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Abstract
The classical Lyapunov–Poincaré center theorem assures the existence of a first inte-
gral for an analytic 1-form near a center singularity in dimension two, provided that
the first jet of the 1-form is nondegenerate. The basic point is the existence of an
analytic first integral for the given 1-form. In this paper, we consider generalizations
for two main frameworks: (1) real analytic foliations of codimension one in higher
dimension and (2) singular holomorphic foliations in dimension two. All this is related
to the problem of finding criteria assuring the existence of analytic first integrals for
a given codimension one germ with a suitable first jet. Our approach consists in giv-
ing an interpretation of the center theorem in terms of holomorphic foliations and,
following an idea of Moussu, apply the holomorphic foliations arsenal to obtain the
required first integral. As a consequence we are able to revisit some of Reeb’s classical
results on integrable perturbations of exact homogeneous 1-forms, and prove versions
of these in the framework of non-isolated (perturbations of transversely Morse type)
singularities.

Keywords Foliation · Center singularity · First integral · Integrable form · Reeb
theorem

1 Introduction andMain Results

We shall consider a real analytic differential 1-formω(x, y) = a(x, y)dx+b(x, y)dy
defined in a neighborhood of the origin 0 ∈ R

2. To state the classical Center theorem

B B. Scárdua
bruno.scardua@gmail.com

V. León
victor.leon@unila.edu.br

1 ILACVN-CICN, Universidade Federal da Integração Latino-Americana,
Parque Tecnológico de Itaipu, Foz do Iguaçu, PR 85867-970, Brazil

2 Instituto de Matemática, Universidade Federal do Rio de Janeiro, CP. 68530, Rio de Janeiro,
RJ 21945-970, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-021-00183-x&domain=pdf
http://orcid.org/0000-0001-8280-1669


562 V. León , B. Scárdua

of Poincaré–Lyapunov recall that the 1-form ω has a center at 0 ∈ R
2 if all leaves in a

punctured neighborhood of the origin are diffeomorphic to the circle. The form ω has
a real analytic first integral if ω = gd f for some real analytic function germs f , g at
0 ∈ R

2, with g(0) �= 0; if f further has a Morse singular point at the origin, then the
form has a real analytic first integral in the strong sense. Then one has:

Theorem 1.1 [11,12] Consider a germ of a real analytic 1-form ω = a(x, y)dx +
b(x, y)dy at the origin 0 ∈ R

2, having an isolated singularity for its first jet ω1, and
a center at the origin. Then ω admits a first integral in the strong sense.

There are some equivalent statements also in terms of vector fields. Besides the clas-
sical analytical proofs, there is a quite geometrical proof given by Moussu [9]. In his
paper, hemakes use of the complexification of the 1-form, obtaining, therefore, a holo-
morphic 1-form with a suitable singularity at the origin 0 ∈ C

2. Moussu’s approach
strongly relies on theMattei–Moussu theorem [8], about topological (dynamical) con-
ditions assuring the existence of holomorphic first integrals for germs of holomorphic
foliations near a singular point (Theorem B page 473). The center condition together
with Mattei–Moussu theorem above mentioned assures the existence of a first integral
for the complexification and, therefore, for the real analytic 1-form. Moussu’s ideas
are quite attractive and inspiring. They also show the interplay between real analytic
dynamical systems and the geometric theory of holomorphic foliations.

In this paper, we address problems motivated by the above statement. Given a real
analytic 1-formω defined in a (connected) neighborhoodU ⊂ R

2 of the origin 0 ∈ R
2,

we shall say that the leaves of ω = 0 are closed in U if each non-singular leaf L ⊂ U
of ω = 0 is a closed subset of U , i.e., L has no accumulation points in U\L .

Our first result in this direction reads as follows:

Theorem 1.2 For a given germ of a real analytic 1-form ω = a(x, y)dx + b(x, y)dy
at the origin 0 ∈ R

2, having an isolated singularity for its first jet ω1, the following
conditions are equivalent for the induced foliation germ F : ω = 0:

(i) The leaves of F are closed in some small neighborhood of the origin.
(ii) The origin is a center singularity.
(iii) There is a real analytic first integral.

Clearly, in view of Theorem 1.1, the main point is (i) �⇒ (ii). Theorem 1.2
above may look like a too small improvement in the classical statement of Lyapunov–
Poincaré. Nevertheless, its applications prove its usefulness.

In the course of the proof of Theorem 1.2, we shall obtain (cf. Lemma 3.3):

Corollary 1.3 For a germ at 0 ∈ R
2 of a real analytic vector field X having first jet of

the form X1 = x2
∂

∂x1
− x1

∂
∂x2

, the following conditions are equivalent:

(i) The orbits of X are closed subsets in some neighborhood of the origin.
(ii) X has a center type singularity at the origin.
(iii) X admits a real analytic first integral.
(iv) X is analytically almost linearizable, i.e., X is a multiple of a linear vector field

after an analytic local change of coordinates.
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On a Theorem of Lyapunov–Poincaré… 563

Our next result deals with higher dimensional versions of Theorem 1.1.

Theorem A Let F be a real analytic codimension one singular foliation given in a
neighborhood U ⊂ R

n of the origin 0 ∈ R
n, n ≥ 3, by an integrable 1-form ω having

first jet of the form ω1 = d(
∑r

j=1 x
2
j ), 2 ≤ r ≤ n. Then F admits an analytic first

integral in some neighborhood of the origin in the following situations:

(i) If r = 2 and the leaves of F are closed in some neighborhood of the origin.
(ii) If 3 ≤ r ≤ n.

Remark 1.4 In both cases we have:

(a) F admits an analytic linearization, i.e., F is given by d(
∑r

j=1(x̃ j )
2) = 0 in

suitable analytic coordinates (x̃1, . . . , x̃n).
(b) The leaves of F are closed diffeomorphic to the cylinder Sr−1 × R

n−r in some
neighborhood of the origin.

We observe that Theorem A can be seen as a version of a classical theorem of Reeb
[10] that we state below (see also [6] page 85):

Theorem B (Reeb [10]) Let ω be an analytic integrable 1-form defined in a neighbor-
hood of the origin 0 ∈ R

n, n ≥ 3. Suppose that ω(0) = 0 and ω has a non-degenerate
linear part ω1 = d f , i.e., f is a quadratic form of maximal rank (not necessarily of
center type). Then there exist an analytic diffeomorphism h : (Rn, 0) → (Rn, 0) and
an analytic function g : (Rn, 0) → (R, 0) with h∗(ω) = gd f .

The above theorem has some versions for ω of class C2 but demanding that the
singularity is of center type (see [6] page 84 or [10]). We point-out that part (ii) in
our Theorem A extends Reeb’s theorem (Theorem B) to the case of degenerate center
singularities.

In [5], the authors consider some versions of Reeb’s theorem above. Theyworkwith
holomorphic integrable 1-forms of type � = dP + �′ where P is a homogeneous
irreducible polynomial, and�′ is a 1-form of higher order terms than dP . Under some
regularity hypotheses on P they also conclude that � admits a first integral which is a
perturbation of P . This includes for instance the case P = ∑n

j=1 x
d
j , n ≥ 3, d ≥ 2,

that we shall call homogeneous Pham–Brieskorn polynomial of degree d. Given a
polynomial P ∈ R[x1, . . . , xn]we denote by PC ∈ C[z1, . . . , zn] its complexification
where z j = x j + √−1y j . The above is the main motivation for our next result that
reads as follows:

Theorem C Let F be a real analytic codimension one singular foliation given in
a neighborhood U ⊂ R

n of the origin 0 ∈ R
n, n ≥ 3 by an integrable 1-form

ω = dPr ,n,d + Pr ,n,d ω̃ where Pr ,n,d is the truncated Pham–Brieskorn homogeneous
polynomial Pr ,n,d = ∑r

j=1 x
d
j , 3 ≤ r ≤ n, and ω̃ is an analytic 1-form. If d = ps

for some prime number p ∈ N then F admits an analytic first integral in some neigh-
borhood of the origin.

Notice that Pr ,n,d in the case d ≥ 2, r < n has a non-isolated singularity at the
origin. We observe that Theorem C does not hold for r = 2 as can be seen from the
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following example. Take ω(x, y, z) = d(x4 + y4)−2x2y2dy inC3. Then ω is clearly
integrable (it depends only on two variables), it has a center type singularity at the
origin and also its first nonzero jet is the differential of a truncated Pham–Brieskorn
homogeneous polynomial P2,3,2. Nevertheless, working with power series, it can be
easily shown that ω does not admit a real analytic first integral.

1.1 Complex Analytic Foliations

In what follows, by a germ of a holomorphic foliation at the origin 0 ∈ C
2 we shall

mean a germ of a holomorphic foliation by curves, with an isolated singularity at the
origin 0 ∈ C

2. Two irreducible and reduced germs f , g ∈ O2 with f (0) = g(0) = 0
are in general position if the analytic curves ( f = 0) and (g = 0) meet transversely
at the origin. As already mentioned, our approach for proving Theorem A follows the
idea of complexification of the problem, as suggested by [9]. Indeed, it is based in the
following variant of Mattei–Moussu’s theorem:

Theorem D Let F be a germ of a holomorphic foliation at the origin 0 ∈ C
2 given

by ω = 0 where ω = d(xy) + ω̃ and ω̃ has jet of order one equal to zero. Then the
following conditions are equivalent:

(i) F admits a holomorphic first integral of the form f g for irreducible germs f , g ∈
O2 in general position.

(ii) There is a germ of an analytic dimension two variety V 2 ⊂ C
2 with 0 ∈ V 2,

having contact order one withF outside of the origin and such that the restriction
of F has closed leaves in V 2.

In the situation of the above theorem, we also have:

• There is a germ of a totally real analytic variety V 2 ⊂ C
2 having contact order

one with F and such that the restriction of F to V 2 has a center type singularity
at the origin in V 2.

We refer to Sect. 2 for the precise notions of order one contact and totally real
submanifold used above.

Our TheoremD above has connections with the main result in [3] where the authors
prove the existence of ameromorphic first integral for a codimension one holomorphic
foliation at 0 ∈ C

n, n ≥ 2 provided that it is tangent to a germ at 0 ∈ C
n of a real

codimension one and irreducible analytic variety M .

2 Holomorphic Foliations: Proof of TheoremD

A few words about the notions in the statement of Theorem D. We recall that a sub-
manifold V of a complex surface M is called totally real if the complex structure
J : T M → T M of M maps each tangent space TpV ⊂ TpM of V into the normal
space (TpV )⊥ ⊂ TpM . We refer to [1] for a detailed exposition, examples and charac-
terizations of totally real manifolds. We mention that given two germs of holomorphic
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On a Theorem of Lyapunov–Poincaré… 565

functions f , g : C2 → C in general position and vanishing at 0 ∈ C
2 then the inter-

section V 2 = (Re( f ) = Re(g)) ∩ (Im( f ) = − Im(g)) is a germ of a totally real
surface at the origin 0 ∈ C

2.
In Theorem D above, the leaves of F are of real dimension two, in a space of real

dimension four. Thus, condition (ii) is equivalent to the following:

(ii)’ There is a germ of a totally real analytic surface V 2 ⊂ C
2 with 0 ∈ V 2 and such

that the restriction of F has closed leaves in V 2.

Given a real foliation F of codimension k in a differentiable manifold M and
an immersed connected submanifold V ⊂ M , the contact order of F with V at a
point p ∈ V is the dimension of the intersection Tp(V ) ∩ Tp(F) ⊂ Tp(M) as linear
subspaces of the tangent space Tp(M).We say thatF has contact order r with V if their
contact order is r at each point p ∈ V . In the case where F is a holomorphic foliation
of (complex) codimension one in an open subset U ⊂ C

2 with sing(F) = {0} ⊂ U ,
and V 2 ⊂ U is a real surface, we have

• V 2 is transverse to F off the origin iff V 2\{0} and F have contact order equal to
zero.

• V 2 is F invariant iff V 2\{0} and F have contact order equal to 2.
• V 2\{0} has contact order withF equal to 1 iff V 2\{0} is a totally real submanifold
not invariant by F .

Let us now prove Theorem D.

Proof of TheoremD First, we assume that F admits a holomorphic first integral of
the form f g with f , g ∈ O2, f (0) = g(0) = 0, f and g (being germs reduced
and irreducible and) in general position. We consider the analytic varieties of real
codimension one R : (Re f = Re g) ⊂ R

4 and I : (Im f = − Im g) ⊂ R
4. Since f

and g are in general position the intersectionR∩I = V 2 is a two-dimensional analytic
variety.Also 0 ∈ V 2 because f and g vanish at the origin. Let us nowput X = f +g

2 and

Y = f −g
2i . Then f = X+iY and g = X−iY and therefore f g = X2+Y 2. Moreover,

in the variety V 2, we have X = Re( f ) = Re(g) and Y = Im( f ) = − Im(g) so that,
restricted to V 2 we have f g = || f ||2 = ||g||2. This shows that the restriction to V 2

of the foliation F is a real analytic foliation by curves which are closed. In particular,
the contact order of F with V 2 is one. Indeed the restriction F ∣

∣
V 2 gives an analytic

center type singularity at the origin 0 ∈ V 2. Finally, since F is holomorphic and has
contact order equal to one with V 2 it follows that V 2 is a totally real subvariety. This
proves (i) �⇒ (ii) in Theorem D.

Let us now prove (ii) �⇒ (i). From hypothesis (ii) and from the considerations
after Theorem D we conclude that: There is a germ of a totally real analytic variety
V 2 ⊂ C

2 having contact order one withF and such that the restriction ofF to V 2 has
a center type singularity at the origin in V 2. Up to an analytic change of coordinates in
C
2 wemay assume that V 2 ⊂ C

2 corresponds to the totally real spaceR2 ⊂ C
2, i.e., in

suitable local coordinates (x, y) ∈ C
2 we have V 2 : (Im(x) = Im(y) = 0). Assume

now that we have a holomorphic foliation F defined in a neighborhood of the origin
0 ∈ C

2 by a 1-form ω = d(xy)+ ω̃ where ω̃ has zero jet of order one at the origin. We
know thatF : ω = 0 corresponds to a Siegel singularity at the origin since it is given by
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566 V. León , B. Scárdua

a 1-formwith linear partω1 := xdy+ ydx . The blow-up y = t x at the origin produces
a foliation of the form 2t xdx + x2dt + ω̃(x, t x) = 0. Thus, we have a singularity of
Siegel type on the origin of the system (x, t) given by 2tdx + xdt + · · · = 0. In the
coordinate system x = uy, we have 2uydy + y2du + ω̃(uy, y) = 0 and then we have
a singularity of Siegel type at the origin of this system given by 2udy+ ydu+· · · = 0.

Now we make an assumption:

Assumption 2.1 Assume thatF is the complexification of a real analytic foliationFR

which has a center type singularity at the origin 0 ∈ R
2.

The above assumption means that F has contact order one with the real space
R
2 ⊂ C

2 and its restriction to this space exhibits a center type singularity at the origin
0 ∈ R

2. Recall that the real space above is given by Im(x) = Im(y) = 0, where
(x, y) ∈ C

2 are affine coordinates in C2.

The inverse image of this real plane in the blow-up C̃
2
0 corresponds to a Moebius

band M2 through the equator of the exceptional divisor E � CP(1). The pull-back

foliationF∗ in C̃2
0 leaves invariant thisMoebius band and has only closed leaves inM2.

Indeed, since FR has a center type singularity at the origin, the foliation F∗ restricted
to M2 has closed compact leaves in a neighborhood of the equator in M2. Now we
consider the projective holonomy group of the exceptional divisor E . This means the
holonomy group of the leaf E\ sing(F∗) for the foliationF∗. Fromwhat we have seen
above, this foliation has exactly two singularities in E , corresponding to the north and
south poles of E . Thus, the holonomy group above mentioned is generated by a simple
loop around the equator, i.e, this is a cyclic group. Let us denote by h a generator of this
group obtained as follows. Choose a point p ∈ E and a local transverse disc � to E
centered at p. Then denote by h : (�, p) → (�, p) the holonomy map corresponding
to the equator γ = M2 ∩ E . Notice that, since E is invariant by F∗, the equator γ

corresponds to a compact leaf (periodic orbit) of the induced foliation in M2. Because
the leaves of F∗ in M2 are all compact in a neighborhood of γ , this implies that the
holonomymap (Poincaré map) corresponding to γ regardingF∗∣∣

M2 is a periodic map
of order two. Thus the F∗-holonomy map h admits a real analytic curve γ ∩ � where
its orbits are periodic of period ≤ 2. Since γ contains the origin, h is a periodic map
of period 2. This implies, by standard methods described in [8], that the foliation F
admits a holomorphic first integral. Now we claim that this first integral is of the form
f g, where f , g ∈ O2 are irreducible and reduced and, up to reordering f and g, we
must have x

∣
∣ f and y

∣
∣g in O2. This is not difficult to see since F has a Siegel type

singularity at the origin, of the form d(xy) + ω̃ = 0 and this implies that there are
exactly two (transverse) separatrices through the singular point at the origin. These
separatrices are given by given (xy = 0). Since ( f = 0) and (g = 0) correspond to
separatrices of F the result follows.
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On a Theorem of Lyapunov–Poincaré… 567

3 Proof of Theorem 1.2

Let us first state a few lemmas we shall need. First, we recall that given a topological
space X , a point p ∈ X and h : U → h(U ) ⊂ X a homeomorphism between U and
h(U ) open subsets of X , such that h(p) = p, we can define the pseudo-orbit of a
point q ∈ U as the set of all possible iterates hn(q) ∈ U , n ∈ Z. We shall say that
the pseudo-orbit of q ∈ U is closed in U if its a closed subset of U in the classical
sense of topology. This means either of the following. There are only finitely many
possible iterates of q or if any point z ∈ U which is a limit of a sequence of iterates
z = lim hk j (q) of some point q ∈ U , with k j ∈ N and lim k j = ∞ then z belongs
to the pseudo-orbit. Using representatives we shall state similar notions for germs of
homeomorphisms with a fixed point. For the case of a complex diffeomorphism map
germ, we have:

Lemma 3.1 Let h ∈ Diff(C, 0) be a germ of holomorphic diffeomorphism tangent
to the identity, i.e., h(z) = z + ak+1zk+1 + · · · Assume that there is a real analytic
invariant curve γ through the origin 0 ∈ C such that the pseudo-orbits of h in γ are
closed. Then h is the identity.

Proof of the lemma We use the well-known topological description of the germs tan-
gent to the identity in dimension one due to Camacho [2] and Leau [7]. From this
description, if the map is not the identity the only invariant curves through the origin
where the orbits are closed are the trivial ones, i.e, the origin itself. ��

Let F be a real analytic codimension one foliation with singularities in a neigh-
borhood of the origin 0 ∈ R

n . This means that F is defined by a real analytic 1-form
ω = ∑n

j=1 a j (x)dx j , defined in a neighborhood of the origin, and satisfying the
integrability condition ω ∧ dω = 0. We consider the complexification of F which
we denote by FC. This is a codimension one holomorphic foliation with singular-
ity, defined in a neighborhood of the origin 0 ∈ C

n by the complexification ωC of
the form ω. In complex coordinates (z1, . . . , zn), we can write z j = x j + iy j and
ωC = d(

∑n
j=1 z

2
j ) + ω̃C for some 1-form ω̃C with zero first jet at the origin. Now we

consider the real space Rn ⊂ C
n given by y j = 0, j = 1, . . . , n.

The next result is a well-known easy to prove lemma:

Lemma 3.2 Let F be a real analytic foliation in a neighborhood of the origin 0 ∈ R
n

whose complexification FC admits a holomorphic first integral. Then F admits a
real analytic first integral, defined in some neighborhood of the origin. Indeed, there
is a real analytic first integral f for F such that the complexification fC of f is a
holomorphic first integral for FC.

The main point is the following:

Lemma 3.3 Let X be a real analytic vector field in a neighborhood of the origin
0 ∈ R

2, having an isolated singularity at the origin and linear part at this singularity
given by DX(0) = x1

∂
∂x2

− x2
∂

∂x1
. Assume also that the orbits of X are closed (in the

classical sense of topology) in some neighborhood of the origin. Then these orbits are
periodic in some neighborhood of the origin and the origin is a center type singularity
for X.
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568 V. León , B. Scárdua

Proof The complexification XC of X is a complex analytic vector field defined in a
neighborhood of the origin 0 ∈ C

2. In complex affine coordinates (x, y) ∈ C
2 we

have XC = x ∂
∂x − y ∂

∂ y + X2 where X2 has a zero-order one jet at the origin. Then
XC generates a holomorphic foliation FC with an isolated Siegel type singularity at
the origin, of the form xdx + ydy + · · · = 0. Then FC is in the Siegel domain and
we may assume that the coordinate axes are invariant [8]. In this case the quadratic
blow-up of C2 at the origin induces a foliation (FC)∗ in the blow-up space C̃2

0 which
leaves invariant the exceptional divisor E � CP(1) and has exactly two singularities,
the north and south poles, in E , both of Siegel type. The equator γ generates the
projective holonomy of E relatively to (F)∗ via a germ of a holomorphic diffeomor-
phism h(z) = eiπ z + · · · . This map h once evaluated in a suitable transverse disc
� � D centered at some point p ∈ γ and transverse to E , leaves invariant a real
analytic curve � ⊂ �, corresponding to the intersection of the inverse image of the
real plane R2 : (Im(x) = Im(y) = 0) with the transverse section �. Restricted to �

the pseudo-orbits of h are closed. This does not mean that the trajectories of X are
periodic. Now applying Lemma 3.1 we conclude that h is periodic of period two. From
Mattei–Moussu’s theorem [8, page 473] the foliation FC admits a holomorphic first
integral in a neighborhood of the origin 0 ∈ C

2. From Lemma 3.2, we conclude that
the vector field X admits an analytic first integral. Let us denote by f : U , 0 → R, 0 an
analytic first integral of X . This means that X( f ) = 0, i.e., f is constant on each orbit
of X in V . Thanks to the linear part of X we may assume that f (x1, x2) = x21 + x22+
higher order terms and thanks to Morse lemma we conclude that the origin is a center
singularity for X . ��
Proof of Theorem 1.2 As mentioned in the introduction, the main point is (i) �⇒
(ii). Let us then assume that the leaves are closed in some small neighborhood of
the origin. According to Lemma 3.3 the origin is a center singularity. Evoking then
Lyapunov–Poincaré theorem (Theorem 1.1), we conclude thatF admits a real analytic
first integral. ��
Proof of Corollary 1.3 Lemma 3.3 shows that (i) �⇒ (ii). Theorem 1.1 shows that (ii)
�⇒ (iii). Classical Morse lemma shows that (iii) �⇒ (iv). Finally, (iv) �⇒ (i) is
straightforward from the fact that the linear part of X admits the first integral x21 + x22 .��

4 Proof of Theorem A

We now have a codimension one real analytic singular foliation F defined in a neigh-
borhood U of the origin 0 ∈ R

n, n ≥ 3. We assume that F is of the form ω = 0,
where ω is integrable real analytic and writes as ω = d(

∑r
j=1 x

2
j ) + ω̃ where the first

jet of ω̃ at the origin is zero. A first remark is that we may suppose r ≤ n − 1. The
case r = n is covered by Reeb’s theorem (Theorem B).

Let us prove (i). For this we make the following assumption:

Assumption 4.1 We have r = 2 and the leaves of F are closed in some neighborhood
of the origin.
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On a Theorem of Lyapunov–Poincaré… 569

We consider the complexification of F which we denote by FC.

First case r = 2, n = 3. In this case, the hypersurfaces given by d(
∑r

j=1 x
2
j ) = 0

are coaxial cylinders with axis on the x3-axis. Let us denote by R
2 ∼= E2 ⊂ R

3

a real plane given by x3 = Ax1 + Bx2 for some coefficients A, B such that E is
in general position with respect to F . For simplicity we shall write E = R

2. The
restriction F ∣

∣
R2 is then a foliation with an isolated singularity at the origin and given

by a 1-form d(x21 + x22 ) + · · · = 0. Moreover, by hypothesis the leaves are closed so
that by Theorem 1.2, we know that F ∣

∣
R2 admits a real analytic first integral, indeed,

it is analytically linearizable. Let us denote by h : (R2, 0) → (R, 0) a quadratic
first integral for F ∣

∣
R2 defined in a neighborhood of the origin 0 ∈ R

2. Then the
complexification hC of h is a holomorphic first integral for the complexification of
F ∣

∣
R2 to C

2. Since the operators “restriction” and “complexification” commute, we
know that the restriction of the complexification FC to C

2 is the complexification
of the restriction F ∣

∣
R2 . Thus, we have shown that F ∣

∣
C2 admits a holomorphic first

integral.
For a suitable choice of the plane E : x3 = Ax1 + Bx2, we may assume that:

Assumption 4.2 Assume that the complex plane C
2 ⊂ C

3 obtained from E is in
general position with respect to FC.

For simplicity of ideas, if E = R
2 is given by x3 = 0, then C

2 ⊂ C
3 above

mentioned is given by z3 = 0.
Under the above assumption, according to [8], the existence of a holomorphic first

integral in C2 assures the existence of a holomorphic first integral for FC in C3. This
completes this part.

Now we consider the remaining case for r = 2, i.e., n ≥ 3. Let us for instance
assume that n = 4. Given a generic linearly embedded hyperplane R3 ∼= E3 ⊂ R

4,
given by some equation x4 = Ax1 + Bx2 + Cx3 for generic coefficients A, B,C
we may consider the restriction F ∣

∣
E . This foliation in R

3 is subject to the already
considered case r = 2, n = 3. Thus, we may conclude that F ∣

∣
E admits an analytic

first integral defined in some neighborhood of the origin 0 ∈ E ∼= R
3. By Lemma 3.2,

the complexification (F ∣
∣
E )C of this foliation, is a foliation in neighborhood of the

origin 0 ∈ C
3 ⊂ C

4, and this foliation germ admits a holomorphic first integral. Let
us denote, as usual, by FC the complexification of F . Moreover, as already observed,
we haveFC

∣
∣
C3 = (F ∣

∣
R3)C, i.e,FC is the extension toC4 of the complexification of the

restriction of F to R3. In particular, the restriction of FC to C3 admits a holomorphic
first integral. The planeC3 may be assumed to be in general position with respect toF
inC4. Hence, according to [8], the existence of a holomorphic first integral for (FC)

∣
∣
C3

implies the existence of a holomorphic first integral for FC in some neighborhood of
the origin 0 ∈ C

4. By Lemma 3.2, the foliation F admits a real analytic first integral
in some neighborhood of the origin 0 ∈ R

4. The case n ≥ 5 follows from this type
argument in an induction process. This ends the proof of (i).

Let us now prove (ii). We consider first the case 3 ≤ r = n−1. Let us start with the
case r = 3 and n = 4. The corresponding linear foliation has leaves diffeomorphic
to the cylinder S2 × R in R

4. Moreover, the original foliation is given by a 1-form

123



570 V. León , B. Scárdua

ω = d(x21+x22+x23 )+ω̃(x1, . . . , x4). The procedure is pretty similar to the one adopted
for the case r = 2 and n = 3. Indeed, we consider a hyperplane R

3 ∼= E ⊂ R
4 in

general position with respect to F , given by x4 = a1x1 + a2x2 + a3x3 for some
suitable choice of a1, a2, a3. The restriction F ∣

∣
E is then a foliation given by a 1-

form ω = d(x21 + x22 + x23 ) + ω̃(x1, . . . , x4). Then Reeb’s theorem (Theorem B)
implies that F ∣

∣
E admits an analytic first integral in some neighborhood of the origin

0 ∈ E ∼= R
3. By arguments already explicit above, i.e. applying Lemma 3.2 and

the extension result in [8] (page 471), this implies that F admits a real analytic first
integral in a neighborhood of the origin 0 ∈ R

4. Proceeding by induction we conclude
that the theorem holds for the case r = n − 1.

Let us now consider the remaining cases: assume 3 ≤ r ≤ n − 2. To make
clear the ideas we consider the case r = 3 and n = 5. The corresponding linear
foliation has leaves diffeomorphic to the cylinder S2×R

2 inR5.Moreover, the original
foliation is given by a 1-form ω = d(x21 + x22 + x23 ) + ω̃(x1, . . . , x5). The procedure
is pretty similar to the one adopted for the case r = 2 and n = 3. We consider a
hyperplane R

4 ∼= E ⊂ R
5 in general position with respect to F , given by x5 =

a1x1 + a2x2 + a3x3 + a4x4 for some suitable choice of a1, . . . , a4. This restriction F̃
is given by a 1-form ω̃ = d(x21 +x22 +x23 )+ ˜̃ω(x1, . . . , x4). Then by the case r = n−1
we conclude that F̃ admits a real analytic first integral in some neighborhood of the
origin 0 ∈ R

4. By the same extension arguments recurrently used we conclude that F
admits a real analytic first integral in some neighborhood of the origin 0 ∈ R

5. The
general case is proved in a similar way by induction. This ends the proof of (ii).

5 Proof of Theorem C

Proof of Theorem C The complexification FC of F is a germ of a holomorphic codi-
mension one foliation at the origin 0 ∈ C

n . This is given by the complex 1-form ωC

obtained as the complexification of the form ω. Hence, we have FC : ωC = 0 for
ωC = dPC + PCω̃C, where ω̃C is the complexification of ω̃ and PC = ∑r

j=1 z
d
j is the

complex Pham–Brieskorn homogeneous polynomial corresponding to P .
We first observe that ω ∧ dP = Pω̃ ∧ dP + P2ω̃ ∧ dω̃. The same holds for the

complexifications ωC ∧ dPC = PCω̃C ∧ dPC + P2
C
ω̃C ∧ dω̃C. Hence, by the classical

Darboux–Jouanolou criterion, the hypersurface (PC = 0) ⊂ C
n is invariant by FC.

Moreover, the first homogeneous jet of ωC is dPC. Let us consider the blow-up at the
origin of Cn as the map σ : C̃n

0 → C
n , with exceptional divisor E = σ−1(0) ⊂ C̃

n
0

isomorphic to the projective spaceCP(n−1). The inverse image ofFC is the foliation
(FC)∗ = σ ∗(FC). Denote by R = ∑n

j=1 z j
∂

∂z j
the Euler vector field. Let us write

ωC = ∑∞
j=ν ω j in a series of degree j ≥ ν homogeneous 1-forms with ων �= 0.

We shall say that FC is non-dicritical if Pν+1 := ων(R) is non-identically zero in
which case it is a homogeneous polynomial of degree ν + 1. If this is the case then
the exceptional divisor E is invariant by (FC)∗ and the singular set sing((FC)∗) ∩ E
is called tangent cone ofFC denoted by C(FC). In the non-dicritical case, the tangent
cone is the projective hypersurface (Pν+1 = 0) ⊂ E � CP(n − 1). ��

We claim:
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Claim 5.1 FC is non-dicritical and has an irreducible tangent cone.

Proof We have ωC = dPC + PCω̃C. Since PC is homogeneous, we conclude that the
first homogeneous jet of ωC is ων = dPC and ν = d −1. Hence, ων(R) = dPC(R) =
d · PC = (ν + 1)PC using the classical Euler identity for homogeneous polynomials.
Hence, using the above notation, we have Pν+1 = (ν + 1)PC which is not identi-
cally zero. This shows that FC is non-dicritical and its tangent cone is the projective
hypersurface (PC = 0) ⊂ CP(n − 1). Since PC is the complex homogeneous Pham–
Brieskorn polynomial in variables (z1, . . . , zr ) and r ≥ 3, which is well known to be
irreducible, we conclude that the tangent cone of FC is irreducible.

We can now apply the main result in [4], i.e., since the degree of the tangent cone is
ν +1 = ps for some prime p, we conclude thatFC admits a holomorphic first integral
in some neighborhood of the origin of Cn . This implies that the foliation F admits an
analytic first integral in some neighborhood of the origin 0 ∈ R

n (Lemma 3.2). ��
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