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Abstract
In this paper, we continue the study, began in Chen et al. (Slices of parameter space
for meromorphic maps with two asymptotic values, arXiv:1908.06028, 2019), of the
bifurcation locus of a family ofmeromorphic functions with two asymptotic values, no
critical values, and an attracting fixed point. If we fix the multiplier of the fixed point,
either of the two asymptotic values determines a one-dimensional parameter slice for
this family. We proved that the bifurcation locus divides this parameter slice into three
regions, twoof themanalogous to theMandelbrot set andone, the shift locus, analogous
to the complement of the Mandelbrot set. In Fagella and Keen (Stable components in
the parameter plane of meromorphic functions of finite type, arXiv:1702.06563, 2017)
and Chen and Keen (Discrete and Continuous Dynamical Systems 39(10):5659–5681,
2019), it was proved that the points in the bifurcation locus corresponding to functions
with a parabolic cycle, or those for which some iterate of one of the asymptotic values
lands on a pole are accessible boundary points of the hyperbolic components of the
Mandelbrot-like sets. Here, we prove these points, as well as the points where some
iterate of the asymptotic value lands on a repelling periodic cycle are also accessible
from the shift locus.
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1 Introduction

The investigation of the bifurcation locus in the parameter plane of quadratic polyno-
mials where the dynamics is unstable has led to a lot of interesting mathematics and
is still not completely understood. In an early paper, [17], part of the parameter space
for the dynamics of the family R2 of rational maps with one attractive fixed point
and two critical values was shown to be similar to the parameter space of quadratic
polynomials, although the existence of two varying singular values and poles made
its structure more complicated. In particular, in a one-dimensional slice formed by
fixing the multiplier of the fixed point, the bifurcation locus separates the parameter
plane into three regions, one like the complement of theMandelbrot set, and called the
shift locus, where both critical values are attracted to the same cycle and two comple-
mentary regions that are Mandelbrot sets containing stable, or hyperbolic components
where the critical values are attracted to different cycles.

In this paper, we look at how the situation differs for the family:

F2 =
{
fλ,ρ(z) = ez − e−z

ez
λ

− e−z

μ

,
1

λ
− 1

μ
= 2

ρ

}

of meromorphic functions with two asymptotic values λ and μ, no critical values,
and a fixed point at the origin whose multiplier ρ lies in the punctured unit disk.
Some things are the same, of course. In particular, stable dynamical behavior is always
eventually periodic and controlled by the singular values. There are, though, significant
differences due to the maps in F2 being infinite to one and to their branching over the
singular values being logarithmic rather than algebraic.

In [9], we studied the familyF2 using the holomorphic dependence of the functions
on two parameters, the multiplier ρ and the asymptotic value λ, the other asymptotic
value μ being a simple function of ρ and λ. We proved that, like R2, if we take
a slice by fixing ρ in the punctured unit disk, the bifurcation locus in the resulting
parameter plane again divides it into three distinct regions, one, a shift locus like
the complement of the Mandelbrot set, where both asymptotic values are attracted to
the fixed point at the origin, and two complementary regions that are Mandelbrot-like.
They each contain infinitelymany hyperbolic componentswhere the asymptotic values
are attracted to different periodic cycles. It had already been shown, see [10,16,19],
that each hyperbolic component of the Mandelbrot-like sets is a universal cover of D∗
and that the covering map extends continuously to the boundary. Like the hyperbolic
components of Mandelbrot set, the boundary contains points where the map has a
parabolic cycle. Unlike the Mandelbrot set, however, the hyperbolic components do
not contain a “center” where the periodic cycle contains the critical value and has
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Accessible Boundary Points 149

multiplier zero. Instead, they contain a distinguished boundary point with the property
that as the parameter approaches this point, the limit of the multiplier of the periodic
cycle attracting the asymptotic value is zero. It is thus called a “virtual center”. Virtual
centers are also characterized by the property that one of the asymptotic values is a
prepole, that is: some iterate lands on infinity and its orbit are finite.

In this paper, we are interested in the bifurcation locus in the slice of F2 with ρ

fixed. In particular, we characterize two subsets of points that are accessible from
inside the hyperbolic components in the sense that there is a curve in the hyperbolic
component whose accumulation set on the boundary consists only of that point. In
addition, we prove that points in the bifurcation locus where the asymptotic value
lands on a repelling periodic cycle are accessible from the shift locus. In Sect. 5, we
prove our main result:

Main Theorem The parameters in the bifurcation locus that are virtual centers and the
parameters forwhich the function fλ,ρ hasaparabolic cycle or forwhichanasymptotic
value is mapped onto a repelling cycle by some iterate of fλ,ρ are accessible from
inside the shift locus.

In other words, the points with parabolic cycles and the virtual centers in the
bifurcation locus are accessible both from inside the hyperbolic components of the
Mandelbrot-like sets and from the inside of the shift locus.

The first step in proving our results is to put a “coordinate structure” on the shift
locus.We showed in [9] that the shift locus is an annulus.We summarize that argument
in Sect. 3. The discussion is similar to that for polynomials and rational maps. It uses
quasiconformal mappings together with the dynamics of a fixed “model function”
to characterize the shift locus by defining a “Green’s function” for the model. This
function pulls back from the dynamic space of the model to the shift locus where it
measures the relative rates of attraction of the asymptotic values to zero. The inverse of
the Green’s function defines level and gradient curves for those rates in the shift locus.

The transcendental qualities of fλ,ρ impart a much more complicated structure
near the boundary of the shift locus than one has for rational maps. We describe this
structure first in the model. As we did for rational maps in [17], we start with a fixed
level curve of Green’s function and apply the dynamics of the model map. In that case,
there were two preimages of the curve, but now there are infinitely many.

To understand the structure, we need first to identify each of the infinitely many
inverse branches of the function fλ,ρ with an integer. The nth backward orbit of a point
can then be assigned to a sequence of n of these integers. Applying fλ,ρ to the map
acts as a shift map on the sequence. For the Julia set of a rational map, the periodic
points are assigned infinite periodic sequences. Prepoles, which are now preimages of
the essential singularity, correspond to finite sequences. Thus, assigning the “integer”
infinity to the point at infinity and taking the closure in the space of finite and infinite
sequences of integers, we obtain a representation of the Julia set of the model map
with its dynamics by a sequence space that is compatible with the shift map.

We use this identification of the Julia set with the sequence space to construct paths
in our model space, and in Sect. 4, we transfer these paths from the model to the shift
locus. The heart of the proof of the main theorem is to show that the paths in the shift
locus have unique end points.
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2 Notation and Basics

Here, we briefly recall the basic definitions, concepts, and notation we will use. We
refer the reader to standard sources on meromorphic dynamics for details and proofs.
See, e.g., [2–7,13,19].

We denote the complex plane by C, the Riemann sphere by Ĉ and the unit disk
by D. We denote the punctured plane by C

∗ = C\{0} and the punctured disk by
D

∗ = D\{0}.
To study the dynamics of a family of meromorphic functions, { fλ(z)}, we look at

the orbits of points formed by iterating the function f (z) = fλ(z). If f k(z) = ∞
for some k > 0, z is called a prepole of order k—a pole is a prepole of order 1. For
meromorphic functions, the poles and prepoles have finite orbits that end at infinity.
The Fatou set or Stable set, Ff , consists of those points at which the iterates form a
normal family. The Julia set J f is the complement of the Fatou set and contains all
the poles and prepoles.

If there exists a minimal n, such that f n(z) = z, then z is called periodic. Periodic
points are classified by their multipliers, ρ(z) = ( f n)′(z) where n is the period: they
are repelling if |ρ(z)| > 1, attracting if 0 < |ρ(z)| < 1, super-attracting if ρ = 0 and
neutral otherwise. A neutral periodic point is parabolic if ρ(z) = e2π i p/q for some
rational p/q. The Julia set is the closure of the set of repelling periodic points and is
also the closure of the prepoles, (see, e.g., [5]).

A point a is a singular value of f if f is not a regular covering map over a.

• a is a critical value if, for some z, f ′(z) = 0 and f (z) = a.
• a is an asymptotic value for f if there is a path γ (t), such that
limt→∞ γ (t) = ∞ and limt→∞ f (γ (t)) = a; γ (t) is called an asymptotic curve
or an asymptotic path for a.

• The set of singular values S f consists of the closure of the critical values and the
asymptotic values. The post-singular set is

Pf = ∪a∈S f ∪∞
k=0 f k(a) ∪ {∞}.

For notational simplicity, if a prepole pn of order n is a singular value,∪n
k=0 f

k(pn)
is a finite set with f n(pn) = ∞.

A map f is hyperbolic if J f ∩ Pf = ∅.
In [13], it is proved that every component of the Fatou set of a function with two

asymptotic values and no critical values is eventually periodic: that is, f n(D) ⊆
f m(D) for some integers n,m. In addition, the periodic cycles of stable domains for
these functions are classified there as follows:

• Attracting If the periodic cycle of domains contains an attracting cycle in its
interior.

• Parabolic If there is a parabolic periodic cycle on its boundary.
• Rotation If f n : D → D is holomorphically conjugate to a rotation map. It
follows from arguments in [19] that for maps with only two asymptotic values and
no critical values, rotation domains are always simply connected. These domains
are called Siegel disks.
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Accessible Boundary Points 151

A standard result in dynamics is that each attracting or parabolic cycle of domains
contains a singular value. The boundary of each rotation domain is contained in the
accumulation set of the forward orbit of a singular value. (See, e.g., [21], chap 8–11
or [2], Sect. 4.3.)

By a theorem of Nevanlinna [24], any meromorphic function with only two asymp-
totic values and no critical values can be explicitly written as a linear transformation of
the exponential map. Therefore, putting the essential singularity at infinity and conju-
gating by an affine map, we may assume that the origin is a fixed point with multiplier
ρ, and we may write F2 as a family of functions of the form:

F2 =
{
fλ,ρ(z) = ez − e−z

ez
λ

− e−z

μ

,
1

λ
− 1

μ
= 2

ρ

}
,

so that λ and μ are the asymptotic values. Note that fλ,ρ(z) is not defined for λ =
0, ρ/2.

The familyF2 depends on two complex parameters.We form a dynamically natural
slice of F2, in the sense of [16], by fixing ρ, |ρ| < 1, and taking the asymptotic value
λ ∈ C\{0, ρ/2} as the parameter. The other asymptotic value μ is then a simple
function of ρ and λ. We write the functions in the slice as fλ = fλ,ρ .

Since the origin is an attracting fixed point, for every λ ∈ C\{0, ρ/2}, either λ or
μ = μ(λ, ρ) is attracted by 0.

Definition 1 Let

Mλ = {λ ∈ C\{0, ρ/2} | λ is NOT attracted to the origin},
Mμ = {λ ∈ C\{0, ρ/2} | μ is NOT attracted to the origin}

and

S = {λ ∈ C\{0, ρ/2} | λ,μ are both attracted to the origin}.

We focus the discussion below on Mλ. It is a summary of results in [9,16]. We
refer the reader to those papers for proofs. There is a completely analogous discussion
forMμ. See Figs. 1 and 2 .

Recall that a function fλ is hyperbolic if the orbits of the asymptotic values remain
bounded away from its Julia set. The interior ofMλ contains all the hyperbolic com-
ponents �p in which the orbit of λ tends to an attracting periodic cycle of period p.
These are called Shell components because of their shape. In [16], it is proved that
each �p is a universal covering of the punctured disk D

∗ where the covering map is
defined by the multiplier of the cycle. This map extends continuously to the boundary
and there is a standard bifurcation at each rational boundary point where the multiplier
is of the form e2pπ i/q . There is a unique point λ∗ ∈ ∂�p, such that as λ → λ∗ along
a path in �p, the multiplier of the cycle tends to zero. This boundary point is called
the virtual center, since it plays the role for �p played by the center of a hyperbolic
component of the Mandelbrot set for z2 + c.
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152 T. Chen et al.

Fig. 1 The λ plane is divided into the shift locus and shell components. The shift locus is shown in green.
In the yellow shell component, λ is attracted to a fixed point; in the cyan components, it is attracted to a
period two cycle; in the red components, a period three cycle and in the khaki components a period four
cycle (color figure online)

For p �= 1, λ∗ is finite and has the additional property that f p−1
λ∗ (λ∗) = ∞; that

is, λ∗ is a prepole. Since the limit along a path approaching infinity from inside the
asymptotic tract of an asymptotic value is the asymptotic value, λ∗, its iterates, where
the pth iterate is defined by this limit, form a virtual cycle. A parameter with this
property is called a virtual cycle parameter, and in [16], it is proved that every virtual
center parameter on the boundary of a shell component is a virtual cycle parameter.

Remark 1 We note that all the rational boundary points and the virtual center of a shell
component �p are accessible boundary points in the sense that the accumulation set
of any path inside �p tending to the point consists of a single point.

There is a unique component �1 in which λ is attracted to a fixed point qλ( �= 0).
It is unbounded and, by abuse of language, we say that its virtual center is infinity.
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Fig. 2 The λ-plane with a blow-up of the Mμ region. The color coding is the same as in Fig. 1

3 TheModel Map

We fix ρ = ρ0, |ρ0| < 1, once and for all for this paper and write fλ for fλ,ρ0 . The
figures in the paper were made by taking ρ0 = 2/3.

Let λ0 be a point in �1 ⊂ Mλ, such that at the fixed point q0 = q(λ0) of fλ0 ,
f ′
λ0

(q0) = ρ0. We remark that λ0 is not uniquely defined, because there is a discrete
set of preimages of ρ0 under the multiplier map. Choose one and set Q(z) = fλ0(z);
it is our Model map.1 Let K0 be the immediate attracting basin of q0 for Q.

Since the orbits of the asymptotic values either tend to q0 or 0, the map Q is
hyperbolic. Its Julia set J0 is the common boundary of the attracting basins of 0 and
q0; it is well known to be equal to the closure of both the set of repelling periodic
points of Q and the set of prepoles of Q. It will be convenient to identify both these
sets with a space of sequences. To that end, we define the following.

Definition 2 Let jn = j1 j2 . . . ji . . . jn , ji ∈ Z be a sequence of length n whose entries
are integers and set Jn = {jn}; let j∞ = j1 j2 . . . ji . . . jn . . ., ji ∈ Z be a sequence of
infinite length whose entries are integers and set J∞ = {j∞}. Let j denote an element

1 Note that conjugating by the affine map w = z − q0/2, we obtain a map of the form α tanw for some α,
|α| > 1, with fixed points at±q0/2. In particular, if ρ0 is real, λ0 can be chosen real, and then the attracting
basin of q0 is a half plane and the Julia set is a line.
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of either Jn or J∞. Define the sequence space:

	 =
{
j ∈

⋃
n

Jn ∪ J∞ ∪ {∞}
}

and give it the standard sequence topology. The shift map σ defined by dropping j1
defines a continuous self-map on 	.

We will use 	 to label the inverse branches of Q. (See Fig. 4.)
Let l be a curve that joins λ0 to ∞ in K0; it is an asymptotic curve for λ0. Set

l∗ = ⋃
n≥1 Q

n(l); this union is a continuous curve with endpoints q0 and λ0. Although
it does not matter in this section, we will see in the next section that we can choose l,
so that it depends holomorphically on ρ0.

Sinceμ0 /∈ K 0, we can define the inverse branches R j of Q, j ∈ Z, on K ∗ = K 0\l.
Note that Q is periodic with period π i , and so, if q j = q0 + jπ i , then Q(q j ) = q0; it
will be convenient to choose l so that each R j is defined in a full neighborhood of q0
and is labeled so that R j (q0) = q j . Our figures are computed with ρ0 = 2/3, so that
λ0 is real and l is contained in the real axis.

We can do this by setting:

R j (w) = 1

2
Log

(
w/μ0 − 1

w/λ0 − 1

)
+ π i j,

where Log stands for the principal branch of the logarithm.
Since Q is periodic, we can speak of adjacent poles in J0. Let l+ and l− mark

the upper and lower edges of the curve l. Then, R j maps K0\l to a strip of width
π in K0 bounded by the curves R j (l−) and R j (l+), each of which joins a pole in
J0 to infinity; moreover, the poles are adjacent. We label these poles p j and p j+1,
respectively. Specifically, for w ∈ K ∗, we set:

p j = lim
w→∞ asymptotic to l−

R j (w) = 1

2
Log

λ0

μ0
+ π i j

and

p j+1 = lim
w→∞ asymptotic to l+

R j (w) = 1

2
Log

λ0

μ0
+ π i( j + 1).

Note that although each pole is defined by two limits, the index of the pole is well
defined. (See Fig. 4.)

Taking one-sided limits, we define the images of l under R j to be the lines:

l j = {R j (w) | w ∈ l−}.
1. Set:

Rjn = R j1 j2... jn = R j1 ◦ R j2 ◦ · · · ◦ R jn .
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Accessible Boundary Points 155

2. We can enumerate the preimages of the fixed points in the same fashion. We set:

qjn = q j1 j2... jn = Rjn (q0).

3. We can enumerate the prepoles. Set:

pjn = p j1 j2... jn = Rjn (∞).

This scheme enumerates all the prepoles by assigning each a unique element of 	.
Note that:

Q(p j1 j2... jn ) = p j2... jn ,

so that Q acts as a shift map σ on the sequence.
4. We can also enumerate the repelling periodic points in J0. If z ∈ J0 and Qn(z) = z,

we can find branches R jk , such that:

z = R j1 j2... jn (z) = R j1 j2... jn R j1 j2... jn (z) = · · · R j1 j2... jn (z)

or

z = Rjn (z) = Rjn Rjn (z) = · · · Rjn Rjn (z).

That is, we can associate the infinite repeating sequence j∞ = jnjn . . . jn . . . to the
point and set:

z = zj∞ = Rjn (zj∞) = Qn(zj∞).

Again, Q acts as a shift map and Qn leaves the infinite sequence invariant.

Proposition 1 There is a homeomorphism from 	 to J0, such that for j ∈ 	 and
z ∈ J0, Q(zj) = zσ(j).

In [9], using results in [16], we proved that the finite sequence defining the prepole
that is the virtual cycle parameter of a component �p of Mλ uniquely characterizes
that component. Thus, the finite sequences in 	 are in one-to-one correspondence
with these boundary points ofMλ.

3.1 A Structure for K0

There is a linearizing homeomorphism φ0, defined in a largest neighborhood� = Oλ0

of q0 to a diskD0 centered at the origin of radius r0, such that φ0(q0) = 0, φ′
0(q0) = 1.

Moreover, for z ∈ �, φ0(Q(z)) = ρ0φ0(z), λ0 ∈ ∂�, φ0 extends continuously to the
boundary and r0 = |φ0(λ0)|. The function log |φ0| is like a Green’s function for �.
The preimages of the circles |ζ | = r in D0 are the level curves and the preimages of
the radii are the gradient curves in �. Thus, the level of ∂� is r0.
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The map φ0 depends holomorphically on ρ0. Therefore, a canonical choice for the
curve l used to define the branches R j above can be made using the polar coordinates
of D0. For example, if ρ is real, we define l∗ = φ−1

0 (t), t ∈ [0, r0) ∈ D0 and let
l = R0(l∗)\l∗. If it is not, we adjust appropriately.

Since μ0 /∈ K0, the map φ0 can be extended by analytic continuation to all of K0.
The curves R−1

0 (∂�) have level r0/ρ0 and end at infinity.We use the level and gradient
curves to define a coordinate structure on K0 as follows. The coordinates are locally
defined on preimages of A0 = R0(�)\(� ∪ l) and B0 = R0(�\{λ0}).

3.1.1 Fundamental Domains

Definition 3 We say that a region D ⊂ K0, with interior D0, is a fundamental domain
for the action of Q if:

• for any pair (z1, z2) ∈ D0, z1 �= z2, Q(z1) �= Q(z2) and if
• for some integer n ∈ Z, ∪∞

k≥nQ
k(D0) = �.

We now inductively define a set of fundamental domains that defines a partition of K0
into fundamental domains. Each fundamental domain D0 will have boundary curves
that are identified by Q. In the process, we give an enumeration scheme for these
domains. The curves referred to in the description are shown in Fig. 3.

1. Let γ ∗
0 = γ ∗ = ∂�. Then, Q(�) ⊂ � and � contains the positive orbit of λ0. Set

γ ∗−n = Qn(γ ∗), n = 1, . . . ,∞. Note that Rn
0 (γ

∗−n) = γ ∗. These curves are nested
about q0 in �. Any annulus A∗−n in � bounded by γ ∗−n and γ ∗−n−1 is a fundamental
domain for Q. In Fig. 3, γ ∗ is drawn in black and γ ∗−1 is drawn as a dotted red
curve. The annulus A∗

0 between them is a fundamental domain.
2. For all j ∈ Z, set B j = R j (�\{λ0}). In Fig. 3, we see that the domains B j ,

j �= 0, are simply connected and are bounded by dotted doubly infinite black
curves γ j = R j (γ

∗\{λ0}); the dotted red curves inside the B j are R j (γ
∗−1); each

B j contains the preimage of the fixed point q j . We single out the boundary curve
of the domain B0, γ0 = R0(γ

∗\{λ0}) and color it red, because, as we will see, its
preimages are somewhat different from the preimages of the other γ j ’s. Note that
B0 has a puncture at λ0. The annulus A0 = B0\(�\{λ0}) between γ0 and γ ∗ is a
fundamental domain, and we will be particularly interested in its preimages. Note
that it contains the line l.

3. Next, we denote the preimages of A0 by A j0 = R j (A0), j ∈ Z. To see what
they look like, we look at the preimages of its boundary curves. First, consider the
boundary curve γ ∗: its preimages are the curves γ j = R j (γ

∗). The other boundary
curve is γ0: its preimages are the curves γ j0 = R j (γ0); each of these curves, drawn
in red in Fig. 3, joins the pair of poles (p j , p j+1). Now, consider the preimages of
the line l inside A0: these are the lines l j = R j (l−) and l j+1 = R j (l+) = R j+1(l−)

that join the poles p j and p j+1 to infinity; they are drawn in green in Fig. 3. Thus,
we see that each A j0 is bounded by four curves, the red curves γ j , γ j0, and the
green curves l j and l j+1.
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l* l
q0

A00

A10

A−10

q1

γ
γ*

γ0

γ1

γ−1

l0

γ*−1

q−1

l1

l−1

B1

l2p2

p1

p0

p−1

B0

B−1

γ00 A0

γ10

A000

A100

γ000

γ−10

γ0−10

γ010

γ100

γ110

A−100

p00

p01

p02

p0−1

Fig. 3 The model space shown with level (red) and gradient (green) curves. The dotted black curves are
also level curves

Each A j0 has three vertices on ∂K0, the poles p j and p j+1 where the lines l j and
l j+1 meet the ends of γ j0, and infinity, the common endpoint of the doubly infinite
γ j and an endpoint of each of the lines l j and l j+1.

Note that if we consider a pole as a prepole of order one, and infinity as a “prepole”
of order zero, the red curves labeled by γi join a prepole to a prepole of the same
order, whereas the green curves labeled by li join a prepole of order 0 to a prepole
of order 1.

For later use, we set A0 = ∪ j A j0; it is a simply connected domain.
4. We inductively define the domains A j1... jn−10 = R j1(A j2... jn−10). Their boundaries

contain two pairs of boundary curves. The pair drawn in red consists of γ j1... jn−10
which joins adjacent prepoles of order n − 1, and γ j2... jn−10 which joins a pre-
pole of order n − 2 to itself if jn−1 �= 0 and joins two adjacent prepoles of order
n − 2 if jn−1 = 0. The other pair, drawn in green, consists of l j1... jn−2 jn−10 and
l( j1+1) j2... jn−2 jn−10, each joining a prepole of order n−2 to a prepole of order n−1.
If jn−1 = 0, all four boundary prepoles are distinct; if not, the prepoles of order
n − 1 are the same.
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The domains A000 and A100 are shown in Fig. 3. Although not all the curves are
labeled, the red curves are preimages of γ0 and the green curves are preimages
of l.

Again, for later use, we define the simply connected domains:

A j1... jn−10 = R j1(A j2... jn−10)

for all n > 1.
5. Unlike the preimages of γ0 which join two adjacent poles, the curves γ j i = R j (γi ),

i �= 0 are curves that join a pole to itself. This is because of the waywe have defined
the Ri . The pole p j is one endpoint of each the curves γ( j−1)0 and γ j0. The curves
γ j i , i > 0, are loops that come in to p j , tangent to, and under γ j0, while the curves
γ( j−1)i , i < 0, are loops that come in to p j , tangent to, and under γ( j−1)0. Thus,
in the preimage, Ri (K0), the curves γ j i are tangent to the pole pi for j ≥ 0 and
tangent to the pole pi+1 for j ≤ 0.

Therefore, the loops γ j i , j �= 0, bound simply connected domains B j i = R j (Bi ).
They are tesselated by the fundamental annuli Bk

ji = R ji (A∗−k), k ≥ 0 and each
B j i contains a curve that is a preimage of the line l. The disjoint domains B j i form
an infinite cluster at each pole. For considerations of space and clarity, we have not
included them in the figure.

Note that the fundamental domains Bk
ji are analogous to the fundamental domains

A j0, whereas the unions of fundamental domains B j i are analogous to the unions
of fundamental domains Ajn−10. We will preserve this analogy and notation in the
inductive definition below.

6. We inductively define the domains Bjn = R j (Bjn−1). Thus, jn has the form jjn−2i ,
i �= 0. For each j , if i > 0, the Bjn cluster at the prepole pjn−2i , and if i < 0, they
cluster at the prepole pjn−2(i+1). Each has an outer biinfinite boundary curve, γjn ,
both of whose endpoints are at the same pole and an interior curve ljn , joining the
pole pjn−2i to qjn . Each of the domains Bjn is a union of fundamental domains Bk

jn
.

7. We remark that the admissibility condition for the Ajn is that the rightmost entry
in the sequence jn is always zero, while the condition for the Bjn is that the right-
most entry is never zero. The geometry of these regions is different. The Ajn have
infinitely many vertices at infinitely many distinct prepoles. Each interior funda-
mental domain has vertices at three or four distinct prepoles. The Bjn , on the other
hand, have only one vertex at a single prepole, or infinity if n = 1, where all the
boundary curves meet. The fundamental domains contained in them are annuli, the
outermost of which has a prepole on its boundary.
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3.1.2 The Coordinates

We extend the map φ0 defined above to all of K0 by analytic continuation. Continuing
across the boundary of �, we have:

φ−1
0 ({ζ | r0 ≤ |ζ | ≤ r0/ρ}) = A0.

We use the closure here to include the boundary curves. We extend the map to all
of K0\{λ0} in the obvious way: if z is in a fundamental domain Q−n(A0) for any n
inverse branches, we set ρnφ0(z) = φ0(Qn(z)).

We define coordinates for K0 in terms of local coordinates in the fundamental
domains described above.

1. The curves φ−1
0 (|ζ | = r) are the level curves of level r in K0. The level of γ ∗ is r0

and the level of γ j is r0/ρ.

The outer boundary of each Bjn has level r0/ρ
n ; passing through the interior fun-

damental domains, the levels decrease to zero by powers of ρk . In each Ajn , the
levels go from r0/ρn−1 to r0/ρn and the same is true in the interior fundamental
domains.

2. The gradient curves are preimages of the radii θ = θ0 for a fixed θ0 ∈ R under
the map φ−1

0 (reiθ ). For example, each of the fundamental domains Ajn has four
boundary curves; one pair of opposite curves, labeled with γ ’s and shown in red
in Fig. 3, are level curves and the other pair of opposite curves, labeled with l’s
and shown in green in Fig. 3, are gradient curves along which the level rises from
r0/ρn−1 to level r0/ρn .

3. The level and gradient curves define a set of local coordinates in K0: the preimages
of the circles and radii inD0 under the extension ofφ0 pull back to each fundamental
domain. We denote the coordinates of the point z ∈ K0 by:

z = (Xjn , r , θ + π(n − 1)),

where Xjn = Ajn if jn = j1 . . . jn−10 and Xjn = Bk
jn
if jn = j1 . . . jn−1 j , j �= 0.

Because k can be read off from r ∈ [0,∞), it is enough to write Xjn . We let θ ∈
[−π, π) and note that because the inverse branches are defined as one-sided limits
on the boundaries of the fundamental domains, the θ coordinate varies continuously
across common boundaries.

Theorem 2 Every point z ∈ K0, z �= λ0, is in either a unique Ajn or a unique Bk
jn
or

on the boundary of two such domains: either the common boundary of some Ajn and
some Ajn+1 where jn+1 = jn0, or the common boundary of an Ajn and a B0

jn−1
where

jn = jn−1 jn, jn �= 0 or the common boundary of a Bk
jn−1

and a Bk+1
jn−1

.

Proof Let z ∈ K0, z �= λ0. Since every such z is attracted to q0 and has infinitely many
preimages, there is an m, such that Qm(z) ∈ � ∪ (∂�\{λ0}). If ζ = Qm(z) ∈ �,
there is a unique set of preimages R j , such that z = Rjm (ζ ). If ζ ∈ (∂�\{λ0}), the θ
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coordinate is defined as a one-sided limit for each preimage, and the limits agree on
the boundary curves. ��
3.1.3 The Tree in K0

In this section, we use the domains Ajn which are unions of the fundamental domains
Ajn0 to define a tree in K0. For readability, we will say a level curve of level r0/ρn

has level n.
Among the boundary curves of the union Ajn , there is a distinguished boundary

curve of level n; it is a preimage of γ0 under themap Rjn . The remaining infinitelymany
boundary curves of the union have level n + 1 and are images under the maps Rjn j .
Note that the non-distinguished boundary curves of Ajn of level n are also boundaries
of some Bjn . At level n = 1, we will fix a root node on γ0. On each γjn0 of level n,
n > 1, we will define the preimage of the root to be a node of the tree. We call these
interior nodes. We will also put nodes at every prepole of every order on the tree.

The children of the interior node of level n are the interior nodes of level n + 1, a
prepole of level n, and infinitely many prepoles of level n+1. We will define branches
of the tree that connect a node to each of its children. The nodes that are prepoles have
no children and are called leaves of the tree. Each interior node has only one parent
and each prepole node has two parents. Paths through the tree start at the root and
consist of a connected set of branches joining nodes in the tree. Some will be finite,
ending at leaves, and others will be infinite.

For the explicit construction of the tree (see Fig. 4), fix a point x∗
0 on the boundary

curve γ0 of the domain A0. It has level 1 and is the first node, or root of the tree. For
each n > 1, and each jn = jn−10, the interior nodes of level n are defined as the points
x∗
jn−10

= Rjn (x
∗
0 ). The prepoles of all orders are leaves of the tree.

The first step of the construction is to define a tree T ∗. Join the root x∗
0 to each of

the nodes x∗
j0, j ∈ Z, by a branch s j , and join it to the pole p j by a branch t j . Also

define the segment r0 of γ0 from x∗
0 to infinity, asymptotic to the line l0 as a branch

joining the root to the “prepole” infinity. The root with these branches connected to
the leaves is a small tree T ∗ contained inA0. Since the domainA0 admits a hyperbolic
metric, we may choose s j as geodesics in the hyperbolic metric and take the t j and r0
along the level curves. The hyperbolic lengths of the s j go to infinity with | j |, while
the lengths of the t j and r0 are always infinite.

Now, define a small tree at each node x∗
jn0

, and contained inAjn0, by T
∗
jn

= Rjn (T
∗).

Note that as often happens, the spatial relationship of the nodes in the tree is dual to the
dynamic relationship. The nodes x∗

j1k0
, k ∈ Z, are children of the node x∗

j10
, whereas

the nodes x∗
k j10

which are preimages of x j10 are not. Thus, the children of the parent
node x∗

jn0
are the nodes x∗

jnk0
and not the nodes x∗

kjn0
. The tree has branches sjn joining

the parent node x∗
jn0

to its interior children x∗
j1k0

, a branch rjn0 joining it to the prepole
pjn and branches tjnk joining it to the prepoles pjnk . Because the R j are biholomorphic,
the hyperbolic lengths of the branches are preserved.

Finally, joining all these small trees together, we obtain the full tree:

T ∗∞ =
⋃
n

∪jn (Tjn ).
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Fig. 4 The fundamental domains of the model space with the tree

If j∞ is periodic with period n, there is a sequence jn = j1 . . . jn , such that j∞ =
jnjnjn . . .. By the periodicity, j1+n = j1, so that the node x∗

j1jn0
is a direct descendant

of the node x∗
j10
. This means that there is a path τjn = s j1 ∪ s j1 j2 ∪ . . . s j1... jn−1 from

the root to the node. It has finite hyperbolic length. Note, however, as we remarked
above, applying R ji to successively obtain the nodes x∗

jn0
, x∗

jn−1 jn0
, . . . , x∗

j2... jn−1 jn0
,

yields a collection of nodes that are not direct descendants of x∗
j10
.

The path

τjn jn = Rjn (τjn ) = Rjn (s j1) ∪ Rjn (s j1 j2) ∪ · · · Rjn (s j1... jn−1)

joins x∗
jn0

to x∗
jn jn0

and has the same hyperbolic length as τjn . Iterating, we obtain a
path τj∞ of infinite length that is invariant under Rjn .

All but the first segment of this path are separated from the root by the level curve
γ j10, so any accumulation point of the path lies in the Julia set between the poles p j1
and p j1+1. Thus, the path remains inside a compact domain bounded by γ j10 and the
Julia set boundary of K0. This implies that the Euclidean lengths of subpaths making
up τj tend to zero, and since Q is hyperbolic, that the full path has a unique endpoint.

Thus, if j∞ is periodic of period n, the path in the tree with unique endpoint zj∞
is invariant under Qn and corresponds to a repelling periodic point of Q in J0 whose
combinatorics agree with those defined in Proposition 1.
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If j∞ is preperiodic, j = jmjnjnjn . . ., we can construct a periodic infinite subpath
of τj∞ beginning at x∗

jm
= Rjm (x∗

0 ), instead of the root, so that it is invariant under
Rjn . The argument above shows that it also has a unique preperiodic endpoint.

4 The Shift Locus

In the shift locus S, both asymptotic values are attracted to the origin. If λ ∈ S, we
can define a linearizing map φλ from the attractive basin Aλ of the origin to the disk
D0 that is injective on a neighborhood Oλ of the origin. Neither λ nor μ lies in Oλ

and one or both lie on ∂Oλ.
We divide S into disjoint subsets as follows:

S0
λ = {λ ∈ S | μ ∈ ∂Oλ, λ /∈ ∂Oλ},

S0
μ = {λ ∈ S | λ ∈ ∂Oλ, μ /∈ ∂Oλ}, and

S∗ = {λ ∈ S | λ ∈ ∂Oλ, μ ∈ ∂Oλ},

We normalize the map, so that if z0 equal to the asymptotic value on the boundary and
z ∈ Oλ, then:

φλ(0) = 0, φλ(z0) = φ0(λ0) = r0, and φλ( fλ(z)) = ρφλ(z).

Note that this normalization agrees with our normalization of φ0, the linearizing map
for the model Q; that is, both map the asymptotic value to the point r0 on the real axis.

We restrict our discussion here to S0
λ , but there is a comparable discussion for S0

μ.

4.1 Coordinates in the Dynamic Plane A�

The scheme we defined above for tessellating the attracting basin K0 of Q = fλ0
works equally well in a subdomain of the attractive basin of zero, Aλ, for λ ∈ S0

λ .

Theorem 3 Given λ ∈ S0
λ , there is a coordinate structure defined on a subdomain Âλ

of Aλ. More precisely, there is an integer N, such that the basin of the origin of fλ, Aλ,
contains a subdomain Âλ tesselated by fundamental domains αλ,jn−10 and βk

λ,jn−1i
,

i �= 0, k ≥ 0 and n ≤ N. The boundary curves of these regions are level and gradient
curves defined using a normalized linearizing function φλ near the origin, and pulling
back a radius and circle containing φλ(μ) to Aλ. The geometric properties of the
αλ,jn−10 and βk

λ,jn−1i
are analogous to those of the fundamental domains Ajn−10,λ and

Bk
jn−1i,λ

in K0. The coordinates in Âλ are (σjn , r , θ +π(n−1))where r ∈ [0,∞), θ ∈
[−π, π) and σjn = σjn−1i stands for αλ,jn−10 if i = 0 and βk

λ,jn−1i
for some k depending

on r for i �= 0.

Proof For λ ∈ S0
λ , the attractive basin of zero, Aλ, contains both asymptotic values. By

definition, the linearizingmapφλ is a homeomorphism fromOλ, an openneighborhood
of the origin with μ on its boundary, onto the disk D0 of radius r0. It is normalized, so
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that φλ(0) = 0 and φλ(μ) = φ0(λ0) = r0. Extending φλ by analytic continuation, the
analogues of the domains Ajn and Bk

jn
can be defined as in Sect. 3.1.2 until, for some

n = N , one of them contains λ. That is, r0/ρN−1 < |φλ(λ)| ≤ r0/ρN . The level and
gradient curves are well defined in these domains by the branches of φ−1

λ .
To this end, we use the map ξλ = φ−1

0 ◦ φλ : Oλ → Oλ0 that we defined In [9].
The inverse map, ξ−1

λ , extends, as a homeomorphism from a subset, K0(λ) to a largest
subset Âλ of Aλ that contains λ. Therefore, ξ−1

λ is defined on the fundamental domains
Ajn and Bk

jn
tessellating K0, k ≥ 0, n ≤ N , where N is the largest integer, such that

|φλ(λ)| ≤ r0/ρN .
Set αλ,jn = ξ−1

λ (Ajn ) and βk
λ,jn

= ξ−1
λ (Bk

jn
). The boundary curves of these domains

are, by definition, level and gradient curves for Aλ and the relative levels correspond,
via the map ξ−1

λ , to the levels of the corresponding curves in K0. Moreover, since we
can define inverse branches Rλ, j of fλ on Âλ using the relation Rλ, j = ξλ ◦ R j ◦ ξ−1

λ ,
the indexing is consistent with the model. Thus, we obtain a coordinate (σjn , r , θ +
π(n − 1)) for Âλ. ��

We can also use the map ξ−1
λ to obtain a tree in Âλ, T ∗

λ = ξ−1
λ (T ∗∞ ∩ K λ

0 ). The root
of this tree is x∗

λ = ξ−1
λ (x∗

0 ). Its nodes are defined similarly. Note that some of images
of infinite paths in T∞ are truncated and so are finite in T ∗

λ .

4.2 Coordinates inS0
�

In [9], we proved.

Theorem 4 There is a homeomorphism E : S0
λ → K0\�. Thus, S0

λ is homeomorphic
to an annulus A. If I is the inner boundary of A, I = ∂� and E−1 extends continu-
ously to all points on I except λ0. The point E−1(λ0) corresponds to the parameter
singularity λ = 0 on the inner boundary ofS0

λ where the function fλ is not defined. The
outer boundary of E−1(A) is contained in ∂Mλ and contains all the virtual centers.

To define the map E , we use the maps φ0, φλ, and ξλ = φ−1
0 ◦ φλ, and set E(λ) =

ξλ(λ). It is not difficult to prove the map is injective. We then prove that the map is
a homeomorphism by the following construction: to each ζ ∈ K0\�, ζ �= λ0, we
inductively construct a sequence of covering spaces of K0\{λ0, ζ } and corresponding
covering maps. Using quasiconformal surgery, we prove that the direct limit of this
process is a map in S0

λ .
The inverse holomorphic homeomorphism E−1 can be used to define a tessellation

and coordinates in S0
λ . For each sequence jn, define Ajn = E−1(Ajn−10) and Bk

jn
=

E−1(Bk
jn−1i

), i �= 0, k ≥ 0. This identification immediately gives us (see Fig. 5),

Theorem 5 Each point λ ∈ S0
λ has a unique coordinate λ = (Xjn , r , θ) where Xjn is

either Ajn or Bk
jn
, r ∈ [0,∞), θ = t + (n − 1)π ∈ R, 0 ≤ t < π .
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Fig. 5 The parameter space with some of the level curves in black, and gradient curves in red and paths
from the tree in purple

5 The Boundaries of K0 andM�

We are now ready to prove our main result.

Theorem 6 The injective holomorphic map E : S0
λ → K0\� extends continuously to

the virtual centers of ∂S0
λ and maps them to prepoles of Q with the same itinerary.

Proof Fix a finite sequence jn , and let τ(t), t ∈ [0, 1] be a path in the tree T∞ that
ends at the prepole pjn . That is, it passes from the root to the node x∗

jn0
and its last

branch rjn0 goes from x∗
jn0

to the prepole pjn along the level curve γjn0. The map E−1

then maps τ(t), t ∈ [0, 1), to a path λ(t) ∈ S0
λ .

We claim that the accumulation set of λ(t) as t goes to 1 is a single point and that
this point is a virtual cycle parameter.

Let λ∞ ∈ ∂S0
λ be an accumulation point of λ(t) as t goes to 1 and let tm be sequence

tending to 1, such that λm = λ(tm) has limit λ∞. Since we are only interested in τ(t)
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for t close to 1, we may assume that all the points τm = τ(tm) belong to the last edge
tjn .

Note that the attractive basins Aλ of fλ and the boundary curves defining their
tessellations by fundamental domains αλ,jn−10 and βk

λ,jn−1i
, i �= 0, in Âλ ⊂ Aλ all

move holomorphically with λ.
In particular, the unions of these domains αλ,jn−10 = ξ−1

λ (Ajn−10) and βλ,jn−1i =
ξ−1
λ (Bjn−1i ), i �= 0, and their prepole boundary points, including the prepole pλ,jn ,
move holomorphically. Thus, asm goes to infinity, the functions fλm converge to fλ∞
and the prepoles pλm ,j converge to a prepole pλ∞,jn

of fλ∞ . Moreover, τm is on a level
curve in K0, and the images under ξλ of the level curves in K0 are level curves in
Aλ, so each λm = ξλm (τm) is on a level curve of the same level. The level curves in
Aλm containing λm have endpoints at prepoles, so that limm→∞ ξλm (τm) = pλ∞,jn .
Therefore, either λ∞ ∈ Aλ∞ , so that λ∞ ∈ S0

λ , or:

|λm − pλ∞,jn
| ≤ |λm − pλm ,jn | + |pλm ,jn − pλ∞,jn

| → 0 as m → ∞.

The first possibility cannot happen, since we assumed λ∞ /∈ S0
λ . The second says that

λ∞ is a virtual cycle parameter. Since the sequence tm was arbitrary and the prepoles
of any given order form a discrete set, the limit is independent of the sequence and
thus unique. ��

We turn now to the periodic points in the Julia set of Q and show that the map E−1

extends to them. The proof is similar to the above.

Theorem 7 The injective holomorphic map E−1 : K0\� → S0
λ extends continuously

to the repelling periodic points in ∂K0 and maps them to points in λ ∈ ∂S0
λ for which

fλ has a parabolic cycle of the same period.

Proof Let j∞ = jnjn . . . be a periodic infinite sequence and let zj∞ ∈ ∂K0 be the
repelling point of order n in the Julia set of Q corresponding to this sequence. Let
τj∞(t), t ∈ [0, 1) be the infinite path in T∞ corresponding to the sequence. It is
invariant under Qn and, since Q is hyperbolic, its endpoint in J0 is well defined and
is the repelling periodic point zj.

Let λ(t) = E−1(τj∞(t)). We claim this path lands on ∂S0
λ as t goes to 1. Let λ∞

be any point in the accumulation set of the path and let tm be a sequence tending to 1,
such that λm = λ(tm) has limit λ∞.

For eachm, there is an integer k(m), such that if jk(m) is a truncation of the periodic
sequence j∞ after k(m) repetitions of jn , λm ∈ Ajk(m)

⊂ S0
λ . This means that we also

have λm ∈ αλm ,jk(m)
⊂ Âλm and ξλm (λm) ∈ Ajk(m)

⊂ K0. Let τ̂jk(m)
∈ T∞ be the tree

τj∞ in K0 up to the node x∗
jk(m)0

, and having as its final branch, rjk(m)
, the level curve

from the node to the prepole pjk(m)
. The last fundamental domain it passes through is

Ajk(m)
.

Using the map ξ−1
λ , we can pull back τ̂jk(m)

to a tree τ̂λm ,jk(m)
⊂ Âλm . The last

fundamental domain it passes through is αjk(m)
and this fundamental domain contains

λm . We can modify the branch of τ̂λm ,jk(m)
in αjk(m)

, so that it passes through λm . We
will do this, and by abuse of notation, denote the modified tree by τ̂λm ,jk(m)

again.
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Everything is holomorphic in λ, and as k goes to infinity, jk(m) → j∞, so the
prepoles pjk(m)

∈ J0 tend to the repelling periodic point zj∞ ∈ J0. It follows from
the sequence topology that the prepoles pjk(m),λm tend to the repelling periodic point
zλm ,j∞ and the repelling periodic points zλm .j∞ tend to zλ∞,j∞ . This must be a repelling
or parabolic periodic point of fλ∞ . It cannot be the point λ∞, because an asymptotic
value of fλ cannot be periodic.

We claim that zλ∞,j∞ must be a parabolic periodic point of fλ∞ . We first show
that it must be a neutral periodic point. Suppose zλ∞,j∞ is a repelling periodic point.
Then, there is a neighborhood U containing λ∞, such that zλ,j∞ is repelling for all
λ ∈ U ∩ S0

λ . In particular, it contains λm for large enough m. Then, for each such m,
we modify τ̂λm ,jk(m)

by changing its last branch. We do this by replacing rjk(m)
∈ τ̂jk(m)

with a path in K0, monotonic increasing with respect to level, and ending at zj∞ . We
call the result̂̂τ jk(m)

. Then, ξ−1
λm

(̂̂τ jk(m)
) is a path in Aλm ending at the repelling periodic

point zλm ,j∞ . Again, as m goes to infinity, the ̂̂τ jk(m)
’s converge to a path in C with

endpoint zλ∞,j∞ , the periodic endpoint of fλ∞ . If λm were a point on ξ−1
λm

(̂̂τ jk(m)
), the

λm’s would either converge to a point in Aλ∞ or to a repelling periodic point of fλ∞ .
The first case cannot happen, since λ∞ is not an interior point of S0

λ , and the second
cannot happen, since λ∞ cannot be periodic.

Therefore, the fixed point zλ∞,j∞ is neutral. A standard application of the Snail
Lemma [22, p.154] shows that it must be parabolic. ��

As a corollary of the proof of this theorem, it follows that the injective homeomor-
phism E−1 : K0\� → S0

λ extends continuously to the eventually periodic points in
∂K0 and maps them to points in λ ∈ ∂S0

λ . Because λ∞ does not belong to the cycle
containing zj∞,λ∞ , but maps onto it in finitely many steps, and λ∞ does belong to
the Julia set, the cycle is repelling. This, together with Theorem 6 and Theorem 7,
completes the proof of the Main Theorem in the introduction.
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