Ula), (A7)

an<|o|

and so 3(b) > n. But by Lemma A.3 we should have 3(b) < n. So we conclude that
a=0.

This shows that the PBW monomials in {fx;};cg span A’ over C[h]. But they are
also linearly independent, because of assumption (As2). Thus, they form a basis.

A.3 Rees Algebra Description of A’
In this subsection, we make a further assumption on A:

A is a graded Hopf algebra, with deg(#) = 1 and {x;};c7 being homogeneous.
(As4)
Note that A" C A is then a graded sub-Hopf algebra, and that the specializations of
A, A’ at h = 0 inherit gradings. By Proposition A.2, we see that the inclusion A" C A
induces an isomorphism of their specializations at i = 1:

AJ(h— DA ~ A/(h—1)A. (A.8)

Moreover, the images of their respective PBW generators and bases agree as Ax; +
(h—DA=x;i+ (- 1A.

Denote the algebra in (A.8) by Ap—. If assumption (As4) holds, it follows that
Ap=1 inherits two filtrations F,Ap—1, FeAp=1, coming from A’ and A, respectively.
Denoting d; = deg x;, these filtrations may be defined explicitly in terms of the PBW
monomials:

FyAp—=1 = spang {x“ +(h—-DA : Zdia; < k}, (A9)
i

F|An_; = spanc {x“ +(h=1A : Y (& + ey < k}. (A.10)
i

In particular, F{Ap—y C FyAp— forall k € Z.
By the above discussion, we obtain another description of A’, as a Rees algebra:

Proposition A.4 Suppose that A satisfies Assumptions (Asl)—(As4). Then there is a
canonical isomorphism of graded Hopf algebras

A’ ~ Rees’* (Ap—1).
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It is compatible with the canonical isomorphism A ~ Rees™ (A1), under the natural
inclusions A" C A and Reests(Ap—1) C Rees’™ (Ap—1).

A.4 The Yangian of g

Consider the Yangian Yy = Yp(g) associated to a semisimple Lie algebra g. It is
the associative C[/]-algebra with generators {el@, hl@, fl.(r)}lfg\r (here I denotes the
set of vertices of the Dynkin diagram of g), and relations as in Kamnitzer et al.
(2014, §3A) and Guay et al. (2018, Definition 2.1), cf. (2.9). For each i € I, define
the element s; := hgl) — %(hfo))z € Y, cf. (2.17). Then Y}, is also generated by
{e; .(O) h(O) f.(o) si}ier, cf. Sect. 2.5.

For each positive root o and r > 0, define the elements e(r) fOEC) of Yy, via

&= [[ e e | o] ]
iy tg—1 2 B
0 0 0
£ = [fu [fu N [fm f(r>} H
-1 e

where o’ = o +o + -+ “2,1 + o} is an (ordered) decomposition into simple
roots such that the element [ fv , [ f,v , -, [fav fa ] is a non-zero element
i ip ip

(A.11)

of g (here { f,v}ics denote the standard Chevalley generators of g). We will refer to

these elements, together with {h;r) }fg\r, as the Yangian PBW generators. Through-

out this appendix (and the next one), we fix some total ordering on the set of all
PBW generators. It is well-known that Y}, is free over C[/] with a basis given by the
PBW monomials, as was proven in Levendorskii (1993). Since the original proof of
Levendorskii (1993) contains a significant gap, we give an alternative short proof in
Appendix B.

Yy, is a graded Hopf algebra, with deg(h) = 1 and deg(x”)) = r for x =
ey, hi, fuv.Its coproduct is uniquely determined by

ACH) =xO@1+10x forx = ey, hi, fav,
— o vy £ 0 ()
A =si®1+1®si—h ) (o y')fy) ®e). (A.12)
yV>0
A proof of these formulas appears in Guay et al. (2018). Meanwhile, the counit of Y,
is given simply by

¢ ( <°)) —c (f(o)) (h(0)> — e(s;) = 0. (A.13)

Finally, we note that in the classical limit there is an isomorphism of graded Hopf
algebras
Yp/hYp = U(glt]), (A.14)

where U (g[t]) carries the loop grading.
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A.5 The Drinfeld-Gavarini Dual of the Yangian

In this subsection, we describe the Drinfeld—-Gavarini dual Y7, by applying the results
of the previous subsections. To this end, we will verify that Assumptions (As1)—(As4)
hold for Y3 and its PBW generators. Note that only assumption (As3) remains; the
others hold as discussed in Sect. A.4.

Using Eqgs. (A.12, A.13), a straightforward calculation shows that:

x,ifn=1
LemmaA.s5 (1) §,(x©) = {O ;Ctherwise’ forany x = egv, hi, fa.
Si, ifn=1
(2) 8a(si) = § —h Yool YV £ ® ey, ifn =2
0, otherwise

Using this lemma, we can now verify assumption (As3):

LemmaA.6 For any PBW generator x") of Yy, the element X"V := hx") belongs
to the Drinfeld—Gavarini dual Y},

Proof By the previous lemma, we have fie'), ih\", i f\), his; € Y}. All the PBW

a\/
generators x") can be obtained by taking repeated commutators of these elements,
and X+ by repeated application of the operation a, b > %[a, b] to the elements

hegy, hh ;O), h fofe ) ,and hs;. Since Y )% is closed under this operation, due to Lemma A. 1,

the claim follows. O

Thus Proposition A.2 applies providing a complete proof of the description of Y},
given just before Kamnitzer et al. (2014, Theorem 3.5). Note that, as mentioned above,
the relations given in Kamnitzer et al. (2014, Theorem 3.5) are incomplete (with the
exception of g = slp). We do not address this issue here, as our methods do not provide
a complete set of relations.

Theorem A.7 The Drinfeld—Gavarini dual Y} is free over C[h], with a basis given
by the PBW monomials in the elements Xth particular, Y,’i C Yy, is the C[h]-
subalgebra generated by the elements X "D,

Applying Proposition A.4, we also obtain the Rees algebra description of Y;, of
Finkelberg et al. (2018). In the case of the Yangian, the filtration F,Y5—; from (A.10)
is known as the Kazhdan filtration.

Corollary A.8 There is a canonical C[h]-algebra isomorphism
Y, ~ Rees’ (Ys_1)
with the Rees algebra of Yr—1 with respect to the Kazhdan filtration.
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A.6 The RTT Version

Recall the RTT Yangian Y (gl,) of Sect. 2.1. We refer to the elements (=l

ij 1<i,j=<n
as the PBW generators of Y}"'(gl,). Fix some total ordering on the set of all PBW

generators; this gives rise to the notion of the PBW monomials in {ti(jr)}qz} j<n-

Y{(gl,) is an N-graded Hopf algebra with deg(h) = 1, deg(tl.(;)) =r—1.1Its

rtt

coproduct A™ and counit €™ are determined explicitly by

AT ) =Tk QT (2), €T (2) = I,. (A.15)

Moreover, according to Remark 2.2, we have an isomorphism of graded Hopf
algebras
Yi'(al,)/hY g (gl,) = U(gl, (7). (A.16)

Proposition A.9 The PBW monomials in {tl.(jr)}qz} j<n form a basis of a free C[h]-
module Y (gl,,).

Proof The proof is similar to that of Theorem B.3 below. First, combining the isomor-
phism (A.16) with the PBW theorem for U (g, [¢]), we immediately see that the PBW
monomials span Y}"(gl,) over C[A]. To prove the linear independence of the PBW
monomials over C[#], it suffices to verify that their images are linearly independent
over C when we specialize & to any nonzero complex number. The latter holds for
h = 1 (and thus for any 7 # 0, since all such specializations are isomorphic), due to
(Molev 2007, Theorem 1.4.1).

This completes our proof of Proposition A.9. O

The following result provides a new viewpoint towards Y%‘ (gl,,) of Definition 2.3:

Theorem A.10 The Drinfeld-Gavarini dual Y} (gl,)" is free over C[h], with a basis
given by the PBW monomials in the elements htl.(jr). In particular, Y;b" (g [n)/ = Ygt (gl,).

Proof This follows from Proposition A.2 once we verify that Assumptions (Asl)-
(As4) hold for Y["(gl,). Note that only assumption (As3) remains; the others hold

as discussed above. The desired inclusion htl.(l.r)

from (A.15), due to (id —em)(m}; )y = htl.(j’ ) e hY[™(gl,). o

e Yi(gl,) follows immediately

Since the C[A]-algebra isomorphism Y : Yj(gl,) —> Y;"(gl,) of Theorem 2.18 is
actually an isomorphism of Hopf algebras, we conclude that it gives rise to an isomor-
phism of the corresponding Drinfeld—Gavarini duals Y : Yz (gl,) — Ygt (gl,). This
provides an alternative computation-free proof of Proposition 2.21.

Remark A.11 Let us compare the above exposition with that of Molev (2007), where
an opposite order of reasoning is used. In loc.cit., the author works with the C-
algebra Y™ (gl,) defined as a common specialization Y™ (gl,) = Y/ (gl,) =
Yi, (gl,), endowed with two different filtrations F, Y™ (gl,,), F,Y™ (gl,) determined
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by deg’* (tl.(jr)) = r,deg” . (ti(/.r)) = r — 1 (these notations are opposite to those we
used in Sect. A.3). First, in Molev (2007, Corollary 1.4.2), an algebra isomorphism
grfe yt(gl,) ~ C[{tl.(jr)}qg’jfn] is proven, and only then an algebra isomorphism

grfe Y™(gl ) ~ U(gl, [¢]) is deduced in Molev (2007, Proposition 1.5.2).

A.7 The Shifted Yangian

In Sects. 2.6 and 2.7 , respectively, the algebras Y, (for any coweight 1) and Y;L
(only for a dominant coweight ) are defined. In this section, we show that these two
definitions are equivalent when p is dominant. Note that although these definitions
were only given in the case of g = sl,,, they can be easily extended to any semisimple
Lie algebra g (cf. Kamnitzer et al. 2014; Finkelberg et al. 2018). Till the end of this
subsection, we assume that ;& is dominant.

We first recall two auxiliary algebras. The first is the C-algebra Y, defined in
Sect. 2.6, and the second is the C[/]-algebra Y, 5 introduced in Sect. 2.7. Both have
PBW bases in the corresponding generators over their respective ground rings, by
Theorems 2.26 and 2.29 , respectively.

Fixing a splitting u = w1 + o, recall that Y, has a corresponding filtration
F3 .Yy, see (2.23). Similarly Y, 5 has a corresponding grading, defined by setting

B, 12
deg(h) = 1 and

deg(e?)) = o' (u) + 7, deg(f) = o' (u2) +r, deg(h”) = ol (1) +r.

Thus for x = eqv, fav, hi, we have deg(x”)) = deg(x)+r, where the internal grading
deg(x) is defined via deg(eqv) = o’ (1), deg(fov) = o’ (in2), deg(hi) = o} (w).
By comparing their defining relations, it is clear that there is a C-algebra isomor-
phism
Yun/(h—=1DY, n—Y,. (A.17)

On the PBW generators, this isomorphism involves a shift of labels: x") > X¢+D
for x = ey, fov, hi. It follows that Y, inherits a second filtration G:n, 1 Y,, coming
from the above grading on Y, 5. This is analogous to the situation in Sect. A.3: if by
abuse of notation we denote the PBW generators of Y, by x”, then G¥, Y, is the
span of all PBW monomials

XY (A.18)

with (deg(x1) +r1) + - - - + (deg(x¢) + r¢) < k. Meanwhile, Fl]jl,MYﬂ is the span of
those monomials (A.18) with (deg(x1) +r1 + 1) +--- + (deg(xe) +r¢e + 1) < k.
In particular, there is an inclusion Fl]jl,llz Y, C Gﬁl,uz Y,., hence, an embedding of
the Rees algebras
Rees "2 (Y,) C Rees“mm(Y,). (A.19)

Now on the one hand, Y, = ReesF/: 1142 (Y,) by Definition 2.27. On the other hand,
since Y,  is free over C[h], we have Y, 5 =~ ReesCiiu (Y,). Explicitly, on PBW
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generators this isomorphism is defined by
*) deg(x)+k (k) - pdeg(x)+k ~deg(x)+k G
Yurn3x® = h x"eh Guips Yy CRees™mir2(Yy,).  (A20)

Altogether, we obtain an injective homomorphism of graded C[h]-algebras Y, —
Y, h
We can now prove a generalization of Theorem 2.31 for an arbitrary g:

Theorem A.12 For any dominant coweight u, there is a canonical C[h]-algebra iso-
morphism Y, ~ Y;L. For any splitting ;0 = 1 + o, this isomorphism is compatible
with the associated gradings on Y, (from the filtration F); Y, )and Y;L (as a graded
subalgebra of Y, p).

Proof All that remains is to check that the image of Y,, < Y}, , is precisely Y; .- This
follows from the “shift” that distinguishes the filtrations F’ ;Iil, 1y Y and Gk Y.

W12
{rl), re)  pk

Indeed, for a monomial x Xy 1.1z Y s the corresponding element in the

Rees algebra is

Hex () .xlf”) e'FL Y, C Rees 112 (Y),).

But in the Rees algebra Rees i n2 (Yy) = Y, i, by inverting (A.20) this element gets
sent to

hk—(deg(n)+r1)—---—(deg(xz)+rz)x§r1) . -xér‘) €Yun

Since (deg(xy) +r1 + 1) + - -+ + (deg(x¢) + r¢ + 1) < k, we can rewrite this as

hk—(deg(xl)-i-rl+1)—---—(deg(xe)+re+1)(hxgrl)) . (hxé")),

whichlies in Y}, . Taking spans of such monomials, we see that Y, = Rees 712 (Yu) C

Y),. But it is easy to see that the generators of Y/, lie in Rees 1 (Y 1), SO actually
Y, =Y. o

A.8 The Shifted Yangian, Construction Il

Motivated by the discussion of the previous subsection, we provide one more alter-
native definition of the shifted Yangians. Fix a coweight 1 of g and set b; := o} (),
where {o] };¢s are the simple roots of g. Let Y, 1; be the associative C[h, ! ]-algebra
generated by {efr), fi(r), hl@" )}1(6210 $i2=bi \yith the defining relations similar to those
of (2.24) (but generalized to any g) with the only exception:
R ifi = jandr 41 = —b;
[el.(r), fj(r N=1nt, ifi=jandr+r' =—-b —1. (A.21)
0, otherwise
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Remark A.13 If p is dominant, the equality r +r' = —b; — 1 never occurs forr, v’ > 0.
Thus, Y, r is the C[h, h~!1-extension of scalars of Y, » of Appendix A.7 for dominant

u.

Define the elements {egv), ;C)};ég At (here A™ denotes the set of positive roots of

g) of Y, following (2.25) (but generalized from type A to any g, cf. (Finkelberg et al.
2018, (3.1))). Choose any total ordering on the set of PBW generators as in (2.26) (but
generalized from type A to any g, cf. Finkelberg et al. (2018, (3.4))). The following is
analogous to Finkelberg et al. (2018, Corollary 3.15) (cf. Theorem 2.26 in type A):

Theorem A.14 For any coweight i, the PBW monomials form a basis of a free
C[h, h~11-module Y i

This follows immediately from Finkelberg et al. (2018, Corollary 3.15) and the
following simple result:

Lemma A.15 Fix a pair of coweights 1, (1 such that i + (1 = (.
(a) There is an isomorphism of C[h, h™'1-algebras Yun = Yulh, i~ defined by

hl(r) — hot,y(ﬂ)ﬂ—rHi(rJrl)’ el(r) — ha}/(lil)+rEi(V+1)’ fi(r) — h(xl-v(ltz)+rFi(V+1)'

(b) The above isomorphism sends the PBW generators as follows:
egv) s h"‘v(’“)‘”Egv“), f,irv) N hav(uz)+rFDErv+1).

Proof Part (a) is straightforward. Part (b) follows by comparing (2.21) and (2.25). O
Following Definition 2.30, we introduce:

Definition A.16 Let Y, be the C[/]-subalgebra of Y,, 5 generated by

{he(r)}VZOA+ U {h (i)}rZO U {hhgsi)}SiZ*bi'

oV Jave oV JaveAt iel
The following is the main result of this subsection:

Theorem A.17 For any coweight u, there is a canonical C[h]-algebra isomorphism
Y, ~=Y,

Remark A.18 We note that Theorem A.17 does not imply Theorem A.12, since the
algebra Y;L could a priori have an h-torsion.

AsY, = Rees rim (Yy), by the very definition of the Rees algebra we have a
natural embedding Y,, C Y[R, hi~'1. Applying Lemma A.15 with the same decom-

position = 41 + (2, we also obtain an embedding Y, C Y, n—> Yulh, B4
Therefore, Theorem A.17 follows from:

Lemma A.19 The images of Y, and Y, in Y, [h, h 1 are equal.
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Proof The filtration F7 Y, is defined by the degrees of PBW monomials as in
(Finkelberg et al. 2018 (5 1)) (cf. (2.23) in type A). In particular, Y, is the C[A]-
subalgebra of Y, [A, h~ 11 generated by the elements

hozv (1)+r Eu(lrv)’ hot,Y (W)+r Hi(r)’ hotv (2)+r FuErV)'

Note that these are precisely the images of the generators hegv_l), rh" D n féc_l)
of Y, under the isomorphism of Lemma A.15. The claim follows. O

Remark A.20 We note that Lemma A.19 provides another proof of the fact that the
Rees algebras Rees 112 (Y,,) are canonically isomorphic for any choice of a splitting
M= 1+ .

Appendix B: A Short Proof of the PBW Theorem for the Yangians

The PBW theorem for the Yangians is well-known and was first proven by Lev-
endorskii in Levendorskii (1993). However, we feel that the proof of Levendorskii
(1993) contains a gap: in Levendorskii (1993, p. 40) it is stated that certain exponents
mi(i s J)s mo(r, Jj) are independent of j without any hint (actually, this seems to be
wrong), and this fact plays a crucial role in the proof. For this reason, we present here a
short proof of the PBW theorem for the Yangians, which is inspired by Levendorskii’s,
but which avoids the aforementioned gap.?

B.1 Useful Lemma

Let A = @,y Ak be a graded algebra over C[%], with 1 € Ag and i € A;. Consider
its two specializations Ap—o = A/hA and Ap—; = A/(h — 1)A. The former is
naturally graded via Ap—g = @kez Ar/hAg—1, while the latter inherits a natural
filtration Fy Ap—1 with Fy Ap— denoting the image of @[ ~xA¢ C A, givingrise to a
graded algebra gr Ap—; = grf* Ap_;.

An explicit relation between the resulting graded C-algebras Ap—o and gr Ap— is
presented in the following result:

LemmaB.1 (a) There is a canonical epimorphism of graded C-algebras © : Ap—o —
gr Ap=1.
(b) The kernel of ¥ is the image of the h—torsion® of A in Ap—o.

Proof The proof is straightforward. O

8 A similar proof appears in Wendlandt (2018), while a completely different proof of the PBW theorem
for the Yangian defined in its J-realization was recently presented in Guay et al. (2019, Proposition 2.2).

9 Explicitly, the h—torsion of A is given by Tr(A) = {a € A: W a=0forsomer > 0}.
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B.2 Setup

We follow Sect. A.4 for the conventions regarding the Yangian Yj. However, through-
out this section we will work with its specialization Ys—1, which we denote simply by
Y. Below, we prove the PBW theorem for Y over C. We then give a simple argument
extending the PBW theorem to the one for Y3 over C[A]. By abuse of notation, we
denote the images of the Yangian’s PBW generators in ¥ by egv), h;r), DEC).

Let us recall a few basic facts about Y. First of all, there is a natural linear map
g — Y, defined on the Chevalley generators by e; > el.(o), hi = h EO), fi — fl.(o),
cf. Lemma 2.12(a). This map is injective. Indeed, according to Drinfeld (1985, Theo-
rem 8),'0 the faithful action of g on g @ C (the direct sum of the adjoint representation
and the trivial one-dimensional) can be extended to an action of Y, hence, any element
in the kernel of the above map g — Y is zero.

Second, the grading on Y}, of Sect. A.4 gives rise to a filtration F,Y as in Sect. B.1.
In particular, every PBW generator x ) belongs to F,Y. We note that the coproduct
A:Y — Y ®Y satisfies

Total filtered degree(A(x(r)) —xPe1-1 ®x(r)> <r (B.1)

for any PBW generator x®_ which follows from (A.12). Note that the aforementioned
embedding g < Y yields a surjection U(g) — FpY. Moreover, combining the
isomorphism (A.14) with Lemma B.1, we obtain a graded algebra epimorphism
V1 U(glt]) = Dy FrY/Fr—1Y, in particular, we get a surjective linear map from
the degree k part of U(g[t]) to FyY /Fi_1Y.

Finally, we recall that there is a translation homomorphism t, : Y — Y[a] (here a
is a formal parameter) defined on the PBW generators by

r

) =Y (Z)a’—sx(s) (B.2)

s=0

for any PBW generator x = ey, h;, f,v (note that this formula is valid for ey, fuv

with ¢ a non-simple root because of our choices (A.11)). In particular, it follows that

the filtered degree of any PBW monomial y € Y is precisely the degree in a of 7,(y).
Define a homomorphism A, : Y — Y[a;] ® - - - ® Y[a,] as the composition

n a R ® an
Yy 25 v N )@ - @ Ylag]. (B.3)

Here A" is the n-th iterated coproduct as in Sect. A.1, and 7,, : ¥ — Yla;] is the
translation homomorphism. In particular, it follows from the above discussion that for
any PBW generator x ), we have

10 The proof of this result is presented in Chari and Pressley (1991, Section 6).
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A =ax®1®- - ®1+10d5xR1®---@1+...+1®---®1®a’x (B.4)

modulo terms of total degree < r inay, ..., a,.

B.3 The PBW Theorem for the Yangians

In this subsection, we prove the PBW theorems for Y and Y.

Theorem B.2 The PBW monomials in the generators egv), hgr), foic) form a C-basis
of Y.

Proof First, we claim that the PBW monomials span Y. The proof is by induction
in the filtered degree. For degree 0, we recall that there is an algebra epimorphism
U(g) — FyY, so the usual PBW theorem for U(g) applies; in particular, the PBW
monomials in egi), hgo), 058) span FoY. For any k > 0, recall that the degree k part of
U (g[t]) surjects onto Fy Y / Fi,—1Y.Combining this with the PBW theorem for U (g[¢]),
we see that F; Y is spanned by the PBW monomials modulo terms of the lower filtered
degree. By induction, the claim follows.

Next, suppose that we could find a relation R between some PBW monomials.
Consider the set of the PBW monomials of the maximal filtered degree d that appear
non-trivially in this relation. Since this is a finite set, we may find a list of PBW
generators x%d') <...< x,(,d") (possibly with multiplicities) such that each of these
maximal degree monomials has the form

d
G (et (B.5)

with all & € {0,1} and ), &;d; = d. When multiplicities do occur, we take the
convention that the &; = 1 appear to the left of ¢; = 0. With this convention, each
tuple (g1, ..., &,) corresponds uniquely to a PBW monomial.

By (B.4), we find that A, (R) is a sum of expressions of the form

n €1 n €n
(Z 196-D g a?‘x{o) ® 1®(n—i)) (Z 196-D & a?"xy(,o) ® 1®(n—i)> ,

i=1 i=1

(B.6)

modulo terms of total degree < dinay, . .., a,. In particular, in the expression (B.6)
there is a summand

(@' ® (@32xy)2 @ -+ @ (afr ) (B.7)

which appears with coefficient 1. Moreover, there is a unique PBW monomial for
which (B.7) appears as a summand.

Since xr(o) are in the image of the embedding g < Y, the elements (B.7) are
linearly independent in Y[a;] ® --- ® Y[a,]. Thus the expressions (B.6) are also
linearly independent. This implies that the top total degree term in A, (R) must be
zero, a contradiction.

Hence no linear relations exist, proving the PBW theorem for Y. O
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This PBW theorem can be easily generalized to Yy over C[A]:

Theorem B.3 Yy, isfree over C[h], with a basis of the PBW monomials in the generators
(r) h g”) f(r)
1 b

€y s e

Proof Similarly to the proof of Theorem B.2, we see that the PBW monomials span
Yy over C[h]. Moreover, if we specialize / to any complex number, the images of the
PBW monomials form a basis. Indeed, the previous theorem proves this for 7z = 1
(and thus for any % # 0, since all such specializations are isomorphic), while the case
h = 0 follows from (A.14) and the PBW theorem for U (g[¢]).

Suppose that there is some linear relation among the PBW monomials. Its coeffi-
cients are elements of C[%]. But they must vanish wherever £ is specialized in C, since
the PBW monomials become a basis. Therefore, all the coefficients are zero. So there
are no relations, and the theorem is proved. O
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