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Abstract
It is known that the Julia set of a quadratic rational map is either connected or a Cantor
set. In this paper, we explore this dichotomy for themaps in a type of three-dimensional
space of cubic rational maps. We show that for a cubic rational map f , if f has an
attracting fixed point p and all critical points are attracted to p under the iteration of f ,
then the Julia set J ( f ) is either a Cantor set or a connected set (and locally connected)
with one possible exception; we also give a necessary and sufficient condition for
J ( f ) to be a Sierpinski curve when it is connected.
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Mathematics Subject Classification Primary 37F10, 37F45; Secondary 30F40

1 Introduction

Let̂C be the Riemann sphere and f : ̂C → ̂C be a rational map. A point p of̂C is said
to be in the Fatou set F( f ) of f if there is a neighborhood of p on which the family
of the iterates of f is a normal family in the sense of Montel. Clearly, F( f ) is an open
subset of̂C, on which the dynamics of f is relatively simple and is fully understood by

The research of the first author is supported by PSC-CUNY research awards and a visiting professorship
at NYU Shanghai in Spring 2019.

B Jun Hu
junhu@brooklyn.cuny.edu; JHu1@gc.cuny.edu

Arkady Etkin
arkadyetkin@yahoo.com

1 Department of Mathematics, Brooklyn College of CUNY, Brooklyn, NY 11210, USA

2 Doctoral Program in Mathematics, Graduate Center of CUNY, 365 Fifth Avenue, New York, NY
10016, USA

3 NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, 3663 Zhongshan Road North,
Shanghai 200062, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-020-00146-8&domain=pdf
http://orcid.org/0000-0003-4338-2048


432 J. Hu, A. Etkin

Sullivan’s classification theorem on its components (Sullivan 1985). The compliment
of F( f ) is called the Julia set of f , denoted by J ( f ), where the complexity of the
dynamics of f stays. We are interested in exploring the Julia sets of a type of rational
maps with escaping critical points.

By a rational map with escaping critical points, we mean a rational map f that has
an attracting fixed point p and all critical points escape to p under the iteration of f .
The first type of such examples that one may think of is polynomials P with degree
≥ 2 and all critical points escaping to ∞ under the iteration of P . It is well known
that the Julia set J (P) of such a polynomial P is a Cantor set. Secondly, Julia sets are
classified in Devaney et al. (2005) for such rational maps in the form:

f (z) = zn + a

zm
, a ∈ C and n, m ≥ 2, (1.1)

and in Xiao et al. (2014) for the maps in the family:

fa,b(z) = zn + a

zn
+ b, a, b ∈ C, and n ≥ 2. (1.2)

Thirdly, classifications of the Julia sets of regularly ramified rational maps with escap-
ing critical points are given in Hu et al. (2012, 2018).

We are interested in investigating the classification of the Julia sets of general
rational maps f with escaping critical points. It is clear that the classification increases
in complexity as the degree d of f increases. Let us start with d = 2. Through
conjugation by a Möbius transformation, one may assume that the attracting fixed
point p of f is placed at∞. If∞ is a super-attracting fixed point, then f is a quadratic
polynomial and, hence, J ( f ) is a Cantor set (since the other critical point escapes
to ∞ under iteration); furthermore, if ∞ is just an attracting fixed point, then one
first obtains that the immediate attracting basin of f at ∞ contains a critical point
and then concludes that J ( f ) is a Cantor set. The next case is to investigate such
rational maps of degree 3, which have 4 critical points and, in general, have 4 distinct
critical values. The immediate attracting basin of the attracting fixed point contains one
critical point, but the other three critical points (critical values) introduce several types
of combinatorial patterns according to under how many iterates they are mapped into
the immediate basin. In this paper, we show that except for one possible combinatorial
pattern, there are only two types of Julia sets appearing for this type of rational maps
(of degree 3 and with escaping critical points): either a Cantor set or a connected set.
For the latter, the Fatou set has infinitely many components, and furthermore, J ( f )
is a Sierpinski curve if (and only if) the boundary of the immediate attracting basin
B(p) of p is a Jordan curve.

Note that regularly ramified rational maps and the maps in the form (1.2) may
have high degrees, but they have only two or three critical values. In fact, this small
number (2 or 3) of critical values and some symmetries among the positions of critical
points play crucial roles and pave ways to classify the Julia sets of these rational maps
with escaping critical points. We emphasize that the cubic rational maps handled in
this paper are general, and hence, they have 4 distinct critical values and there is no
symmetry among the positions of critical points.
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As the degree d increases, computer-generated results have shown that there are
more and more types of Julia sets for rational maps f with escaping critical points. In
this paper, we focus on the case when d = 3. We prove the following main result.

Theorem 1.1 If f is a cubic rational map and has an attracting fixed point p, and all
critical points of f are attracted to p under the iteration of f , then the Julia set J ( f )
is either a Cantor set or, with one possible exception, a connected set (and locally
connected). For the latter case, the connected Julia set is a Sierpinski curve if (and
only if) the immediate attracting basin B(p) of p is a Jordan curve.

Let B(p) be the immediate attracting basin of p. It is well known that B(p) contains
at least one critical point q. Because of this, the proof of Theorem 1.1 follows the same
strategies and details as are used to establish the same result for the special case when
q = p (that is, when p is a super-attracting fixed point of f ).

Now we assume that p is a super-attracting fixed point. Through conjugation by
a Möbius transformation, we may further assume that p is arranged at ∞. Since the
degree of f is 3, there are two possibilities.

(1) If f −1{∞} = {∞}, then f is a polynomial. Thus, J ( f ) is a Cantor set if all
critical points escape to ∞ under iteration of f .

(2) If f −1{∞} has two elements, then through conjugation by an affine transforma-
tion, we may assume that f −1({∞}) = {0,∞}, and hence, f is of the form:

f (z) = z2 + Az2 + Bz + C

z
, (1.3)

where A, B,C ∈ C.

Let T = f −1(B(∞))\B(∞). Then, the main work to conclude Theorem 1.1 is to
prove the following theorem.

Theorem 1.2 If all finite critical points of f in the form (1.3) are attracted to∞ under
iteration of f , then with one possible exception, the Julia set J ( f ) is either a Cantor
set or a connected set (and locally connected). The precise statement is comprised of
the followings:

(1) If there is one finite critical value contained in the immediate attracting basin
B(∞) of ∞, then all finite critical points are contained in B(∞), and hence,
J ( f ) is a Cantor set.

(2) Otherwise, none of the finite critical values belongs to B(∞) and T is simply
connected and disjoint from B(∞). Then:

(a) if each component of f −n(T ) contains at most one critical value (not counted
by multiplicity) for each n ≥ 0, then J ( f ) is connected;

(b) T can not contain three critical values (counted by multiplicity), and if two
critical values (counted by multiplicity) are contained in T , then J ( f ) is
connected;

(c) the only possible exceptional case for J ( f ) to be neither a Cantor set nor
connected is when there exists n > 0, such that a simply connected component
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Tn of f −n(T ) contains two or three distinct critical values, one component
A of f −1(Tn) is a topological annulus separating T from B(∞), and Tn is
contained in the component of ̂C\A containing B(∞).

Furthermore, when J ( f ) is connected, J ( f ) is a Sierpinski curve if (and only if) all
finite critical points belong to the component of B(∞)

c
containing 0 (or equivalently

if and only if the boundary of B(∞) is a Jordan curve).

The proof of Theorem 1.2 is divided into three steps and given in Sects. 2.2, 2.3,
and 2.4. In the first step, we show that if there is one finite critical value in B(∞), then
all finite critical points are contained in B(∞), and hence, J ( f ) is a Cantor set; in the
second step, we show that if none of the finite critical values is contained in B(∞),
then J ( f ) is a connected set (and locally connected) with one possible exception; in
the third step, we show J ( f ) is a Sierpinski curve if (and only if) all three critical
values belong to the component of B(∞)

c
containing 0 (or, equivalently, if and only

if ∂B(∞) is a Jordan curve).

Remark 1.3 Although it is not explicitly stated in Devaney et al. (2005), the work of
Devaney et al. (2005) implies that the Julia set of a map in the form:

Fa(z) = z2 + a

z
, a ∈ C, (1.4)

is either a Cantor set or a Sierpinski curve when all finite critical points escape to ∞
under the iteration of the map. In Fig. 1a, b show two examples of such maps Fa with

Fig. 1 Julia sets of a f (z) = z2 − 0.8
z , b f (z) = z2 − 0.2

z , and c f (z) = z2 − 1 + 0.028
z , respectively
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J (Fa) being a Cantor set and a Sierpinski curve, respectively. Similarly, the work of
Section 3 in Xiao et al. (2014) suggests that if all finite critical points escape to ∞,
then the Julia set of a map in the form:

Fa,b(z) = z2 + a

z
+ b, a, b ∈ C, (1.5)

is likely either a Cantor set or a connected set (and locally connected), and furthermore,
J (Fa,b) is a Sierpinski curve if (and only if) the boundary of the immediate attracting
basin of Fa,b at ∞ is a Jordan curve. In Fig. 1c shows such an example of Fa,b with
J (Fa,b) being a connected set but not a Sierpinski curve. For this example Fa,b, it
has one real critical point and two conjugated complex critical points; the fifteenth
iterate of the real one lands in the immediate attracting basin of ∞ and the twentieth
iterates of the two complex ones land in the basin. Clearly, families of maps of the
form (1.4) or (1.5) are one-parameter and two-parameter families contained in the
three-parameter family of the maps of the form (1.3). Based on computer simulation
results, we have not found a map in this three-parameter family for the exceptional
case in Theorem 1.2. By disproving the exceptional case, one can use Theorem 1.2
to extend the dichotomy of Julia sets (either connected or a Cantor set) to the rational
maps in this three-parameter family with escaping critical points.

Remark 1.4 It is proved in Shishikura (1987) that any quadratic rational map cannot
have Herman rings in its Fatou set. Then, one can use Sullivan’s classification theorem
on Fatou components and the Riemann–Hurwitz formula to conclude that the Julia
set of any quadratic rational map is either connected or a Cantor set. Note that any
quadratic rational map has two (distinct) critical points. This dichotomy is extended in
Milnor (2000) to any rationalmapwith exactly two critical points. Using theRiemann–
Hurwitz formula, one can see that any rational map with two critical values can have
only two critical points. Therefore, the dichotomy extends to any rational map with
either two critical points or two critical values. The rational maps considered in this
paper have four critical points (values). Although one of them is trapped to an attracting
fixed point under iteration, the other three critical points (values) are generally distinct.
Thus, those maps satisfying the condition of Theorems 1.1 or 1.2 generally do not
satisfy the condition required for Milnor’s theorem.

Remark 1.5 In the category of rationalmaps f with escaping critical points (noHerman
rings in this case), there are examples of degree d ≥ 4 whose Julia sets are neither
connected nor a Cantor set. For example, if d ≥ 5, then the Julia set of the map in
the form (1.1) is a union of a Cantor-set collection of disjoint closed Jordan curves
(McMullen 1988; Devaney et al. 2005) when n + m = d, 1

n + 1
m < 1, and |a| is

sufficiently small. When d = 4, one may consider the maps in the following family:

fa,λ(z) = z2 + λ

z(z − a)
. (1.6)

Numerical experiments show that if a = 2.35 and λ = .94, then all critical points
of fa,λ escape to ∞ under iteration and the corresponding Julia set is comprised of
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infinitely many Sierpinski curve components and infinitely many single-point compo-
nents.

We finish the paper by raising a question in the following last remark.

Remark 1.6 Section 6 of Shishikura (1987) includes Arnold’s example of a cubic
rational map in the form:

fα,r (z) = eiα

z

(

z − r

1 − r z

)2

, 0 < r <
1

5
, α is an irrational real number, (1.7)

having a Herman ring in its Fatou set. It follows that there is a cubic rational map
whose Julia set is neither connected nor a Cantor set. Moreover, even with the absence
of Herman rings, there are cubic rational maps whose Julia sets are neither connected
nor a Cantor set. A natural question arises: with an absence of Herman rings, classify
the Julia sets of cubic rational maps.

2 Proof of Theorem 1.2

2.1 Background and Notation

Let f : ̂C → ̂C be a rational mapwith deg( f ) ≥ 2.We first prepare some background
(see Beardon (1991)).

Lemma 2.1 (Beardon 1991) Let D be an open subset of ̂C. Then, ̂C− D is connected
if and only if each connected component of D is simply connected.

Lemma 2.2 (Riemann–Hurwitz formula, Beardon 1991) Let f be a rational map from
̂C to itself. Assume

(1) V is a domain in ̂C with finitely many boundary components;
(2) U is a component of f −1(V );
(3) there are no critical values of f on ∂V .

Then, there exists an integer d ≥ 1, such that f is a branched covering map from U to
V with degree d and

χ(U ) + δ f (U ) = d · χ(V ),

where χ(·) denotes the Euler characteristic and δ f (U ) denotes the number of the
critical points of f in U (counted with multiplicity).

An immediate corollary follows.

Corollary 2.3 With the same assumptions as in the previous Lemma 2.2, if it is further
given that V is simply connected and contains at most one critical value, then each
component of f −1(V ) is simply connected.
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Lemma 2.4 (Beardon 1991) Let f be a rational map of degree deg( f ) ≥ 2, and let
ζ be an attracting fixed point of f . If all the critical points of f lie in the immediate
attracting basin of ζ , then J ( f ) is a Cantor set.

Now, we introduce some related background from the theory of conformal invari-
ants. For a more complete discussion of these ideas, see Appendix B ofMilnor (1999).

An open connected domain A on ̂C is called an annulus if ̂C\A has exactly two
connected components. We say that two annuli are conformally equivalent if there
exists a conformal map between them. It is well known that each non-degenerate
annulus is conformally equivalent to a round annulus of the form �(r1, r2) = {z ∈
C; r1 < |z| < r2} for two positive real numbers r1 and r2, and two round annuli
�(r1, r2) and �(r̂1, r̂2) are conformally equivalent if and only if r2/r1 = r̂2/r̂1.
Therefore, the modulus of A is a conformal invariant, which is defined by

M(A) = 1

2π
log(r2/r1).

Definition 2.5 Given two annuli A1 and A2,we call A2 a sub-annulus of A1 if A2 ⊂ A1
and the two components of Ac

1 are contained in the two components of Ac
2 respectively.

Furthermore, we say A2 is a proper sub-annulus of A1 if A2 is a sub-annulus of A1
and A2 ⊂ A1.

Theorem 2.6 (Grötzsch Inequality, Ahlfors 1966) Suppose that two annuli A1 and A2
are two sub-annuli of an annulus A . If A1 and A2 are disjoint, then:

M(A1) + M(A2) ≤ M(A).

An immediate corollary follows.

Corollary 2.7 If A2 is a proper sub-annulus of an annulus A1, then there is no confor-
mal map between them.

One can obtain a more delicate consequence as follows.

Corollary 2.8 Let U and V be two simply connected domains of̂C bounded by Jordan
curves and U ⊂ V . If U j , j = 1, 2, . . . , n are simply connected domains bounded by
Jordan curves and their closures are pairwise disjoint and contained in U, then there
is no conformal map between U\ ∪n

j=1 Uj and V \ ∪n
j=1 Uj .

Proof Let γU and γV be the boundaries of U and V respectively, and let γ j be the
boundary of Uj for j = 1, 2, . . . , n. Suppose that there exists a conformal map F
from V \ ∪n

j=1 Uj onto U\ ∪n
j=1 Uj . Since all boundaries of these two domains are

Jordan curves, the map F extends to a homeomorphism between the closures of these
two domains. We first show that there exists 1 ≤ j ≤ n, such that F j (γV ) = γU .
Clearly, F(γV ) is equal to γU or γ j for some 1 ≤ j ≤ n. Suppose that under iteration
of F , γV is not mapped to γU . Then, under the iteration of F , γV lands on a cycle of
F contained in {γU , γ1, γ2, . . . , γn}. Denote this cycle by � and its period bym. Let k
be the smallest positive integer j , such that F j (γV ) ∈ �. Then, k ≥ 1, and Fk−1(γV )
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and Fm−1(Fk(γV )) are two distinct Jordan curves, and both of them are mapped to
Fk(γV ) by F . This contradicts the injectivity of F on the closure of V \ ∪n

j=1 Uj .

Therefore, there exists 1 ≤ j ≤ n, such that F j (γV ) = γU . Let j be the smallest such
positive integer.

Now, denote the annulus V \U by A. Then, {Ak = F jk(A)}∞k=0 is a sequence of
disjoint annuli contained in V \ ∪n

j=1 Uj and they are homotopic to each other. Since
these annuli are conformally equivalent, they have the same modulus. It follows that
∪∞
k=0Ak is an annulus of infinite modulus. On the other hand, allUj s are contained in

one component of Ak
c
for each k. Therefore, the modulus of ∪∞

k=0Ak is finite. This
is a contradiction. Thus, the hypothesis on existence of a conformal map between
V \∪n

j=1Uj andU\∪n
j=1Uj cannot hold. This means that there is no conformal map

between them. 	

To present a proof of Theorem 1.2 in the simplest possible terms, we also need to

introduce the following new terminology and notation.

• Given two domains S1 and S2, by S1 � S2, we mean that there is a conformal map
between them.

• Given a simple closed curve γ in C, let Din(γ ) and Dout (γ ) denote the bounded
and unbounded components of C\γ , respectively.

• If γ1 and γ2 are simple closed curves in C, such that γ1 ⊂ Din(γ2), we denote by
A(γ1, γ2) the annulus Din(γ2)\Din(γ1).

• Let n ≥ 1 and γ1, γ2, . . . , γn+1 be simple closed curves on C, such that:

(1) γ1, . . . , γn ⊂ Din(γn+1), and
(2) Din(γk) ∩ Din(γ j ) = ∅ for all k, j ∈ {1, ..., n} and k �= j .

We denote by P(γ1, γ2, . . . , γn+1) the domain

Din(γn+1)\
n

⋃

k=1

Din(γk)

and call P(γ1, γ2, . . . , γn+1) a pair of pants with n sleeves.When n = 1, P(γ1, γ2)

is an annulus and we denote it by A(γ1, γ2) instead of using the letter P. When
n = 2, P(γ1, γ2, γ3) is a pair of pants in common sense.

• We use phrases like “filled-in annulus” or “filled-in pants” to refer to a patched up
disk which had one or multiple punctures or holes. For example, given an annulus
A = A(γ1, γ2), the filled-in annulus is the disk Din(γ2) and we denote it by
Din(A); given a pair of pants P = P(γ1, γ2, . . . , γn+1), the filled-in pants is the
disk Din(γn+1) and we denote it by Din(P).

• By Din(P1) ∼= Din(P2), we mean that there is a conformal homeomorphism from
Din(P1) onto Din(P2) that restricts to a conformal homeomorphism from P1 to
P2. In short, Din(P1) ∼= Din(P2) implies P1 � P2.

Definition 2.9 Let P1 and P2 be m-sleeved and n-sleeved pants respectively. We say
that P2 is enclosed in P1 if P2 is obtained by deleting n proper disjoint closed disks
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from one of the m bounded components of P1
c
. We denote this by:

P2 ⊂� P1.

We say that a domain � is surrounded by a sequence of successively enclosed pants
{Pj }Nj=1 (where N may be replaced by ∞) if � is contained in a bounded component
of the complement of Pj for every 1 ≤ j ≤ N .

2.2 The Cantor-Set Case

In this subsection, we show necessary and sufficient conditions for the Julia set to be
a Cantor set.

Recall that

f (z) = z2 + Az2 + Bz + C

z
, where C �= 0.

Then, f has 4 critical points on ̂C (counted with multiplicity) among which ∞ is a
critical point and a critical value. We denote the other 3 critical points by c1, c2, and
c3 and the corresponding critical values by v1, v2, and v3. At this moment, we do not
assume that c1, c2, c3 (respectively, v1, v2, v3) are distinct. Let B(∞) be the Fatou
component containing ∞ and T the Fatou component containing 0, where B(∞) is
the immediate attracting basin of∞ and T is called the trap door (when T �= B(∞)).
Since the local degree of f in a sufficiently small neighborhood of ∞ is 2 and the
degree is 1 near 0, the following two properties hold.

(1) If T �= B(∞), then f : T → B(∞) is univalent and f : B(∞) → B(∞) is
two-to-one.

(2) If T = B(∞), then B(∞) contains f −1{∞} and, hence, is completely invariant;
that is, f −1(B(∞)) = B(∞).

These two properties imply the following proposition.

Proposition 2.10 Assume that all finite critical points of f , given by (1.3), escape
to ∞ under iteration of f . If two finite critical values (counted by multiplicity) are
contained in B(∞), then the third finite critical value is also contained in B(∞) and,
hence, J ( f ) is a Cantor set.

Proof Without loss of generality, we may assume that the two finite critical values
contained in B(∞) are v1 and v2. Let V ⊂ B(∞) be a disk centered at ∞ such
that f (V ) ⊂ V . Denote by Vn the component of f −n(V ) that contains ∞. Then,
B(∞) = ∪∞

n=1Vn , and therefore, there exists a minimal integer m, such that v1,
v2 ∈ Vm . Observe that Vm ⊂ B(∞) and f (Vm) ⊂ Vm . Furthermore, there is at most
one critical value v3 contained in one of the components of (Vm)c.

If 0 ∈ Vm , then B(∞) = T and, hence, B(∞) is completely invariant under f .
Since the forward orbits of the critical points of f eventually land in B(∞), it follows
that all the critical points c1, c2, and c3 are contained in B(∞). Using Lemma 2.4, we
see that J ( f ) is a Cantor set.
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Assume that 0 /∈ Vm . Then, 0 ∈ U , where U is a component of (Vm)c. By Lemma
2.1, each connected component of (Vm)c is simply connected. Since v3 is the only
remaining critical value contained in one of these components, it follows from Corol-
lary 2.3 that all the components of f −1((Vm)c) are simply connected. Furthermore,
it follows from f (Vm) ⊂ Vm that the closure of each component of f −1((Vm)c)

is contained in one of the components of (Vm)c. Then, U − f −1((Vm)c) is con-
nected and mapped into Vm , and it has a boundary component shared with Vm . Thus,
Vm ∪(U− f −1((Vm)c)) is a connected domain contained in B(∞). On the other hand,
∞ /∈ (Vm)c implies that 0 /∈ f −1((Vm)c) and then 0 ∈ U − f −1((Vm)c). Therefore,
0 ∈ B(∞). Applying Lemma 2.4 again, we conclude that J ( f ) is a Cantor set. 	


Now, we prove the first half of Theorem 1.2; that is, we show the following propo-
sition.

Proposition 2.11 Assume that all finite critical points of f , given by (1.3), escape to
∞ under iterations of f . If there is one finite critical value contained in B(∞), then
all critical values are contained in B(∞) and, hence, the Julia set J ( f ) is a Cantor
set.

The proof of this proposition is quite lengthy, and takes the remaining space of this
subsection.

Proof Without loss of generality, we may first assume that v1 ∈ B(∞). If another
critical value is contained in B(∞), then it follows from Proposition 2.10 that J ( f ) is
a Cantor set; if v2 = v1 or v3 = v1, v2 = v3, then the proof of Proposition 2.10 implies
that J ( f ) is a Cantor set. Therefore, we may further assume that v2, v3 /∈ B(∞) and
v2 �= v1, v3 �= v1 and v2 �= v3. It follows that c1, c2, and c3 are distinct. The remaining
work is to deduce a contradiction.

Let V ⊂ B(∞) be a disk centered at ∞, such that f (V ) ⊂ V . Denote by Vn the
component of f −n(V ) containing∞. Then, B(∞) = ∪∞

n=1Vn . Therefore, there exists
a minimal integer m, such that v1 ∈ Vm and c1 ∈ Vm+1.

Note that V0 = V contains only the one critical value∞. By applying theRiemann–
Hurwitz formula (Lemma 2.2) to f : V1 → V0, we conclude that V1 is simply
connected. Continuing in this fashion, we know that V0, . . . , Vm are simply connected
open sets. The following properties hold:

(1) T �= B(∞) (otherwise, B(∞) is backward invariant and, hence, J ( f ) is a Cantor
set by Lemma 2.4);

(2) χ(Vm) = 1, because Vm is simply connected;
(3) the degree d of f : Vm+1 → Vm is 2 (otherwise, B(∞) is backward invariant and

hence J ( f ) is a Cantor set);
(4) δ f (Vm+1) = δ f (c1) + δ f (∞) = 1 + 1 = 2.

Using the Riemann–Hurwitz formula, we obtain:

χ(Vm+1) = d · χ(Vm) − δ f (Vm+1) = 0.

Thus, Vm+1 is an annulus, and then, Vm+1\Vm is a pair of pants.
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Let γ0 be the boundary of Vm . Since γ0 is the image of an analytic branch of f −m

in a neighborhood of the smooth boundary curve ∂V , γ0 is a smooth simple closed
curve. Similarly, γ0 has three pre-images, which we denote by γ 1−1, γ

2−1, and γ 3−1 in
accordance with Fig. 2. (The outermost curve in black represents γ0 and Dout (γ0) =
Vm .) The region P(γ 1−1, γ

2−1, γ0) is a subset of Vm+1, which we denote by P1 and call
a pair of pants at the first level. For convenience of notation to be used later, we also
denote P1 by P(1) = P(1̃). Clearly, P1 contains the critical point c1 and is mapped
into Dout (γ0) = Vm . The disk Din(γ 3−1) is a component of f −1(Vm) containing 0. As
such, Din(γ 3−1) is mapped conformally onto Vm .

Themap f is univalent on each of the three pre-image curves γ
j

−1, j = 1, 2, 3 of γ0.
Wecandeduce from theRiemann–Hurwitz formula that f maps Din(γ 1−1) conformally
onto Din(γ0); f maps the annulus A(γ 3−1, γ

2−1) onto Din(γ0)with degree equal to 2. It
also follows that the remaining critical points c2 and c3 are contained in A(γ 3−1, γ

2−1).
Keep in mind that the corresponding critical values v2 and v3 are not contained in
B(∞) by hypothesis. Thus, v2, v3 ∈ Din(γ 1−1) ∪ Din(γ 2−1). If they are not contained
in the same disk, then we can apply the methods in the proof of Proposition 2.10 to
conclude that T = B(∞), and then, J ( f ) is a Cantor set. Therefore, we may assume
further that both critical values v2 and v3 are contained in Din(γ 1−1) or in Din(γ 2−1).
Figure 2 indicates the relative positions of γ0 and the first pullbacks of γ0.

Now, let us briefly give the idea and process that lead to a proof of this proposition.
For each partition of̂C by the pullbacks ofγ0 to annth level,we are primarily concerned
with the relationship between v2 and v3 and the disks bounded by two thirds of the
nth pullbacks of γ0. By putting aside the relationships leading J ( f ) to a Cantor set,
we can always assume that both v2 and v3 are contained in one of these 2n disks,
which we denote by Din(γ

kn ...k2k1−n ), where 1 ≤ k j ≤ 2 and 1 ≤ j ≤ n. Then, one

of the components of f −1(Din(γ
kn ...k2k1−n )) is an annulus separating Din(γ 3−1) from

Dout (γ0). Furthermore, we obtain an infinite sequence {Pn}∞n=1 of conformal copies of
P1, such that each of them separates Din(γ 3−1) from Dout (γ0) and one is successively
enclosed in another. It is clear that there are three annuli contained in P1 that have
positive moduli and are homotopic to the boundary curves of P1, respectively. Let
ε be the minimum of the moduli of these three annuli. Then, there exists an infinite
sequence of disjoint sub-annuli of A(γ 3−1, γ0) having moduli ≥ ε. From the Grötzsch
Inequality (Theorem 2.6), we obtain that the modulus of A(γ 3−1, γ0) is ∞, which
contradicts the fact that its modulus is finite. This means that the only pattern that
may not lead J ( f ) to a Cantor set (under the assumption of this proposition) cannot
happen. It follows that J ( f ) has to be a Cantor set.

Aswe go through the steps of the proof, the diagrams illustrating the geometric posi-
tion of the pullbacks of γ0 quickly become visually complicated. Indeed, the diagram
containing all pullbacks up to the nth level will be a compilation of

∑n
j=0 3

j curves.
Presenting this information is made significantly simpler when we use Shishikura’s
language introduced in Shishikura (1989). Following his ideas, we identify each nth

level diagram with a tree structure as follows:
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Fig. 2 Pullbacks of γ0 up to the 1st level when v2, v3 ∈ Din(γ0)

Fig. 3 Tree configuration for
pullbacks of A0 up to the 1st
level when v2, v3 ∈ Din(γ0)

(1) Select a thin closed annulus in V0 having γ0 as one of its boundary curves, taking
care to ensure that this annulus does not contain any postcritical points. Denote
this annulus by A0.

(2) There exists a closed circular annulus �(r1, r2) = {z ∈ C; r1 ≤ |z| ≤ r2} and
a conformal homeomorphism ϕ : A0 → �(r1, r2) which maps γ0 to the circle
|z| = r1. Any other such homeomorphism ϕ1 is of the form ϕ1(ξ) = eiθϕ(ξ),
where θ is a real number. For each ξ ∈ A0, define:

A0[ξ ] = ϕ−1 {ω : |ϕ(ω)| = |ϕ(ξ)|} .
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These curves are the preimages of concentric circles |z| = r , r1 ≤ r ≤ r2 in
�(r1, r2) and remain unaffected when one particular homeomorphism meeting
our requirement is replaced by another.

(3) It will follow from the ensuing discussion that every branch of f − j is univalent
over A0 for any natural number j . Thus, each diagram of pullbacks up to the
nth level contains

∑n
j=0 3

j curves, any one of which is a boundary component

of one and only one annulus in the collection �n = ∪n
j=0{A : A ∈ f − j (A0)}.

Furthermore, as will be explained later, each level k pullback of γ0, 1 ≤ k ≤ n,
will have an identifying label of the form γ

jk , jk−1,..., j1
−k , where each ji ∈ 1, 2, 3 and

so that f (γ jk , jk−1,..., j1
−k ) = γ

jk−1,..., j1
−(k−1) . We transfer this label to the annuli, denoting

by A( jk , jk−1,..., j1)
−k the unique annulus that has γ

jk , jk−1,..., j1
−k as one of its boundary

components.
(4) Given A( jk , jk−1,..., j1)

−k and an element ξ ∈ A( jk , jk−1,..., j1)
−k , define

A( jk , jk−1,..., j1)
−k [ξ ] = f −k

(

A0[ f k(ξ)]
)

∩ A( jk , jk−1,..., j1)
−k .

In particular, A( jk , jk−1,..., j1)
−k [ξ ] is analogous to a circle in�(r1, r2) centered around

the bounded component of �(r1, r2)
c
.

(5) For each annulus A in the collection �n = ∪n
j=0{A : A ∈ f − j (A0)}, such that

ξ ∈ A, A[ξ ] iswell defined. For any z, w ∈ ̂C, define A(z, w) = {A[ξ ] : A[ξ ] ∈ A
separates z and w} and set

dn(z, w) =
∑

A∈�n

M (A(z, w)) .

Evidently, this sum is bounded by
∑

A∈�n
M(A) = M(A0)

∑n
j=0 3

j , where
M(A) = M(A0) because all the annuli are conformal copies of each other. The
function dn : ̂C × ̂C → [0,∞) is continuous and, in fact, a pseudo-metric on ̂C

(see Shishikura (1989)).
(6) dn partitions ̂C into equivalence classes defined by z ∼n w whenever dn(z, w)

= 0. The quotient space ̂C/ ∼n is homeomorphic to a one-dimensional (finite)
simplicial complex which is connected and contains no loops. Such complexes
are succinctly called trees (again, see Shishikura (1989) for further discussion).

Upon implementing the identifications ̂C/ ∼1, we translate the patterns observed
in Fig. 2 onto the corresponding tree structure. This tree is depicted in Fig. 3. The
branches (or edges) of the tree are color-coded to indicate the level of the pullback
of A0. The numbers directly over each edge determine the annulus according to the
scheme outlined in (4) above. For instance, the index (2) indicates that the edge below
it is the image of A2−1 under the canonical quotient map π : ̂C → ̂C/ ∼1. Since all
annuli in �1 have the same modulus, the edges of the simplicial complex are all of the
same length M(A0). The vertices (or nodes) on the tree, represented by white circles,
correspond to the nonempty open sets which were collapsed by π to single points. The
nodes labeled 0 and ∞ represent the respective equivalence classes π(0) and π(∞).

123



444 J. Hu, A. Etkin

Every node save the node at ∞ is the equivalence class of the boundary curve used
to identify the edge directly above this node. For instance, the shriveled node below
the edge (1) is π(γ 1−1). The vertices on the shortest path from 0 to ∞ were marked
by numbers 1–2 to indicate distance from the node at 0. The node marked as 2, for
example, indicates that the modular distance from π(γ0) to π(0) is 2M(A0).

Let us now return to the construction of an infinite sequence of disjoint sub-annuli
of A(γ 3−1, γ0). Recall that the only non-trivial cases to be considered are when both
critical valuesv2, v3 ∈ Din(γ 1−1) (Case1) orwhenv2, v3 ∈ Din(γ 2−1) (Case2).Having
produced both diagram and tree illustrations for level 1 pullbacks of γ0, we do the same
for the next two stages of the inductive proof. Figures 4, 5, 8, and 9 pertain to Case 1.
Figure 4 shows the relative positions of γ0 and all its pullbacks up to the second level
(i.e., all preimages f −1(γ0) and f −2(γ0)) when v2, v3 ∈ Din(γ 1−1). Figure 8 displays
γ0 and all its pullbacks up to the third level when v2, v3 ∈ Din(γ 12−2) in accordancewith
this disk’s representation in Fig. 4. The corresponding tree configurations are given in
Figs. 5 and 9. Analogous pictures for Case 2 are provided in Figs. 6, 7, 10, and 11.
Figure 6 displaces the relative arrangement of the curves γ0, f −1(γ0), and f −2(γ0)

when v2, v3 ∈ Din(γ 2−1)\Din(γ 3−1) and then Fig. 10 when v2, v3 ∈ Din(γ 21−2). Their
tree configurations are given by Figs. 7 and 11. In each case, the tree representations
are realized as equivalence classes induced by the sets �2 and �3. The nodes on the
shortest modular path from 0 to ∞ are marked with milestones. As the reader can
see, this distance increases from 3 to 5 to 7 as we move through one pullback level to
the next. Indeed, as the inductive argument will show, the modular distance grows by
2M(A0) with each step.

In the following, we show the existence of the sequence {Pn}∞n=1 under the assump-
tion in the previous paragraph.

Step 1. Denote the disk containing v2, v3 by Din(γ
k1−1), where k1 = 1 or 2. Accord-

ing to our labelling, Din(γ 3−1) is contained in one of the bounded components of
(P1)c, as shown in Fig. 1. Denote by A1 = A(γ 3−1, γ

2−1) the annulus component of
f −1(Din(γ0)).
Since Din(γ 1−1) contains no critical points, the map f : Din(γ 1−1) → Din(γ0)

is a conformal homeomorphism. Note that Din(γ0) = Din(P1). Thus, f −1(P1) ∩
Din(γ 1−1) is a conformal copy of P1, which we denote by P11 (see Fig. 2).

By the Riemann–Hurwitz formula, one component of f −1(Din(γ
k1−1)) is an annulus

that is contained in A(γ 3−1, γ
2−1). We denote it by A2. This annulus must separate 0

from ∞; otherwise, we may apply the argument of Proposition 2.10 to conclude that
T = B(∞). In our notation, all second-level pullbacks of γ0 are given the itinerary
labelling γ

j2 j1
−2 ( j2 = 1, 2, 3), so that f (γ j2 j1

−2 ) = γ
j1

−1 and the superscripts j2 are
chosen according to the following scheme.

123



Julia Sets of Cubic Rational Maps with Escaping Critical Points 445

Fig. 4 Pullbacks of γ0 up to the second level when v2, v3 ∈ Din(γ 1−1)

Fig. 5 Tree configuration for
pullbacks of A0 up to the second
level when v2, v3 ∈ Din(γ0)
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Fig. 6 Pullbacks of γ0 up to the second level when v2, v3 ∈ Din(γ 2−1)\Din(γ 3−1)

Fig. 7 Tree configuration for pullbacks of A0 up to the second level when v2, v3 ∈ Din(γ 2−1)\Din(γ 3−1)
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Fig. 8 Pullbacks of γ0 up to the third level when v2, v3 ∈ Din(γ 12−2) in Fig. 4

(1) The two boundaries of A2 are labelled by γ
3k1−2 and γ

2k1−2 satisfying

Din(γ
3k1−2 ) ⊂ Din(γ

2k1−2 ).

The other second pullbacks of γ0 are labelled as follows:
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Fig. 9 Tree configuration for pullbacks of A0 up to the third level when v2, v3 ∈ Din(γ 12−2) in Fig. 4

(2) The superscript j2 = 1 indicates that γ j2 j1
−2 ⊂ Din(γ 1−1).

(3) The superscript j2 = 2 indicates that Din(γ
j2 j1

−2 ) ⊂ Din(γ 2−1)\Din(γ
3k1−2 ).

(4) The superscript j2 = 3 indicates that γ j2 j1
−2 ⊂ Din(γ

2k1−2 ).

The subscript index j2 for the level-2 pairs of pants Pj21 is determined by a similar
process. Note that

(1) the level-2 annulus A2 = A(γ
3k1−2 , γ

2k1−2 ) contains both critical points c2 and c3
and it is a proper sub-annulus of the level-1 annulus A1 = A(γ 3−1, γ

2−1);

(2) the pair of pants P31 = P(γ 3−1, γ
3k2−2 , γ

3k1−2 ) is contained in a bounded component

of the complement of P21 = P(γ
2k1−2 , γ

2k2−2 , γ 2−1), where k2 = 3 − k1;
(3) P11 and P21 are enclosed in P1 = P(γ 2−1, γ

1−1, γ0);
(4) P11, P21 and P31 are called level-2 pairs of pants. We also denote by P(2) = P21

and P(2̃) = P31.

By putting aside the patterns leading to the conclusion that J ( f ) to a Cantor set,
we may assume that both v2 and v3 are contained in one of the four disks Din(γ

k2k1−2 ),
where 1 ≤ k1, k2 ≤ 2. Now, we come to Step 2.

Step 2: The two critical values v2 and v3 are contained in a disk Din(γ
k2k1−2 ),

where 1 ≤ k1, k2 ≤ 2. By the Riemann–Hurwitz formula, one of the components
of f −1(Din(γ

k2k1−2 )) is a proper sub-annulus of A2 = A(γ
3k1−2 , γ

2k1−2 ), which we denote
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Fig. 10 Pullbacks of γ0 up to the third level when v2, v3 ∈ Din(γ 21−2) in Fig. 6

by A3. Now, we apply a scheme similar to Step 1 to label the level-3 pullbacks γ
j3 j2 j1

−3

of γ0, where 1 ≤ j3, j2, j1 ≤ 3; that is, f (γ j3 j2 j1
−3 ) = γ

j2 j1
−2 and the superscripts j3 are

chosen as follows:
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Fig. 11 Tree configuration for pullbacks of A0 up to the third level when v2, v3 ∈ Din(γ 21−2) in Fig. 6

(1) The two boundary curves of A3 are labelled by γ
3k2k1−3 and γ

2k2k1−3 such that

Din(γ
3k2k1−3 ) ⊂ Din(γ

2k2k1−3 ).

Then, according to our notation, A3 = A(γ
3k2k1−3 , γ

2k2k1−3 ). The remaining level-3
pullbacks of γ0 are labelled in a more delicate manner as follows:

(2) The superscript j3 = 1 indicates that γ j3 j2 j1
−3 ⊂ Din(γ 1−1).

(3) If 1 ≤ j1, j2 ≤ 2, then the superscript j3 = 2 indicates that Din(γ
j3 j2 j1

−3 ) ⊂
Din(γ 2−1)\Din(γ

3k2k1−3 ) and j3 = 3 indicates that γ j3 j2 j1
−3 ⊂ Din(γ

2k2k1−3 ).

(4) If at least one of j1 and j2 is equal to 3, then f −1(γ
j2 j1

−2 )may have two components

contained in Din(γ
2k2k1−3 ). If there are such cases, then we label them as γ

2 j2 j1
−3 and

γ
3 j2 j1
−3 , and furthermore, if the filled-in bounded disk of one is contained in the

filled-in disk of the other, then we label the boundary of the smaller disk by γ
3 j2 j1
−3 .

The subscript index j3 for the level-3 pairs of pants Pj3 j21 is determined similarly.

Under our assumption that both v2 and v3 are contained in the same disk Din(γ
k2k1−2 ),

where 1 ≤ k1, k2 ≤ 2, we can see that all pairs of pants are conformal copies of P1.
There are two of them that are enclosed in P11 and two of them are enclosed in P21,
which are labelled by P211, P221, P121 and P111. The eight boundaries of the bounded
components of the complements of these four pairs of pants are labelled as γ

k3k2k1−3
with 1 ≤ k1, k2, k3 ≤ 2. Note that the pre-images of γ 3−1 at level 3 may require the
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labeling handled in a more delicate way, but they do not affect the pairs of pants that
are successively enclosed in P11 and P21.

Step 3. Inductively, assume that v2, v3 ∈ Din(γkn−1...k2k1). Then, by the Riemann–
Hurwitz formula, one of the components of f −1(Din(γkn−1...k2k1)) is an annulus,which
is a proper sub-annulus of An−1. Denote it by An . We continue to label the level-n
pullbacks of γ0 by γ

jn ... j2 j1−n , where 1 ≤ jn, . . . , j2, j1 ≤ 3, such that f (γ j3 j2 j1
−3 ) =

γ
j2 j1

−2 and the superscripts j3 are chosen as follows.

1. The two boundary curves of An are labelled by γ
3kn−1...k2k1−n and γ

2km−1...k2k1−n sat-
isfying

Din(γ
3kn−1...k2k1−n ) ⊂ Din(γ

2kn−1...k2k1−n ).

Then, according to our notation, An = A(γ
3kn−1...k2k1−n , γ

2kn−1...k2k1−n ). The remain-
ing level-n pullbacks of γ0 are labelled similarly as in Step 2.

2. The superscript jn = 1 indicates that γ jn ... j2 j1−n ⊂ Din(γ 1−1). This is because each
level-(n − 1) pullback of γ0 has exactly one pullback in Din(γ 1−1).

3. Each level-(n − 1) pullback of γ0 has at most one pullback in Din(γ 2−1)\
Din(γ

2kn−1···k2k1−n ). Therefore, if γkn−1···k2k1 has one pullback in

Din(γ 2−1)\Din(γ
2kn−1···k2k1−n ),

then it is labelled as γ2kn−1···k2k1 .
4. Some level-(n−1) pullback of γ0 may have two pullbacks in Din(γ

2kn−1···k2k1−n ). If

this happens, then we label them as γ
2 jn−1··· j2 j1−n and γ

3 jn−1··· j2 j1−n , and furthermore,
if the filled-in bounded disk of one is contained in the filled-in disk of the other,
then we label the boundary of the smaller disk by γ

3 jn−1··· j2 j1−n .

The subscript index jn for the level-n pairs of pants Pjn ··· j3 j21 is determined sim-
ilarly. In fact, the 2n−1 level-n pairs of pants Pkn ···k3k21 with 1 ≤ kn, . . . , k3, k2 ≤ 2
are enclosed, respectively, in the 2n−2 level-(n − 1) pairs of pants Pkn−1...k3k21 with
1 ≤ kn−1, . . . , k3, k2 ≤ 2. All these pairs of pants are conformal copies of P1. Among
these pairs of pants at the level n, there exists a unique pair of pants Pkn ···k3k21, such that
Din(γ 3−1) ⊂ Din(Pkn ···k3k21), which is denoted by P(n). The pairs of pants {P(m)}nm=1
form a sequence of n pairs of pants that are enclosed successively in one another. By
sealing any two successively enclosed pairs of pants along their common boundary,
we obtain a pair of pants with n sleeves and a “long” sleeve, and the annulus bounded
by the two boundaries of the “long” sleeve is a sub-annulus of A0 = A(γ 3−1, γ0).
In the mean time, at each level n with n ≥ 2 there exists a unique level-n pair of
pants Pkn ···k3k21 with kn = 3 and Din(γ 3−1) ⊂ Din(Pkn ···k3k21), which is denoted by
P(ñ). Then, {P(m̃)}nm=2 form another sequence of n pairs of pants that are enclosed
successively in one another, and ∪n

m=1P
(m) has no intersection with ∪n

m=2P
(m̃). Note

that each P(m̃) is also a conformal copy of P1.
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Step 4. By now, we can see that if the above process can be continued forever,
then the long sleeve leads to an infinite sequence of disjoint sub-annuli of A0 with
moduli greater than a positive constant ε. From the Grötzsch Inequality, the modulus
of A0 is infinite, which is a contradiction. Therefore, we may assume that v2 and
v3 are contained in two different disks among the 2n disks Din(γ

kn ···k2k1−n ), where
1 ≤ kn, . . . , k2, k1 ≤ 2. Therefore, the pullbacks of these disks are simply connected
domains. It follows that ∪n

m=1P
(m) and ∪n

m=2P
(m̃) are connected by a connected

domain that is contained in the attracting basin of ∞. Note that ∪n
m=1P

(m) ⊂ B(∞).

Therefore, ∪n
m=2P

(m̃), and then, Din(γ 3−1) are contained in B(∞). Referring to the
case presented in Fig. 8, we give an illustration to this consequence. In this case,
v2, v3 ∈ Din(γ 12−2), P

(1) = P1, P(2) = P21, P(3) = P211, and P(2̃) = P31, P(3̃) =
P311. Now, suppose that v2 and v3 are contained in two different disks among the 23

disks Din(γ
k3k2k1−3 ), where 1 ≤ k3, k2, k1 ≤ 2. Then, for the case, we are considering,

one of the critical values v2 and v3 is contained in Din(γ 121−3 ) and the other is contained
in Din(γ 122−3 ). The pre-image of Din(γ 121−3 ) in the annulus A(γ 312−3 , γ 212−3 ) is a simply
connected domain containing both Din(γ 213−3 ) and Din(γ 313−3 ), which is denoted by
Din(γ 2121−4 ) according to our notation scheme. The degree of f from ∂Din(γ 2121−4 ) to
∂Din(γ 121−3 ) is 2. The pre-image of Din(γ 122−3 ) in the annulus A(γ 312−3 , γ 212−3 ) is also
a simply connected domain which is disjoint from Din(γ 2121−4 ) and is denoted by
Din(γ 2122−4 ). Thus,

A(γ 312−3 , γ 212−3 )\(Din(γ 2121−4 ) ∪ Din(γ 2122−4 ))

is a connected domain, which is contained in the Fatou set of f . We denote it by �.
Furthermore, it connects ∪3

m=1P
(m) to ∪3

m=2P
(m̃). Therefore,

(∪3
m=1P

(m)) ∪ � ∪ (∪3
m=2P

(m̃)) ∪ Din(γ 3−1)

is a connected set overlapping with B(∞). Thus, Din(γ 3−1) is contained in B(∞).
One can see the same conclusion by referring to the case presented in Fig. 10.

From Lemma 2.4, we conclude that 0 ∈ Din(γ 3−1) ⊂ B(∞) implies J ( f ) to be a
Cantor set. 	


2.3 The Connected Case

Let T = f −1(B(∞))\B(∞). In this subsection, we prove the following proposition.

Proposition 2.12 Assume that all finite critical points of f , given by (1.3), escape to
∞ under iteration of f , and assume that none of the finite critical values of f is
contained in B(∞). Then:

(1) if each component of f −n(T ) contains at most one critical value (not counted by
multiplicity) for each n ≥ 0, then J ( f ) is connected;
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(2) T cannot contain three critical values (counted by multiplicity), and if two critical
values (counted by multiplicity) are contained in T , then J ( f ) is connected;

(3) the only possible exceptional case for J ( f ) to be neither a Cantor set nor con-
nected is that there exists n > 0, such that a simply connected component Tn
of f −n(T ) contains two or three distinct critical values, one component A of
f −1(Tn) is a topological annulus separating T from B(∞), and Tn is contained
in the component of ̂C\A containing B(∞).

Proof Without of loss of generality, we continue to assume that f has three distinct
finite critical values (and, hence, f has three distinct finite critical points), which we
denote by v1, v2, and v3. Their corresponding critical points are denoted by c1, c2 and
c3 respectively.

Recall that every Fatou component of f is some level pre-image of B(∞). Using the
Riemann–Hurwitz formula and the condition in (1), we can see that each component
of f −n(T ) is simply connected for each n ≥ 0. Thus, all Fatou components are simply
connected, and then, J ( f ) is connected.

Suppose that F( f ) has a connected component that is not simply connected. Then,
let m + 1 be the smallest integer j , such that f − j (B(∞)) has (at least) one connected
component that is not simply connected. Denote by Bm the component of f −m(B(∞))

whose pre-image contains a multiply connected component, which we denote by
Bm+1. Recall that there is an open disk D ⊂ B(∞) centered at∞, such that f (D) ⊂ D
and B(∞) = ∪∞

j=1Dj , where Dj is the connected component of f − j (D) containing
∞. Under the condition that none of the finite critical values are contained in B(∞),
we know that each Dj is simply connected and its boundary is a Jordan curve. Clearly,
Dj ⊂ Dj+1 for each non-negative integer j with D0 = D. Furthermore, there is a
large enough integer n, such that for any j ≥ n, every component of f −m(Dj ) is
simply connected and f −(m+1)(Dj ) has a connected component that is not simply
connected. For simplicity of notation, we denote such a Dj by V , and hence, we
denote by Vm the component of f −m(V ) that has a multiply connected component
in its pre-image, which we denote by Vm+1. Then, the characteristic number of Vm+1
is non-positive. The pullbacks under f on the path from V to Vm are denoted by
V1, V2, . . . , Vm−1.

Let d denote the degree of f : Vm+1 → Vm and δVm+1 denote the number of the
critical points contained in Vm+1. Since d ≤ 3, it follows that f −1(∂Vm) has at most
three connected components and hence χ(Vm+1) ≥ −1. In summary, χ(Vm) = 1,
−1 ≤ χ(Vm+1) ≤ 0, 2 ≤ δVm+1 ≤ 3 and d ≤ 3. Applying the Riemann–Hurwitz
formula (Lemma 2.2) to f : Vm+1 → Vm , we obtain:

χ(Vm+1) + δVm+1 = d.

It follows that if d = 2, thenχ(Vm+1) = 0 and δVm+1 = 2; if d = 3, thenχ(Vm+1) = 0
and δVm+1 = 3. Therefore, Vm+1 is an annulus. From here, we also see that Vm+1 is
the unique multiply connected component among all components of f −(m+1)(V ).

Let T be the component of f −1(B(∞)) containing 0. We know that T is also
simply connected, V1 ⊂ T , and Vm+1 is disjoint from B(∞) and T . In the following,
we first show that the annulus Vm+1 separates T from B(∞). Otherwise, the bounded
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Fig. 12 Dynamic patterns when m = 2

component K of Vm+1
c
is disjoint from T and f (K ) = Vm

c
. Since ∞ ∈ Vm

c
, it

follows that ∞ has a pre-image in K . This contradicts the fact that all pre-images of
∞ are contained in B(∞) ∪ T .

Next, we show that m > 1. Otherwise, if m = 1, then V2 is an annuls according to
the introduced notation. Let U1 and U2 be the bounded and unbounded components
of V2

c
respectively, and let UL = U1 − V1 and UR = U2 − V . Since at least two

of the three finite critical points are contained in V2, it follows that there is possibly
only one critical point contained in UL or UR . In fact, we can show that if there is
such a critical point, then it is contained in UR . Under this circumstance, the degree
d of f : V2 → V1 is 2 and f −1(V1) has another component, which we denote by V ′

2.
Let V ′ be the component of f −1(V ) containing V , and let U ′

R be the component of
f −1(̂C\(V1 ∪ V )) intersecting UR . The degree of f from the boundary component
∂V ′ to ∂V is 2. Then, the pre-image of ∂V1 under f |U ′

R
has two components. Thus, V ′

2

has to be contained inUR . It follows that f mapsU ′
R\V ′

2 onto ̂C\(V1 ∪ V ). Using the

Riemann–Hurwitz formula, we know thatUR\V ′
2 contains a critical point. Therefore,

UL contains no critical points and hence f is globally univalent onUL whether or not
there exist twoor three critical points contained inV2. The degree of f restricted to ∂UL

is 1. Thus, f : UL → A(∂V1, ∂V ) is conformal and M(UL) = M(A(∂V1, ∂V )). This
contradicts the fact thatUL is a proper sub-annulus of A(∂V1, ∂V ). Therefore,m > 1.
In the meantime, this means that each component of f −1(T ) is simply connected.
Using the Riemann–Hurwitz formula, we know that T contains at most two critical
values (counted by multiplicity), and furthermore, if T indeed contains two critical
values (counted bymultiplicity), then the components of f −n(T ) are simply connected
for each n > 0 and, hence, J ( f ) is connected.

Now, we see under the assumption of this proposition, if J ( f ) is not connected,
then m > 1. It remains to prove the conclusion given in (3). Let U1 and U2 be the
bounded and unbounded components of Vm+1

c
, respectively. Then, either Vm ⊂ U1

or Vm ⊂ U2. Figure 12 illustrates these two possibilities for m = 2.
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We need to prove that Vm ⊂ U2. Suppose that Vm ⊂ U1. Let

� = ̂C\
m
⋃

j=0

f − j (V ).

Recall that all components of f − j (V ) are simply connected for each 0 ≤ j ≤ m
and Vm+1 is the unique multiply connected component among all components of
f −(m+1)(V ). Thus, � is connected and f −1(�) has one component UL ⊂ U1 and
the other UR ⊂ U2. Since the degree of f from ∂V ′ to ∂V is 2, the pre-images of
∂V1 under f |UR

have two components and the degree of f : UR → � is 2. Thus,
the degree of f : UL → � is 1, and then, it is conformal. Note also that f maps
a boundary component of UL to a boundary component of � with degree equal to
1 and there is no pole in any simply connected domain (intuitively called a hole)
in { f − j (V ) : j = 2, 3, . . . ,m + 1}\{Vm+1} (since 0 is the only finite pole of f ). It
follows that f is conformal on each of the holes contained in the annulus A(∂V1, ∂U1).
Now, we perform a filling surgery by extending f conformally through all those holes
in the annulus A(∂V1, ∂U1) that are mapped into the annulus A(∂U2, ∂V ). Denote the
remaining holes in A(∂V1, ∂U1) by V ′

j , j = 1, 2, 3, . . . , k (there exists at least one
since m > 1). Then

f : U1\V1 ∪ (∪k
j=1V

′
j ) → Din(∂V )\V1 ∪ (∪k

j=1V
′
j )

is conformal. This is a contradiction to Corollary 2.8. Thus, Vm ⊂ U1 cannot hold.
Therefore, Vm ⊂ U2. 	


2.4 The Sierpinski-Curve Case

In this subsection, we show when J ( f ) is a Sierpinski curve given that J ( f ) is
connected. Let us first recall a topological characterization of Sierpinski curves by
Whyburn (Whyburn (1958), Theorem 3).

Theorem 2.13 Any non-empty planar set that is compact, connected, locally con-
nected, nowhere dense, and has the property that any two complementary domains
are bounded by disjoint simple closed curves is homeomorphic to the Sierpinski carpet.

From Theorem 2.13, a connected Julia set J ( f ) is a Sierpinski curve if the Fatou
set F( f ) is a union of infinitely many simply connected domains bounded by Jordan
curves. For hyperbolic rational maps, Morosawa gave a sufficient condition for the
boundary of a Fatou component to be a simple closed curve (i.e., a Jordan curve) (See
Morosawa 2000).

Lemma 2.14 Let R be a hyperbolic rational map and U a forward invariant Fatou
component of R. If there exists a complementary component W of U and a Fatou
component D, such that D∪ R−1(D) ⊂ W, then the boundary of U is a Jordan curve.

We also need the following result (see Milnor 1999 for a proof).
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Lemma 2.15 (1) If the Julia set of a hyperbolic rational map is connected, then it is
locally connected. (2) If U is a simply connected Fatou component of a hyperbolic
rational map, then the boundary ∂U is locally connected.

Proposition 2.16 Assume that all finite critical points of f , given by (1.3), escape to
∞ under iteration of f . Let T̃ be the component of B(∞)

c
containing 0. If all finite

critical values are contained in T̃ , then ∂B(∞) is a Jordan curve, and then, J ( f ) is
a Sierpinski curve.

Note that under our assumption on f , a necessary condition for J ( f ) to be a Sierpinski
curve is that all finite critical values are contained in T̃ .

Proof At first, it is clear that T ⊂ T̃ . Let U be a component of f −1(T̃ ) containing
at least one critical point. Then, the degree of f : U → T̃ is at least two. Since
the degree of f : ̂C → ̂C is 3, it follows that if f −1(T̃ ) has another component V ,
then f : V → T̃ is univalent, and hence, all finite critical points are contained in
U . Therefore, whether or not f −1(T̃ ) has one or two components, all finite critical
points are contained in the same component U . This means δ f (U ) = 3. Now, by the
Riemann–Hurwitz formula,

χ(U ) + δ f (U ) = dχ(T̃ ).

Suppose that the degree of f : U → T̃ is 2. Then, χ(U ) = −1. Thus, U has
three boundary components and the degree f : ∂U → ∂ T̃ is 3. This contradicts the
assumption that the degree of f : U → T̃ is 2. Therefore, the degree of f : U → T̃
has to be 3. Then, χ(U ) = 0. Thus, U is an annulus and this annulus separates T
from B(∞). Since ∂ T̃ has pre-image contained in ∂B(∞) and ∂T , it follows that
one of the boundaries of U is contained in ∂B(∞) and the other is contained in ∂T ,
which are denoted by γB and γT , respectively. If γB is not contained in ∂ T̃ , then it is
contained in the boundary of another component of B(∞)

c
, and hence, B(∞) ⊂ U .

Thus, f (B(∞)) ⊂ T̃ . This is impossible since B(∞) is forward invariant under f .
Therefore, γB ⊂ ∂ T̃ , and hence, U ⊂ T̃ . Now, for any Fatou component D of f
contained in T̃ , we obtain:

D ∪ f −1(D) ⊂ T̃ ∪ f −1(T̃ ) ⊂ T̃ .

From Lemma 2.14, we conclude that ∂B(∞) is a Jordan curve. Then it follows from
Theorem 2.13 that J ( f ) is a Sierpinski curve. 	
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