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Abstract
Chord diagrams and 4-term relations were introduced by Vassiliev in the late 1980.
Various constructions of weight systems are known, and each of such constructions
gives rise to a knot invariant. In particular, weight systems may be constructed from
Lie algebras as well as from the so-called 4-invariants of graphs. A Chmutov–Lando
theorem states that the value of the weight system constructed from the Lie algebra
sl2 on a chord diagram depends on the intersection graph of the diagram, rather than
the diagram itself. This inspired a question due to Lando about whether it is possible
to extend the weight system sl2 to a graph invariant satisfying the four term relations
for graphs. We show that for all graphs with up to 8 vertices such an extension exists
and is unique, thus answering in affirmative to Lando’s question for small graphs.

Keywords Chord diagram · Intersection graph · 4-term relations · Vassiliev
invariants · Weight system

1 Introduction

Chord diagrams and 4-term relations appear naturally in studying knot invariants of
finite type—the notion introduced by Vassiliev [12] in the late 1980s. Vassiliev’s
theory of finite-type knot invariants [12] describes these invariants in terms of weight
systems, which are functions on chord diagrams satisfying so-called 4-term relations.
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610 K. Evgeny

Kontsevich [8] proved that over a field of characteristic 0 this correspondence is one-
to-one, that is, to each weight system a finite-type knot invariant is associated.

Aweight system can be associated with any finite dimensional complex Lie algebra
endowedwith a nondegenerate invariant bilinear form [1,8]. For the simplest nontrivial
case, that of the Lie algebra sl2, the corresponding weight system comes from the
colored Jones polynomial, a well-known knot invariant. This weight system takes
values in the algebra of polynomials in one variable, the Casimir element of sl2. Even
in this simplest case, the weight system is not understood well, and computation of its
value on a sufficiently big chord diagram is a hard task.

To each chord diagram, one associates a simple graph, its intersection graph. In [4],
it is proved that the value of the sl2 weight system on a chord diagram depends on
the intersection graph of the diagram rather than the diagram itself (that is, if two
chord diagrams have isomorphic intersection graphs, then the value of the sl2 weight
system on them is the same). Due to computational complexity, explicit formulas for
the values of this weight system on graphs are known only for small graphs or for
simple infinite families of graphs, like trees or cycles. Even in the case of complete
graphs, a conjecture of Lando about the explicit form of the answer is proved only for
the linear term of the polynomial [2].

On the other hand, in [10], a 4-term relation for simple graphs was introduced in
such a way that the mapping taking a chord diagram to its intersection graph takes
any 4-term relation for chord diagrams to a one for graphs. This construction naturally
leads to the following question posed explicitly by Lando:

whether there exists a graph invariant satisfying 4-term relations that coincides
with the sl2 weight system on intersection graphs?

The goal of the present paper is to give an affirmative answer to this question for
all graphs with up to 8 vertices. Moreover, we prove that for these graphs, such an
extension is unique. Our main tool in computation of the sl2 weight system is the
Chmutov–Varchenko recurrence relation [5]. We start with computing these values
on all intersection graphs with up to 8 vertices. Then we find, for each graph that is
not an intersection graph, its expression as a linear combination of intersection graphs
modulo 4-term relations. This gives us a presumable extension. Finally, we check that
this extension indeed satisfies all 4-term relations for graphs. As a byproduct, we get
a table of values of the sl2-weight system on all graphs with up to 8 vertices.

Our results can be considered as a part of a bigger project whose goal is to find the
answer to Lando’s question. Other achievements in this direction include the proof
in [9] of extendability to arbitrary graphs of the leading coefficient in the projection
of the sl2 weight system to primitives, and the computation [6,7] of the values of this
weight system on an infinite family of graphs that are not intersection graphs under
the assumption that such an extension exists.

Thepaper is organized as follows. InSect. 2,we recall the notions of chord diagrams,
4-term relations, weight systems. Our exposition follows [11], see also [3]. In Sect. 3,
we describe the construction of weight systems from Lie algebras, the sl2-weight
system and the Chmutov–Varchenko relations for it. Sections 4 and 5 are devoted
to a description of the computer algorithm we developed for extending the weight
system to graphs that are not intersection graphs and the results of implementing this
algorithm.
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2 Chord Diagrams and Intersection Graphs

Chord diagrams are combinatorial objects, namely, oriented circles together with a
collection of chords whose initial and terminal points are pairwise distinct, considered
up to an orientation-preserving diffeomorphism of the circles. The intersection graph
�(A) of a chord diagram A is a graph whose vertices correspond to the chords of
the diagram A, and there is an edge connecting two vertices, provided that the cor-
responding chords intersect. It is clear that to any chord diagram, there corresponds
its intersection graph. An example of such correspondence is depicted below. In the
pictures, we always assume that the circle is oriented counterclockwise.

�−→

In contrast, not each graph is the intersection graph of a chord diagram. All graphs
with 0 through 5 vertices are intersection graphs, whereas there exist two graphs with
6 vertices that are not intersection graphs, namely,

An arc diagram is a representation of chord diagram, in which the vertices of the
chord diagram are placed along an oriented line with edges drawn as semicircles in
one of the two halfplanes bounded by the line. Each of the arc diagrams corresponds
to a single chord diagram. In contrast, a chord diagram with n chords admits up to 2n
representations as an arc diagram. For example, to the following chord diagram four
arc diagrams are associated.

←→

Denote by C = C0 ⊕ C1 ⊕ C2 ⊕ ... the graded vector space of chord diagrams; the
component of grading n is the vector space Cn generated by chord diagrams with n
chords. The four-term relation on the vector space of chord diagrams is the equality:

− + − = 0

Two chords in each of the diagrams depicted above are located as they appear in
the figure. The other chords are located arbitrarily, but in the same way in each of the
four diagrams shown above; their initial and terminal points connect the dashed arcs.
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612 K. Evgeny

Denote by A = A0 ⊕ A1 ⊕ A2 ⊕ ... the quotient of the vector space C by the
4-term relation. The multiplication m on the spaceA is defined by concatenating two
arc diagrams corresponding to the factors and extending this operation by linearity.
The multiplication is well-defined modulo the 4-term relation,

m : A ⊗ A → A.

The multiplication respects the grading.

3 Weight System sl2

Let H be a Lie algebra endowed with a nondegenerate invariant bilinear form (·, ·).
Invariance means that (x, [y, z]) = ([x, y], z) for all x, y, z ∈ H . Let U (H) be an
universal enveloping algebra of the algebra H .

Pick an orthonormal basis {e1, . . . en} with respect to the scalar product (·, ·). Con-
sider the mapping w : A → U (H) of the algebra of chord diagrams modulo 4-term
relations to the universal enveloping algebra of H . For a given chord diagram d and
an arc representation a of d we construct an element of U (H) as follows. For a given
mapping of the set of arcs of the diagram a to the set {1, . . . ,m}, at the ends of each
arc, we place an element ei ∈ H if this arc goes to i . The summation over all such
mappings gives us the image of the chord diagram d inU (H). We extend this mapping
to the whole A by linearity.

For example, for m = 3:

�−→ e41 + e1e2e1e2 + e1e3e1e3 + e2e1e2e1 + e42+
+e2e3e2e3 + e3e1e3e1 + e3e2e3e2 + e43

Theorem 1 [1,8] Let H be a Lie algebra together with the nondegenerate invariant
scalar product (·, ·). Then the mapping w : A → U (H) possesses the following
properties:

(1) w does not depend on the choice of the orthonormal basis e1, . . . , em;
(2) w does not depend on choosing an arc representation of chord diagram d;
(3) the image of w lies in the center of U (H);
(4) w satisfies the 4-term relation for chord diagrams.

Note that if a chord diagram is the product of two nonempty diagrams, then the
value of the map w on it is the product of its values on the factors, so that w is an
algebra homomorphism.

In the simplest nontrivial case, namely, in the case of the Lie algebra sl2 and the
Killing form, the center of the universal enveloping algebra U (sl2) is generated by a
single element, the quadratic Casimir c = e21 + e22 + e23. In this particular case, the
function is determined by the Chmutov–Varchenko recurrence relations, which can
be considered as an alternative definition of the weight system sl2.

Let v denote the weight system sl2. It associates to a chord diagram with n chords a
polynomial of degree n in the variable c. The value of v on a chord diagram with one
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chord equals c. If a chord diagram contains a chord that intersects precisely one other
chord, in which case we call the former chord a leaf, then the value of v on the initial
chord diagram is equal to that on the chord diagram obtained from the initial one by
deleting the leaf times (c−1). If a chord diagram contains no leaves, then it contains a
triple of chords of either of the leftmost diagrams below, and the Chmutov–Varchenko
recurrence relations for the values of v on it hold:

− − + = −

− − + = −

By means of these relations, the value of v on any chord diagram can be computed
recursively. However, complexity of such a computation is exponential: at each step,
the diagram is replaced with 5 simpler diagrams.

Theorem 2 [5]

(1) The function v defined by the recurrence relations above is well-defined.
(2) The function v coincides with the weight system sl2 constructed from the Lie

algebra sl2.

4 Extending theWeight System sl2 to Arbitrary Graphs

In [10] the four-term relation for graphs is introduced.

A B

−

A B

=

A B

−

A B

Choose an arbitrary edge, say AB, of the graph—it is the first graph on the left-
hand side in the relation above. The second graph on the left-hand side is the same
graph with the AB deleted. We now describe how the graphs on the right-hand side
are obtained. Consider the set of edges (excluding AB) sharing a common vertex B.
Denote them by BC1, . . . , BCn . Now if the vertices A and Ci are connected by an
edge in the initial graph, we delete this edge; otherwise—if the vertices A and Ci

lack an edge connecting them—we add this edge. In this way, the first term on the
right-hand side is obtained. The second term differs from the first one in that it lacks
the edge AB.

For four chord diagrams forming a 4-term relation, the corresponding intersection
graphs form a 4-term relation for graphs. In contrast to, say, contraction-deletion
relations, 4-term relations do not simplify graphs (in any known sense), whence cannot
be used for recursive computation of a graph invariant satisfying them.
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614 K. Evgeny

The following assertion allows one to define the value of the weight system sl2 on
intersection graphs.

Theorem 3 [4] The value of the weight system sl2 on a chord diagram is determined
by the intersection graph of the diagram.

In other words, two different chord diagrams with isomorphic intersection graphs
have the same value of the weight system sl2.

Here is the main result of the present paper.

Theorem 4 There is a polynomial graph invariant of graphs with up to 8 vertices
satisfying the 4-term relations whose values on intersection graphs coincide with that
of the weight system sl2; such a graph invariant is unique.

5 Algorithms and Computational Results

Theorem 4 follows from a computer computation. The numbers of chord diagrams,
graphs and intersection graphs for small orders are given in the table below, see, e.g.,
[3].

Grading # Chord diagrams # Graphs # Intersection graphs

1 1 1 1
2 2 2 2
3 5 4 4
4 18 11 11
5 105 34 34
6 902 156 154
7 9749 1044 978
8 127,072 12,346 9497
9 1,915,951 274,668 127,954

To prove Theorem 4we compute the values of the weight system sl2 on graphs with
up to 8 vertices and check that the computed values satisfy all the 4-term relations.

The first step is the recursive computation of the values of the weight system sl2
on chord diagrams. We order the diagrams of a given degree in such a way that the
number of chord intersections (that is, the number of edges in the intersection graph)
is nondecreasing with respect to the chosen order. The value on a chord diagram that
is a product of two smaller diagrams is computed as the product of the values on the
factors. The value on a chord diagram d with a leaf is (c − 1) times the value on the
result of deleting the leaf in d. We repeat the removal of leaves until no leaves remain.
Then, we use one of the two Chmutov–Varchenko relations and replace the initial
diagram with 5 simpler diagrams, the values on which we already know.

For each chord diagram,we construct the corresponding intersection graph.Accord-
ing to Theorem 3, the values of the weight system sl2 on chord diagrams with
isomorphic intersection graphs are equal, and we obtain a table of the values of the
weight system sl2 on intersection graphs.
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Denote by

• Gn the set of graphs with n vertices;
• G(0)

n the set of intersection graphs with n vertices;
• G(1)

n the set of graphs in Gn that are not intersection graphs that admit a 4-term
relation expressing them as a linear combination of intersection graphs;

• G(k)
n , k > 1 the set of graphs in Gn that admit a 4-term relation expressing them

as a linear combination of graphs in G(0)
8 � G(1)

8 � · · · � G(k−1)
8 , but not belong to

the latter union.

For n = 1, 2, 3, 4, 5, all the graphs in Gn are intersection graphs, Gn = G(0)
n , and

no additional computations are required. Here are a few examples—the values of the
weight system sl2 for all connected graphs without leaves up to 5 vertices.

Graph wsl2 Graph wsl2

c c3 − 3c2 + 2c

c4 − 4c3 + 8c2 − 4c c4 − 5c3 + 10c2 − 5c

c4 − 6c3 + 13c2 − 7c c5 − 5c4 + 10c3 − 13c2 + 6c

c5 − 6c4 + 13c3 − 12c2 + 4c c5 − 6c4 + 21c3 − 30c2 + 13c

c5 − 6c4 + 16c3 − 21c2 + 9c c5 − 7c4 + 24c3 − 33c2 + 14c

c5 − 7c4 + 22c3 − 29c2 + 12c c5 − 7c4 + 25c3 − 38c2 + 17c

c5 − 8c4 + 29c3 − 43c2 + 19c c5 − 8c4 + 34c3 − 56c2 + 26c

c5 − 9c4 + 39c3 − 66c2 + 31c c5 − 10c4 + 45c3 − 79c2 + 38c
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616 K. Evgeny

Still, one have to check that the graph invariant thus defined satisfies all the 4-term
relations.

For n = 6, the set G(1)
n consists of two graphs that are not intersection graphs. The

values of the weight system sl2 on these graphs were obtained by Netrusova, see e.g.
[9].

For the twographs below, any4-term relation expresses themas a linear combination
of intersection graphs; all such decompositions lead to the same value of the weight
system sl2.

wsl2

( )
= wsl2

( )
+ wsl2

( )
− wsl2

( )

c6 − 9c5 + 38c4−
−83c3 + 83c2−

−29c

c6 − 10c5 + 53c4−
−155c3 + 205c2−

−86c

c6 − 9c5 + 41c4−
−99c3 + 112c2−

−43c

=

= c6 − 10c5 + 50c4 − 139c3 + 176c2 − 72c

wsl2

( )
= wsl2

( )
+ wsl2

( )
− wsl2

( )

c6 − 8c5 + 31c4−
−73c3 + 87c2−

−35c

c6 − 9c5 + 39c4−
−97c3 + 121c2−

−50c

c6 − 8c5 + 30c4−
−62c3 + 62c2−

−22c

=

= c6 − 9c5 + 40c4 − 108c3 + 146c2 − 63c

The cases of graphs on 7 and 8 vertices are more complicated. Computational
iterations correspond to the following statement.

Proposition 1 The set Gn, n = 4, 5, 6, 7, 8, consists of the sets with the following
cardinalities

n # Gn # G(0)
n # G(1)

n # G(2)
n # G(3)

n # G(4)
n # G(5)

n # G(6)
n # Gn\{∪G(k)

n }
4 11 11 0 0 0 0 0 0 0
5 34 34 0 0 0 0 0 0 0
6 156 154 2 0 0 0 0 0 0
7 1044 978 51 15 0 0 0 0 0
8 12,346 9497 985 665 606 131 4 0 458

In the case of 7 vertices, we choose such a 4-term relation in order to calculate the
values of the weight system sl2 for each of the 51 graphs in G(1)

7 and then the rest

15 graphs in G(2)
7 . The final step consists in verification that the obtained extension

satisfies all the 4-term relations. For example, the four possible 4-term representations
for the following graph in G(2)

7 lead to the same result:
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wsl2

( )
= wsl2

( )
+ wsl2

( )
− wsl2

( )

c7 − 8c6 + 30c5−
−60c4 + 81c3−
−76c2 + 29c

c7 − 11c6 + 61c5−
−196c4 + 357c3−
−324c2 + 108c

c7 − 10c6 + 49c5−
−138c4 + 231c3−

−204c2 + 68c

=

= wsl2

( )
+ wsl2

( )
− wsl2

( )

c7 − 8c6 + 30c5−
−60c4 + 81c3−
−76c2 + 29c

c7 − 11c6 + 59c5−
−184c4 + 350c3−
−354c2 + 130c

c7 − 10c6 + 47c5−
−126c4 + 224c3−

−234c2 + 90c

=

= wsl2

( )
+ wsl2

( )
− wsl2

( )

c7 − 8c6 + 32c5−
−74c4 + 97c3−
−65c2 + 17c

c7 − 10c6 + 49c5−
−148c4 + 270c3−

−253c2 + 87c

c7 − 9c6 + 39c5−
−104c4 + 160c3−

−122c2 + 35c

=

= wsl2

( )
+ wsl2

( )
− wsl2

( )

c7 − 8c6 + 32c5−
−74c4 + 97c3−
−65c2 + 17c

c7 − 11c6 + 62c5−
−212c4 + 436c3−
−460c2 + 172c

c7 − 10c6 + 52c5−
−168c4 + 326c3−
−329c2 + 120c

=

= c7 − 9c6 + 42c5 − 118c4 + 207c3 − 196c2 + 69c

In the case of 8vertices,we also successively construct the setsG(0)
8 ,G(1)

8 , . . . ,G(5)
8 .

The union G(0)
8 �G(1)

8 �G(2)
8 �G(3)

8 �G(4)
8 �G(5)

8 contains 11888 graphs. To compute
the value of wsl2 on the rest 458 graphs, we constructed a system of linear equations,
one for each pair consisting of such a graph and a 4-term relation for it. It happened
that the system, although overdetermined, possesses a unique solution. The final step
consists in checking that the computed values satisfy all the 4-term relations for G8,
which completes the proof of Theorem 4.

Analysis of the results of the computations led to a discovery of a new phenomenon.
In contrast to the case of smaller number of vertices, it happened that not all the
coefficient of the extended polynomial invariant are integers. For example,

wsl2

( )
= c8−12c7+ 78c6−332c5+ 1025c4−2004c3+ 4001

2 c2−717c

There are 458 graphs on 8 vertices with fractional coefficients; all these coefficients are
half-integers and of monomial c2. This phenomenon shows that even if the answer to
Lando’s question is positive, one cannot expect that a resulting graph invariant satisfies
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618 K. Evgeny

a simple contraction–deletion-type recursive relation. Still, however, the coefficients
of the extended invariant have alternating signs.

In the case n = 9, there are 274668 graphs, 127954 ofwhich are intersection graphs.
The computation of the weight system sl2 on graphs with 9 vertices is out of reach for
computer algorithms known to the author.

6 Computer Data

The following files with the computer data are available at link https://drive.google.
com/drive/folders/1bINcS2ZWYw6gCVpANsrfRXZgvdEO_GYJ

The file “AllGraphsSl2.txt” contains the list of all graphs with 4 to 8 vertices as
well as the values of the weight system sl2 on each of them.

The file “FourRelationsList.txt” contains the list of all 4-term relations for these
graphs.

Thefile “Computations.nb” is theWolframMathematica computer programdemon-
strating sample computations that confirm the results of the previous section.
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