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Abstract
We introduce 50+ new invariants manifested by the dynamic geometry of N -periodics
in the Elliptic Billiard, detected with an experimental/interactive toolbox. These
involve sums, products and ratios of distances, areas, angles, etc. Though curious in
their manifestation, said invariants do all depend upon the two fundamental conserved
quantities in theEllipticBilliard: perimeter and Joachimsthal’s constant. Several proofs
have already been contributed (references are provided); these have mainly relied on
algebraic geometry. We very much welcome new proofs and contributions.

Keywords Elliptic billiard · Invariant · Optimization · Experimental

Mathematics Subject Classification 51N20 · 51M04 · 65-05

1 Introduction

TheEllipticBilliard (EB) is a special case of Poncelet’s Porism [9],where the conic pair
are two confocal ellipses; it, therefore, admits a 1d family of N -periodic trajectories
[9,11,26] which at every vertex are bisected by the normals to the outer ellipse in the
pair (hence the term “billiard”); see Fig. 1.
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342 D. Reznik et al.

Fig. 1 A (i) 5-periodic (vertices Pi ) is shown inscribed in a confocal ellipse pair (billiard and caustic). Also
shown is (ii) the outer polygon with vertices P ′

i tangent to the outer ellipse at the N -periodic vertices, and
(iii) the inner polygon whose vertices P ′′

i are at the points of contact of the N -periodic with the caustic

The EB is an integrable system (in fact it is conjectured as the only integrable planar
billiard [12]). Integrability implies invariant perimeter L; a second classic invariant
is Joachimsthal’s constant J , which is simply a statement that all trajectory segments
are tangent to the confocal caustic [20,26].

Continuing our work on properties of N-periodics in the EB [10,18], here we intro-
duce 50+ newfound invariants detected via experimental exploration. These involve
distances, areas, angles and centers of mass of N -periodics and associated polygons
(inner, outer, pedal, antipedal, defined below). Some invariants depend on the parity
of N , while others on other positional constraints.

Note that since the N-periodics in the EB are fully defined by L, J , any “new”
invariants listed here or elsewhere must be ultimately dependent upon said quantities.
Nevertheless, proving a specific functional dependence may require creativity. Several
proofs have already been contributed and are referenced below. We hope to motivate
more contributions and/or new discoveries.

This article is organized as follows: preliminary definitions are given in Sect. 2.
Invariants are introduced in Sect. 3, in several clusters, involving: (i) lengths, areas,
and angles of N -periodics and associated polygons; (ii) pedal polygons to N-periodics
and (iii) their outer polygons; (iv) antipedal polygons (defined below); (v) area-ratios
related to the Steiner curvature centroid [25]; (vi) pairs of pedal polygons; (vii) area-
ratios of evolute polygons [6]; (viii) focus-inversive objects.

Details about our experimental toolbox are covered in Sect. 4. Section 5 lists videos
illustrating some of the phenomena. For quick reference, all symbols used appear on
Table 11 in Appendix 1. The reader is invited to visit our up-to-date and expanded list
of invariants https://arxiv.org/abs/2004.12497 here.
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2 Preliminaries

Let the EB have center O , semi-axes a > b > 0, and foci f1, f2 at [±√
a2 − b2, 0].

Let a′′, b′′ denote the major, minor semi-axes of the confocal caustic, whose values are
given by a method due to Cayley [9], though we obtain them numerically, see Sect. 4.

As mentioned above, the perimeter L is invariant for a given N -periodic family, as
is Joachmisthal’s constant J = 〈Ax, v〉, where x is a bounce point (called Pi above),
v is the unit velocity vector (Pi − Pi−1)/||.||, 〈.〉 stands for dot product, and [26]:

A = diag
[
1/a2, 1/b2

]

Hellmuth Stachel contributed [23] an elegant expression for Joahmisthal’s constant
J in terms of the axes of the EB and its caustic:

J =
√
a2 − a′′2
ab

Note: holding a constant, for each N , a′′ and therefore J assume a distinct value.
Let a polygon have vertices Wi , i = 1, ..., N . In this paper, all polygon areas are

signed, i.e., obtained from a sum of cross-products [15]:

S = 1

2

N∑
i=1

Wi×Wi+1 (1)

Let Wi = (xi , yi ), then Wi×Wi+1 = (xi yi+1 − xi+1 yi ).

The curvature κ of the ellipse at point (x, y) at distance d1, d2 to the foci is given
by [27, Ellipse]:

κ = 1

a2b2

(
x2

a4
+ y2

b4

)−3/2

= ab(d1d2)
−3/2 = (κad1d2)

−3/2 (2)

Where κa = (ab)−2/3 is the constant affine curvature of the ellipse [14].

3 Invariants

In this section,we present the 56 invariants found so far in several tables. Each invariant
is given an identifier kn where the first digit of n refers to a cluster of invariants; see
Table 1.
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Table 1 Numbering scheme for
the 56 invariants currently listed
in this article

Range Invariant group Total

k101–k120 Distances, area, angles, curvature 20

k201–k205 N-Periodic Pedal polygons 5

k301–k307 Outer pedal polygon 7

k401–k407 Antipedal polygon 7

k501–k503 Steiner curvature centroid 3

k601–k607 Pairs of pedal polygons wrt. foci 7

k701–k703 Evolute polygons 3

k801–k804 Inversive objects 4

On the invariant tables below, column “invariant” provides an expression for the
conserved quantity; column “value” provides a closed-form expression for the invari-
ant (when available) in terms of the fundamental constants, or a ‘?’ when not available
(note that the invariant may already have been proved but no closed-form expression
has yet been found); column “which N” specifies whether the invariant only holds for
certain N (even, odd, etc.); column “date” specifies the month and year (mm/yy) when
the invariant was first experimentally detected. Column “proven” references available
proofs if already communicated and/or published, else it displays a ‘?’.

3.1 Basic Invariants

Invariants involving angles and areas of N-periodics and its tangential and internal
polygons are shown on Table 2. There θi ,A (resp. θ ′

i ,A
′) are angles, area of an N-

periodic (resp. outer polygon to the N-periodic). A′′ is the area of the internal polygon
(where orbit touches caustic), see Fig. 1. All sums/products go from i = 1 to N .
k101, k102, k103 originally studied in [18]. li and ri denote |P ′′

i − Pi | and |Pi+1 − P ′′
i |,

respectively, and d j,i = |Pi − f j |. κi denotes the curvature of the EB at Pi (2). α j,i

denotes the angle Pi f j Pi+1.

3.2 Pedal Polygons

Tables 3 and 4 describe invariants found for the pedal polygons of N-periodics and
the outer polygon, see Fig. 2.

3.3 Pedals with Respect to N-Periodic

Let Qi be the feet of perpendiculars dropped from a point M onto the sides of the
N -periodic. Let Am denote the area of the polygon formed by the Qi , Fig. 2. Let φi

denote the angle between two consecutive perpendiculars Qi − M and Qi+1 − M .
Table 3 lists invariants so far observed for these quantities.
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Table 2 Distance, area, and angle invariants displayed by the N-periodic, its outer and/or inner polygon

Code Invariant Value Which N Date Proven

k101
∑

cos θi J L − N All 4/19 [5,7]

k102
∏

cos θ ′
i ? All 5/19 [5,7]

k103 A′/A ? odd 8/19 [5,8]

k104
∑

cos(2θ ′
i ) ? All 1/20 [2]

k105
∏

sin(θi /2) ? Odd 1/20 [2]

k106 A′A ? Even 1/20 [8]

k107 k103k105 ? ≡ 0 (mod 4) 1/20 ?

k108 k103/k105 ? ≡ 2 (mod 4) 1/20 ?

k109 A/A′′ k103 Odd 1/20 ?

k110 A A′′ ? Even 1/20 ?

k111 A′ A′′/A2 1 Odd 1/20 [3]

k112 A′ A′′ [ab/(a′′b′′)]2 All 1/20 [24]

k113
∑

d1,i ? Even 1/20 symmetry

k114
∏

d1,i ? ≡ 2 (mod 4) 4/20 ?

k115
∏ |P ′

i − f1| ? ≡ 0 (mod 4) 4/20 ?
�k116

∏
li /

∏
ri 1 All 5/20 [24]

�k117
∏

li ,
∏

ri ? Even 5/20 ?
�k118

∑
li ,

∑
ri L/2 Odd 8/20 ?

†k119
∑

κ
2/3
i L/[2J (ab)4/3] All 10/20 [22]

‡k120
∑

cosα1,i ? All 10/20 ?

�ki , i = 116, 117, 118 were discovered by Hellmuth Stachel
†k119 was co-discovered with Pedro Roitman [19] and is equivalent to k802,b
‡k120 was suggested by A. Akopyan

Fig. 2 Left (resp. right): Pedal polygons for N = 5 from a point m with respect to the N -periodic (resp. its
outer polygon). Vertex and area centroids C0,C2 are also shown. See Videos [16, PL#01,02,03]
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Table 3 Invariants of pedal polygon with respect to N-Periodic sides

Code Invariant Value Which N M Date Proven

†k201 |Qi − O| a′′ All f1, f2 4/20 [4]

k202,a
∏ |Qi − M | (b′′)N Even f1, f2 4/20 [7]

k202,b
∏ |Qi − M | (a′′b′′)N/2 ≡ 0 (mod 4) O 4/20 [7]

k203,a A Am ? ≡ 0 (mod 4) all 4/20 ?

k203,b A Am ? �≡ 2 (mod 4) O 4/20 ?

k204 A/Am ? ≡ 2 (mod 4) All 4/20 ?

k205
∑

cosφi ? All All 4/20 [1]

†k201 means the locus of the vertices of a pedal with respect to a focus is a circle

Table 4 Invariants of pedal polygon with respect to the sides of the outer polygon

Code Invariant Value Which N M Date Proven

†k301 |Q′
i − O| a All f1, f2 4/20 [4]

k302
∑ |Q′

i − M |2 ? All All 4/20 [7]

k303,a A′ A′
m ? ≡ 2 (mod 4) All 4/20 ?

k303,b A′ A′
m ? �≡ 0 (mod 4) O 4/20 ?

k304 A′/A′
m ? ≡ 0 (mod 4) All 4/20 ?

k305
∏

cosφ′
i ? All All 4/20 [1]

k306 C ′
0 ? All All 4/20 [7]

k307 C ′
2 ? Even All 4/20 ?

†k301 means the locus of the outer pedal with respect to a focus is a circle

3.4 Pedals with Respect to the Outer Polygon

Let Q′
i be the feet of perpendiculars dropped fromapointM onto the outer polygon.Let

φ′
i denote the angle between two consecutive perpendiculars Q

′
i − M and Q′

i+1 − M .
Let A′

m denote the area of the polygon formed by the Q′
i .

In the spirit of [21], we also analyze centers of mass: C ′
0 = ∑

i Q
′
i/N is the vertex

centroid, and the area centroidC ′
2 of the polygon defined by the Q

′
i . The area centroid

W of a polygon W is given by [15]:

W = 1

6S

N∑
i=1

(Wi×Wi+1)(Wi + Wi+1)

where Wi , S, are a polygon’s vertices and its signed area, (1). Table 4 lists invariants
so far observed for these quantities.

123



Fifty New Invariants of N-Periodics... 347

Fig. 3 Left (resp. right): antipedal polygons for N = 5 from a pointm with respect to the N -periodic (resp.
its outer polygon). Vertex and area centroids C∗

0 ,C∗
2 are also shown

3.5 Antipedal Polygons

The antipedal polygons to the N -periodic and the outer polygon are shown in Fig. 3.
The antipedal polygon Q∗

i of Pi with respect to M is defined by the intersections of
rays shot from every Pi along (Pi − M)⊥.

Let Am denote the area of the Q∗
i polygon and C

∗
0 ,C

∗
2 its vertex- and signed1 area-

centroids. C ′
0
∗
,C ′

2
∗ refer to centers of antipedals of the outer polygon. Table 5 lists

invariants found so far for these polygons.

3.6 Pedals of Steiner Curvature Centroids

Given a polygon with vertices Ri and angles θi , its Steiner Centroid of Curvature2 is
invariant if K is given by [25, p. 22]:

K =
∑N

i=1 wi Ri∑
wi

, withwi = sin(2θi )

1 Antipedals can be self-intersecting.
2 J. Steiner (following a similar result by J. Sturm in 1823 for triangles) proved in 1825 that the area of
pedal polygons of a polygon R with respect to points on any given circumference centered on K [25] is
invariant.
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Table 5 Invariants of antipedal polygons

Code Invariant Value Which N M Date Proven

k401 A′ A∗
m ? ≡ 2 (mod 4) All 4/20 ?

k402 A′/A∗
m ? ≡ 0 (mod 4) All 4/20 ?

k403,a Am A∗
m ? Odd O 4/20 ?

k403,b Am A∗
m ? ≡ 0 (mod 4) f1, f2 4/20 ?

k404 A∗
m/Am ? ≡ 2 (mod 4) f1, f2 4/20 ?

k405 C∗
0 ? Even O, f1, f2 4/20 ?

k406,a C∗
0
′,C∗

2
′ O Even O 4/20 ?

k406,b C∗
0
′,C∗

2
′ ? 4 f1, f2 4/20 ?

k407 C∗
0
′ ? Even f1, f2 4/20 ?

Fig. 4 AnN-periodic P is shown alongwith its outer P ′ and inner P ′′ polygons.Also shown are their Steiner
centroids of curvature K , K ′, K ′′ and the the pedal polygons Pk , P ′

k , P
′′
k with respect to said centroids

Referring to Fig. 4, let P, P ′, P ′′ denote as before the N-periodic, outer, and inner
polygons, A, A′, A′′ their areas, and K , K ′, K ′′ their Steiner centroids of curvature.
Let Pk, P ′

k, P
′′
k denote the pedal polygons of P, P ′, P ′′ with respect to K , K ′, K ′′,

and Ak, A′
k, A

′′
k their areas.

When N even, the curvature centroids are stationary at the origin, so invariants
described before involving A, Am (and primed quantities) for M = O apply. For odd
N , the Curvature Centroids move along individual ellipses concentric with the EB.
Invariants are observed appear on Table 6.

Combining the above with k103 and k106 one obtains as corollaries the fact that
Ak/A′

k , Ak/A′′
k , and A′

k/A
′′
k are invariant for odd N .
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Table 6 Invariants of pedal
polygons of N -periodic, outer,
and inner polygons, with respect
to their Steiner Curvature
Centroids

Code Invariant Value Which N Date Proven

k501 A/Ak ? Odd 7/20 ?

k502 A′/A′
k ? Odd 7/20 ?

k503 A′′/A′′
k ? Odd 7/20 ?

Table 7 Invariants between pairs of pedal polygons defined with respect to the foci

Code Invariant Value Which N Date Proven

k601
∑

q1,i
∑

q2,i ? Odd 4/20 ?

k602
∏

q1,i
∏

q2,i ? All 4/20 ?

k603
∑

q∗
1,i /

∑
q∗
2,i 1 All 5/20 ?

k604,a A1/A2 1 Even 4/20 Symmetry

k604,b A′
1/A

′
2 1 Even 4/20 Symmetry

k605 A1 A2 ? Odd 4/20 ?

k606 A′
1 A′

2 ? Odd 4/20 ?

k607 A1/A2 = A′
1/A

′
2 ? All 4/20 ?

3.7 Pairs of Focal Pedal and Antipedal Polygons

Let Q1,i and Q2,i be the vertices of the pedal polygon with respect to f1 and f2.
Define q1,i = |Q1,i − f1| and q2,i = |Q2,i − f2|. Likewise, let Q∗

1,i and Q∗
2,i be the

vertices of the antipedal polygon with respect to f1 and f2. Define q∗
1,i = |Q∗

1,i − f1|
and q∗

2,i = |Q∗
2,i − f2|.

Let A1 (resp. A2) denote the area of the polygon formedby the feet of perpendiculars
dropped from f1 (resp. f2) onto the N -periodic, and A′

1, A
′
2 the same but with respect

to the outer polygon. Table 7 list invariants so far detected involving pairs of these
quantities.

Note k604,a, k604,b can be proven via a symmetry argument, namely, area pair are
equal since opposite vertices of an even N -periodic are reflections about the origin,
as will be the pedal polygons from either focus.

Though not yet checked, we expect area ratio and product invariants similar to those
listed on Table 7 to hold for pairs of antipedal polygons with respect to the foci, e.g.,
A∗
1, A

∗
2 and A′

1
∗
, A′

2
∗

3.8 Evolute Polygons

After [6], let the evolute3 polygon Rev of a generic polygon R have vertices at the
intersections of successive pairs of perpendicular bisectors to the sides of R; see
Fig. 5. So Pev, P ′

ev, P
′′
ev denote the evolute polygons of P , P ′, and P ′′, respectively,

and Aev, A′
ev, A

′′
ev their areas. Trivially, at N = 3, the latter vanish since perpendicular

3 The evolute of a smooth curve is the envelope of the normals [27, Evolute]. The perpendicular bisector
is its discrete version.
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Fig. 5 Left: An N-Periodic and its outer polygon are shown along their evolute polygons whose vertices
are ordered intersections of perpendicular bisectors. Right: N-periodic, inner polygon, and their evolute
polygons

Table 8 Area-ratio invariants
displayed by the evolute
polygons of N -periodic, outer,
and inner polygons

Code Invariant Value Which N Date Proven

k701 A/Aev ? > 4 7/20 ?

k702 A′/A′
ev ? > 4 7/20 ?

k703 A′′/A′′
ev ? > 4 7/20 ?

Table 9 Invariants of inversive objects over the N-periodic family. As observed by A. Akopyan

Code Invariant Value Which N Date Proven

k801
∑

d−1
1,i /

∑
d−1
2,i 1 All 10/20 From k802,a

k802,a
∑

d−1
1,i ? All 10/20 [5,19]

†k802,b
∑

1/(d1,i d2,i ) L/[2J (ab)1/2] All 10/20 [22]

k803 L j ? All 10/20 ?
�k804

∑
cos γ1,i ? All 10/20 ?

†k802,b is in fact equivalent to k119, see (2)
�k804 was co-discovered with Pedro Roitman [19]

bisectors concur. At N = 4, P ′ is a rectangle, so A′
ev = 0. Area invariants observed

for N > 4 appear on Table 8.
Combining the above with k103 and k106 one obtains as corollaries the fact that

Aev/A′
ev , Aev/A′′

ev , and A′
ev/A

′′
ev are invariant for all N > 4.

3.9 Inversive Objects

Referring to Fig. 6, let P−1
j,i denote the inversion of Pi with respect to a unit-radius

circle centered on focus f j , j = 1, 2, and d j,i = |Pi − f j |. LetP j denote the polygon
whose vertices are the P−1

j,i . Let L j denote the perimeter of P j , and γ j,i the angles
internal toP j ’s ith vertex. Table 9 lists invariants for these and other inversive objects.
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Fig. 6 The vertices of the inversive polygon are obtained by inverting N-periodic vertices with respect to
a focus. Segments connecting said focus to the original (inverted) vertices are called focal spokes (resp.
inversive focal spokes)

Fig. 7 Interactive toolbox written in Wolfram Mathematica [28]. The area on the left permits selection of
specific geometries, whereas on the right, the EB, the N-Periodic and derived polygons is displayed. See
Videos on Table 10

4 Experimental Method

An interactive toolbox was developed in Wolfram Mathematica [28] to accurately
calculate and display N -periodics while reporting their areas, angles, etc., and those
of some derived objects (pedal and inversive polygons, etc.); see Fig. 7.

Since all trajectories in the Billiard family are tangent to the same caustic, a crucial
calculation is to obtain the caustic semiaxes a′′, b′′ for a given choice of a, b, and N .
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Table 10 Youtube list of videos about invariants of N-Periodics, the last column provides the link

Id Title N youtu.be/...

01 Area Invariants of Pedal and Antipedal Poly-
gons

3 LN623VjeeFQ

02 Exploring invariants of N-Periodics and pedal
polygons

3–12 2yXbOV7qf7k

03 Centroid Stationarity of Pedal Polygons even j_GD_g8aIbg

04 Equal sum of distances from foci to vertices
of Antipedal Polygon

3–6 6F7Y3UKJzdk

05 Concyclic feet of focal pedals and product of
sums of lengths for odd N

5, 6 OT-xAdbOp8o

06 Invariant altitudes of N-Periodics and outer
polygons I

3,4 MvZhWbI6iB8

07 Invariant altitudes of N-Periodics and outer
polygon II

5,6 ZMHLmWXeKrM

08 Sum of focal squared altitudes to outer poly-
gon

3–8 VUtBRzmbOYU

09 Sum of square altitudes from arbitrary point
to outer polygon

5 RNmHROZNGj8

10 Area products of focal pedal polygons 5 sw8pJFMV00w

11 Area ratios of Pedal Polygons to N-Periodic
and outer Polygon

5, 6 6F7Y3UKJzdk

12 Invariant Area Ratios to Minimum-Area
Steiner Pedal Polygons

5 f0JwRlu7iaY

13 N-Periodic Inversive Invariants 5 wkstGKq5jOo

14 N-Periodic Inversive Objects 5 bFsehskizls

We achieve this via least-squares optimization [13], available through Mathematica’s
FindMinimum[] function. Namely:

• Initialize N vertices Pi evenly across the ellipse (pick ti , i = 1, . . . , N for each),
and let P1 = (a, 0).

• Let bi be the unit bisector of the N -gon sides incident at Pi . Let ni denote the
ellipse normal at the Pi . The Pi will be a legitimate closed billiard trajectory if
all bisectors are perfectly aligned with the local normals, i.e., if P∗

i can be found
which make the following error vanish:

E =
N∑
i=1

(nTi .bi )
2

• Obtain the unique confocal ellipse tangent to [a, 0]P∗
2 .

Notice only N/2 vertices for N odd (resp. N/4 for N even) need to be optimized
if one exploits the symmetries of odd (resp. even) vertex positions when P1 = (a, 0).
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Fifty New Invariants of N-Periodics... 353

In terms of identifying invariants, we look for quantities which over hundreds of
configurations of a given N -family are statistically constant, maintained over a range
of Billiard aspect ratios.

5 Video List

Videos of some of the above phenomena have been placed on a Youtube playlist [17]
and are listed individually on Table 10.
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Appendix

Table 11 Symbols used in the invariants. Note i = 1, ..., N and j = 1, 2

Symbol Meaning

O, N Center of billiard and trajectory vertices

L, J Inv. perimeter and Joachimsthal’s constant

a, b Billiard major, minor semi-axes

a′′, b′′ Caustic major, minor semi-axes

f1, f2 Foci

Pi , P
′
i , P

′′
i N -periodic, outer, inner polygon vertices

d j,i Distances from Pi to f j

li , ri |P ′′
i − Pi |, |Pi+1 − P ′′

i |
θi , θ

′
i N -periodic, outer polygon angles

α j,i Angle Pi f j Pi+1

A, A′, A′′ N -periodic, outer, inner areas

M A point in the plane of the billiard

Qi , Q
′
i Feet of perps. from point M to sides of N -periodic, outer polygon

φi , φ
′
i Angle between two consecutive perps. to N-periodic and outer polygon

Q∗
i , Q

∗
i
′ Vertices of the antipedal polygon from M with respect to the Pi , P

′
i

Q j,i , Q
∗
j,i Vertices of pedal, antipedal polygon wrt. f j

q j,i , q
∗
j,i |Q j ,i − f j | and |Q∗

j ,i − f j |
Am , A′

m , A∗
m Area of Qi , Q

′
i , Q

∗
i polygons

A j , A
′
j Feet of perps. from f j , j = 1, 2 onto the N -periodic, outer polygon

C0,C
′
0,C

∗
0 Vertex centroids of the Qi , Q

′
i , Q

∗
i polygons
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Table 11 continued

Symbol Meaning

C2,C
′
2,C

∗
2 Area centroids of the Qi , Q

′
i , Q

∗
i polygons

C∗
0
′,C∗

2
′ Vertex, area centroids of the Q∗

i
′ polygon

K , K ′, K ′′ Steiner centroids of curvature of P, P ′, P ′′
Pk , P

′
k , P

′′
k Pedal Polygons of P, P ′, P ′′ wrt. K , K ′, K ′′

Ak , A
′
k , A

′′
k Areas of Pk , P

′
k , P

′′
k

Pev, P ′
ev, P ′′

ev Evolute Polygons of P, P ′, P ′′
Aev, A′

ev, A′′
ev Areas of Pev, P ′

ev, P ′′
ev

P−1
j,i Inversion of Pi wrt. to unit-radius circle centered on f j

P j , L j Polygon whose vertices are P−1
j ,i and its perimeter

γ j,i Internal angle of P j at its ith vertex (P
−1
j,i )
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