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Abstract
The 1d family of Poncelet polygons interscribed between two circles is known as the
Bicentric family. Using elliptic functions and Liouville’s theorem, we show (i) that this
family has invariant sum of internal angle cosines and (ii) that the pedal polygons with
respect to the family’s limiting points have invariant perimeter. Interestingly, both (i)
and (ii) are also properties of elliptic billiardN-periodics. Furthermore, since the pedal
polygons in (ii) are identical to inversions of elliptic billiard N-periodics with respect
to a focus-centered circle, an important corollary is that (iii) elliptic billiard focus-
inversive N-gons have constant perimeter. Interestingly, these also conserve their sum
of cosines (except for the N = 4 case).

Keywords Poncelet · Jacobi · Elliptic functions · Porism · Elliptic billiards ·
Bicentric · Confocal · Polar · Inversion · Invariant

Mathematics Subject Classification 51M04 · 51N20 · 51N35 · 68T20

1 Introduction

The bicentric family is a 1d family of Poncelet N-gons interscribed between two spe-
cially chosen circles [19, Poncelet’s Porism]. The special case of a family of triangles
with fixed incircle and circumcircle was originally studied by Chapple 80 years before
Poncelet [14]. Any pair of conics with at least two complex conjugate points of inter-
section can be sent to a pair of circles via a suitable projective transformation [2].
Based on this, in the 1820s, Jacobi produced an alternative proof to Poncelet’s Great
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620 P. Roitman et al.

Fig. 1 The bicentric family (solid orange) is the polar image of elliptic billiard N-periodics (blue) with
respect to a circle (dashed gray) centered on f1 (which coincides with limiting point �1). Also shown are
the constant-perimeter bicentric pedals (pink and purple) with respect to either limiting point, f1 = �1 and
�2. Video (colour figure online)

theorem based on simplifications afforded by his elliptic functions over the bicentric
family [5,7,13].

Referring to Fig. 1, a known fact is that the polar image1 of two non-intersecting
circles with respect to either one of their limiting points is a pair of confocal conics
with a focus coinciding with the limiting point chosen [2] (see Appendix A).

Recall that a pair of non-intersecting circles C1 and C2 is associated with a pair of
limiting points �1, �2 which, if taken as centers of inversion,2 send the original circles
to two distinct pairs of concentric circles [19, Limiting Points].

Conversely, the bicentric family is the polar image of elliptic (or hyperbolic) billiard
N-periodics with respect to a circle centered on a focus (see Sect. 5). Recall the latter
conserve both perimeter3 and Joachimsthal’s constant [18].

Main Results Though the bicentric family was much studied in the last 200 years,
interactive experimentation with their dynamic geometry has led us to detect and

1 The polar of a point P with respect to a circle C centered on O is the line L containing the inversion of
P wrt C and perpendicular to OP .
2 Note that �1, �2 coincide with the two points of intersection of all circles orthogonal to C1 and C2. This
implies that the abovementioned inversions will result in concentric circles.
3 Billiard inscribed in hyperbolas conserve signed perimeter, see Sect. 5.
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New Invariants of Poncelet–Jacobi Bicentric Polygons 621

prove a few new curious facts, perhaps known to the giants of the nineteenth century
but never jotted down.

• Theorem 1: The sum of the cosines of bicentric polygons is invariant over the
family. This mirrors an invariant recently proved for elliptic billiard N-periodics
[1,4,10,16].

• Theorem 2 The perimeter of pedal polygons of the bicentrics with respect to its
limiting points is invariant; see Fig. 1. Notice this too mirrors perimeter invariance
of elliptic billiard N-periodics.

• Corollary 1: bicentric pedals with respect to a limiting point are identical to the
inversion of billiard N-periodics with respect to a focus; therefore, the latter also
conserves perimeter. In fact, it was this surprising observation (see this Video) that
prompted the current article.

• Conjecture 1: Experiments show that the two limiting pedal polygons also conserve
their sum of cosines, except for the case of the N = 4 pedal with respect to �1.

Article Structure

In Sect. 2, we review Jacobi’s parametrization for bicentric polygons. We then use
it to obtain expressions in terms of Jacobi elliptic functions for each of the above
invariants, see Sects. 3 and 4. Section 5 paints a unified view of the five polygon
families mentioned herein. A list of illustrative videos appear in Sect. 6.

Details of polar and pedal transformations are covered in Appendix A. The param-
eters for a pair of confocal ellipses (or hyperbolas) which are the polar image of the
bicentric pair are given in Appendix B. Conversely, the parameters for a bicentric pair
which is the polar image of confocal ellipses are given in Appendix C. In Appendix D,
we provide elementary parametrizations for the vertices of N = 3 and N = 4 bicen-
tric polygons. In Appendix E, we provide explicit expressions of their perimeters and
sums of cosines as well as curious properties thereof.

RelatedWork

A few of our experimental conjectures for elliptic billiardN-periodic invariants [10,16]
have been proved: (i) invariant sum of cosines and (ii) invariant product of outer
polygon cosines [1,4], and (iii) invariant outer-to-orbit area ratio (for odd N) [6].
Dozens of other conjectured invariants appear in [17].

2 Review: Jacobi’s Parametrization for Bicentric Polygons

In 1828, Jacobi found a beautiful proof for a special case of Poncelet’s closure theorem
using elliptic functions. In particular, he provided a very simple parametrization for
the family of N-sided bicentric polygons that appear in Poncelet’s theorem. We will
use his parametrization below, and it is appropriate to recall it here.

Referring to Fig. 2, consider two circles CR and Cr , with radii R and r , respectively.
Let d denote the distance between their centers. We will consider polygons that are
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622 P. Roitman et al.

Fig. 2 A pair of circles, along
with a chord p j , p j+1 of the
outer circle tangent to the inner
one

inscribed in CR and also are either inscribed or exscribed in Cr . By exscribed in Cr ,
we mean that extensions of the sides of the polygon are tangent to Cr . Let p j (u),
j = 1, . . . , N be the vertices of a N-sided bicentric family of polygons, parametrized
by the real variable u, with all the vertices in CR .

Jacobi noticed that his elliptic functions could be used to provide an explicit expres-
sion for the p j (u). Namely, if we write

p j (u) = R
[
cos (2φ j (u)), sin (2φ j (u))

]
. (1)

Indeed, he proved that [5]:

φ j (u) = am(u + jσ, k), (2)

where am(u, k) is the classical Jacobi amplitude function [3], k is the modulus and it
is related to R, r and d by the following expression [5, pp. 315]:

k2 = 4Rd

(R + d)2 − r2
, 0 < k < 1. (3)

The real number K is defined by:

K =
∫ π

2

0

dt
√
1 − k2 sin2 t

,

and finally, σ is given by

σ = 4τK

N
,

where τ is a positive integer and N > 2.
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New Invariants of Poncelet–Jacobi Bicentric Polygons 623

Actually, Jacobi treated only the case where one of the circles is inscribed, but his
argument also holds for the exscribed case [5].

Below we recall some fundamental facts about three of Jacobi’s elliptic func-
tions: sn(z, k) = sin (am(z, k)), cn(z, k) = cos(am(z, k)) and dn(z, k) =√
1 − k2sn2(z, k), where z ∈ C, and 0 < k < 1 is the elliptic modulus. Since k

is fixed, we write sn(z) instead of sn(z, k), etc.
These functions have two independent periods and also have simple poles at the

same points. In fact:

sn(u + 4K ) = sn(u + 2i K ′) = sn(u),

cn(u + 4K ) = cn(u + 2K + 2i K ′) = cn(u),

dn(u + 2K ) = dn(u + 4i K ′) = dn(u),

K ′ = K (k′), k′ =
√
1 − k2.

The poles of these three functions, which are simple, occur at the points

2mK + i(2n + 1)K ′, m, n ∈ Z.

They also display a certain symmetry around the poles. Namely, if z p is a pole of
sn(z), cn(z) and dn(z), then, for every w ∈ C, we have [3, Chapter 2]:

sn(z p + w) = − sn(z p − w),

cn(z p + w) = − cn(z p − w),

dn(z p + w) = − dn(z p − w). (4)

3 Bicentric Family: Invariant Sum of Cosines

Theorem 1 The sum of cosines of angles internal to the family of N-periodics inter-
scribed in a bicentric pair is invariant.

Proof Let {p j (u)}, as in (1), denote the vertices of the family of bicentric polygons.
Let θ j (u) denote the internal angle at the vertex p j (u). It follows from elementary
geometry that cos θ j (u) = − cos(φ j+1(u) − φ j−1(u)). Thus, if we denote by S(u)

the sum of the cosines of the internal angles, we have:

S(u) =
∑

cos θ j (u) = −
∑ (

cn(u j+1)cn(u j−1) + sn(u j+1)sn(u j−1)
)
, (5)

where u j = u + jσ .
We now consider the natural complexified version of S(u) defined on the complex

plane by assuming that u is a complex variable. To prove that S is constant, it is
sufficient to show that it has no poles and then apply Liouville’s theorem.

So, suppose that u = u p is a pole of S. This implies that, for a certain index j ,
u j = u p + jσ is a common pole of cn(z) and sn(z). We will now see that this leads
to a contradiction.
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624 P. Roitman et al.

In fact, by looking at (5), the terms where u j appears are given by

−(cn(u j )cn(u j−2) + sn(u j )sn(u j−2) + cn(u j+2)cn(u j ) + sn(u j+2)sn(u j )).

Thus, the coefficients of cn(u j ) and sn(u j ) are, respectively:

−(cn(u j−2) + cn(u j+2)),

−(sn(u j−2) + sn(u j+2)).

Note that by (4) both coefficients are zero, and they cancel out the simple poles of
cn(z) and sn(z) at u j , so u p is not a pole of S. ��

4 Bicentric Limiting Pedals: Invariant Perimeter

In this section, we prove that the two pedal polygons of a bicentric Poncelet family
with respect to circles centered on either of its two limiting points (see below) conserve
perimeter.

Definition 1 (Pedal polygon) Given a planar polygon P and a point p, the pedal
polygon P⊥ of P wrt p has vertices q j at the orthogonal projections of p onto the jth
sideline p j p j+1 or extension thereof.

Definition 2 (Limiting point) Any pair of non-intersecting circles is associated with
a pair of “limiting” points �1, �2 which lie on the line connecting the centers, with
respect to which the circles are inverted to a concentric pair.

Let CR be a circle of radius R centered at the origin (0, 0) and Cr be a circle of
radius r centered at (−d, 0). Then the limiting points (δ±, 0) of the pencil of circles
defined by CR and Cr has abscissa given by [19, Limiting Point, Eqn. 5]:

δ± = r2 − R2 − d2 ± √
d4 − 2(R2 + r2)d2 + (R2 − r2)2

2d
. (6)

Let P(u) be the family of bicentric polygons with respect to a pair of circles CR

and Cr , where u is the real parameter introduced by Jacobi, with vertices given by (1).
Let � denote a limiting point of the pencil defined by these circles, as in (6). Below,
we derive an expression for the length of the sides of pedal polygons P⊥(u) defined
by P(u) and �.

Lemma 1 Let p j−1(u), p j (u) and p j+1(u) be three consecutive vertices of P(u), let
s j (u) = |q j+1(u) − q j (u)| be jth sidelength of P⊥. Then:

s j (u) = r j (u)ρ j (u)

2R
, (7)
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New Invariants of Poncelet–Jacobi Bicentric Polygons 625

where r j (u) = ∣∣p j−1(u) − p j+1(u)
∣∣ and ρ j (u) = ∣∣� − p j (u)

∣∣. In addition, r j (u)

and ρ j (u) are given by the following expressions.

r j (u) = 2R sin (φ j+1(u) − φ j−1(u))

= 2R
(
sn(u j+1)cn(u j−1) − sn(u j−1)cn(u j+1)

)
, (8)

where u j = u + jσ .

ρ j (u) = 2

k

√−δ±R dn(u j ). (9)

Proof The proof of (7) follows the standard one for sidelengths of the pedal triangle
[12, pp. 135–141]. Equation (8) follows by inspection from Fig. 2, and the definition
of Jacobi’s sn(u) and cn(u). Finally, (9) is a long but simple computation. Below we
show a few intermediate steps. First, if we let � = (δ±, 0) be either limiting point.
Then:

ρ j (u) = cos(φ j (u))

√
R2 − 2Rδ± + δ2±.

It is straightforward to check that δ± < 0. Substitute the expression (6) for δ± in
the expression for ρ j (u) to obtain:

ρ j (u) =
√−δ±

d

(
R2 + d2 − r2 − 2Rd cos (2φ j (u))

)
.

Finally, using (3), we get:

ρ j (u) = 2

k

√−δ±R
√
1 − k2sn2(u j ) = 2

k

√−δ±R dn(u j ).

��
We are now in a position to prove the following.

Theorem 2 The perimeters L± of the pedal polygons of the bicentric Poncelet family
with respect to either limiting point are invariant.

Proof From Lemma 1, the perimeter is given by:

L±(u) =
√−δ±R

k

∑
dn(u j )

(
sn(u j+1)cn(u j−1) − sn(u j−1)cn(u j+1)

)
.

To prove the above is constant, we consider its natural complexified version, that
is, we think of L± as function of a complex variable u. Clearly, L± becomes a mero-
morphic function defined on the complex plane. To prove that L± is constant, we will
show that it is entire and bounded. So, by Liouville’s theorem, it must be constant.
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Fig. 3 The bicentric family (solid orange) and its two polar images: the elliptic billiard (blue) and the
hyperbolic billiard (green). Also shown are the two pedal polygons (pink and purple) with respect to the
limiting points �1 = f1 and �2. All but the bicentrics have constant perimeter. All five families conserve
their sum of cosines (colour figure online)

In turn this amounts to showing L± has no poles. Now, suppose that, for u = u p,
a certain u j is a common simple pole of sn(z), cn(z) and dn(z). This is the only way
that L± can have a pole.

From the expression of L±, it follows there are three terms in the sum where the
pole u j of the three Jacobian elliptic functions appears:

dn(u j−1)
(
sn(u j )cn(u j−2) − sn(u j−2)cn(u j )

)
,

dn(u j )
(
sn(u j+1)cn(u j−1) − sn(u j−1)cn(u j+1)

)
,

dn(u j+1)
(
sn(u j+2)cn(u j ) − sn(u j )cn(u j+2)

)
.

We have to prove that the sum of these terms is finite at u j . To see this, consider
first the term that multiplies dn(u j ), namely

sn(u j+1)cn(u j−1) − sn(u j−1)cn(u j+1).
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Fig. 4 The bicentric family (orange, center) is the hub from which four polygon families can be derived:
the (i) elliptic (resp. (ii) hyperbolic) billiard with foci f1 = �1, f2 (resp. f ′

1 and f ′
2 = �2) is the bicentric

polar image with respect to �1 (resp. �2); (iii) the first (resp. second) pedal is obtained with respect to �1
(resp. �2). These are the inversive image of the elliptic and hyperbolic billiards with respect to l1 = f1
or l2 = f ′

2, respectively. With the exception of the bicentrics, all 4 derived families conserve perimeter L
(in the case of the hyperbolic billiard, it is the signed perimeter L∗ which is conserved). All five families
conserve sum of cosines, except for N = 4 �1-pedals (colour figure online)

Since u j = u+ jσ is a pole and u j+1 = u j +σ , u j−1 = u j −σ it follows from (4)
that sn(u j−1) = −sn(u j+1) and cn(u j−1) = −cn(u j+1). Therefore, the expression
above is zero. And this cancels the simple pole of dn(u) at u j . The same argument
can be applied to the terms that multiply sn(u j ) and cn(u j ) and this shows that u p is
not a pole of L±.

So L± has no poles and by the periodicity of the elliptic functions, it must be
bounded. Thus, by Liouville’s theorem L± is constant. ��

In Appendices B and C we show that the image of two nested circles wrt to �1 is
a confocal pair of ellipses; therefore under this transformation, a bicentric N-gon is
sent to an elliptic billiard N-gon. Lemmas 2 and 3 found in the Appendix A show that
the bicentric pedal with respect to �1 is identical to its polar image (elliptic billiard
N-periodic) inverted with respect to a circle centered on f1 = �1. Therefore:

Corollary 1 Over the family of N-periodics in the elliptic billiard (confocal pair), the
perimeter of inversions of said N-periodics with respect to a focus-centered circle is
invariant.

Though not yet proved, experimental evidence suggests:

Conjecture 1 The sum of cosines of bicentric pedal polygons with respect to either
limiting point is invariant, except for the �1-pedal in the N = 4 case.
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628 P. Roitman et al.

5 A Tale of Five Polygons

Illustrated in Fig. 3 is the bicentric family along with its two limiting-pedals and its
two polar images (elliptic and hyperbolic billiards), each with respect to a limiting
point. While N-periodics in the elliptic billiard conserve perimeter, their hyperbolic
version conserve signed perimeter, i.e., the length of a trajectory segment touching
both hyperbola branches (resp. a single branch) is subtracted (resp. added) to the
perimeter.

As shown in Fig. 4, the bicentric family can be regarded as a “hub” fromwhich four
derivedpolygon families canbeobtained, all ofwhich conserveboth (signed) perimeter
and the sum of cosines. Bicentric polygons themselves have variable perimeter.

6 List of Videos

Videos illustrating some of the above phenomena are listed on Table 1.

Acknowledgements We would like to thank Arseniy Akopyan, Sergei Tabachnikov, and Jair Koiller for
invaluable discussions during the discovery phase. The second author is fellow of CNPq and coordinator
of Project PRONEX/CNPq/FAPEG 2017 10 26 7000 508.

Appendix A: Polar Pedal Transformations

We review properties of polar and pedal transformations. A detailed treatment is found
in [2,11].

In the discussion that follows, all geometric objects are contained in a fixed plane.
Let C be a circle centered at f1. The polar transformation with respect to C maps each
straight line not passing through f1 into a point, and maps each point different from
f1 into a straight line. This is done in the following manner.
Let p 	= f1 be a point and let p† be the inversion of p with respect to C. The straight

line L p that passes through p† and is orthogonal to the line joining p and p† is the
polar of p with respect to C. Conversely, a line L not passing through f1 has a point
q as its pole with respect to C if L = Lq .

For a smooth curve γ not passing through f1, we can define the polar curve γ � in
two equivalent ways. Let p be a point of γ and Tpγ the tangent line to γ at p, we
define p� = (Tpγ )�, and γ � is the curve generated by p� as p varies along γ . We can
also think of γ � as the curve that is the envelope of the 1-parameter family of lines
L p, where p is a point of γ .

The notion of a polar curve can be naturally extended to polygons in the following
manner: let L j , j = 1, 2, . . . , N be the consecutive sides of a planar polygon P ,
and let q j be the corresponding poles, then this indexed set of points are the vertices
of what we call the polar polygon P�. Alternatively, we can consider the polars of
vertices of P , and their consecutive intersections do define the vertices of P�.

Although the next results are certainly classical, we could not find them explicitly
in the literature, so we include them for the reader’s convenience.
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Table 1 Videos illustrating some phenomena presented herein

id N Title youtu.be/ < . >

01 5 Invariant-perimeter limiting point pedals 8m21fCz8eX4

02 3…8 Bicentric pedals, polars, and inversions I jhXDKRFLpVk

03 3…8 Bicentric pedals, polars, and inversions II A7F3szW7rUE

04 3…8 Bicentric pedals, polars, and inversions III 6TmaezNFrOs

05 4 Bicentric pedals, polars, and inversions IV fZe6elRTfeA

06 5 A rose in the elliptic garden: the invariant-perimeter,
focus-inversive family

wkstGKq5jOo

07 5 Focus-inversive polygons of elliptic Billiard self-
intersected 5-periodics

LuLtbwkfSbc

08 5 Inversive arcs of elliptic billiard N-periodic segments and
the bicentric family

mXkk_4RYrnU

09 6 Focus-inversive polygons of elliptic Billiard self-
intersected 6-periodics

7lXwjXj-8YY

10 7 Focus-inversive polygons of elliptic billiard self-
intersected 7-periodics I

BRQ39O9ogNE

11 7 Focus-inversive polygons of elliptic billiard self-
intersected 7-periodics II

gf_aHyvbqOY

12 8 Focus-inversive polygons of elliptic billiard self-
intersected 8-periodics I

5Lt9atsZhRs

13 8 Focus-inversive polygons of elliptic billiard self-
intersected 8-periodics II

93xpGnDxyi0

14* 5 Circular loci of focus-inversive centroids of elliptic bil-
liard simple 5-periodics

jzW84ZZApA

15* 5 Circular loci of focus-inversive centroids of elliptic bil-
liard self-intersected 5-periodics

7bzID9SVwqM

16* 6 Focus-inversive polygons of elliptic billiard 6-periodics
and the null-area antipedal polygon

fOAES-CzjNI

17* 5 Invariant area ratio of focus-inversives to elliptic billiard
N-periodics

eG4UCgMkKl8

18* 5 Invariant product of areas amongst the two focus-
inversive elliptic billiard N-periodics (odd N)

bTkbdEPNUOY

The last column is clickable and provides the YouTube code. The entries whose id has an asterisk (*)
represent phenomena detected experimentally but not yet proved

Lemma 2 Let E be an ellipse and f1 one its the foci. Then the polar curve E� with
respect to a circle C centered at f1 is a circle. Let H be a hyperbola and f1 one of
its foci. Then, the polar curve H� with respect to a circle C centered at f1 is a circle
minus two points.

Proof We will use polar coordinates for our computations. Without loss of generality,
let f1 = (0, 0) and consider the parametrized conic given by:

γ (t) =
[
a(1 − e2)

1 + e cos t
cos t,

a(1 − e2)

1 + e cos t
sin t

]
,
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where if e > 1, the trace of γ is a hyperbola and if e < 1, the trace of γ is an ellipse.
The expression for the polar curve γ �(t) is obtained by direct computation: compute
the unit normal n(t) to γ (t), and the distance d(t) from the tangent line through γ (t)
to f1. This yields:

γ �(t) =
[
e + cos t

a(1 − e2)
,

sin t

a(1 − e2)

]
,

whose trace is clearly contained in a circle. For the hyperbola, the parameter t is such
that 1 + e cos(t) 	= 0, this is why H� is a circle minus two points. ��
Lemma 3 Let E1 and E2 be two confocal ellipses and E�

1 and E�
2 be the circles as in

Lemma 2, then f1 is a limiting point of the pencil of circles defined by E�
1 and E�

2 . In a
similar way, let E and H be respectively an ellipse and hyperbola that are confocal,
and let E� and H� be the circle and the circle minus 2 points, as in Lemma 2, then
f1 is a limiting point of the pencil of circles defined by E� and the circle that contains
H�.

Proof Given two circles C1 and C2, a classical result states that the limiting points δ±
of the pencil of circles determined by C1 and C2 are such that the inversion of C1 and
C2 with respect to circles centered on δ± are concentric.

If we denote by ai and ei , i = 1, 2, respectively, the semi-major diameter and
eccentricity of the ellipses E1 and E2, then, by symmetry, we can define an unknown
limiting point as δp = (x, 0), and the concentric circle condition then becomes a
quadratic equation in the variable x , where the coefficients depend on a1, a2, e1 and
e2. Using the fact that E1 and E2 are confocal, which is equivalent to e1a1 = e2a2, and
with some algebraic manipulations, the quadratic equation can be written as:

(a1 − a2)(a1 + a2)(e2a2x + 1) = 0,

so f1 = (0, 0) is indeed one of the limiting points of the pencil of circles. ��

Appendix B: Polar Image of Bicentric Pair

Consider the pair of nested circles:

Cint : x2 + y2 = r2, Cext : (x + d)2 + y2 = R2.

Their limiting points �1 and �2 are given by [19, Limiting Points]:

�1 = (R2 − d2 − r2 − �)/(2d), �2 = (R2 − d2 − r2 + �)/(2d),

where

� = √
(d + R + r) (R − d + r) (R + d − r) (R − d − r).
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Notice �1 (resp. �2) is internal (resp. external) to the circle pair. Below we show
that the polar image of the Cint, Cext pair with respect to a circle of radius ρ centered
on �1 (resp. �2) is a confocal pair of ellipses (resp. hyperbolas).

Lemma 4 The polar image of Cint with respect to �1 is the ellipse E centered at

Oe =
[
ρ2 d

�
+ k − �

2d
, 0

]
,

where k = R2 − d2 − r2. Its semi-axes are given by:

a2 = ρ4
(
2d2r2 + �(k + �)

2�2r2

)
, b2 = ρ4

(
k + �

2�r2

)
.

Note that c2 = a2 − b2 = ρ4d2/�2.

Lemma 5 The polar image of Cext with respect to �1 is an ellipse E ′ confocal with E
with semi-axes given by:

a′2 = ρ4 (2R2d2 + �(k′ + �))

2�2R2 , b′2 = ρ4
(
k′ + �

2�R2

)
,

where k′ = R2 + d2 − r2.

Lemma 6 The polar image of Cint with respect to �2 is the hyperbola H centered at

Oh =
[
−ρ2 d

�
+ k + �

2d
, 0

]
,

with semi-axes given by:

a2h = ρ4
(
2d2r2 − �(k − �)

2�2r2

)
, b2h = ρ4

(
k − �

2�r2

)
.

Note that c2h = a2h + b2h = ρ4d2/�2. Note also that c = ch .

Lemma 7 The polar image of Cout with respect to �2 is a hyperbola H′ confocal with
H. Its semi-axes are given by:

a′2
h = ρ4

(
2R2d2 − �(k′ − �)

2�2R2

)
, b′2

h = ρ4
(
k′ − �

2�R2 .

)
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Appendix C: Polar Image of Confocal Pair

Consider a pair of origin-centered confocal ellipses E and E ′ with semi-axes a, b and
a′, b′, respectively. Their common foci f1, f2 lie at:

f1 = [−c, 0], f2 = [c, 0],

where c2 = a2 − b2.
Below we show that the polar image of the E, E ′ pair with respect to a circle of

radius ρ centered on f1 is a pair of nested circles Cint, Cext with centers given by:

Oint =
[
−c − ρ2 c

b2
, 0

]
, Oext =

[
−c − ρ2 c

b′2 , 0
]
.

Note the distance d between said centers is given by:

d = ρ2 c (a2 − a′2)
b2 b′2 = ρ2 ca

2 J 2

b′2 ,

where J = √
a2 − a′2/(ab).

Their respective radii r , R are given by:

r = ρ2 a

b2
, R = ρ2 a′

b′2 .

Let �1 (resp. �2) be the limiting point internal (resp. external) to Cint, Cext.

Lemma 8 The limiting points �1, �2 are given by: [−c, 0] and [−c + ρ2

c , 0].

Appendix D: Bicentric Vertices: N = 3, 4

Consider a pair of circles

C1 : x2 + y2 − r2 = 0, C2 : (x + d)2 + y2 − R2 = 0.

D.1. N = 3

Let (x0, y0) = (r cos t, r sin t) ∈ C1. Let d2 = R(R − 2r). Then, the 3-periodic orbit
is parametrized by {P1, P2, P3}, where

P1 =
[
cos t(2 dR cos t + R2 − d2) + � sin t

2 R
− d,

sin t(2dR cos t + R2 − d2) − � cos t

2 R

]

,

P2 =
[
cos t(2 dR cos t + R2 − d2) − � sin t

2 R
− d,

sin t(2dR cos t + R2 − d2) + � cos t

2 R

]

,
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P3 =
⎡

⎣−
(R cos t − d)

(
R2 − d2

)

R2 + d2 − 2 dR cos t
,

−R
(
R2 − d2

)
sin t

R2 + d2 − 2 dR cos t

⎤

⎦ ,

� =
√(

R2 + d2 − 2dR cos t
) (
3 R2 − d2 + 2 dR cos t

)
.

Under the above pair of circles, the limiting points are at:

l1 =
[
R2 − d2

8 dR2

(√
(9 R2 − d2)(R2 − d2) + 3 R2 + d2

)
, 0

]
,

l2 = l1 −
[√

9R2 − d2(R2 − d2)
3
2

4R2d
, 0

]

.

D.2. N = 4

Let (x0, y0) ∈ C1. The Cayley condition for a pair of circles to admit Poncelet 4-
periodics due to Kerawala is [19, Poncelet’s Porism, Eq. 39]:

1

(R − d)2
+ 1

(R + d)2
− 1

r2
= 0.

Let Pi = [xi , yi ], i = 1, . . . , 4 denote the vertices of a bicentric 4-periodic. Let
α = R2 + d2 and β = R2 − d2. The vertices are parametrized as:

x1 = � y0 − (β + 2 dx0) (dα − βx0)

2α
,

y1 = −� x0 +
(
2 dβx0 + α2

)
y0

2 α
,

x2 = −� y0 − (β + 2 dx0) (dβ − βx0)

2 α
,

y2 = � x0 + 2 dβ y0 x0 + α2 y0
2 α

,

x3 = (((x20αβ − 4x20α2 + 3/2β3 − 2β2α)
√
2α − 2β + β(2�αy0 + 8α2x0 − 8αβx0 + β2x0))β)

(4(
√
2α − 2βαx0 + β(β − 2α)/2)2)

,

y3 = αβ(α(2x0 y0α + β(x0 y0 − 2�))
√
2α − 2β + (4�x0 − 2β y0)α2 − 2�αβx0 + β3y0)

(2
√
2α − 2βαx0 − 2αβ + β2)2

,

x4 = − (((x20αβ − 4x20α2 + 3/2β3 − 2β2α)
√
2α − 2β + β(−2�αy0 + 8α2x0 − 8αβx0 + β2x0))β)

(4(
√
2α − 2βαx0 + β(β − 2α)/2)2)

,

y4 = (α(2x0 y0α + β(x0 y0 + 2�))
√
2α − 2β + (−4�x0 − 2β y0)α2 + 2�αβx0 + β3y0)β

(2
√
2α − 2βαx0 − 2αβ + β2)2

,

� =
√

−2
√
2α − 2β αx0β2 − 2x20α3 + 2x20α2β + α2β2 + αβ3 − β4

(2α
.

Under the above pair of circles, the limiting points are at:

l1 =
[
R2 − d2

2d
, 0

]
, l2 =

[
d(R2 − d2)

R2 + d2
, 0

]
.
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Fig. 5 N = 3 case: the bicentric family (solid orange) is the poristic family [8]. Its sum of cosines is
invariant and equal to those of the two limit point pedals (pink and purple). The Gergonne points X7,1 and
X7,2 of each pedal are stationary. (colour figure online) live

Appendix E: Limiting Pedal Perimeters for N = 3 and N = 4

Belowwe consider 3- and 4-periodics in the confocal pair where a, b are the semi-axes
of the outer ellipse has axes (a, b). Below, set δ = √

a4 − a2b2 + b4 and c2 = a2−b2.

E.1. N = 3 case

Referring to Fig. 5, the perimeter L† of the inversive polygon for the N = 3 family,
originally derived in [15, Prop. 4] is given by:

L† = L+ = ρ2

√(
8 a4 + 4 a2b2 + 2 b4

)
δ + 8 a6 + 3 a2b4 + 2 b6

a2b2
.

By Corollary 1, this is equal to the perimeter L− of the bicentric pedal with respect
to the focal limiting point.

L− =
(
9 R2 − d2

) (
R2 − d2

)√
2ρ2

16 R4d

√

− (
R2 − d2

) 3
2

√
9 R2 − d2 + 3R4 + 6R2d2 − d4,
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R = (2a4 − 2a2b2 + b4 + (2a2 − b2)δ)aρ2/b6, d = (2a2 − b2 + 2δ)cρ2a2/b6.

The perimeter L+ of the bicentric pair with respect to the non-focal limiting point
is given by:

L+ =
(
9 R2 − d2

) (
R2 − d2

) √
2ρ2

16 R4d

√
(
R2 − d2

) 3
2

√
9 R2 − d2 + 3R4 + 6R2d2 − d4,

R = (2a4 − 2a2b2 + b4 + (2a2 − b2)δ)aρ2/b6, d = (2a2 − b2 + 2δ)cρ2a2/b6.

The sum of cosines of a triangle is given by 1 + r/R and is therefore constant for
the N = 3 bicentric family. Let θ ′

i denote the angles of the bicentric polygon. The sum
of its cosines can be derived as:

∑
cos θ ′ = 1 + r

R
= 3R2 − d2

2R2 . (10)

Proposition 1 The sum of cosines for the first and second N = 3 bicentric pedals are
constant and identical to (10).

Note: In terms of the associated elliptic billiard parameters, this is given by [15,
Prop. 6]:

∑
cos θ†(N=3) = δ(a2 + c2 − δ)

a2c2
.

Proof Using CAS, it follows from straightforward calculations with the orbit
parametrized in Appendix D. ��

The two limiting pedals have stationary Gergonne points X7. The first one was
derived in [9, Proposition 1]:

X7,1 =
[
c

(
1 − ρ2

δ + c2

)
, 0

]
,

X7,1 = (R2 − d2)((R2 − d2)3/2
√
9R2 − d2 + 3R4 + 6R2d2 − d4)

16R4d
.

E.2. N = 4 case

Referring to Fig. 6, the perimeter L† of the inversive polygon for billiard 4-periodics
was originally derived in [9, Prop. 18]. It is identical to the perimeter of 4-periodics
themselves and given by:

L† = L+,N=4 = 4
√
a2 + b2

b2
. (11)
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Fig. 6 In the N = 4 case, remarkable things happen: (i) the sum of cosines of the f1-pedal (pink) is not
constant; (iii) its perimeter is the same as the corresponding billiard 4-periodic; (iv) the vertices of the
l2-pedal (purple) are collinear and (v) the sum of its cosines is 4. (colour figure online) Video

Proposition 2 In the N = 4 family, the vertices of the bicentric pedal with respect to
the non-focal limiting point are collinear.

Proof The polar image of the bicentric family with respect to �2 is a pair of confocal
hyperbolas, see Appendix B, i.e., the polar image of bicentric 4-periodics is a billiard
family. It can be shown its vertices are concyclic with the two hyperbolic foci f ′

1, f ′
2,

one of which coincides with �2. Therefore, the inversion of said vertices with respect
to �2 is a set of collinear points. ��

As before, Eq. (11) is the same as the perimeter of the first bicentric pedal. The
perimeter L+ of the non-focal bicentric pedal is given by:

L−,N=4 = 4a2

b2c
.

Regarding the sum of cosines, it is well known a circle-inscribed quadrilateral has
supplementary opposing angles, i.e.:

Observation 1 The sum of cosines of a bicentric N = 4 family is null.

Since the second bicentric pedal is a degenerate polygon:
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Observation 2 The sum of cosines of the second limiting pedal to the N = 4 bicentric
family is equal to 4.

References

1. Akopyan, A., Schwartz, R., Tabachnikov, S.: Billiards in ellipses revisited. Eur. J. Math. (2020). https://
doi.org/10.1007/s40879-020-00426-9

2. Akopyan, A.V., Zaslavsky, A.A.: Geometry of Conics. American Mathematical Society, Providence
(2007)

3. Armitage, J.V., Eberlein, W.F.: Elliptic Functions. Cambridge University Press, London (2006)
4. Bialy, M., Tabachnikov, S.: Dan Reznik’s identities and more. Eur. J. Math. (2020). https://doi.org/10.

1007/s40879-020-00428-7
5. Bos, H.J.M., Kers, C., Raven, D.W.: Poncelet’s closure theorem. Expo. Math. 5, 289–364 (1987)
6. Chavez-Caliz, A.: More about areas and centers of Poncelet polygons. Arnold Math. J. (2020). https://

doi.org/10.1007/s40598-020-00154-8
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