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Abstract

We consider an embedded n-dimensional compact complex manifold in n + d dimen-
sional complex manifolds. We are interested in the holomorphic classification of
neighborhoods as part of Grauert’s formal principle program. We will give conditions
ensuring that a neighborhood of C,, in M,,;4 is biholomorphic to a neighborhood of
the zero section of its normal bundle. This extends Arnold’s result about neighbor-
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Keywords Neighborhood of a complex manifold - Normal bundle - Solution of
cohomological equations with bounds - Holomorphic extension - Holomorphic

linearization - Resonances - Small divisors condition - Holomorphic foliations

Mathematics Subject Classification 32Q57 - 321.30 - 32110 - 37F50 - 58F36

Xianghong Gong: partially supported by a grant from the Simons Foundation (award number: 505027)
and NSF grant DMS-2054989. Laurent Stolovitch: research of L. Stolovitch was supported by ANR grant
“ANR-14-CE34-0002-01" for the project “Dynamics and CR geometry” and by ANR grant
“ANR-15-CE40-0001-03" for the project “Bekam”.

B Laurent Stolovitch
stolo@unice.fr

Xianghong Gong
gong @math.wisc.edu
1 Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA

2 Laboratoire J.-A. Dieudonné U.M.R. 7351, CNRS, Université Cote d’ Azur, Parc Valrose, 06108 Nice
Cedex 02, France

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-021-00192-w&domain=pdf
http://orcid.org/0000-0002-4023-7614

62 X. Gong, L. Stolovitch

Contents
I Introduction . . . . . . . . . 62
2 Full Linearizations, Horizontal Foliations, and Vertical Linearizations . . . . . ... ... ... 67
2.1 Transition Functions . . . . . . . . . . . .. 68
2.2 The Equivalence of Transition Functions . . . . . . ... ... ... ... .......... 70
2.3 The Full Linearization of a Neighborhood . . . . . . . ... ... ... ... ... ..... 73
2.4 Horizontal Foliations and Vertical Trivializations . . . . . ... ... ... .. ... .... 75
2.5 The Vertical Linearization . . . . . . ... .. ... .. ... .. 76
2.6 An Open Problem on the Horizontal Linearization . . . . . . ... ... ... ... ..... 76
2.7 Coboundary Operators in Symmetric Powers and Coordinates . . . . . ... ... ... ... 77
2.8 Formal Obstructions in Cohomology Groups . . . . . . . . . . ... ... 79
2.9 Automorphisms of Neighborhood of the Zero Section of Flat Vector Bundles . . . . . . . .. 80
2.10Formal Coordinates in the Absence of Formal Obstructions . . . . . . ... ... ... ... 84
3 A Majorant Method for the Vertical Linearization . . . . . . .. ... ... ... ... ...... 88
3.1 Conjugacy Equations and Cohomological Equations . . . . . . . ... ... ... .. .... 89
3.2 A Modified Fischer Norm for Symmetric Powers . . . . . ... ... ... ... ...... 90
3.3 A Majorization in the Modified Fischer Norm for the Vertical Linearization . . . . ... .. 93
4 A Majorant Method for the Full Linearization with a Unitary Normal Bundle . . . . . . ... .. 100
5 The Full Linearization . . . . . . . .. ... . ... ... . 106
5.1 Domains for Iteration and the Donin Condition . . . ... ... ... ... .. ....... 106
5.2 A Newton Method for the Full Linearization . . . . . . .. ... ... ... ......... 112
5.3 AnExample of Arnol’d . . . . . ... 116
54 Counter-Examples . . . . . . . . .. 119
5.5 AFoliation Example . . . . . . ... . 120
Appendix A. L2 Bounds of Cohomology Solutions and Small Divisors . . . . . ... ... ..... 121
A.1 AQuestionof Donin . . . . . . . .. 121
A.2 Bounds of Solutions of Cohomology Equations . . . . . ... ... ... .......... 122
A.3 Donin’s Smoothing Decomposition . . . . . . . .. ... ... o 126
A.4 Finiteness Theorem with Bounds . . . . . . .. ... ... ... ... ... . ... . ..., 130
A.5 Existence of Nested Coverings . . . . . . . . ... oo ittt 136
References . . . . . . . . 143

1 Introduction

We are interested in the classification of the germs of neighborhood of an embedded
compact complex manifold C in a complex manifold M. Here, two germs (M, C)
and (M, C) are holomorphically equivalent if there is a biholomorphic mapping F
fixing C pointwise and sending a neighborhood V of C in M into a neighborhood V
of C in M. These considerations can be useful to extend holomorphic objects such as
cohomology classes of holomorphic sections of bundles over C or functions on C to a
neighborhood of C in M. Indeed, it might be that such an extension problem is much
easy to solve on an equivalent neighborhood. We are also interested in the existence of
a non-singular holomorphic foliation of the germ of neighborhood of C in a complex
manifold having C as a compact leaf. We refer to it as a “horizontal foliation”.

A neighborhood V of an embedded complex manifold C, in M;,4 has local holo-
morphic charts (h;, v;) = ®; mapping V; onto \7 in C"*? with n = dim C. Here
UV; is a neighborhood of C and U; := V; N C is defined by v; = 0. The above-
mentloned classification of the germs of neighborhoods of C is then the c1a551ﬁcat10n
of transition functions ®; := PP ! under holomorphic conjugacy F~ CijF To
such an embedding, one can assoc1ate the normal bundle N¢ (M) of C in M, which
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Equivalence of Neighborhoods of Embedded Compact Complex... 63

has the transition matrices gx;j(p), p € Ux N U;. To this embedding one can asso-
ciate another natural embedding, namely the embedding of C as the zero section of
Nc(M). Under a mild assumption, this last embedding (Nc (M), C) naturally serves
as a first order approximation of (M, C). Let ¢; = @[y, and let ¢x; = (pk(pj_l
be the transition functions of C. To have a neighborhood of C in M equivalent
to a neighborhood of the zero section in N¢(M) is equivalent to seeking F; such
that &)kj = Fk_lCijFj are of the form Ci)kj(hj, v;j) = (gkj(hj), txj(hj)v;) with
tj(hj) = gij, the latter being regarded as the transition functions of a neighbor-
hood of the zero section of N¢(M). We call this process a “full linearization” of the
neighborhood. The above-mentioned “horizontal foliation™ will be obtained as a con-
sequence of a “vertical linearization” of the neighborhood which amounts to seeking
Fj such that Oy = (prj (h)) + ¢ (hj, v)), tkj (hj)v)).

Without even considering holomorphic equivalence problem, it is known that there
are formal obstructions to linearizing [16,34] or to linearizing vertically [42] a neigh-
borhood; see Sect. 2. Part of the Grauert formal principle [6,13,18,29] is to seek
geometry conditions that ensure a holomorphic linearization when the formal obstruc-
tions are absent. In this paper, we will obtain a linearization of a neighborhood of an
embedded compact complex manifold C,, at the absence of formal obstructions under
small divisor conditions in the form of bounds of solutions of cohomology equations
involving all symmetric powers of N5, the dual of the normal bundle N¢ of C, in
M, ;4. Because of the very nonlinear nature of the problem, we need to work with a
family of nested domains on which we solve and eventually bound the solutions of
1-cohomological equations. Indeed, we are naturally led to dealing with shrinking of
the domains as we need to get estimates of derivatives of sections (by Cauchy esti-
mates for instance). To be more precise, assume that a 1-cocycle f with value in the
sheaf of sections of holomorphic bundle (involving symmetric power S N/, for some
m > 2)on C vanishes in the 1st cohomology group over a covering V. Then there is a
0-cochain w over W such that §w = f. Nevertheless, we need to prove the existence
of a (possibly different) solution u satisfying the linear equation §u = f and a “lin-
ear” estimate of the form [|u|lyy < K| f |y (the norm is either L? or the sup-norm).
Because of the nonlinear nature of our problem, we need to solve the linear equation
iteratively and estimate solutions of the form du,, = Fi, (f2, ..., fms U2, ooy Um—1),
m > 2. Here F,,,(f2, ..., fm,Uu2,...,Un—1) is a nonlinear function and vanishes in
a first cohomology group. Therefore, the bound K, depending on m, will compound,
which leads to a problem on non-linear estimates. Here come some of the main issues :
we need that, at the limit, the sequence of nested domains, over which the solutions
are estimated iteratively, remains to cover the manifold. And we need to control the
growth of the bound K with respect to m, that gives rise to the so-called small divi-
sors condition. Therefore, the existence of any bound K for linear solutions u without
shrinking the covering W is a basic question. The latter was solved affirmatively by
Kodaira—Spencer [26, eq. (9), p. 499] for the case of line bundles for a general cov-
ering. For higher rank vector bundles, we provide a positive solution in the following
result :

Proposition 1.1 Let C be a compact complex manifold. There exists a family of cov-
erings U = {U;} of Cwithry, <r < r*and Uj’- = (p;I(A’r’) via a holomorphic
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64 X. Gong, L. Stolovitch

coordinate map ¢ j mapping U j’ " onto the polydisc A, such that for any holomorphic

vector bundle E over C, and each f € C'! (?/{’/, E), the space of 1-cochains on u" of
holomorphic sections with values in E, satisfying f = Sug for some ug € COU" , E),
there existu € COU" , E) and v € CO(U" , E) such that Su = f and v = f, and

|u|r/ = K(E)|f|r” (1.1

ol < —E) ),
= =)t

(1.2)
Here r', r” are any numbers satisfying ro <r”" <v' <7 <r*andr' —r" <r* —7F,
and t, K(E), D(E) are independent of r', r".

Here, we have used the sup-norm (or L?-norm) of cochains of holomorphic sections
of bundles (see Sect. A.2 for specific notations). We do not know if K (E) and D(E)
are comparable when they are applied to the symmetric powers of N except when
Nc¢ is unitary. We note that Hormander [20,35] obtained solutions with bounds for
cohomology groups with respect to the @ operator acting on the sheaf of (p, ¢)-forms
with L? coefficients on bounded pseudoconvex domains in C".

The estimate (1.2) was proved by Donin [9] for a special family of coverings by
the L? theory. He also raised the question if estimate (1.1) exists, which is the basic
question mentioned above. Proposition 1.1 gives us a more flexible kind of results and
ultimately an estimate that holds without any shrinking for higher rank vector bundles
via the above mentioned nested coverings. We also use the L2-theory. We first obtain
(1.2) by Theorem A.9. Then (1.1) is obtained by Lemma A.2. The constant K (E)
is defined for the kind of bundles we need in Definition A.5. This is summarized in
Theorem A.12. The main results of this paper are based on the existence of nested
finite coverings proved in subsection A.S5.

Proposition 1.1 will be a useful tool in this paper. We now formulate our main
results. We say that TcM = TM|¢ splits if TcM = TC @& N¢ holomorphically.
For instance, T¢ E splits for any holomorphic vector bundle E over C, where T¢c E is
the restriction of T E to its zero section identified with C. Here and in the sequel, we
identify C with the zero section of E. We say that N is flat if the transition matrices
of N¢ are locally constant. We say that N¢ is unitary if its transition matrices are
unitary. Note that the maximum principle implies that a unitary N¢ is flat; see a proof
following Definiton 2.2. We have the following “vertical linearization” result:

Theorem 1.2 Let C, be a compact submanifold of M4 with splitting Tc M and
unitary Nc. Let ng = 1 and

Nm = K(NC®Sm(Né))m max nml"'nmp»

1+ tmpt+s=m

where the maximum is taken in 1 < m; < m for all i and s € N. Assume that there
are positive constants L, Lo such that

Nm < LoL™, m=1,2....
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Assume that H(C, Nc ® SZ(NE)) = Oforallt > 1.Assume that either H' (U, Nc ®
s¢ (NE) = 0 forall € > 1 or a neighborhood of C is formally vertically linearizable
by a formal holomorphic mapping that is tangent to the identity (see Definition 2.5).
Then the embedding is actually vertically linearizable by a holomorphic mapping that
is tangent to the identity.

When C is a compact holomorphic curve embedded in a complex surface M with
a unitary normal bundle N¢, the above vertical linearization is one of main results in
Ueda [42] where H(C, Nc ® SY(N})) = 0 for all £ > 1 follows from his small-
divisor condition. This has been generalized by Koike in higher codimension case
under a strong assumption that N is a direct sum of unitary line bundles [27,28]; see
also the direct sum condition stated in [28, Lemma 3.4 and Remark 3.5]. The Ueda
theory for codimension-one foliations has also been extended by Claudon-Loray—
Pereira—Touzet [7] and Loray—-Thom-Touzet [31]. We remark that Theorem 1.2 via
the flatness of N¢ ensures the existence of a “horizontal” foliation :

Corollary 1.3 Under assumptions of Theorem 1.2, there exists a neighborhood of Cy,
in M4 that admits an n-dimensional smooth holomorphic foliation having C, as a

leaf.

The following results can be understood in the context of the Grauert formal
principle for rigidity: If (M, C) is formal equivalent to (N¢, C), then they are holo-
morphically equivalent under suitable assumptions. We first consider the unitary case.

Theorem 1.4 Let C,, be a compact submanifold of M, +q. Suppose that N¢ is unitary.
Letng = 1 and

nm = max (K(Nc ® S"(N&)), K(TC ® S™(N¢))) max My == Ny

mi+---+mp+s=m

where the maximum is taken in 1 < m; < m for all i and s € N. Assume that there
are positive constants L, Lo such that

mm < LoL™, m=1,2.... (1.3)

If Tc M splits and H' U, TcM ® SZ(N;;)) = 0 forall £ > 1 or more generally if a
neighborhood of C in M is linearizable by a formal holomorphic mapping which is
tangent to the identity, then there exists a neighborhood of C in M which is equiva-
lent to a neighborhood of C (i.e the Oth section) in Nc by a holomorphic mapping
that is tangent to the identity. In that case, we say that the embedding C — M is
holomorphically linearizable.

More generally, the following result treats more general cases, including the case
where N is not necessarily flat.

Theorem 1.5 Let C,, be a compact submanifold of My, +4. Suppose that

log D, (25)
o ET o

o +o00, (1.4)

k>1
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where D, (2K is defined by (5.27). Suppose that either H*(C,TC ® SY(N{)) =0
forall € > 1, or N¢ is flat. Assume further that either Tc M splits and H' (U, Tc M ®
Se(Né)) =O0foral ¢ > 1or (M,C) and (N¢c, C) are equivalent by a formal
holomorphic mapping which is tangent to the identity. Then (M, C) and (Nc, C) are
actually holomorphically equivalent.

The previous results can be seen as “full linearization” results. Theorem 1.4 is
proved using a majorant method while Theorem 1.5 is based on a Newton scheme.
It is not clear how to compare the two “small divisors conditions” (1.3) and (1.4)
although the counterparts in theory of dynamical systems are equivalent [4,5].

Let us mention a few results for the above-mentioned Grauert formal principle.
The formal principle holds in the following cases: (a) negative N¢ in the sense of
Grauert, by results of Grauert [13] and Hironaka-Rossi [18]. In Grauert’s case, Cp,
has a system of strictly pseudoconvex neighborhoods and consequently C,, is the
only compact n-submanifold near C,. In the same spirit, Savelev proved that all
neighborhoods of embeddings of P! in complex surfaces with a unitary flat normal
bundle are holomorphically equivalent [38]. (b) sufficiently positive N¢ and dim C >
2, by a result of Griffiths [16, Thm II (i)] showing that a neighborhood is determined
by a finite-order neighborhood. In other words, under this condition the holomorphic
classification of neighborhoods is “finitely determined”. (¢c) H!(C, N¢) = 0 and the
case that for each x € C there is x’ € C such that the fiber of N¢ at x is generated by
global sections of N¢ vanishing at x’, by a result of Hirschowitz (see [19] for more
general results)!. (d) 1-positive N¢, by a result of Commichau-Grauert [8].

We should remark that the above “full linearization” result was obtained by
Arnol’d when C is an elliptic curve and M is a surface, where the vanishing of
HY(X,TcM ® S‘M) follows from the non-vanishing of “small divisors” [2,3].
Ilyashenko and Pyartli [23] proved an analogous result for special embeddings of
the product flat tori under a strong assumption that N¢ is a direct sum of flat line
bundles. We emphasize that in our Theorem 1.5, for general compact manifolds C,,,
we impose the vanishing of H(X, Tc M ® S¢ M) for all integers £ > 2 whereas there
is no restriction on H% when C has affine transition functions for coordinate charts
and N is flat.

As a simple consequence, we have the following

Corollary 1.6 Under assumptions of Theorem 1.5 on C and M, any holomorphic sec-
tion of a holomorphic vector bundle E over C extends to a holomorphic section of a
holomorphic-vector-bundle extension of E over a neighborhood of C in M.

Corollary 1.7 Let C be a compact complex manifold. Let (M, C) be equivalent to
(C x C%,C) by a formal holomorphic mapping which is tangent to the identity.
Suppose that the small-divisor condition in Theorem 1.5 is satisfied. Then (M, C) is
holomorphically equivalent to (C x C¢, C).

We now give an outline of the paper.

1 Recently, Jun-Muk Hwang proved instances of Hirschowitz’s conjecture on the Formal Principle [22].
The authors thank Takeo Ohsawa for acknowledging this work.
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In Sect. 2, we study the formal obstructions to the full linearization and vertical
linearization problems. The formal obstructions are known from work of Nirenberg-
Spencer [34], Griffiths [16], Morrow—Rossi [32], for the the full linearization problem
and by Ueda [42] (see also Neeman [33] and among others) for the vertical lin-
earization problem. The obstructions are described in H!(C, E® S'N &) for anatural
vector bundle E that is either Tc M or N¢. In this paper we emphasize the role of
HY(C,TcM ® S* N¢). In local dynamical systems, the elements in the analogous
group appear as finite symmetries in the Ecalle—Voronin theory [1] and centralizers
for the linearizations [12]. The small divisors in local dynamics emerge in the form
of the bounds K (N¢ ® SZN(’S) and D(TcM ® S‘ZNé) in Proposition 1.1. In work of
Arnol’d [2] and Ueda [42], the vanishing condition of the corresponding zero-th coho-
mology groups is not explicit; however, it follows from their small-divisor conditions.

In Sect. 3, we prove Theorem 1.2 by using Ueda’s majorization method [42]. In
our case the majorization relies on an important tool of the (modified) Fischer norm
which is invariant under a unitary change of coordinates. The invariance allows us
to overcome the main difficulty in our majorization proof to deal with the transition
functions of N when they are unitary, but not necessarily diagonal. The (modified)
Fischer norms have also been useful in other convergence proofs [24,30,40]; see also
Koike [28] for a recent use of Fischer norms in the diagonal case. In Sect. 4, we
also extend the majorant method to the full linearization problem for the special case
where N¢ is unitary. In Sect. 5, we obtain the full linearization in the general case by
introducing a Newton scheme, i.e. a rapid convergence scheme as in Brjuno’s work
[4,5]; see also [37,41]. However, we must cope with the domains of transition functions
which are not so regular. These domains, when carefully chosen, have nevertheless a
disc structure. This allows us to obtain a proof using sup-norm estimates.

Finally, the paper contains an appendix which has interests in its own right. It has
two results, namely the existence of the two bounds stated in Proposition 1.1 and the
existence of nested coverings (see Definition A.1). The existence of bound K (E) was
employed by Ueda [42] through the complete system of Kodaira—Spencer [26] when
dim C =1 and codimy; C = 1.

We will prove Proposition 1.1 using some techniques developed by Donin [9]. Our
proof also relies on a “quantified” version of Grauert—-Remmert finiteness theorem
[15]. The existence of bound D(E' ® S tE" ) was proved by Donin [9] for the so-called
“normal” coverings. We have used nested coverings in the proof of Proposition 1.1 as
well as the convergence proof in Theorem 1.5. We believe that the methods and tools
developed in this article will be useful for other kinds of problems.

2 Full Linearizations, Horizontal Foliations, and Vertical
Linearizations

In this section, we describe the problem of equivalence of a neighborhood of a complex
compact submanifold C of M with a neighborhood of the zero section in the normal
bundle of C in M as a “full” linearization problem of the transition functions of
this neighborhood. We also describe the existence of a holomorphic foliation of a
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neighborhood of C having C as a leaf as a consequence of a vertical linearization
problem of the transition functions of this neighborhood.

We will first describe the formal coordinate changes in terms of cohomological
groups of holomorphic sections of a suitable sequence of holomorphic vector bundles.

2.1 Transition Functions

We recall basic facts on vector bundles, which we refer to [17, Chap. 0, Sect. 5].
We first set up notation. If a vector space E has a basis e = {ey, ..., eq}, then a
vector v in E can be expressed as

v=_¢gle,, £=(&', ... &Y.

Here, we use the summation notation: £*¢,, stands for Zﬁzl &Me,. The £/’s are the
coordinates or components of v in the basis e.

We recall that a holomorphic vector bundle E over a complex manifold X is defined
by aprojection 7 : E — X and holomorphic trivializations ¥ : 7~ YD i) — DjxC"
such that each W;: 7~ !1(D;) — D; x C" is a biholomorphism, and ¥;(E,) =
{p} xC" forE, := 7~ (p). Furthermore {D ;1 1s an open covering of X and the maps
Wi = W' DyND;j x € — DN D; x C” satisfy

Vi (p, &) = (P, grj (P)&)), 2.1
where g ; are transition matrices which are holomorphic and invertible on D N D;.
Thus for & e, = &'e; ., we have
S[f = gllfj,ﬁ;, €jn = g]‘:j,uek,m (2.2)
Eo= g, e = (g;)e;. 23)
They satisfy the cocycle conditions,
gkjgjk =1d, onDr N Dj; grigij = gkj» onDiND;N D, 2.4)

where Id is the identity matrix. We also need to consider the dual bundle E*. Let

e}k. be the basis dual to ¢; so that (e;fﬁu(ej,v))lfﬂ,vg is the identity matrix. Suppose
§;Le;‘. L= gkue,’g u € E*. Corresponding to (2.3), we have

ef = grjel, o= (8¢ 2.5)

Let us also express transition functions for various vector bundles in coordinate
charts as above. Let C,, be a compact complex manifold embedded in complex mani-
fold M}, 1 4. We cover a neighborhood of C in M by open sets V; so that we can choose
coordinate charts (z;, w;) on V; for M such that

Ui=CnV;={w; =0}.
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Then U = {U;} is a finite covering of C by open sets on which the coordinate charts
zi = (z}, ..., 2" are defined. Let

% = @kj(zj) = (/)k(Pj_l(Zj) (2.6)

be the transition function of C on Uy; := Ui N Uj. It is a biholomorphic mapping
from @ (Uy;) onto @i (Uyg;) in C". Then T C has a basis

over U; and its transition matrices sy; have the form

az¥
st p(@) = —= : 2.7)
) az/ UjNUk
9 9
Thus for ngW = n;“@ on U; N Uy, we have ni = sij(z;)n;.
. . . . dwy
Regarding the normal bundle N¢, its transition matrices t,g.yv(z j) = akaj” lu;nu;

on U; N Uy are for the basis

0
fipw= — mod TC, 1<pu<d.
Bwi

Thus for S,ﬁ‘ finw= S}’.L Jie.u» wehave & = 1 (z;)&;. With notation (2.1), the transition
matrices of T M |¢ are then of the form

(s WG L .
8kj ‘= (0 tkj) (zj) onU;NU

for some n x d matrices /. Note that % lc =0.
Throughout the paper, 74;(z;) are the transition matrices of N for the base dw ;.
Note that
_ =t
Tkj = (tkj ).
More specifically, if w? , := dw7 |ly; and ;;Lw;f’ y= o wy.,» then (2.5) becomes
o= @)'E wi =1y )Hw]. (2.8)
We remark that the cocycle conditions (2.4) for N¢ now take the form

tkj(Zj)tjk(ze) =IdonU; N Uy, 1 (z7)tj¢(ze) = tre(ze) onU; N U N Up.
2.9)
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70 X. Gong, L. Stolovitch

We say that T M splits on C, if there is a (non-canonical) decomposition
TM|c =TC&®N¢c, Nc = Ne. (2.10)

Equivalently, there exists a system of coordinate charts such that on C, the transition
matrices of T M |¢ are of the form

sii 0

a .
In other words, o =0,
Wi

Throughout the paper, we assume that 7 M splits on C and we fix a splitting (2.10).
Then the change of bases of the normal bundle N¢ has a simple form

3 9
a_‘w;é =[jk,V(Zk)m’ OHUijk.
J

zk = @xj (2)),

In summary, for a neighborhood of the embedded manifold C in M with splitting

TcM, we can find a covering V = {V;}, with ®;(V;) = Ul- X W,-, by open sets on M

and coordinates (z;, w;) defined on V;. We assume that U; := C N V; is defined by

{w; = 0}. A neighborhood of C will then be described by transition functions on Vj;
of the form

o zk=<I>Zj(Zj,wj) :=<pkj(zj)+¢,i’j(zj-,wj),
ki

) ) (2.11)
wy = q)kj(Zj, w;j) =t (z;)w; +¢kj(Zj, w;).

Here, ¢,}€’j (resp. ¢,’{’j) are holomorphic functions of vanishing order > 2 along w; = 0:

bz w)) = O(w;). ¢ (zj. wj) = O(w;[*). (2.12)
That ¢,i’j vanishes to order > 2 follows from the fact that T M|¢ splits as TC & N¢
(see above and [32, proposition 2.9]). An interested reader can also refer to [32] for a
non-splitting example. Define

Nij(hj,vj) = (orj(z)), tj(hj)vj).

Our goals are to apply changes of coordinates to simplify ¢,fj, ok ;» Or one of them,
according to the problem we study.

2.2 The Equivalence of Transition Functions
The germ of neighborhood of an embedded manifold is well-defined. For the formal

normalization, we need to introduce (semi) formal charts and formal neighborhoods
of an embedded manifold in a (semi) formal manifold.
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Definition 2.1 We call M an (admissible and splitting) formal neighborhood of C if
there are holomorphic coordinate charts ¢; on U; where {U} is a covering of C and
there are formal power series

@ wj) = ®;(p, w) = (9;(p), tj(pw) + Y @ o(p)w?,
101=2

where ®; o are holomorphic functions in U; and each ¢; is an invertible holomorphic

d x d matrix on U. Note that the formal transition functions Cka = dsk dA>]_1 have the
form

(i)kj(Zj, w;) = (@kj(z)), tkj(zj)w;) + Z ékj,Q(zj)wJQ, zj € 9j(U;j N Uk).
[Q0]>1

(a) When all ®; are holomorphic, the formal neighborhood M is called the germ of
a (holomorphic) neighborhood of C.
(b) M is called a linear neighborhood of C if additionally

Dy (zj,v)) = (orj (z)), tj (2))V;) (2.13)

and each #; is an invertible holomorphic matrix in Uy N U;. The terminology is
meaningful since the o ; can be realized as the transition functions of a holomor-
phic vector bundle over C, namely the normal bundle of C in M.

We are mainly interested in the classification of a neighborhood of C for a given C.
Therefore, it is reasonable to assume that the local trivialization of C are fixed. In other
words, ¢y; are fixed and we will only consider mappings sending a neighborhood of
C into another neighborhood of C that fix C pointwise.

Definition 2.2 We shall say that N¢ is flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Uy) transition functions in a possibly

refined covering. If Tc M := (T M)|c is holomorphically flat, or flat, i.e. in some
coordinates both transition functions N¢ and T C are constant matrices, then by (2.7)

wkj(2j) = skjzj + ckj
where si; are constant matrices and c; are constant vectors. Then, the transition
functions of a neighborhood of the zero section of the normal bundle, &Dk ; as defined
in (2.13) read
Arj(zj, wj) = (Skjzj + Ckj, tijwj).

We will use the following notation: When N¢ is flat, we write its transition matrices
1xj(z;) as tj, indicating that they are independent of z;.
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As mentioned in the introduction, a unitary holomorphic vector bundle is flat.
Indeed, let #;; be unitary and holomorphic transition matrices. Let (f1, ..., fa) be a
row vector of the matrices. We have

AP+ -+ 1 fal? = 1. (2.14)

Fix a point p € Uy N U;. Conjugating the matrix by a constant unitary matrix, we
may assume that (f1,..., fg) = (1,...,0) at p. By the maximum principle, (2.14)
implies that near p, f; = 1 and hence f; = 0for j > 1.

Definition 2.3 We shall say that a change of coordinates {F;} preserves the germ of
a neighborhood of the zero section of N¢ with transition maps {Ny;} if each F; is
biholomorphic and fixes v; = 0 pointwise and Fy Ny; = Ny; F;, in which case we say
that {F;} preserves {NNy;} for simplicity.

We further observe the following.
Lemma 2.4 Let M, M be two (admissible) neighborhoods of C, of which coordinate
charts are {®;}, {®;}, respectively. Let &y; = CI)de]Tl and Py = chcDJTI,

(a) There is a biholomorphic mapping F: M — M, defined near C and fixing C, if
and only if there are biholomorphic mappings F; satisfying

Fk&)kj(z,', wj) =Py Fi(zj, wj), Fj(z;,0)=(z;,0). (2.15)
(b) If F; satisfies (2.15), then

Fj(zj,wj) = LFj(zj, w)) + O(w;[»), LFj = (zj +5j@)wj, ujz)w)),
sk (Zj)tej(zj) = Dorj(zj)s;(z;),
up(erj (zj)te (z) = tj(zj)uj(z)).
Assume further that F preserves the splitting. Then s; = 0.
(¢) Let TC and N¢ be flat and let F; be (semi) formal biholomorphism fixing C
pointwise. Suppose that Fk_l<l>kjE,~ = Nij + 0(|v|§). Then {LF;} preserves
{Nj}, i.e. LExNij(LF;)~" = Ny;j, where

Fj(hj, Uj)ZLFj(hj, vj) + O(|vj|2), LFj(/’lj, vj):(hj—l—sj(hj)vj,uj(hj)vj).

Proof The points (a),(b) can be verified easily. For (c), let us expand F; ®y;(hj, vj) =
Nijo Fj(hj,vj) + 0(|vj|2) and compare the constant and linear terms in v;. We
obtain

o (1)) + 5 (o (h)tkjvj = @ij(hj + 55 (hjvj) + O(lvj %),
i (i (hp)tjvj = tijuj(hj)vj + O(lvj[%).

Here we have used the assumption that #;; are constant. Since ¢y; are affine, the
two identities still hold if we drop O (Jv; |2) from them. This shows that L FyNy; =
NyjLF;, again using the fact that 7 are constant and ¢y; are affine. O
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Finally, we mention that we will choose the atlas of C so that each ¢; is a biholo-
morphism from U onto the unit polydisc A, in C" and from a neighborhood U j of U_j
onto another larger polydisc. When C is embedded in a complex manifold M, we can
extend ¢; to V; to get a coordinate chart ®; on V; such that ® ; maps V; onto U; x Ag.

This can be achieved since any holomorphic vector bundle over l}j is holomorphically
trivial. Thus N¢ |y, splits. Consequently, we can use a flow box of holomorphic normal
vector fields to construct the required @ ;. Therefore, if C is embedded into another

complex manifold M, we will choose the atlas of a neighborhood of C in M such that
the restriction of the chart on U; agrees with ¢;.
Therefore, we introduce the following.

Definition 2.5 We say that a formal neighborhood {®;} of C is equivalent to a neigh-
borhood {ékj} of C in M by a formal holomorphic mapping F that is tangent to the
identity, if there are formal maps F(z;) = (zj, wj) +_|g|~1 Fj,Q(zj)ij such that
Fj o(z;) are holomorphic functions in U; and as power series in w

Fi®yj(zj, w)) = Op Fi(z), w)).

We take F = &' F;®;, which is well-defined, when @ = @@ and dy; =
o

2.3 The Full Linearization of a Neighborhood

In this case, our goal is to seek new coordinates (g, vx) so that all d:,i‘j, ¢>}{’j are 0.
Let us consider a change of coordinates in a neighborhood of C by modifying the
old coordinate charts (zz, wy) via Fj,. We write it as

oz = Fl(hi, ) = he + £, vr),

" (2.16)
wi = FY (hie, vi) = v + 2 (hie, vp).

Here, fkh (hk, ve) and f;”(hy, vi) are holomorphic functions vanishing to order > 2
at vr = 0. In particular, C is pointwise fixed by the change as zx = h; on C (i.e. for
vr = 0). We require that the inverse of Fj is defined in a possibly smaller open sets
‘71( C ¢ (Ug) such that the union of <I>,:1 (\7k) remains a neighborhood of C in M.
We recall that the cocycle condition (2.9) on the transition matrices #; has the form

trj (z)tjk (erj(z5)) = 1d,
trj(@je(ze))tje(ze) = tre(ze)- (2.17)

Let us assume that the (a priori formal) change of coordinates (2.16) maps a neigh-
borhood C to a neighborhood of the zero section in the normal bundle. This means
that, in these new coordinates, we have
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o ol e = (hy),
Nk] = Fk (I)k]F] N v = [k/(ZI)U/

Let us write down the above “conjugacy equations”. We first consider the horizontal
equation of

FiNyj = Oy F;.
On the left side of the equation, we have
2k = hict [ (i v) = 91 (h ) + F oy (). g (j)v)).
On the other side, we have
k=@ (hj+ I v) + o (hy+ [+ ).
Let us define the horizontal cohomological operator to be
L (1 = f (orj (hy), 1 (h i) — sij (R f1 (i, v)). (2.18)

Recall that sj(h;) = Deyj(h;) is the Jacobian matrix of ¢;. Hence, we can write
the previous horizontal equation as

Li (D =@ (hj+ [l v+ f])
+oxjh; + f}l(hj, V) — @rj(hj) — D@kj(hj)fjh(hj, v;).

(2.19)
Let us consider the vertical equation. We have, on one side of the equation,
wi = v + i (hie, vi) = tej(h v + fi' (@rj (), tij (hj)vj).
On the other side, we have
wi =t (hj + 1) + [} + ¢ty + f] v+ f]).
Let us define the vertical cohomological operator to be
Ly (f) = £ (ki (hj), tj(hj)vy) — tij(hj) f - (2.20)
Hence, we can write the previous vertical equation as
LLfD) = dfi(h+ £+ f])
(1 + 10 = 151 f}
+(tkj(hj+f]h(hj,vj))—l‘kj(hj)) vj. (2.21)
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2.4 Horizontal Foliations and Vertical Trivializations

Let us assume that there exists a non singular holomorphic foliation having C as a
leaf. We seek holomorphic functions f; = (fj 1, ..., f},q) defined in a neighborhood
Vj of Uj such that f; = O on U; and dfj1 A --- Adfja # 0. Then, we may use
(hj,v;) = (zj, fj(zj, w;)) as a coordinate mapping on V;, which changes variables
in vertical components. We then prove that in these new coordinates, the transition
functions of a neighborhood of C are of the form dy; = (éﬁj, CiD}C’j) such that ®}; are
independent of / ;. We remark that N¢ must be flat if a horizontal foliation exists.

Proposition 2.6 Assume that there is smooth holomorphic horizontal foliation defined
in a neighborhood V of C in M. By a refinement of U ;, then there exists a change of
variables of the form

2k =he wi =shj)vj+ 0(v;[*)
so that in the new variables, we have

hi = @rj(hj) + ¢fj(hjv vj),

wo=fjvi+ Y oy,
011

where fk i Ckj,Q are constants.

Proof By arefinement, we may assume that the foliation on V; is given W;(h;, v;) =
c¢st by holomorphic functions W; = (W; 1, ..., W; 4) such that W; = 0 on U; and
dWji A ANdWja # 0. We have W = ) W, where ] is a biholomorphism
of (C4,0) with <i>,';j (0) = 0. Then W; = (z;, W) is a biholomorphism defined on
V; and fixing C N V; pointwise, by shrinking V; if necessary in the vertical direction.
Since W; is invertible, we can define &)Zj = szjfl Then we have &)Z,' Wi = z.
Therefore,

Wi W, v)) = (9F;(hj, v)), D (v)).

Set Fj = <I>le71.Wehave F;’(hj, v;j) = hj. We now get

Fl o Py = WW ! = &y
O

In this paper, we will approach the horizontal foliation problem via the following
vertical linearization when N is unitary.
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2.5 The Vertical Linearization
Here we seek new coordinates (4, v;) from (z;, w;) such that the vertical component
of the new ®y; agrees with the vertical component of Ny;.InLemma2.17 we will show

that if such formal coordinates exist, then the vertical linearization can be achieved by
changing vertical coordinates only, i.e. a coordinate change of the form

wr = FY (hi, ve) == vg + fE (i, vo), 2k = hy.

For the vertical linearization, we only need to consider the vertical part of transition
functions so that in the new variables, we have

hie = B (hj,vp) = g () + By (hj. o))
v =ty (hj)v;.

Here, qglfj (hj, v;) vanishes up to order 2 at v; = 0. The vertical equation reads

tj(hp)j+ £+ @ (hjvj + f) = wk
= 1 (hj)vj + [ (@ (hj, v)), 1 (hj)v)).

Using the previous notation, we finally obtain the following “conjugacy equations”
Ly (= (hj,vj+f])— (fk”(@’/?j (hjs ) tkj (R jvj) = f (xR ), 1y (h.f)v./)) :
(2.22)

Having determined the coordinate change, let us find the horizontal component qgli‘j
from the horizontal equation

okj () + ¢ (hjo vy + 1) = 2= B (hj, vj) = grj (hj) + ¢ (hj, v)).
We get
b (hjvj) = (hj. v+ f]). (2.23)
2.6 An Open Problem on the Horizontal Linearization
In this paper, we will not study this analogous linearization problem which is interest
in its own right. Namely, one could seek coordinate changes so that the new transition

functions of M near C have the form

hi = @kj(hj),

~ e
Nk] = Fk cD/(]F]' Uk :fkj(Zj»vj)~

@ Springer



Equivalence of Neighborhoods of Embedded Compact Complex... 77

The existence of such a horizontal linearization ensures that a neighborhood of C
in M admits a holomorphic foliation with leaves transversal to C. If one follows
the approach in this paper for 7j(z;, & j) not to be rjh; where #;;(h;) are unitary,
constant or non-constant functions in general, it leads to an interesting and new kind
of difficulty.

2.7 Coboundary Operators in Symmetric Powers and Coordinates

In this subsection, we establish the connections between coordinate changes and for-
mal obstructions to the full linearization and vertical linearization via cohomological
groups. In local dynamics, the resonant terms play an important role in the construction
of normal forms at least at the formal level, while non-resonant terms play another
important role in coordinate changes. In all problems, obstructions are described via
the first cohomological groups, while the coordinate changes are described via solu-
tions to the cohomological equations of first order approximation.

Let E’ be a vector bundle of rank T over C. Let i/ = {U;} be a covering of C as
above. Lete; := {ej1,...,¢ej ¢} be a basis over U; and let §; := (é}, ...,E})’ be
coordinates in e;. Let s¢j(z;) be the transition matrices of E’ over Uy N U;. Using
notation in (2.3), we have

5 =5 s EDE) . ena =5y (@ p, (2.24)
=0k (2)), E =k E)E, e = (s @) e;, (2.25)

where ¢ ; are the transition functions of C. For Né, by (2.8) we have

o= () @G, wi =@ Hwh %= i),

The following fact is well-known. We provide a proof for the reader’s convenience.
Let us first introduce

Foiy Gigs 6 = 3 fivini 0 )62 (2.26)
[Q|=L

for a cochain {f;} € C1({U;}, O(E ® SL(Né))) given by

fioid ) = Y froi 0 (P)eig i (p) @ Wi (P2, (2.27)

r=1|Q|=L

where each iﬁ...iq; 0 is a holomorphic function on vi, (Uio...iq), and Uig-i, denotes as
usual U;, N---NU; ” Here we have chosen a representation of cochains in bases that
arise from the linearized equations for the problems described above.

Let fi 5,iysy 9ENOM€ figuwiy yigpoviyr- Then (B f ig-wigny = Y (—1)¢ fii

Tg-igr
becomes
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(8 Figigys = Z( ' Z D Ly 0@ (PDei (D) ® (] (p)°

A=11]Q|=L

+Z Y g0 Gign (P)ei s (p) © W] (p)©

A=l IQ\—L

- (- 1)‘12 Y irigi0Gi, (P)eig . (p) © (W] (p))?

A=11|Q|=L

=Y D &y GarDeA () @ (W ().

A=11Q|=L

By (2.24), we have ¢;, , = l011 5 €ig..- In notation (2.26), we can express

gl() dg+1 (Zqurl ’ §1q+l) - Z( 1) 10"'16"‘1 (Ziq+l ’ é‘it]Jrl)
=1

+ Sloll 'u((pllqur] (Zq—H))fI (Ziq+l s {iq+1)

1ig+1

( 1)({ 10 lt] (‘piqiq+1 (Zl'q+1 )7 tizliq+l (Ziq+1 )é‘iq+] ))'

The above computation especially gives us the following formulae for O and 1-
cochains.

Lemma 2.7 Let {U;} be an open covering of C. Let t; be the transition matrices for

Nc with respect to basis w and let s be the transitions functions of E with respect
to base e;. Let

d
L) =3 2 fhoGieeaam e wien?, fiei e = Y fhoepe?,
r=1]Q0|=L |10|=L

d
ui(p) =3 3wk 0@ (e ® WipN?, @izj. g = Y kel
A=11Q|=L 0I=L

The following hold:

@ f:={fij} € Z'U. OE ® SL(N}))) if and only if
Fi @i, k@G — fiy e &) + 5550 @) i G &) = 0.
(b) u := {u;} solves the first order cohomological equation $u = f if and only if
Sikj,@(Z,/)ﬁﬁ(Zj, ) — i (i (2)), 1ij(2))¢)) = f?}(Zj, &j)-
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We notice that according to (2.18) and (2.20), we have
—L(f) = —(L"(fM, L) = 8(f) = "), 8V (F ).
2.8 Formal Obstructions in Cohomology Groups

Recall that

Nkj(hj, Uj) = ((pkj(Zj), tkj(hj)vj). (2.28)

Let us denote the properties depending on an order m > 1 :
(L (U)) : the neighborhood of C matches the neighborhood of zero section of the
normal bundle up to order m.
(Vi (U)) : the vertical components of the transition functions of neighborhoods of C
in M and in N¢ match up to order m.

That embedding of C has property (L) (resp. (V;;)) means that the order along
vj = Oof(¢,]§j(hj, v;j), ¢}c’j(hj, v;)) (resp. gb}gj(hj, v;))asdefinedin (2.11)is > m+1.

Definition 2.8 We shall say that N¢ is a flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Uy) transition functions in a possibly
refined covering.

We will use the following notation: When N is flat, we write its transition matrices
1xj(z;) as t;, indicating that they are independent of z;.

Definition 2.9 We shall say that a change of coordinates {F;} preserves the germ of a
neighborhood of the zero section of N¢ with transition maps { Ny} if Fiy Nyj = Ny Fj,
in which case we says that {F;} preserves {Nj;} for simplicity.

Lemma 2.10 Let the transition functions ®y; of a neighborhood of C be given by
(2.11)—(2.12).

(a) Assume that C satisfies L,,. Then the horizontal and vertical components satisfy

(1) € Z'U.TC ® SNE). ifm < £ < 2m;
(91" € Z'U. Ne ® S“(NE), ift =m + 1.

Furthermore, if [d),:j]m+1 =0in H'U, TcM ® S’"H(Né)), then there exist

{F; = 1d+ f;} such that F; ®y; F;l € Lyy1 and f; are homogeneous of degree
m+ 1. '
If Nc is flat, then the vertical component of ®y; further satisfies

(01" € Z'U. Nc ® S“(NE), m+1 < €< 2m.
(b) Let C satisfy V,,. Assume that N¢ is flat. Then

(¢ € Z' U, Nc ® S“(NE)), €=m+ 1. (2.29)
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Proof When £ = m + 1, (a) is in Griffiths [16], Morrow—Rossi [32] and (b) is proved
in Ueda [42] for flat line bundle N over a compact curve C.

(a) The general case can be verified using Lemma 2.7 to compare coefficients of
w;‘ on both sides of ®;;(z;, w;j) = Pjx o Pj(z;, w;) for || < 2m. Indeed, we have

Dk = Nix + (@0, %) and (B, %) (zk, wi) = O(lwy|™+1) with m > 1. Thus

Nik o @pj(zj, wj)= {Nik o Nij + DNjp o Nkj'(qblilj? ¢/?j)] (zj, wj)+0(|wj|2m+l)
= Nit o Nij(zj, wj) + (sik (prj @)D g, ik (0rj (2)) b))
+ (0. Dtk (2 )y )tk (2))w)) + O (w1,

Here s; are the transition matrices of 7C given by (2.7). Therefore,

D 0 Oyj(zj, wj) = Nig o Py (zj, wj) + (¢ihk, B 0 Pij(zj. w))
_ {Nik o Nij + (1, ¢l o Nkj] @) w))
+ (Sik(</7kj (z‘/))qﬁ,fj (@5 i) tik (ki (2B, (25 w.,-))
+ (0, Dtir (i @) (2 )tk 2 )wj) + O (Jw "),

Comparing both sides of ®;;(z;, wj) = P o Pg;(z;, w;) for the coefficients in w;
of order £ = m + 1, we obtain the desired conclusion by Lemma 2.7.

(b) We have ®yj(zj, wj) = (¢rj(z)) + ¢,’(’j(z,-, w;), tkjwj + ¢ (zj, wj)) with
¢,'(’j (zj,wj) = O(lw; |"+1). Here tx;j are constant. We get from the vertical compo-
nents of ®y; = Py; P;; that

G (zj, wi) =tk (2, wj) + G (Pij (2, w))

= i} (2, wj) + ki (Nij (zj, w))) + O(lw;|"*?),

since (®jj — Nij)(zj, wj) = O(Jw;|?). This shows that {[¢},1°} € Z' (U, Nc ® N&)
for £ = m + 1 by Lemma 2.7 (a). This gives us (2.29). m]

2.9 Automorphisms of Neighborhood of the Zero Section of Flat Vector Bundles

Let ¢; defined on Uy N U; be the transition functions of C. Let ®y;, defined on
Vi N V;, be the transition functions of M, and let Ny;, defined on Vk N \7]- be the
transition functions of N¢, with \7k =77 1U;. We identify (C, U;) as subsets of Vj
via the zero-section. Recall ®y;, Ny, and ¢; are the same on Uy N U;. By Cartan-
Serre theorem, for any integer m, the space of global sections, H 0(C, TcM®S™N, é),
is finite dimensional.

We say that a vector bundle is flat if its transition matrices are locally constant.
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Definition 2.11 (1) A formal tangent vector field ¥; on V; vanishing at U is identified
with ¥; =Y, | Y;’ with Yf e (Uj, TcM ® S*N}) via

d 0 0
Z ag(h; )v] 8h°‘ ka(hj)vaW > aoé(zj)(w;‘f)Qa—a
|Q]=¢ J |Q]=t J
+p )W —
Here (h, v;) is the coordinate map for vt i a € (N¢)p and we identity & ; with

Zj|Uj and E with m'Uj'
(2) A formal automorphism of V; at U; that is tangent to the identity is an automor-
P J j g y
phism of a formal neighborhood of the 0-section of VJ-, fixing U; pointwise.

Lemma 2.12 Let{F;}; be a collection of formal automorphisms of V/ fixing U; point-

wise. Let {Y;}; be a collection of formal tangent vector fields of ‘7]- vanishing at U;.
We have

(1) {F;}; defines an automorphism F of a formal neighborhood of the 0-section in
Nc if and only Fy. o Nij = Nyj o Fj forallk, j.

(2) Suppose that N¢ is flat. Then {Y;}; defines a vector field Y on a formal neigh-
borhood of the 0-section in N¢ if and only zf{Yf} e H(C,TcM ® SZNé)for
all €.

(3) Supposethat Nc is not flat. Then {Y ;} j defines a vector field on a formal neighbor-
hood of the 0-section in N¢ if and only if{Y;} e mlmd(C TcM® @[>ZSKN2)

with respect to the linear operator Snf({(Yh, Y}’)}) = {(Y,f‘j, Y” )} with
Yl =Y (Nij(hj, v) — Doij(h )Y} (hj, v)),
?1;)] = Y];)(Nkj(hj, vj)) — l‘kj(hj)Y;»)(hj, vj) — Dtkj(hj)vj.Y}’(hj, vj).

Proof Let (hj, v;) be the coordinates in N¢ over U;. Note that {Y;} defines a global
tangent vector filed of N¢ if and only if DNy;(Y;) = Y. A homogeneous vector field
of degree £ on V; is an element Yf e COU;, TcM ® S“N}) defined by

0

n
Yf(h,-,v,-)=ZY”(h,,v,) +Zyev(hw”1) = vty
m= 1>m Vi
Recall that Ngj(hj, v;) = (¢xj(hj), trj(hj)v;). Thus

D Ni; <Yf’h + Y;’v) = D¢yj(h ')Y{Z’h(hj, v;j) + tkj(hj)Yf’v(hj, vj)

Aty rs(hj) M B]
+ZZ Yy, LIRS

j=1r.s=1 T
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where the last term is in CO(Uk NU;j,Nc ® SK“N;). When N¢ is flat, we see that

DNy;Y; = Y if and only if DNy;Y f = Y/ for each £ and that the latter holds if and
only if

Y (@rj (), ko) =D ()Y " (hjvp), Y (e hy). i) =1 Y[V (. v)).
(2.30)

In other words, {Yf} j defines a global section of Tc M ® st N¢. m]

Lemma 2.13 Let F; be a formal automorphism of \7]- in Nc, which is tangent to

identity. Then, F; is the time-1 map of a unique formal vector field Y ; in Vj, vanishing
on U; up to order > 2.

Proof Let F; be given by

hj=hj+ Y Ajaip?, T =vj+ Y Bj,,g(hj)vf.
=2 1B1>2

Drop the index j. We want to express it as the time-1 map of a tangent vector field

y=>3" Xn:Y“(h V)=

£>2 Um=1

where Y,ﬁ h (h,v), yhY (h, v) are homogeneous polynomials in v of degree £. The flow

of Y with time 6 is given by

ot 3 AL =+ T B

la|=2 la|=2
where A?, BY satisfy A = B® = 0 and

dA?"“(h) l,h 0 dBf,a(h) y) 0 0
Z v ZY (n?, Zv77=yrv”(h,v).

la|=2 =2 || =2

Inductively, we can verify that Arln’ - Yn}; o B;L, « — Y/, are uniquely determined by

Y,f;;’jﬁ, Yf,f; with £ < |a|. O

Note that the formal time-1 mapping of DN;(Y;) on Vi N \7/- can also be defined
and it equals Ny; F; N,:jl where F; is the time-1 map of Y;. Thus the uniqueness
assertion in the lemma implies the following.

Proposition 2.14 Any automorphism F of a formal neighborhood of C in N¢, which
is tangent to identity, is the time-1 map of a unique vector field defined on a formal
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neighborhood of C in N¢ and vanishing on C. Assume further that N¢ is flat. Then any
tangent vector field Y of N¢ that vanishes on C to order two admits a decomposition

Y =>"v" ¥'eHC.TcM®S'NE).
{>2

We write 8,, = (8", 8%) corresponding to the open covering U/ and the splitting

m>-m
TcM @ S"Nf = (TC ® §™) @ (Nc ® S"N(). Let us set G, := Range(8,,). We
have a decomposition

Z'U, TcM @ S"NE) = G & Nip (2.31)

where N, >~ H'U, TM¢c ® S"NE). Let COU, TMc ® S"NE) = Ry @ ker 3y,
with 8,,(R;) = G- We emphasize that the decomposition (2.31) is not unique.
For our convergence result, a natural decomposition will be given via a possibly non-
unique minimizing solution. Consequently, & is interpreted as merely a decomposition
suitable for convergence proof.

Lemma 2.15 Suppose that Nc is flat. Any formal transformation F; of \7j which is
tangent to identity can be uniquely factorized as

where H; — I € ZmZZ R™, Gj is an automorphism of Vj, and terms of order m in
G, H;j are uniquely determined by the terms of order at most m in F;. Furthermore,
GiNijr = Nij; Gy forall i, k.

Proof We know that F; = exp }_,, C" is the time-1 map of }_
We want to decompose

exp;CT - (exp;A;ﬂ> (1 + ; H}”) .

By Campbell-Hausdorff formula, we are led to the equation

m
Ne

m>

m __ m __ Am m
H=C} — AT + E

where E;" depends only on Cf, Aﬁ. for ¢ < m. We determine A’}’, B;." by decomposing

C’/." and E;” as follow : Let 7 be the (non-canonical) projection from CO(U, T M¢ ®

S™NE) onto ker 8. Let {A”); := x({C! + E''}). Then {H}"} € Ry o

Next, we study the dependence of cohomology classes of [¢,fj]l, [¢}<’j]l in coordi-
nates. We first consider the full set of linear cohomological equations.
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2.10 Formal Coordinates in the Absence of Formal Obstructions

For a power series u(z;, w;), let u="(zj, w;) be the Taylor polynomial of u about
w; = 0 with degree m. Thus we can define

U= ufm + M>m’ I/t>m(Zj, w]) — 0(|w1|m+1)’ [u]m — ufm _ u<m7

(]} = u=" — u<t.

To describe the coboundary operator in next lemma, we define the linear operator D
by

~ ou ou
(D) f)(hj, vj) = ——(hj, 0) f " (hj, vj) + —(h}, 0) f*(hj, v)),
8hj avj
for a function u(h j, v;). The standard differential D is given by
ou h u v
((Du) f)(hj,vj) = %(hj, vi) fh(hj,vj) + %j(hj, vj) fP(hj, v;)).
Thus
(Du — 5u)f(hj, Uj) = (Du(hj, Uj) — Du(hj, O))f(hj, vj). (2.32)

For a multiindex o = («j, «y), define

glely

ey
ahj ij

(D*u)(hj) = { } (h;.0).

Lemma2.16 Let ®;; = Nyj + ¢y satisfy condition L,, with m > 1. Suppose that
Fithj,vj) = (hj,vj)+ fj(hj,v;) with fi(hj,vj) = 0(|vj|2) are formal mappings
such that {Fk_ICIijFj} € Ly. Then,onU; NUp, 1 =2,...,m,

UL D (o ) = =[Ny (F + L1 By 0)) = N (hy v))

<l
— DNy (hj v L1200 | = (0. gL o ).
(2.33)

@) If fi(hj, v;) = O(lv;|"*) forall j, then Nij+éij = Fk*1d>kij+0(|uj|2m+‘)
hold if and only if on U; N Uy

A" Dty = B — 917" = (0. Dy (LT vy ) 234)
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(b)

(©)

If {F;} defines a germ of biholomorphism of order m at the zero section of the
normal bundle, i.e.

Fk_lNkij(hj, vj) = Nij(hj,vj) + 0(|vj|m+1)
andif {1 (hj, vj) = O(lv;I™), then V" (hj, v;) := (hj, vj+[f}1=") preserves

{Nkj}-
Suppose F, k_l &y Fj € Loy. Assume further that either Nc is flat or

HY(C, TC® SPNE) =0, 2<p<2m. (2.35)

Then there exist ﬁj =1+ O(lvj "+ where [ﬁ;’]ﬁﬁl are uniquely determined
by [q)kj]iqn-lq-l such that Fk_lq)kj Fj € Loy. There exists a unique decomposition
{ﬁj =HjoV;o 13]} in the form

Hjhj,vj))=(h;j+Hijhj,vj),v;), (2.36)
Vithj,vj) = (hj,vj+ Vj(hj, vj)), (2.37)
[Fil'=0,V2<i<2m, [Hj]'=[V;]'=0,Ve>2m. (238)
Furthermore, [Hj]l = [V,’]l = 0for £ < m, and H; are uniquely determined by

" (H )iy = —[8;15". (2.39)

Moreover, d;kj = 'H,:ld>kj'/"{j — Nyj satisfy égj(hj, vj) = 0(|vj|2m+1) and
élfj(hj’ v;j) = O(Jv;|"*1), and V; satisfy

(" Vihwj = =g 15°". (2.40)

Proof Let & = Ni; + ¢x; and @x; = Nyj + ¢xj. Suppose that both ¢y; and ¢y; are
of order > m + 1 (i.e. O(|v;|™*")) and Fy®y; = @y, F;. Recall that Fy = I + f;.
To use the coboundary operator, we write

Ji(Nyj) — 5Nkjfj + xj — Hij = (fx(Nkj — fi(Nij + ¢;)))

A
+ <<13kj(1 + fi) — <13kj>
B
+ (Nkj(l + fj) — Nij — DNkjfj) .

C
(2.41)
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Since f; has order > 2 atv; = 0, by the Taylor expansion at Ny; and at I, respectively,
both A and B are of order > m + 2 (w.r.t v;) at the origin. For the same reason, the
C is of order > 4. We recall that, for each £ € N*, the coboundary operator § sends
COU, TeM ® SY(N})) into C'(U, TeM ® S'(N})) as sections. It is defined in
coordinates by

(6f)kj = DNgj fi(hj, v;) — fie(Nij(hj, v)))

onU; NU; when f ={f;} € COU, TcM ® S’Z(Ng)). As § preserves the degree £ of
fj inv;, we shall omit its dependence in £. Truncating the Taylor expansion of (2.41)
at v; = 0 up to degree m will lead to the first point.

Since fj(h;,v;) = 0(|Uj|2), then A, B are of order > m + 1. Using (2.32), we
obtain

C =N+ fj(hj,vj) — Nij(hj,vj) — DNyj(hj, vj) fi(hj, v))
+ (DNj(hj, vj) — DNgj(hj, 0) fi(hj, v}).

We have (DNyj(hj,vj) = DNij(hj, 0) fj(hj,vj) = (0, Digj(hj) f] (hj, vj)v;).
Thus,

C =0, (D (hj) £} (hj, v)v)) + a(l) — a(0) — a’(0)

with a(1) = Nij(hj + A f]', vj + A f}). Note that

1
a(l) — a(0) — d'(0) = / (1 —n)a" (1) dx
0

1
=y |a—1'/ (1 =)D Ny (I + 2. £) f§ dA
o. 0

|or|=2

| 1
=2, 'Z—! /0 (1= WD Ny (1 + AL A1) dd+ O (v "™
le|=2 "

=b(1) = b(0) — b'(0) + O(Jv; "+

for b(A) = Nij (I + )»[fj]f’”_z). This proves (2.33).

For point (a), we use (2.41) again. This time, we have A(h;, v;) = O(|v; |2n+1y and
B(hj,vj) = O(Jv;*"*"), while C = (0, DNy; (h )L f}12" " v;) + O (v [P+
We have derived (2.34).

For point (b), note that Fk_lNkj Fj = Ny + 0(|vj|m+1) is equivalent to Fy Ny; =
NiiFj + O(Jv; |+1). From the vertical components, we obtain

tj(hjv; + fil (i (hj), tkj(hj)v;) = txj(hj + f}')(vj + f](hj, v)) + O(lv;I™*h.
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Since fjh = O(|v;|™) and f;’ = 0(|vj|2), the m-jet (w.r.t. v;) above reads
tj (hj)vj 4+ LR (orj (), tj (hjvy) =ty (hj) (i + L1 (hj, v)).

That is that V" Nyj = N Vi7", as V" (hj, vj) = (hj, vj 4 [f15" (hj, v)).

The point (c) follows from Proposition 2.14 when N¢ is flat. For the remaining
case, it follows from points (a) and (b) as follows.

By (2.34) and H(C, TC ® SKNE) = 0, we obtain [f;’]g1 = 0. By (b), we know
that [F;]=" preserve Nyj. Then F; = F;([F;]=")~! meet the requirement. The
uniqueness of [ﬁ ;‘]Z for m < £ < 2m follows from the assumption on H° too.

We are seeking a unique decomposition F; = H; o Vj o F . Let us write
FoloFj = Nij + ¢k with ¢; = O(Jvj[*"*1). From the horizontal component of
(2.34) in which [qs,’gj 152" = 0 and condition (2.35), we uniquely determine {[ f]ﬁ 1=2my.
Take H;(hj, vj) = (hj + [f;15*"(hj, v}), v;). Then

My Ok Hj(hjvj) = (ki (h ).t (v + @ (hj, v))) + O (i P FT).
(2.42)

We still have (M, ' Fo) ™! (H; ' @4 H,) (M Fj) € Loy. We have

M Fjhj, v)=Vilhy, v))+ O(v; ", Vihj,v)) = (hj, vj + V(hj, v))),
(2.43)

where J)Ej, V; contain only terms of orders £ in v; form +1 < £ < 2m.
Since F; = H;V; + O(|v;|*"*1), we have

V(M @k H)HY) € Lom.

From the vertical components of (2.42)—(2.43), and (2.34) in which we ~take
Diyj[ 112"~ = 0, we see that (2.34) becomes (2.40), i.e. (8"[V]); = —[¢y;1°

for £ = m +1,...,2m. To show the uniqueness of [Fj]Szm, we may assume that
Dyj = Nij + O(Jv; [?+1). Then the uniqueness follows from the above arguments.
O

The following is in Ueda [42], when both the dimension and codimension of C are
one.

Lemma 2.17 Let ®y; satisfy condition V,, with m > 1. Suppose that N¢ is flat and
HO(C, Nc®S“(NE)) = 0for1 < £ < m. Then [¢,gj]m+1 € H'(U, Ne®S™ T (N}))
is independent of coordinates of the neighborhoods of C. Furthermore, there are formal
biholomorphic mappings F; = I + (fjh, f;’) with fj(hj,vj) = O(|vj|2) satisfy

(F7 '@ Fj) € Vit (2.44)
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if and only if [¢;gj]m+1 = 0 in H'U,Nc ® S"T(N})). When (2.44) holds,
{I:“,:l@kjl:"j} is still in V41, for

Fi(hj,vj) = (hj. v + L1 hyov)).
Proof Let @ := Fk_lcbkj F;. We want to show that
(¢! = g1 inH'U, Ne ® S" (NE)),

provided that & (h, vj) = Nij(hj, v;) + (B 8;), uj(hj, vj) = Nij(hj, v)) +
(¢4 d4,) and

Bt (hjvi) = Ov; ™™, ¢ (hj,vj) = O(v; ™). (2.45)

First, we have F;j(h;, vj) = (hj, vj) + O(|v;|?). Suppose that [ f}]="+~! = 0 for
2 < m, < m. Comparing vertical components of ®; o F; = Fj o ®y;, we obtain

v <My v <m
= (F{ 0 &)= (hj. vj) = (F{)™" o Nij(hj. vj).

Here the last identity is obtained from dNij(hj, v!') — Ngj(hj,vj) = 0(!vj|2),
[F]'?]f’"* (hj,vj)) = vj+ [f;’]’”*, and (2.45). Looking at terms of order m, in w;,
we see that {[fj?’]e} is a global section of N¢ ® SZ(Né) for £ = m,. This shows that
[ij]fm* = (0 and we can take m, = m, i.e. [f;’]f’” =0.

We also have [®F F;1" ! = 15[ f71" !+ (1™ and [FY @y "+ = [ 121" o
Nij + [d;,l(’j]mH. This shows that

(@017 — [y = 0y L1 = LT o Ny (2.46)
The latter is equivalent to [¢~>,§’j]”’+l = [¢]1<)j]m+1 in H'U, Ne ® S"T1(N})), which

follows from Lemma 2.7 (b). The last assertion is equivalent to (2.46) with [qgl'j ; =
0. O

3 A Majorant Method for the Vertical Linearization

Let C be an n-dimensional complex compact manifold embedded in an (n + d)-
dimensional complex manifold. We assume that the normal bundle N¢ is (flat and)
unitary. Let {t;;} be its transition (constant) matrices in a suitable covering U = {U}
of C, we have tkjt,j‘j =1Id. Let K(Nc ® S™(N{)) be the “norm” of the cohomological
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operator acting on C YU, Nc ® S™(N ¢)) as defined in Theorem A.12. Let us consider
the sequence of numbers {1, },,>1 withn; = 1 and

Nm = K(Nc ® Sm(NZ‘)) max Nmy = NMmy, M > 1, 3.1

mi+--+mp+s=m

where 1 <m; <mforalli ands € N.
In this section, we shall prove the following

Theorem 3.1 Let C be a compact complex submanifold in M with Tc M = TC & N¢.
Assume that the embedding is vertically linearizable by a formal holomorphic mapping
which is tangent to the identity or that H' (C, N¢ ® S* (N&) =0 forall € > 2. We
also assume that N¢ is unitary flat and that HO(C, Nc ® S¢ (Ng)) =0forall ¢ > 2.
Assume that for the n,, defined above, there are positive constants Ly, L such that
Nm < LoL™ for all m. Then the embedding is actually holomorphically vertically
linearizable.

Remark 3.2 In the previous Theorem 3.1, if a neighborhood of C is formally vertically
linearizable by a minimizing vertical mapping which is tangent to the identity and
preserves the splitting of T¢ M, then the assumption ”H 0(C, Nc ® St (N&) =0,
£ > 17 is not necessary. Here by a formal minimizing vertical mapping it means a
map of the form (;, v; —i—f;’(hj, v;j)) with {f;’} e Cc, @622 Nc® Se(Né)) such
that each {[ f ;’]l} ;j 1s a possibly non-unique Donin (minimizing) solution of a suitable
cohomology equation.

Corollary 3.3 Under assumptions of Theorem 3.1, there exists, in a neighborhood of
C in M, a smooth holomorphic d-dimensional foliation having C as a leaf.

Proof According to Theorem 3.1, there is a neighborhood of the C in M with suitable

holomorphic coordinates patches (V;, (h;, v;)) with (hj,vj) € C"xC?andCNV; =
{vj = 0}, such that, on V; N Vi, we have

Ve =tjvj, hpe = @rj(hj, vj).
We then define the foliation in chart V; by dv; = 0. O

The rest of the section is devoted to the proof of Theorem 3.1. We follow the method
of majorant developed by Ueda [42] for 1-dimensional unitary normal bundle over
compact complex curve.

3.1 Conjugacy Equations and Cohomological Equations

Let us first recall (2.23) and (2.22):

LY (f)) = (hjvj+ f1) — (fk”<&>2,-<h,-, V), tkjvj) — f(oxj(hj), m,-v,-))
(3.2)
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where

&Zj(hj» vj) = @xj(hj) +¢]ilj(hj, v+ [,
Lyi(f)) = 1 (orj(hj), tijvg) =t f -

Let us expand ¢,i’j (hj,v; + f;’) in power of v; by using

grihjw)) =Y ¢ ohpw?

QEN‘ZI
¢]ilj(hj7 vj+ fj(hj, ) = Z h;(j,Q(hj)va =t hy;(hj, vj).
0eNd
We have
Y b o = D" G o) i+ fE R v))L. (33)

QeNd QoeNd

Let us also set

D h v = fEDE (hy ), 1)) — (ki ). 1)),
0eNd

As we shall see below, the functions [A']" and [h”]™ are defined by induction on
m > 2astheydependon[f]l,l=2, ..,m—1.

Therefore, the homogeneous polynomial of degree m > 2 of the Taylor expansion
of solution of the conjugacy equation satisfies

LY = (" + TRy (3.4)
According to Lemma 2.17, there is a solution to the above equation either by the formal
assumption or by the assumption that the cohomology class of [A) j]m + [h} j]’” is 0,

i.e. it is a coboundary. Indeed, since the normal bundle is flat, this class is independent
of the coordinates system and the neighborhood is formally vertically linearizable.

3.2 A Modified Fischer Norm for Symmetric Powers

We define a scaler product on the space of polynomials C[xy, ..., x;] as follows. First,
we set
1) (ra!) ?
1) (rg! ; _
vh,x0) o= VRS R= O s o0l e L
mf 0 otherwise [O]!
0 mf 0

(3.5)
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where R = (r1,...,rg) and |[R| =7 +-- -+ 714, and Cp are constants. The subscript
mf stands for “modified Fischer”. The associated norm will be denoted by |.|x. The
Fischer (resp. modified Fischer) scalar product has been used in [10,24,40] (resp.
[30]). Let w be an open set on C". For a vector of polynomials g = (g1, ..., 8k) €
OX(w) @ Clxy, ..., xq], we set

81t 1= SUP 182 s —supZ > |Q|,|g, 0@ (3.6)

ZG(A). lQNd

We now apply the Fischer norm (resp. modified Fischer norm) to f € CY/(U, E ®
SLN(’;). Returning to notation in (2.27), we write

rank E

fioig® =D D favi:0i, (P)eig 1 (p) ® Wi (P,

r=1 |Q|=L

where ¢, is the base of E over U;, and w;‘; is the base of Né onUj,. Define

rank E 2
| f12e,, = max sup i)l . @37
mf, U (i0vemie)€Z0) 21 i Usy i) ; Z |Q|' to g Qg

When there is no confusion, we shall in the sequel write “f” instead of “mf”. The
following two propositions are a “version with parameters” of [30, Propositions 3.6—
3.7] (see also [24]). We only give the proof of the last two points of next proposition.

Proposition 3.4 Let O, (w) ® Clxy, ..., xq] be the set of polynomials f(x,z) in x
with coefficients holomorphic in z € o C C".

(a) Let f, g € Oy(w) @ Clxy, ..., x4] be homogeneous polynomials of degree k, k',
respectively. Then

|fg|f,w = |f|f,w|g|f,w-

(b) Let f € Oy(®) @ Clxi, ..., xgl and let fp(z,x) = 5;0F f(z, x). Then

| fPlfw < W Vo C o, dist, (o, do) = dist(o, do) /1.
(c) Let T be ad x d unitary matrix. Let f € (9,‘11(60) ® Clxy, ..., x4l Then,
ITf1 g0 = 1fI .0
(d) Let T be ad x d unitary matrix. Let f € O(w)®Clx1, ..., xq]and fT(z,x) =

f(z, Tx). Then,

T e =1 o
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Proof We only prove the last two points. Fix z € «’. The polydisc center at z with
radius 8 := dist(e’, dw)//n is contained in w.
By the Cauchy formula, we have

1 . . . .
frzx) = s\PI/ FECE I ey, x)e, ..., efmy=P ...
JTI’L

. . , , do db
= 57 2 )‘Q/ fo+8(@, ... oMy, .. et S
8‘P| oend [0,27]" 2 2w
€

We emphasize that the sum is finite. By the Cauchy—Schwarz inequality applied to the
integral, we have

~ 1
|Fp @ e = samr D 1690

QeNd

. o . do,  de,|?
/ fQ(Z—i-(S(elel,.-.,619"))(6191,...,619")713—1-~-—n
[0,27]"

X
2 2

; d@] deo
= 52|P| > |xQ|mf/ |fo(z+ 8™, .. ’0"))|2 2—"
QeNd 027" T

1 ; do do

_ 02 i6 i0,\\12 1 %Y
= S /[0’ > @l foz+ 8, ... ™) e

Q eNd
1 , doy  db, 1 2
— §2PI /[0,271]" e 27 2 &P o

For the last point, we have, for a homogeneous polynomial f in x of degree m with
holomorphic coefficients in w the identity:

1 2
| fnl2 o sup/ |f(z, 0)Pe " Fav(x).
m: zew JCd

In particular, the integral is invariant under the transformation x — 7Tx when T is
unitary (and constant). O

Proposition 3.5 For a formal power series f(h, v) = Y} fi(z, v) with fi(z, v) being
a homogeneous polynomial in v of degree k of which the coefficients are functions
holomorphic in z € U, the following properties are equivalent:

(a) f is uniformly convergent for v in a neighborhood of the origin, uniformly in U.
(b) There exist M, R > O such that for every k, | fxlmru < %

For convenience, we will use the following orthonormal Fischer base of SLNé:

!
€jg= %(w}f)Q, |0l=L, QeN’

@ Springer



Equivalence of Neighborhoods of Embedded Compact Complex... 93

The transition matrices tij of SLNg is then determined in the following way : Let
F = le‘:L Fi pef p. We have

(Fr.p)pi=L = t{;(Fj p)|P|=L.

This can be computed from the transition matrices of N by expressing the basis
* * : * * . L s
W 15 - - 05 WE 4 10 terms of W5 s WY Since l; maps orthonormal basis into

orthonormal basis, by Proposition 3.4 we know that tkL/. are unitary matrices, i.e. in
operator norm defined in (A.4), '

5l=1, L=1.2,.... (3.8)
We will apply results in the appendix to the transition matrices tij.

3.3 A Majorization in the Modified Fischer Norm for the Vertical Linearization

Let{f ;’} be the formal solution of (3.2). We use notation (3.7). Let ¢; (U;) = A, and
Uij := Uy N U,. Define Ijkj = ¢;(Uxj). Then, <pkj(l7kj) = 0jk. Let us first assume
that HO(C, Ne ® Se(Né)) = 0 for all £ > 2. We shall see later on how to get rid of
this assumption to prove the general result.

Let us assume that there exists a vertical formal transformation F := {F;} fixing
C, being tangent to identity on it, that linearizes vertically a neighborhood of C in M.
Let us write

Fihj,vj) = (hj,vi+ £, fi =Y il {[fi1} € C°(C, Ne ® SEINEY).
k>2

Assume that there is a sequence {A }x>2 of positive numbers such that

Vk <m |[fj]k|[]j < Nk Ak. (3.9)
Let us set
At) = ZAktk
k>2

with # € C. Let us first estimate both [[2 ;1" |, = and |[h};]" |, = as defined in (3.4) in
J kj kj

J
term of J"VA(r) 1= Aat? + -+ + Ap_ 11" L.
Since qb,}(’j is holomorphic in i; € Uy; and v; in a neighborhood of the origin, we
can assume that there is a positive R such that

sup |¢; o(hj)| < RIC!
hj€U
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for all Q € N¢, where ¢,’;j,Q is defined by (3.3) and N := {Q € N: |Q| > k}.
For Q € Nd, we have

d
m
[+ 1y 00?]" = > [T - gy
(M1, 15T g s s T ) T
Z?:l mi 1+ mi g =m

where we have set f;’ = (fi1s--s fija)s [fj,i]1 = v;; and [fj,l-]O = 0. In the
following, all m; ; are positive integers. Hence, by the first point of Proposition 3.4,
we have

d
m
[+ £ 002] (U < > [T, - L g,
/ (m1,1,4..4,m1,,“,.4.,md11¢...,mdﬁqd)i=1
Zf’:l mi 14 tmi g, =m

(3.10)

Letm > 2, for Q € Nd, |Q| < m, and let us set
d

Egm= (m1’1,...,ml’ql,...,md’l,‘..,md’qd)ENllQliZmiyl-f—"'-Fmi’qi:m .
i=1

. . . . i) .
Let M; = (m{}y,oom o oooomgh om0y e N with [Q©] < m; and
’ sql ’ qu

m; = Z;l:] m;")l +-- 4 m(_i) @1 =1, 2. Define the concatenation My U M> to be
’ J-a;

(M1, M3). We also have 23:1 Z?:l ml(jl) + o+ mfj)(j) = my + my. Hence, we
. i

emphasize that the concatenation

U Egim | U U Egym, | C U EQ.my+m;-

2<]|011=<m 2<[0z]<my 2<(Q|<my+my

3.11)

As a consequence, according to (3.3) and (4.4), we have

m d
< 20 R ity -,

{ > hij,Q(hf)”}Q}

QeNd, |Q|=m o, 2=2 MeEg  i=1
m d

< SRS T A sy, A
l01=2 MeEg , i=1
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m
< [ > nomR19e+ J'“‘(A(r))'Q}

[0]=2
=< Em[gm(t)]ma (3.12)

where we have set

no.m = maX (1_[ U TR Umiyql.> , Ep:= max NQ.ms

MeEg QeN?
2<(Qlsm
m
gn(®) = Y R+ 7" A@)?, gt):= > RI%¢+Aa@)'?.
[0|=2 [Q1>2
Hence, as formal power series, we have
1 d
)= ——— ) —dR(@+ A(t)) — 1. 3.13
g(0) (I_R(HM))) (1 + A®)) (3.13)

Let U* = {U;"} be an open covering of C such that U is relatively compact in U;.
We shall write U v = @ (Uy). Let us consider the index j as fixed and let us estimate
the Fischer norm of h;(’j on 0,;“] = @;(U; NUY). We have

Yo Mehpvf

QeN,|Q|=m

m m2
= > % I:affk(¢kj(hj)»tkjvj)j| l |:(¢],zj(hjv vj + ff))lj}
PeNjy '
mi+moy=m

_ 5 %[a,ffk(%(hj),tkjv,)]m' [(h}c,»(hj,vj)yrz'

PeN}
mi+my=m

Here, both indices m and m; are > 2. Since the Fischer norm is submultiplicative,
we have

y P12
ma
‘[(hij(hj’ vj))P} .

<Emy || Y. R0+ (A0
Uij 0|=2

Indeed,
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m n .
|:<h;€j(hj’ vj))Pi| 2 = |:l_[(h;<j,i)l’,-j|
i=1
B Z H[h;q',i]mi'l R LT

Do mi petmy p)=ma i=1

According to (3.11) and by (3.12), we have

n

|—[ n
. . i mi p;
[hl/‘j’i]ml.l o [h;q,i]m"pi = ]_[ Ep; , [glni_] (l)]m SRR Em,-,m [gmi,pi (l)]
= oy i=
n m.l
mi 1 i.p;
< max N L e .
= 21Q/%m, 12 Dl [0 (] [gm,,p;( )]
Hence, we have
n

2

> (mi 1 -tmi ) =m2

< En,[g0)F11m2.
Uy

H[h;cj,i]mi'l o [h;cj,i]mi'pi

i=1

We have, by definition [/ fi (¢ (1)), trjv)]"" = O Lfil™ (@xj (hj). tijv;).
Recall that the Fischer norm is unitary invariant and by Proposition 3.4, we have

O LA™ (rj (h)), tjvj)

= |t g,
U]:j JNT J U]jj

2
P!
<\ | A,
dist, (U5, aU)! P k

Let us set M := inf} dist(U,j, Bﬁk). As a consequence, we have

[ > th,Q(hf)”JQ}

QeN,|Q|=m

1
< 2 2 g U g Bl

mi+my=m pcN"

Ui |PI>1

my

|P|
< > WA | Eme Y (%)

mi+my=m PeN"
[Pl=1

(e () ]
= \my+ma=m mm M — g(t)

(3.14)
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Collecting estimates (3.12) and (3.14), we obtain

M n m
‘L:Zj([f;’]m)(ﬁ* = [Emg(t)+(mlg}g§ My E )A(t)((M_—g(t)) —1)} .
kj

Let us extend this to an estimate on ﬁk i = @;(U;j N Uyg). Following again Ueda’s
argument [42] let us express the fact that [h])" := [A']™ + [A”]™ is a 1-cocycle with
values in Nc ® S"(N{). Let p € Uy N U;. Then p € Uy NU; N U} for some i.
According to (3.4) and Lemma 2.7, at p € Uy N U; N U} we have

i Y hiko@ (PN @) =t Y hijozj(p) )2
[Ql=m |Ql=m

+ Y hyoi(p)w)? =0. (3.15)
[Ql=m

Here by (3.7) the Fischer norms of /1;; on all subdomains must be computed in the base
e of N¢ on Uy and the base wjf of N¢ on U;. We can apply the previous estimates
(3.12) and (3.14) to the first two sums, respectively, on Uﬁ( and U;;.. To estimate the

first sum, we need to change coordinates. From Sect. 2, #; (resp. sx;) are transition
matrices of N¢ (resp. T'C). Recall that {[A;]"} € Z' U™, Nc ® S™N{) and

d
hie(P) =Y Y Wi oG(p)el () ® Wi (p)?
A—1|Q|=m

d
= Z YD W oGP 5 Gr(pDep ;i (p) ® (1w ()2 = (i (p), w).
'=1r=1|0|=m

Thus, Z|Q|=m hik’Q(zk(p))(tkjvj)Q = ﬁkj (zk(p), vj). By the unitary invariance by
multiplication and composition of the Fischer norm and by definition (3.7), we have
for fixed zx (p) € U},

2

d d
ki @a () v e = D | D (Zt,?{,x(zwh?k;Q(Zk)> (t1jv,)@

[Q]=m \r=1

>
Il
R

mf
2

Il
M=

d
Z (Ztl?i/,)»(zk)h?k;Q(Zk)> v

[Ql=m \r=1

XX o

LQl=m

S

>2
Il
-

mf
2

d
Zr?é,mk)h?k;Q(zw

Il
) M&

IA

o] = dihul.
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where the second last inequality is obtained by the Cauchy-Schwarz inequality. In a
similar way, we have a similar estimate for the second sum in (3.15) on ¢; (U N U; N
Ui*). For the third sum in (3.15), we note that the entries of the unitary matrix #x; have

modulus at most one. Thus, there exist constants M, M such that the third sum in
(3.15) satisfies

/
hijlg, =M mI?IX(Ihiklg,;;{ + |hij|[}i»;_)

~ M n m
< M max Em’m|inn?zxzmnm1Em2 |:g(t)+A(t) ((M——g(t)> —1)] .

mp,mp>2

We now adapt the estimate in Lemma A.2 (see also Theorem A.12). Recall that
[A;j1="™ depends only on [ f 1="~1 and the hypothesis (3.9). By the formal assumption,
we have a solution to (3.4):

Li (L) = lhig1™.

By assumptions, HO(C, N¢c ® S[(Né)) = 0, for all £ > 2. Hence, the solution of the
previous equation is unique. By Lemma A.2, (A.5) and (3.8), the solution satisfies the
estimate:

HLF 1" = €L+ Kio(Ne ® S"NE) DAk 1™ Hu-

Here, C depends neither on N¢ nor on S”* N é Therefore, we have

LF1"1g, < K(Ne ® $™(NE)) max .
J

Ly

By definition (3.1), we have

K(Nc @ S"(N&)max | E,,, max 0 Epy | < 0.
mi+my=m
mi,mpy>2

Hence, we have

vy, v M n_ "
LNl < Mo [g(t)JrA(t)((—M_g(t)) 1)} .66

Let us consider the functional equation

- M n
A = F(t, AW) = M (g(r) + A1) ((M_—g(t) - 1)) ,

where g(¢) is a function of A by (3.13). This equation has a unique analytic solution
vanishing at the origin at order 2.
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We now can prove the theorem. Indeed by assumption, there are positive constants
M, L such that n,, < ML™ for all m > 2. Since A(t) converges at the origin, then
A,, < D™ for some positive D. According to (3.16), we have also proved

|[{fv}]m|0 < NmAm,

so that, finally, [[{f"}]"|; < M(DL)™ for all m > 2. Hence, " = Zmzz[{f”}]’”
converges at the origin and this proves the theorem.

Let us see how we can prove Remark 3.2. The issue is that, when considering a
solution [ f¥]™ of the cohomological equation Ly; ([ f j?’]’") = R™, the estimate given
by Lemma A.2 and Proposition A.4 might be obtained by another solution. Hence, the
formal solution might not be the good one for the estimate. Furthermore, we cannot
replace a solution at degree m as we wish to ensure that higher order terms in the
vertical component can be eliminated formally. We now explain the general result as
formulated in the theorem. We will assume that there are formal mappings

Fi(hj.v;) = (hj. vj) + (0, D Fehy, vﬂ)

£>2

satisfying the following

(a) {Fk_Iijﬁj — Nij}' = 0 for all k, j. In other words, {ﬁj} formally linearizes
@y vertically. In particular,

{EY T o B — Nt = (0,17 + R (w1 LA Ya<eam) + O (o™ F

for

Fi'=(hj, o)+ |0, Y flehj,v)

2<l<m
(The last assertion can be check easily since (F;”)_lﬁj (hj,vj)) = (hj,vj) +

O(lv; " *1).
(b) Each { f]“m} j is a “minimizer” in the sense that it satisfies the equation

(8" fodaj = [f;1" + [R™ (a1, [F1 Dazeam)]™
and the estimate
|/l < K(Nc ® S" (N6 + IR (i1, LA a<e<m) 1.

As a consequence, the scheme of convergence applies to that formal solution { F 1
and we are done.
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100 X. Gong, L. Stolovitch

4 A Majorant Method for the Full Linearization with a Unitary Normal
Bundle

In this section, we shall devise a proof of Theorem 1.4, that is of the linearization of
the neighborhood problem in the case N¢ is unitary (and flat) following a majorant
method scheme.

Let us recall the horizontal cohomological operator

LL M = o (h)). tijv) — s (hp) f1(hj,vj),
where sy (h;) = Dgyj(hj). We then have the horizontal equation (2.19)
L =@y + £ v+ f])
+ uj(hj+ f1(hjv) — @rj(h) — Dgwj(hj) £ (hj vj). (4.1)
Let us recall the vertical cohomological operator
Ly (7)) = 1 Gorj(hj), tkjvg) =t
and vertical Eq. (2.21) (recall that N¢ is flat)
LLUD =@+ [0+ £]). 4.2)

By assumption, there exists a formal solution f; = ( 1 f]?’) = D usal fj]k with
{Lfi1F} € COC, TcM®SF(N})). Incase weassume H' (C, Tc M®S*(N)) = 0, for
all k > 2, this follows from Lemma 2.10. We now use the “norm” of the cohomological
operator acting on C U, TcM @ S™ (Né)) as defined by Theorem A.12. We have,
form > 2

Ky :=max (K (Nc ® S"(N&)), K(Tc ® S™(NE))).

Asin the foliation problem, we consider the sequence of numbers {1, },,>1 withn; =1
and, if m > 2

Nm = Ky, m1+-~r—|1:12)p(+S:m Nmy = Nmy s (4.3)
where, in the maximum, 1 < m; < m for all i and s € N. In what follows, f j' (resp.
qb,:/.) stands for either f ;’ or f ;’ (resp. qb,i’/. or ¢ ;)- As in the previous section, let us
expand qb,:/. (hj + i vj + fj'.’) appeared in (4.1) and (4.2) in power series of v; and
let us define ‘

orw) =Y ¢ oz)w?

QeNg
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$ri(hj+ f v v+ f o) = Y by ohpv? =ikt (hj,v)).
QeNd

Then we obtain
Y h ohve = 3" 68 oy + [y v+ fF (02
QoeNd QeNd

We further expand the first expression on the right-hand side as

- 1
hij.o =80+ ] (hj,vp)) = Z Fa]fd)/:j,Q(hj)(f]h(hj’ vin”.
PeNt

Hence, for any m > 2,

= Y Y sl eten [l o] [+ @]

mi+my=m QeNg PeNn

Let { fj'} be the formal solution of (4.1) and (4.2). Let us first assume that

HY(C, TcM ® SY(N%)) = 0 for all £ > 2. We shall see later on how to replace
this assumption with suitable minimizing solutions. Assume that there is a sequence
{Ax}k>2 of positive numbers such that

Vk <m |Lfi1 g, < mAr.

Let us set

A(t) = ZAktk

k=2

with 7 € C.
Since ¢>,:j is holomorphic in i; € Uy; and v; in a neighborhood of the origin, we
can assume that there is a positive R such that

sup |¢; o(h)l < RIC. (4.4)

hjeUyj
According to (3.10) and the proof of (3.12), we obtain
d

H:(Uj + £} (hj, vj))Q]mz‘ﬁkj < > [Tisam lg, - ILf0™ i g,

(11 eees L gy seees 1 e gy ) T=1
d
Dz mi Feetmi g, =m2
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d
r]m,- 1Am, 17T nm,’ : Ami i
Z l_[ , , i i

MEEQ uy i=1

Hom, [(+ 777 40)"?]

IA

m2

IA

On the other hand, let /* = {U;"} be an open covering of C such that U is relatively
compact in U;. We shall write 0,:‘ = @ (U}). Let us set

M = mkindist(l},f, a0,).

Let us consider the index j as fixed and let us estimate the Fischer norm of [ﬁ,:j]ml

on 0,;*] = (U; NUY). We get

~ 1 )
‘[hl:j]ml 0 = % - ‘af(f)]:j’Q(hj)I:(f;’(hj,vj))P:I I .

/. PeNn .

|P|
< P%\I:" (dist((j]:‘, aﬁk)> .0 00 ’[(fj (hj,v))) ] 0
1\P] .
=2 <M> RI?! H:(fjh(hj’vj))l)] o
PeNn i

Since f; is of order > 2 at v; = 0, we have |P| < % in the above sum. According
to estimate (3.10) and following the proof of (3.12), we obtain
my
2

Y

U ™ penTpio (dist((},j, 10/9)

|P|
g, o1 ) RI%p A0
4.5)

Combining inequalities (4.5) and (4.5), we obtain

1 ° m
DO ML LRI CAUR R

= q n
my+my=m QeNd PeN

‘[hlzj]m

[+ £y 000]™ .
kj

my 3 1\!Pl
= XX Y (5) e

mitmy=m g eNd PeN!
[0|=21PI=0

[A(t)“”']m1 1Q.my [(t + J”’Z‘lA(n)lQl]m2
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my 2 At |PI]™
7 ne.miNQ,m;

mi+my=nm g Nd PeN"
[0|=21P=0

[(Rt + RJmflA(r))lgl]m2

1 " 1 d m
m[<1—’§f4’)) ((1—(Rt+RA(t))> _l_d(R’WLRA(f)))} :

Here, we have set

™
™
™

&sh!

=

E, = max . max ne.mNQ,ma-
mitmy=m  peNt geN?
|P|<%L 2<]Q|<m),

It remains to estimate the rest of terms in (4.1). We define

Bu s =01y + 1, 0)) = 01 (h)) = Dy () £ hj 0]

m

2 m
-3y %a,fwk,-(hj) [ubr]"

[=2|P|=l

Hence, as above, we have

m

3 |P| ”
|Bulgy < loilg, D D (%) [a!”]

=2 |P|=l

n m
e 1 A0
= |(pk]|Ukj | __% —1—n i .

By the same reasoning as in the foliation section, the previous estimates on U ,fj

extend to estimates on Ukj, by multiplication by a constant M.
Let us define constant Cy := maxg; |@x;| O Since we have
J

then

- - oy an "
M

~ oy 1 d "
() (=) e maon) | ).
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104 X. Gong, L. Stolovitch

We emphasize that due to the vanishing assumption of the spaces HO(U, TcM ®
S"™(NE)), m > 2, the solution of cohomological equation £kj([f 1) = R™ is unique
and is equal to the minimizing solution obtained in Lemma A.2 and Proposition A.4.
Consider the following analytic functional equation :

it L
[~ A0 M
! ' ! ’ 1 —d(Rt + RA(t
D (1—(Rr+RA<t)>) — AR RAO) )

It has a unique analytic solution A of order > 2 at the origin. Since we have

K max(L, En) <t LF51" 15, < Amtlm, m 22

then Zm>2 " converges in a neighborhood of the origin.

Let us see how the general case is reduced to the previous one. The issue is that,
when considering a solution [ f?]” of the cohomological equation Ly ([ f j’]m) = R™,
the estimate given by Lemma A.2 and Proposition A.4 might be obtained by another
solution. Hence, the formal solution might not be the good one for the estimates. So
we will need to correct it. As we already emphasized, Eqgs. (4.1) and (4.2) read

Ly ULA1D) = Rije(LA15, € < € (@), 1 <€)

where Ry ¢ is an analytic function of its arguments. Let us start at £ = 2.

(1) Rkj,2 is just a function of the [¢kj]2’s and we have Ekj([f]z) = Ryij2. Let
{[ f~j,2]2} be the minimizer solution of this equation obtained by Lemma A.2 and
Proposition A.4 andlet[k;]? := [ f;1>—[fj.2]>. Wehave {[k;1*} € H'U, TcM®
S2(N})).

(2) According to Lemma 2.14, F; > := F; exp(—[kj]z) linearizes ®y; since

Fiy @ Fj o = exp(—[k;j1) " Nij exp(=[k; 1) = Ny
F;j » is tangent to identity and its 2nd order term is the minimizer [ fj]2
(3) Assume that F; , linearizes ®y;, is tangent to identity at the origin and has the
minimizers solution up to degree ¢ as Taylor expansion at 0. This means that

Fj¢=1d+ Zfzz[fj,l]l + le”l [fj,g]l. Let us write the conjugacy equation.
By induction we have, forall 2 <[ < ¢,

Ly (LA = R (Lf ) N I < @1 m < 1),

Furthermore, it satisfies at degree £ + 1
L (L)) = Rt (L0170, € < (@1 m < £+ 1),
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Let [ f, g+1]€+1 be the minimizer sglution of the above cohomological equation.
Let [ki o411 = [fi00115T! — [fie01]¢T!. As above, it defines an element of
HOU, TcM ® S*TH(N})). Let us set Fj g1 = Fjgexp(lkj e411°T1) 7! Then
it linearizes ®y; and has the minimizers solution up to degree ¢ + 1 as Taylor
expansion at 0: F; ¢4 = Id + Zf:zl[fj,l]l + leg+2[.fj,f+l]l~

(4) Since Fj 11 Fj_l1 =1+ O(€ + 1), the sequence {F; ¢}¢ converges in the space
of formal power series to F ;. Furthermore, (F '} linearizes {®y;} as each {F; ¢} ;
does. The Taylor expansion of F ' at the origin is

Fi=1d+Y [fl.

1>2

(5) We can estimate the [ fj‘l]l as we did above in the case of vanishing cohomology
since the Taylor coefficient are minimizer solutions of the same equations.

Hence, we are done.
In summary, we have proved the following theorem.

Theorem 4.1 Let C be an embedded compact manifold in M. Assume that the embed-
ding is linearizable by a formal holomorphic mapping which is tangent to the identity
and Nc is unitary. Suppose that {0, }m>1 defined by (4.3) satisfy n, < LoL™, for some
positive numbers Lo, L and for all m. Then the embedding is actually holomorphically
linearizable.

We remark that in general there is a rigidity theory on deformations in an analytic
family of complex manifolds due to Kodaira [25]. Strengthening Corollary 3.3, we
finish the section with the following corollary. This may be regarded as a rigidity for a

simply connected manifold.

Corollary 4.2 Keep the assumptions in Theorem 4.1. Assume further that C is simply
connected. Then a neighborhood of C in M is biholomorphic to C x B¢ where B¢ is
the unit ball in C%.

Proof We already know that M admits a horizontal foliation by Corollary 3.3. To show
that each leaf is biholomorphic to C, we may assume that M = N¢ and we will use
the projection w: Nc — C. We fix xo € C. We take a point p € 7~ H(xp) close to
C. Let L be the (connected) leaf of the foliation containing p. Then L intersects each
fiber of N¢ at a unique point. To verify this, we connect a point in x € C to xo by a
continuous path y in C with y(0) = x¢ and y (1) = x. By continuation along leaves,
we can find a lifted continuous path y and the germ L; () at y(¢t) of aleaf L, (¢) such
that 7 (y (t)) = y (¢). Note that L;‘, ), L; (t) are contained in the same leaf on which
7 is injective, when ¢’ is sufficiently close to ¢. The lifting 7 (1) is independent of .
Indeed if ¥ (a < 6 < b) is a continuous family of paths connecting xg to x. Let Lo

be the leaf associated to . Then y9(¢) L6 (t) when 6 is sufficiently close to 8y,
as L,,0(0) = Lya(0) as a leaf near p.

Obviously, x — y(1) gives a biholomorphism from C onto the leaf through p.
And (x,v) — y(1) defines a biholomorphisms from C x B into N¢, where B is a
small neighborhood of 0 € 7~ N x). O
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5 The Full Linearization

The main purpose of this section is to solve the linearization problem in the general
setting (i.e. N¢ not necessarily being flat) under general hypotheses on the existence
of bounds to the cohomology equations. At the end of the section we will illustrate
the results with Arnold’s examples [2], following computations by Arnol’d [3].

We shall devise a Newton scheme to solve the linearization of the neighborhood
problem. Let us recall the condition.
(L) : The neighborhood of C agrees with the neighborhood of the zero section of
the normal bundle up to order m.
Thatembedding of C has property (L,,) means that the order of (qﬁ,i’j (hj,vj), ¢,’:j (hj,vj))
along v; = 0 as defined in (5.16) is > m + 1.

Assume that (L,,) holds. We shall assume either that H(C, TC ® SpNg) =0,
2 < p < 2m or that N¢ is flat. According to Lemma 2.16 (c¢) and (d), the following
linearization step in the Newton method is fulfilled :
(Np) : If {®yj} € Ly, then {Fk_ld:'kjE/} € Loy, for some {F; = I + f;} with
fi(hj, vp) = O™ .

5.1 Domains for Iteration and the Donin Condition

Following Lemma A.6 and Proposition A.19, we shall consider a family of nested
coveringsU" = {U/ };e; of C withry, <r <r*. Letus fix a trivialization of N (resp.
TC) over U[* by fixing a holomorphic basis ¢; = (e; 1, ..., €j nt+a) of Tc M on Ul.’*.

We first define various domains. Let ﬁj’ = (pj(Uj’.) = Al and U,gj =U;N U;.
We have U,fj = U]’.k. Define lA],:j = goj(U,fj). Then

ok (UL = U’

Donin Condition. Let /" be a family of nested covering of C for r, < r < r*. Let
E’ = TC or N¢. Suppose that there are constants D(E’ ® S"™N() form = 2,3, ...
such that forall ', r”" withry, < 1" <7’ <r <r*andr’' —r” < r* —r, and all
fezZ' W, E S™N¢E) with f = 0in H' U E'® S™NE), there is a solution
ueCOU", E'®S"NE) to su = f such that

D(E' ® S"N§)

max sup |u ; ptty < —————————~="max | fi; I 5.1
j p| ]|Loo(Uj( ) — (r,_r,,)r k‘j |fkj|L°O(U/:j) ( )

where D(E’ ® §™N{.) is independent of 7/, r” and f and t = 7(N() is independent
of m.

In what follows, we shall express sections of bundles in coordinates. For the purpose
of estimates, we need to choose suitable domains for trivialization of the vector bundle
Nc. Recall that the N¢ has trivializations N; and transition functions Ny;. Let B}, be
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the ball of radius r in C¢ centered at the origin. Thus, we define

Vi =N;(V)=Uj x By, Vi =Vin---nV,,

\Z-Z,,,iq = Ni, (Vi) C 01, (Uj i) % c, (5.2)
Vie= NV, Nij=Nz' onVy, (5.3)
NiiNij = Nij onVj,;. 54

Denote the corresponding domains by \7].’ , Vkrj when N are replaced by @ ;. Then we
still have the above relations when N, N are replaced by ®;, ®;;. We know that
&y are perturbations of the transition functions N; of the normal bundle of C in M,
which are defined on different domains but in the same space. We will, however, work
on domains ‘7,:] for @, instead of V,:j.

With notation of Sect. 2.7, for L > 1 and for r, < r < r*, we consider a cochain
{f1} € CTTIU", O(Tc M ® SE(NE))), given by

n+d
J11= FigeigY =D D fviyi0Gig (P))ein.1(p) ® (i (p)@

r=11Q|=L

where I = (ig, ..., i4) € Z¢*!. Recall that ‘71’ =N, (V;n---nN Vl’(;) Define

il = sup 1Y frothivll.

(higvig)eV] 0

We also set |{f1}|, = max; | frlr
Note that Vj’ = U; x BJ, are product domains. Also,

A A A *
U,:ijfi*rCVkerU,:ijjr, e <1 <c*.

Define B,ﬁj(hj) to be {v; € B): txj(hj)v; € B)}. The skewed domain ‘7,:] can be
described as follows:

(hj.vj) € Vi; ifandonlyif h;e U, v; € Bf;(h;).
Next, we note that the d-torus action (hj,v;) — (hj, ({1v1, ..., {avg)) With ¢ €
(S l)d does not preserve Vkr] when #; (h) is not diagonal. Nevertheless, the \A/k’] has a
disc structure:

(hj.tvj) € Vi, V(hj.v) eV, Y eA.

Indeed, suppose that (h;,v;) € Vk’j Then h; € lA],fj and (hj,v;) = N;(p) with
peVv,n Vj’ and Ni(p) = (hg, ve) € V[. By definition, Vj’ = U; x B). Take
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p= Nj_l(hj, ¢vj). Wehave p € Vi and Ni(p) = (hi, 1xj (Cv))) = (hie, $1yj(v)) €
U,:j x BY.
Throughout this section, we use

|uj|p= supA |uj(hj,vj)|, |I/lkj|p= supA |ukj(hj,vj)|
(hjvpeV? (hj.vp)eVy,

where uj, uy; are functions on Vj’ and Vk’j, respectively. We also define [{u;}]|, =

maxy |ug|p.
With the above disc structure, we now prove the following.

Lemma 5.1 Let uy; be a holomorphic function on \A/k’j withr, <r <7 < r* Suppose
that

Ve £ 0. (5.5)
For0 < 0 < 1 with8r > r*, we have
lukjlor < 0™ lugjlr, ifurjChj,v;) = O0v;I™; |ug1’lr < lugjlr

oo ei
2 M lor = Tl -
=i

Proof Let u = uy;. The first inequality follows from the Schwarz lemma applied to
the holomorphic function { — u(h;, ¢v;) on the unit disk for fixed (h;, v;) € Vk’]
Note that [u]' (h;, tv;) = ¢'[u] (hj, vj). Thus the second inequality follows directly
by averaging,

[u]z(h' u):L uh; ;v.)d_g (h; v-)e\AfV.
A 27 Jeean P e Y kit
The last inequality follows from the first two inequalities. O

For the rest of this section, we rename r in the Donin Condition by 7 which is fixed
now. We will let r vary in (ry, 7).

Lemma5.2 Letr, <0r <r <7 < r* < 1. Fixk, j € I. Suppose that (1 — 6*)r <
r* — ¥ and (5.5) holds.

(a) We have
dist(V{", 8V/) > r(1 —0)/Co, dist(V{/,dV[)) = r(1—0)/Co, (5.6)

for some constant Cy.
(b) Assume further that *r > r,. There exists a constant Cj suchthatif F; = 1+ f;

satisfy

| filg2 < (1 —6)r/Cg, 5.7
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then we have

A2 A A Nn2 A
Fi(vi"yc vy, Fivi" c Vv, (5.8)
—1,006%4 ~93 —1 ~ g4
F i cvlr, FF =TonV]". (5.9)

Proof (a) The ‘A/jr is the product domain U ]’ x B. Thus the first inequality in
(5.6) holds trivially since Ij; is a polydisc. Note that f/k’/ are open sets. Then
§ = dist((h, v), (h, D)) = dist(V{7, 0V[,) is attained by

(h,v) € V. (h.D) € dV[,. (5.10)

Ifh e aﬁ,gj, we immediately get § > dist(t},f; , a(},jj) > (1 —6)r/C by Lemma A.6.
Assume that i € U Lt i Then by the continuity of the function #;, ¥ must be in 9 By ; y (h).
Otherwise, both / € U cand U € B’ (h) are interior points of the two sets, then any

small perturbation of (h D) still satlsﬁes the second condition in (5.10). The last
assertion implies that (h, ¥) cannot be a boundary point and we get a contradiction.
Therefore, we have

5 €dB) or t;(h)i € dB].

The first case yields |v —v| > dlSt(Ber dB}) = (1—0)r. We now consider the second
case. By assumption #; is holomorphlc inw for a neighborhood w of Uy, ;- Thus there
is 6, > 0 depending only on Uk] such thatif & € Uk] and | — h| < 8, then the line
segment y connecting & to h is contained in w. Suppose that lh —h| < (1—06)r /C1
for C; to be determined so that (1 —0)r/C; < §,. Applying the mean-value-theorem
to #;(y) and using #; (h)v € BY", we get

Calt = v| = [t () (@ = )| = || (h)D — tij (W) = |1 () — 11 ()]
> (1 =0)r = Cslh — hllv| = (1 = 0)r/2,
when C is sufficiently large. Thus we get dist((j,f;, 8(7,3) > (1 —0)r/C as in the
first case. If |7 — h| > (1 — O)r /C1, the required estimate is immediate.

(b) Note that§ > r,. By choosing alarger C;, (5.8) follows from (5.6) immediately.
We want to find F~!. By (5.7) and the Cauchy estimate, we know that

A N3
10, £ (hj. )| + 13y, (vl < Co/CG. ¥(hj.vj) € VI, (5.11)

Note that V_Jr = l}_]’ X B_g is convex. By (5.11) and the fundamental theorem of calculus,
we have

A~ 03
| £i(p1) = fi(po)l < C1lpi — pol/C§, ¥po, p1 e V]
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Suppose that Cj > 2C7. Then F;: \7;.’3’ — VJQZV is injective, and T'(hj,vj) =
(hj,9;) — fj(hj,v;) defines a contraction mapping on ‘A/f}’, if (hj, ;) € \?/.94’ and
Cy is sufficiently large. This gives us (5.9). O

In this section, we change notation and let
° __ h v o _ (.h v

Lemma5.3 Letr, < 0r <r <7 < r* < 1. Suppose that ij satisfies (5.5). There
exists a constant C§ > 1 such that if

¢l < (1 —6)r/C; (5.12)
then we have
D (V) C V7.

Proof Note that 6 > r. Since ®; — Nij = ¢p; and Nkj(\A/kej.’) = XA/JQ,(’ , the assertion
follows from (5.6) and (5.12) for sufficiently large C7. O

Proposition 5.4 Let r, < 0r <r <7 < r* < 1. Assume that ij satisfies (5.5).
Suppose that ®; = Ni; + ¢I:j satisfy (5.12). Let Fj = I + f; satisfy fj(hj,v;) =
ov;». i
Suppose @y = Fk71<I>kj Fj = Nij + qb,:/.. There exists a constant C5 such that if
{file2, = (1 =6)r/C3, (5.13)
and gt (hj, v;) = O (v, ™), then

{8 o7, < C20™ (1 £ Mgz, + bt i (5.14)
{8 o7, < C260™ (1 — O)r. (5.15)

Proof Let us write d~>kj = Nij + 43,:/. and Fk_1 = I + gi. Thus

B = 81 0 Duj 0 Fj + s o Fi + (@i (1 + f1) — i)
(f;]gj Zg}qu)kjon-i-(ﬁ,gjOFj
+ i (hy+ £ = () x j + 1)+ tij(h) x f}(hj,v)).

According to (5.9), we have Fy(I + gx) = I on \7,(94r. Thus gr = — fr o Fk_l implies
that

lgklos, =< | filo3,-
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For (hj.vj) € V{". using dist(0f:". 00{") = (1 — 6)8r/Cy. we can obtain

ltgj (hj + [} (hj.v) =t (hp) < C3lf"(hj,v))| and | @i(hyj + f](hj,v)) —
@rj(hj,vj)| < C3]fj(hj,vj)|. Nesting domains and using (5.12), (5.13) and hence
(5.7), we obtain by Lemma 5.2 in which r is replaced by 6°r :

(8 lgsr < Ca(l(Sf}lor + R} rs
(B8 lgs, < Ca(1 —O)r.

Applying Schwarz inequality, we get (5.14)—(5.15). O

When we apply the above to iteration, the new ®y; in the sequence of iteration is
defined by

(B (EY T o By - F

on V! with ij’")(v,j;"“) c V.
Let us find [fj]lzn”_‘H (hj,v;), a polynomial of order > m + 1 and of degree < 2m
in v; (holomorphic in /), such that {Fk_lcbkj Fj} € Loy holds for some {F; =

12m
I+ [f]]1n+l}'
Let us consider the neighborhood written in the new coordinates {F';}. We obtain

for (., vi) = Py (hj, v)):

hi = & (hj, v)) = i) + B (hj, v)),

e = & (hy, v)) = i (hj)vj + G (hj, v)). (5.16)
We assume that (Z),:] = ((13]}(’]., &;}{’j) has order > 2m + 1 atv; = 0.

Letus write down the horizontal and vertical equations for the linearization problem:
F®yj = @ F;. We obtain the horizontal equation

ok (hj) + G (s v)) + i (o + B trj (h vy + 1))
=gj(hj+ f]hjv)) + &R (R + 1.0+ []).

The vertical equation reads

tyj(hj)v; + ¢312,'(hj, v;) + f (prj + dA);}fj tj(hj)vj + é;]l{)j)
=uj(hj+ D@+ f)) + 08 (hj + [ v + [
We will interpret the above identity as power series in v; with coefficients being holo-
morphic in ¢; (Uy NU;). In what follows, degrees or orders of sections are considered

wrt.vjatv; =0.
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5.2 A Newton Method for the Full Linearization

For this problem, the two previous equations can be written as
Ly (fj) = (0, Dtkj(hj)fjhvj> + Fij (f), (5.17)
where Ly (f;) stands for (L} (f}'), L{;(f})) as defined by (2.18), (2.20):
LU = fl o (hp), i jv) — sij(hp) f1 Ry, v)), (5.18)
Ly (f7) = fi (grj(hj), tkjhjv) — tj(hj) i (hj, vj). (5.19)

Recall that s (h;) = Dgyj(h;) is the Jacobian matrix of ¢;. Furthermore, we have
the horizontal error term

Fl(fi) =y + flovj+ 1) —
+ (s g hpep) = fi o + By g v + 1))
+oij(hj+ f](hj, v))) = @rj(hj) — Dgwj(hj) [ (hj, v)),
(5.20)

as well as the vertical error term

FE () = op;(hj+ flvj + 1) — & + Dty (hj) f1 f}
+ (fkv(‘ijs tj(hp)vj) = [ (oxj + B trj (hj)v; +<23;fj)>
+ (1 (hy + £y 0) = 1) = Dy () 1) ) + £1).
(5.21)

We collect 2m jets from (5.17), (5.20), (5.21). Since f; = O(m + 1) and q@,?} =
O(2m + 1), this gives us

(" M 152" =~ 15", (5.22)
(8" f)kj 152" = =D (h L1 v — (6715 (5.23)
Under formal assumptions, according to Lemma 2.16 (c), Egs. (5.22)—(5.23) have a
solution ([ 1127 1, [f¥ 1o ))-
We first consider the case that HO(C, @,%ZZTC ® Sk(Né)) = 0. Then, for any
re <1’ <1’ <F <r*with

" !/ I 1 ~
P =0r =0%, ¥ —r" <r*—F,
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the solution to (5.22) is unique and by Theorem A.12 that unique solution satisfies the
estimate

D(TC ® S'(N}))

hql
R = =

I{[¢>k, B, IT=m+1,....2m. (524)

In particular, {[ fk ]m +1} has been determined. The solvability of (5.23) and Theo-
rem A.12 imply that we can find a solution {[ f;” ] 1} suchthatforl =m+1,...,2m,

D(Nc ® S'(Ng)) | D(TC ® S'"H(NE))
r'=r"T ¢ r—rHT

HLAT Y < g1~ + |{[¢;;,~]l}|,} :

(5.25)

Here ¢ depends only on the D1;; over the initial covering.
If H(C, EBk erlTC ® Sk(N )) # 0, we are in the flat case, that is Dt;; = 0.

Thus, we can find a solution {[ f;’ erl} such thatforl =m +1,...,2m,

D(Nc ® S'(N}))

HLA Y < Ty {1 (5.26)

Let us set

D.(@m) =1+ max {(1+cK(TC®S’ I(NC)))D(NC®SI(NC)] (5.27)

Hence, in any case, estimates (5.24)-(5.26) lead to

(2m)
HLAT Moz, < (*—)2,|{ Ak
for all 6 and r satisfying r, < 0%r <r <7 <r*andallm+1 <[ < 2m. Assume
further that 6% > r, and (1 — 07)r < r* — 7. We obtain, by Proposition 5.4 with
m=2m+1

“ CiD.(2 92m+1
pgjlo7, < %lﬁﬂr <601 = 0)r/Cy,
provided
Hogitlr < (1 —0)r/Co, (5.28)
D..(2m)
Tz B = A= 0r/Co. (5.29)

Note that condition (5.28) follows from (5.29) as D, (£) > 1.
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Renamecbk],@q Fj,f <I>kj,¢kj respectlvelyascb(O) ¢(0) F(O) f(O) (1) ¢(1).

Thus <I>(l) (F (O)) ICD(O) F © . Repeating this formally, we obtaln
q>(€+l) (F(e))f cD((f)F(/Z) F(@) I+ f(ﬁ) cb(“-l) Nii +¢(f+1).

Setropy; = Qgrg and my = 2¢. We also have

ng)(‘;_rm) c (/rz (5.30)
|¢;§Z+l)|r5+1 < 92mg+l(l — 80)re/Co (5.31)

provided
re <0l <1, 0<6 <1 (5:32)
C1D«(2my) |{¢k,)}|w < (1= 8y)re/Co. (5.33)

(re — 02rp)*"

To set parameters, we follow Russmann [37]; see [4,5,41] for different choices of
parameters. As in [37], we now use an addition assumption that

D;>¢, ¢>1. (5.34)
Indeed, when D, (k) = max(Dy(k), k) replaces with D, (k), the sequence D, (k) still

increases and ) 2~k log D, (2") converges. For a constant C,, > 1 to be determined
later, define

me =2 r =0/r, ro=1,
log D
1—60, =058, & = C*M.
ne+2

Note that in [37, Lemma 6.2] and [4,5,41], w(mg41) is used to define §,. Shifting the
index by 1, we use D, (m¢42) to simplify the argument. We can find £y = £o(C) such
that 0 < 6; < 1 for all £ and furthermore

oo oo o
7Cy log D
HGZ = l_[(l -8 > expy— Z L2 08 Pulier2) +(met2)

2 m
=0 +2

Since Y 2k log D*(Zk) < 00, the latter is larger than r,, provided €9 > £o(Cy).
Inductively, we want to show that if (5.33), holds, then (5.33)¢ also holds. Indeed,
with (5.33)¢, we can use (5.31)4 to obtain

Cq D*(m€+2)

(res1 — 07 res )™

Co
(I = OeDre+1

e Yy %
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2mp—6

D, (mg12)6 1 -6
< —— (by (5.31)
(res1 — 07, 47e+1) 1 — 641
_ CDmey2)0" " CaDulmesa)(1 = 8™
N S |

We need to check that the last expression is less than one using logarithm. Note that
log(1 —§) < -6, V§e(0,1).
Therefore,

CaDy(myy2)(1 — 5[)2’”4{ —6

2t+1
6@+1

log

<log C2 — (2mg — 6)3¢ +10g Ds(meq2) — (2T + 1) log 843

log Dy (my42)

log D.(m
= 108Ca — @my ~ CELED. 100 by z) — (x4 1 log (cw>
42

me+3

2my — 6)Cy log D.
} + {log Di(mesn) — (2my )Cs 10g Dy (my42) }
3 nme42

log Dy (me+3 ) }

me43

(2mg — 6)Cs log D (me42)
= {logCy —
3 nme42
{ 2mg — 6)Cs log Dy (m42)
_l’_ —
3 me+2

— (27t +1)log (C*

When ¢ is sufficiently large, then m 4> > 24. This implies that if C,, > 12, the sum
in each of first two braces is negative. Since log increases, we have by (5.34)

1
—log Dy (my43) < log ,
me43

1
log D log
_log (C* 0og *(m£+3)> < —log (—C* me43 > .

ny+3 nme+3

With my > 6, the difference in the last brace is bounded above by

1
(2my — 6)Cy 108 75

3 met2

logmg3 1
—Q2r+Dlog| Cxy—— | < | ——=Cx+2t 4+ 1) logmys2,
mgy3 12

which is negative when C, > 24t 4 12. We have determined C,. This allows us to
determine £o(C,) so that 0 < 6, < 1 and ]_[,fio QZ > r,. Therefore, (5.33), holds if
it holds for initial value £ = 0. Using a dilation v; — €v; for € > 0, we may replace
Dyj(hj,vj) by (@kj(h;) + ¢,};j(hj, €v;), tkj(hjv; + 6_1¢;()j(hj, €v;)). This yields
(5.33)p when € is sufficiently small, as ¢>,:j (hj,vj) = O(lv; |2).

To finish the proof, we set \I/](.Z) = F;O) 0---0 F;Z). ‘We have

£) /> 5 {+1 {4
W@y v (g v = w0, = 0w,
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Consequently, the sequence \IIJ(.Z) is bounded in V jr°°. Fix 0 < 6 < 1. By the Schwarz
lemma, we get

sup |\yj(.”” — \pj(.‘”| < co.
U;OO ng'bO

Therefore, of \Il/(.z) converges uniformly on Ujr.“’ X Bsrw to a holomorphic mapping
W Then F := N;'W¥®; is well defined. Indeed, N, ' WX d; = N WX d; is
equivalent to W2°(dy @;1) = (Ny Nj_l)\ll;’o. Since \IJ;-’O are tangent to the identity,
they are germs of biholomorphisms. Therefore, F' linearizes a small neighborhood of
Cin M.

Therefore, we have proved the following full linearization result.

Theorem 5.5 Let a neighborhood of the compact manifold C in M be equivalent to
a neighborhood of the zero section of normal bundle Nc of C in M by a formal
holomorphic mapping which is tangent to the identity. Assume that H*(C,TC ®
st (N&)) = 0 for all € > 1 or that the normal bundle Nc is flat. If { Dy (2%)} defined
by (5.1) and (5.27) satisfies
k+1
> % < +oo, (5.35)
2

k>1
there is a neighborhood of the compact manifold C in M that is biholomorphic to a
neighborhood of the zero section of normal bundle of C in M.

When the transition functions of C are affine and N¢ is flat, the formal equivalence
assumption can be relaxed by assuming that the neighborhoods are equivalent under
a formal biholomorphisms fixing C pointwise. This follows from Lemma 2.4 (c).

We now present two examples to illustrate the results in this paper.

5.3 An Example of Arnol'd

This is originally studied by Arnold [2], [3, §27] for linearization of a neighborhood.
See also Ilyashenko—Pyartli [23] for linearization for flat tori in higher dimensions.

Example 5.6 [3, §27]. Let C be defined by identifying points in C via
h=0 mod 2m,2w), heC,

where @ = a + ib with b > 0 and a > 0. Consider domains in C defined by
parallelograms

U =P(-rr—ro,d+rr—ro,(1+rNr+{+rw, —rr+ (1 +r)w)
U=U+nrn, Uz3=Us+w, Uy=U;z—m.
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Suppose that » > 0 is sufficiently small. Then U; N U has two connected components
U,'j’() and Uij,l with

Uig1 =Us0— 7, U3 =Uss0—w, Upi1=Uxo—7, Upp1=Uno—w.
Let 0j = U; and \7j = ﬁj X Ag. Define M = U‘7j/ ~ Vi={x]:x € \7]},
O Vj and the transition functions ®; on Vi; = Vi N V; of M as follows.
Let

f(h,v) =+ 2w+ vb(h,v), 2v(l +va(h,v))), |Imh| <34

where a, b are 27 periodic holomorphic functions in 4. Define

Ppo=L Piuo=1 Pui1=/fly,, Psi=fly, (5.36)
Py =1, Pp3=I, (5.37)
Pio=L Pui=fly,, Puo=L Pui=fly, (5.38)

The linearization of a neighborhood of C in M is equivalent to Gk_lfbk iGj = dy i
where ®; ; are constructed as above by replacing f with f defined by

fh,v) = (h+ 2w, \v).
Thus 7'M has transition functions:
D=1, dy3=1 Ppo=1 dpo=1 dpi=Ffly,, Pui=Fly,.
Theanhaveg =G = G4 on \71 ﬂfﬁ,g = Gy = Gz on \720‘73,g =G =
Gy on Vi and g := G3 = G4 on Vas . In other words, g is 2w periodic and

defined on —6Imw < Im#h < 2(1 + §) Im w. The cohomology equation is reduced
to Gl_ltblz Gy = dppand Gzld>43 G3 = dy3. Equivalently, we need to solve

g ' fe= 1. (5.39)
Assume that f has been normalized so that
va(h,v) =v"a,(h)+ O0n+1), vbh,v) =v"b,(h)+0mn+1), n=1,2,....

For the purpose of illustration, we will only restrict to a special unitary line bundle
case where |1| = 1. Then by the non-resonance condition that A is not a root of unity,
we may assume that as in [3, p. 211]

g(h,v) = (h+v"B,(h), v(1 +v"A,(h)) + O(n +1).
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This leads to decoupled equations of the form

)\nAn (h +2w) — Ay (h) = —a,(h),
A'B,(h 4+ 2w) — B, (h) = —b,(h). (5.40)

Note that a,, b, are holomorphic in |Im 2| < § and we are seeking a solution on a
large strip

-8 <Imh <Imw+4§.

In Fourier coefficients a, ¢ and a non-resonant condition, the Fourier coefficients of
A, are given by

Apj=—f
T an2wjN—=1 _ 1

Assume that a,, are holomorphic and 2 periodic in & for Ss: |Im k| < 8. Suppose

that

|)\‘n 2]&)\/7 1|>c|)\'n_1|
Then

—1jlé
||an|L2(S5)e UI )

C
|An’j|§|A"——l

1A, jel"| < | lanl 25y V16 —8 < Imh < Imow + 8.

A —1

Furthermore, we can verify that

|An|L2(S3,) = mmnh%m-

Note that #;; are locally constant with values 1, A, AL
Therefore, we have verified

D ((T, N, S'TNf) < ——.
((Te ® Ne) ® §'N) = o

By Lemma A.2, we get an estimate with equivalent bounds (up to a scalar) but in the
original domain, i.e. without shrinking domains.

Strictly speaking, the above covering {U "} has non smooth boundary. The inter-
section is non-transversal either. However, th1s covering can be easily modified to get
a generic covering defined early, replacing U; j by smooth strictly convex domains U; b

and then replacing U; j by U; j + c¢; for suitable small constants.
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5.4 Counter-Examples

We now show that a certain small-condition is necessary to ensure the vertical and full
linearizations. We will achieve this by establishing a connection between the classical
linearization problem for germs of one-dimensional holomorphic mappings and the
vertical linearization of foliated neighborhood of an elliptic curve.

We keep the notation in subsecton 5.3. Let us start with a power series

a(h,v) = Zanv” = a(v). (5.41)

n>2
Set b(h, v) = 0. Then we have a neighborhood of C associated to
f(h,v) =0+ 2w, Av +a(v)). (5.42)

Since the vertical part of the transition functions depends only on v, then M already
admits a horizontal foliation with center C being compact.

Proposition 5.7 Let M, 4 be neighborhood of C defined by transition functions ®y;
given by (5.36)—(5.38) where f is given by (5.41)—(5.42). Suppose that A, @ satisfy
the nonresonance condition

)\'nerw«/?l_l#O’ n=2’3’_”’jez_ (543)

Then M, ., 4 is vertically (resp. formally) linearizable by a mapping tangent to the
identity if and only if the germ of holomorphic mapping ¢ (v) = Av + a(v) is holo-
morphically (resp. formally) linearizable.

Proof Suppose that M is vertically linearizable by a holomorphic mapping that is
tangent to the identity. By Proposition 2.6, it is vertically linearization by a mapping
G such that

Gj(hj,vj)) = (hj,vj+ O(v;]»).

By the non-resonance condition (5.43), we can verify that (5.39) is equivalent to that
the g in (5.39) has the form g(h, v) = (h, ¥ (v)) and ¢ is linearized by ¥. O

The existence of non-holomorphically linearizable ¢ is well-known. By theorems
of Bruno [4,5] and Yoccoz [43], Proposition 5.7 shows that M,_,, ; with a(v) = v?is
vertically linearizable and hence linearizable if and only if A is a Bruno number, that
is

log max,  ; <o« A — 17!
2k

< 400.
k>1
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5.5 A Foliation Example
Here we specialize Ueda’s theory for elliptic curves. Let us first discuss the Fischer

norms and Bergman norm when the N is unitary. Let us recall two formulae from
Zhu [44, p. 22]:

/ 291 dog = _@=Diot pra-121el
B¢

(Ql+d -1
/ 202 ay, = —LQ 2ok
5 (0l 1 d)!

Therefore, there is a precise asymptotic behavior of Fischer norm and the Bergman
norm:

callgl}z ggy < 1817, < Callglapay 1/4 <1 <4 (5.44)

We also have Bergman’s inequality for > holomorphic functions [15, p. 189]:

Ca
|f|oo";j(179>r =< @ S}llljp |f(hjs )2 pays (5.45)
sup | f(hj, )2pdy = Cal floo,pa, 1/4 <1 <4 (5.46)

hj

In general, we get
. Ca .
|¢kj|LOC(‘7k_/,(I—9)r) =< W S}lllp |¢kj(hj, .)|L2(B;€1j,r(hj))’ (547)
J
sup 881 2ag, iy = Cal¥llioiy)s 14 <r <4 (5.48)
j '

Note that when #;; are unitary, the skewed domain \A/k’j defined in (5.2) are actually
product domains

or __ 1r r
Vij = Uj % By.

Therefore, the Fischer norm and Bergman norm bound each other with constants
depending only on 6 and d. We can fix 6 too by applying Lemma A.2 as we did in
Sects. 3 and 4. Therefore, any estimate of cohomology equations in Fischer norms has
a counter part in super norm on the unit ball in C¢ and vice versa.

Note that the small divisors condition

DP—1>Cn"", n=1,2,... (5.49)

for some constants C, 7 is equivalent to Ueda’s condition in terms of dist (N, 1) for the
foliation problem when C is an elliptic curve of type zero. In this case the corresponding
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linearized equation is equation (5.40) for which the small divisor 1/K.(N¢c ® S" N{)
can be chosen to be |A" — 1].

Finally, we should mention that the assumption 7, < LoL™ is satisfied under
Siegel’s small divisor condition |\ — 1| > Cn ™" by amethod of Siegel; see Ueda [42]
for the vertical linearization problem. It is also satisfied under the Bruno condition [4,5]
which is a condition weaker than (5.49). For the details, we refer to [4,5,36].

Appendix A. L? Bounds of Cohomology Solutions and Small Divisors
A.1 A Question of Donin

Let E be a holomorphic vector bundle on a compact complex manifold C. The main
purpose of this section is to obtain L? and sup-norm bounds for the cohomology
equation

Su=f (A1)

where f € Z'(U, O(E)) and U is a suitable covering of C. Our goal is to show that
if f =0in HY(C, O(E)), then there is a solution u such that

lullr = KCE)ISf Nl (A.2)

Here || - |lz7 is the L?>-norm for cochains of the covering /. The main assertion is
that the solution u admits estimate on the original covering U without any refinement,
which is important to the application in this paper. For this purpose, we will choose the
covering U which consists of biholomorphic images of the unit polydisc and which
are in the general position. The question on the existence of such an estimate and
solutions was raised by Donin who asked the general question if O(E) is replaced by
a coherent analytic sheaf 7 on C and f is any p-cocycle, with p > 0, of a covering
U [9]. The result in this appendix provides an affirmative answer to Donin’s question
for p = 1 and the sheaf of holomorphic sections of a holomorphic vector bundle.
Furthermore, we will introduce the small divisor for (A.1) in (A.2). Although some
of results in this appendix can be further developed for a general setting, we limit to
the case of H'(C, O(E' ® E")); this suffices applications in this paper. One may take
E” to be the trivial bundle to deal with a general vector bundle E. In the applications
we have in mind, C is embedded into a complex manifold M and we will take E” to
be symmetric powers Sym* N¢ of N, the dual of the normal bundle of C in M. In
this paper, S*E denotes the symmetric power Sym‘ E of a vector bundle E over C.
We are mainly concerned with how various bounds depend on ¢ as £ — oo when we
employ the important Fisher metric on S*N ¢ for unitary the normal bundle Nc¢. This
will be crucial in our applications.

To prove (A.2), we will first use the original estimate of Donin [9], without solving
the cohomology equation. This serves as a smoothing decomposition in the sense of
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Grauert [15] by expressing
f=g+du (A.3)

where g is defined on a larger covering while u is defined on a shrinking covering. We
will then combine it with the proof of finiteness theorem of cohomology groups from
Grauert—-Remmert [15] to refine the decomposition (A.3) by expressing g in a base
of cocycles. Finally, we will obtain (A.2) by avoiding shrinking of covering. This last
step is motivated by a method of Kodaira—Spencer and Ueda [42]. We take a different
approach by an essential use of the uniqueness theorem. This allows us to introduce
the small divisors in (A.2) to the cohomology equation (A.1).

A.2 Bounds of Solutions of Cohomology Equations

We now start to introduce nested coverings of C. This will be an essential ingredient
of the small divisors for the cohomology equation. We cover C by finitely many open
sets U;,i € 7 such that there are open sets V; in M with V; N C = U;. We also
assume that there are biholomorphic mappings ®; from V; onto the polydisc Ag; 4 of
radius r*, where n is the dimension of C and n + d is the dimension of M. Assume
further that <I>,~(Ul.’*) = AZ* x {0} for ¢; x {0} = ®;|y;. SetU" = {U; : i € I} with
Ul = (pl._l(AZ). We assume that r* < 1 and U™ with r, < r*, remains a covering of
C.When Uj :=U; N--- Uli[ is non-empty, it is still Stein [15, p. 127].

11

Definition A.1 Let {Ul’.} be an open covering of C for each r € [r, r*]. We say that
the family of coverings {U J’ } is nested, if each connected component of U,f N U;*
intersects U,* N Ujr.* when r, < p < r*. In particular, U;* N U]r.* is non-empty if and
only if Uy N UJ* is non-empty.

Let N(U!") be the union of all U}" that intersect U!"; as in [9] we will call the
union the star of U/ " Refining U” T if necessary, we may assume that there is a
biholomorphism ¢; from a neighborhood of the star onto an open set in C". If E/, E”
are holomorphic vector bundles over C, we will fix a trivialization of E’ over U; by

fixing a holomorphic basis ¢ = {e; |, ..., ¢, ,}in U!". We also fix a holomorphic
"o 7 7 "o * * * * . :
base e; = {ej’l,...,ej’d} of E” in U; .OnU; = Ul% ﬂ-uﬂUlZ,lt will be

convenient to use the base

P oil<k<m,1<j<d).

N "oy
Cig...ig ‘= € ® €, = {eio,k ® €yt

Throughout the paper || - | p and | - |p denote, respectively, the L? and sup norms
of a function in D, when D is a domain in C". If f = (fj,..., fy) is a vector of
functions, we define the L2 norm, metric, and sup norms as follows:

L1 = 1172y = IfillD + - + 1 fall s
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|ﬂ%:m%m@W+~~Hﬁ@ﬁ
ze

[ floo,p = sup max{| f1(2)|, ..., [ fa(2)]}.

zeD

For a d x d matrix ¢t of functions on D, denote by |¢|p, ||f||p, ||, D, respectively, the
operator norms defined by

ltlp = sup |tflp, ltlp = sup |eflip, |tlop = sup [tfleop-
flp=1 Iflp=1 |floo.p=1

Therefore, ||t||p < |t|p as ||f|lp < (sup,ep 112D flip = ItIpll fllp-
Then we define the L2 norm for f € C1(U", O(E' ® E")) by

md
. M
ajey ‘= Z (11 eI’M,
pu=1

. -1 . ;
1l = max_ lar o g, wn: fi =arerinUs].
I=(ip,..., iq)GIqul 9

Sometimes we denote || f ||z4 by || f|| for abbreviation. We define similarly the metric
norm | f[z¢r, or | f|, and the sup-norm | f |~ 3¢ Or sup | f1. It is obvious that

FIl < CIfl, sup|f] <Ifll <Cyrank(E’® E")sup|fl,
loo < |t] < Crank(E' ® E")|t|so,

where C does not depend on E’, E”.

The first result of this appendix is to find a way to obtain solutions to (A.1) that
have certain bounds on the original covering, if a solution with a bound exists on a
shrinking covering. This relies on the nested coverings defined above. We first study
the L? norms case.

LemmaA2 LetU" = {U/:i € I} withr, < r < r* be a family of nested finite
coverings of C. Suppose that f € C'U"™", E'QE"yand f =0in H' U™, E'Q E").
Assume that there is a solution v € CO(U"™) such that

sv=rf, lvllge= = KN fllggre- (A4)

Then there exists a solution u € COU"™") such that Su = f on U™ and
lullypre < C(I{t,ij}lw* + K|{t]ij}|ur* I{t;i’,-}lur*)llfllw*, (A.5)
where t; i t,i’] are the transition matrices of E', E", respectively, and C depends only

on the number |I| of open sets inU"" and transition functions of C. In particular, C
does not depend on E', E".
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Proof By assumptions, we have

fik=0v)je. U7 NU, (A.6)
lvllees < KN fllggre- (A7)

Take any v* € COWU"™", E' ® E”) such that §v* = f. Then (§v* — 8v)jx = 0 in
Ujr.* N U;*, because (8v*)jx = fjk on the larger set Uj’.* N U,f*. Since {Ujr.*} is a
covering of C then w := v; — v} is a global section of E’ ® E”. This shows that
vj, via v;f, extends to a holomorphic section in U ]’ “In fact, v; is the restriction of
uj = v} + w defined on U;*.

We now derive the bound for u ;. Suppose that U /’* N U;* is non-empty. By the
assumptions, each component of U "NUJ* intersects U;*OU - Wehaveu; = ug+ fjx
on U]r.* N U, and hence the uniqueness theorem implies that it holds on U i nup

too. And on Uj’.* N U,:*, we have u; = v and u; = v — fij. We express the identity
in coordinates

uj =iijej, vk =vex =0kjej, fij = frjexj = frjejj-

Let 1 i t,i’j, respectively, be the transition matrices of e;., e}’ for E’, E”. Then fy; =
% i ® t,i/j are the transition matrices of ¢; for E’ ® E”. Then we have

~ / "o~ 7 1 ~
Ukj =tjk®tjkvk’ fkj = jk®1dfkj~
Thus, itj = Uk — fxj = t}k ® t}’kﬁk - t}k ® Iy fij. We have
= s 1 )
”uj”LZ(UJr_*mU]:*) - ”uj Oq)] ”LZ(W].(U;_*QUIL*))

/ "o~ -1
= ”(tjk ® tjkvk) o 90] ”LZ(WJ.(UJ(*QUIZ*))

, - -1
1 ® Lafij) o @ N, wravyy-

Here 7 O(pj_l = ljko(pk_l oy j. By the properties of operator norm and ||t,2j®t,2’j||1) <
* r.
|t,ij ® t,i/j|D < |t,ij|D|t,i/j|D for D = (pj(U; NU,"), we have

2

/ /"o~ —1,2 /2 "2 ~
s ’ ) < : ’
||(ka ®l]kvk) °Y; Ip < C*|t]k|[) X |tjk|D X ”Uk”wk(Uj*ﬂU,:*)’

where the constant C, comes from the Jacobian of zx = ¢ (z;). By (A.7), we have

S 12 20 £12
vk o9 "Nl < K7N flI72-
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We also have
’ Fo -1 l -1
”(tjk ® Idfkj) 090] ”(/)j(U;*ﬁU]:*) S |tjk O(Pj |(,0j(U;*ﬁU1:*) X ”f”(pJ(U;*mUli*)
Since U Jr " is covered by {U j’* nU ,:*}, we get the desired bound from
15 2y = DN 2 ey
k

]

The argument for the norm | - | is verbatim and we can take the above constant C,
to be one.

Corollary A.3 With notations and assumptions in Lemma A.2, the solution u also sat-
isfies

Ul oo g4 = C(|{flij}|ur* + K|{t]ij}|z,{"* |{t]£/j}|l,['*)\/ rank(E' @ E")| f oo %
where C does not depend on E', E".

The above lemma leads us to the following proposition and definition.

Proposition A4 Let U" = {U]:i € I} withry < r =< r* be a family of nested
coverings of a compact complex manifold C. Let E' (resp. E") be a holomorphic
vector bundle over C with bases {e;} (resp. {e;.’ }) and transition matrices t,, ; (resp.
{t,i’j D). Suppose that there is a finite number K such that forany f € C'U"", E'Q E")
with f =0in H' U™, E' @ E"), there is a solution v € CO(U"*, E' ® E") satisfying
(A.4). Then there is a possible different solutionv € CO(U™, E' ® E") satisfying (A.4)
in which K is replaced by

K. (E'® E") = supinf{|luollos : Suo = dus onld™,
up "o
I8urllyre = 1,u; € COU", E' ® E"). (A.8)

Proof By the assumption, K, = K4(E' ® E”) is well-defined and K, < K. Fix
u; € COU", E' ® E"). Suppose that su; = f and [ fll;; = 1. By the definition
(A.8), there exists u(’) such that Suf = f on U™ and |lugllyy+ < K4 + 1/m. By the
Cauchy formula on polydiscs, (ug') ; o <pj_1 is locally bounded in ¢ (U}) in sup-norm.
We may assume that as m — o0, (') j converges uniformly to ug° on each compact
subset of U; for all j. This shows that ||(x5°); o goj_l lz2(gy < K for any compact
subset E of ¢;(U;). Since E is arbitrary, we obtain [lug”||y < K. By the uniform
convergence, we also have dug” = f onU". O
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Definition A.5 Let E’, E”, e;., e;./, t,éj, t,é’l be as in Proposition A.4. Let t,é’j(S’" E") be
the transition matrices of the symmetric power S” E” induced by t]i’] .Form =2,3,...,
we shall call

K(E'® S"E") = [{t};(E")lyp
+ Ko(E' ® §™ E) {1} (B lygre 11 (5™ E")) o

the generalized small divisors of E' @ E” with respect to e}’ , t,é’]

A.3 Donin’s Smoothing Decomposition

Grauert’s smoothing decomposition for cochains of analytic sheaves is an important
tool. Here we will follow an approach of Donin [9], by specializing for vector bundles.
We first need to introduce coverings by analytic polydiscs.

LemmaA.6 Let C be a compact complex manifold. Let {Ul.r* : i € I} be a finite open
covering of C, and let ¢; map Uj’- biholomorphically onto Al! forr, <r <r* < 1.
Assume further that ¢; is a biholomorphism defined in a neighborhood of the star
N(Ui’*) onto a domain in C". Suppose that r, < r] <r; <r*, and

, /

Uf = U0 U £,

L0

Then for constant ¢, € (0, 1) depending only on n,

dist (91, (U)), 8(1, (U] D) = ek min(rj — r}). (A9)

. / n r*
12,2 € A VU i F D

P R e R O]
' ’ 7' —z

(A.10)
Proof Note that for sets in C", if A C A’, B C B/, and A, B are non-empty, then
dist(A, B) > dist(A’, B').

Recall that @i, is a diffeomorphism from a neighborhood V of the star N (U; q) onto a
subset V of C". We have d¢;, (U}) C U j39i,(U}). Thus

dist(@gi, (U], g1, (U] ) = mindist(@ i, (Uf). 91, (U]))

> mindist(d¢;, (Ul.ri), biy (Uiri/))'
; _ .
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We have dist(3(g;, (Ui’j), @i, (Ul.’j,)) = dist(d(g;, 0 (pgl (A1), @i, 0 q);l (A”)). Recall
that ¢;, is defined on N (U;,) D Ul.r/ *. Then the distance is attained for some 7’ € AT,
and z € A", By the definition of x, we get the desired estimate. O

We will recall the following smoothing decomposition of Donin [9]. Here we restrict
to the case of H'! and the holomorphic vector bundle to indicate the specific bounds
in the estimates.

Theorem A.7 (Donin [9]). Let C be a compact complex manifold and let U" (ry <
r < r* < 1) be a family of open coverings of C as in Lemma A.6. Let E' ® E” be a
holomorphic vector bundle of rank m over C and fix a holomorphic base e;. (resp. e;’)
for E' (resp. E") over U;. Letry < 1" <r' <r <r*, and

r—r"<r*—r.
Assume that

U,:;‘ £, wheneverU,:; £ 0. (A1)

Let {fix} € Z'U", O(E' ® E")). Then there exist g € Z'U", O(E' ® E")) and
ueCOU", OE' ® E")) such that

f=g+du, inC'U",OE ®E")), (A.12)
Col{t M1}

ull, 7 + r <
Iy + e =~

If g (A.13)

where « is defined (A.10). The constant Cy, is independent of E', E". Furthermore,
fr—g=Lfand f — u = Sf are C-linear.

Proof With fl;’ = f;j weare given a cocycle { fl.’j/} of holomorphic sections of E'® E”

over the covering " . Recall that r, < r”” < r’ <r < r*and’ is an open covering
of C.

As in [9], we will apply L>-theory for (0, 1)-forms on a bounded pseudoconvex
domain in C". In our case the domain is actually a polydisc. Fix a holomorphic base
e = (e}c! Iroees e,’(’m) for the vector bundle E’ in U,g* with transition functions t,éj (z)).

Analogously, let t,i’j (z;) be the transition matrices for basis ¢} of E” for U . For
brevity, we write #; for #;(z;).
We can write

! cr' / 1 Zr' . Arlir® / / *
fij = i;eij =1 ®[kjfi;' ek = fij;k Ckk s OIlUl-r N U]r N Ul: . (A.14)

The U,:* is covered byz,{l:/lr* = {Ul.’/ ﬂUlg*},', while {fi;_/;?kr*} c Zl(l,{;/ir*, O™y Now
{f:;,: og 'y € ZN U ), O™4), where g (U; ) is a covering of the polydisc
A”.. By Lemma A.6, we have
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cik = dist@ (@ (U NU)), ge(U NUD) = carc(r — 7). (A15)

Let d;;x (z) be the distance to ¢ (U "nu ) from z € C". Let x be a non-negative
smooth function in R so that x(f) = 1 forr < 3/4 and x(t) = 0 fort > 7/8.
By smoothing the Lipschitz function x (ﬁd,‘; x(2)), we obtain a non-negative smooth

function z — @ " (2) that equals 1 when d;.4(z) < 1cix and by (A.15) it has

compact support in gok(Ui” NnuU ,g*). Note that we can achieve

~ I

Ve | < Cucit < eaCou ™/ — 1. (A.16)

Then qgir;/]:r/ o @i 1s a non negative function with compact support in Ul.’/ nU; " such
that for ¢ " = Z(/Blrkr ,we have ¢, " o g > 1/2in U} = |J;(U]" N U}) since
X(ﬁd,-; ) = 1on g US "N U[). Then by the mean-value theorem and the first
ineqilality of (A.16), we get

G 7 k() > 174, if dist(@e(x), k(Uf) < mincig/C (A7)

for some suitable Cy. Recall that ¢, < 1 and k,, < 1. Since dist(¢ (Uy), ¢k (9 U,:*)) =

r* —r' > c,k(r’ —r"), there is a smooth function (ﬁ,:;r : gok(U,g*) — [0, 1] with

compact support such that qA&;;r* = lin ¢ (U}), and
éz;r*(x) < 3/4, if dist(gr (x), 9 (Uy)) > min¢; ¢ /Cs. (A.18)
1
Note that the latter can be achieved with

arir* = . -1 1 "
Vo, | < Ci/minc;p < Cok™ /(r" —717).
1

InU ,: *, define a non-negative smooth function

ror _
¢i;k -

= = O Pk,
rir* r'’r’
L—¢" + ¢

where the smoothness follows from the denominator being bigger than 1/4 by (A.17)
and (A.18). Thus, ¢, ;" has compact support in Ul.’/ NU; and Y, ¢/, = lin
Ul = Ui(Ul.rH NUp), as qglf;r* = 1 on U}. We can verify that

V@l 0wl < Clielo . (A.19)
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Consider the expression

Wik = Z¢e 4 fe] K (A.20)

"ot / * ..
Recall that ¢>2 k‘r has compact support in U; N U . Thus it is smooth on v :=
Uj’., N U,g* al UZ/ and vanishes on an open set D containing U}l N U,g* \ w. On the
other hand, f[jfz is holomorphic in . Hence the product ¢, ;" fgj;_; is smooth in
U]’.’ NUJ". Then vj.x = dw;. is a smooth (0, 1) form in U;’ nuy.

Let A denote the sheaf of smooth functions on C. We now pull back the forms from

the polydisc A" via g. For each fixed k, we have {wj.x}; € CO(Z/{,:/"*, A™). Let us
denote t,ij ® I by t,/cj. By fij = fit — fjk and (A.14), we have

i ® tli/jf:; =t fix — tlijfjrk'
Since ) ; ¢i’:;;’/ =1= é;;’* o ¢ on Uy, then by 8 f = 0 and (A.14), we get on
urnupnut

"’ prlir® Arlir® " Fr
Wisk — Wjsk = Z¢z v Uik —Jejin) = Z¢e k (tkl ® tkiflz fe ® tk]fl]

’
_Z¢Zk (’k, ]k tszzk)_tk]f]k i fir-

The latter is holomorphic. Thus (§v);j.x = 5(8w)l-j;k =0on Ui’/ N U,g* N U]’./. This
shows that

Vg = vj;k

is actually a d-closed (0, 1) form in U,g*. Thus (w,:l)*vk is a 9-closed (0, 1)-form
on the polydisk A”.. By the L? theory [21, Thm. 4.4.3] applied to each component
of vy = ZZ":l f)fekk,g, we have a bounded linear operator S: vy — uy such that
5((<pk_ 1)”‘uk) = (¢ 1)"‘vk. Returning to the complex manifold via ¢, we have

||uk||Ur* = |luk o ¢y ||L2(A"*) < Cllvk o gy ||L2(A”*)

Ci g MIe 3
= T”JCHLZ(W

Here~we have used (A.20), estimate (A.19) and the definition of norm (A.4). Note that
the C is independent of the rank since we applied the L? norm componentwise. Set
§;kr = Wj.x — Uk On U]’./ N U} . We obtain

/’ N ’r . r/;r* r/ r r/
g - = ulnuinuy, (A21)
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Cre "t M)
n s ki k)
]?IX ”g;;kr”Ur_/mU[ S r/ r,/ ”f“ur/ (A22)
j c —

We have obtained (A.13).
To verify (A.12), we will use the same base e; and take the product of (A.21) with
ex to obtainon U N Uj’. NnU; NU;

§i — i = Tk e= 15 = B e =gl — g
and thus
r'ir s rlr r'sr r’ r” r r
80 — 8k =8t ~8ik> onU; ﬂUj NnNU, NU,. (A.23)
Then we have a (well-defined) holomorphic section

ro._ 1l r'ir r r
8ke =8t —8ik» UrNUy.

We verify that {gf,} € Z!@U", O™). Set u{” = gir.';:r. Since 7’ < r we actually have

{u{”} e COU"', E’ ® E"). However, only on Ui’” N U;//, we can verify via (A.23)
that

.
- i ' '

r . r'ir i iy
8ij — Jij = @ij —&ij) — 8ij — &) =wi —uy
O

The above result is a type of Grauert’s smoothing decomposition, which can also
be obtained by open mapping theorem. See for instance [15, p. 200]. However, this
yields an unknown bound in the estimates.

A.4 Finiteness Theorem with Bounds

The above smoothing decomposition does not provide a solution to the cohomology
equations, i.e.if f = 0in H' (?/{’/, O(E'®QE")), then there exists u € cOu’", OE'®
E")) such that u = f on U™, for some " < r’. We will follow [15] to derive the
finiteness theorem with explicit bounds. In particular, this provides solutions of first
cohomology equations with bounds on shrinking domains.

We first recall the resolution atlases from [15, p. 194], specializing them for the
vector bundles. Assume that we have coordinate charts

o U = Po=gu(U] ) = AT

Define U;* = Uiro* N---N Ui’q* for I € Z9%!. Then o1 = (@i, - ..,<p,~q) is defined on

Uj " with range U I’* Unless otherwise stated, we omit the superscript »* in U I’* We
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can define a proper embedding

o U — U < P := AZ:, ng =n(g+1).
Then the push-forward of the vector bundle E’ ® E”|y, defines a coherent analytic
sheaf (¢;)+(E’ ® E") over P; by trivial zero extension; see [15,p. 5, p. 195] and [14,

p. 239]. A section f € I'(U;, E' ® E”) yields a section f; of (¢1)«(E' ® E") over
P; by

froer(0) = (f100), ..., fi),  filp g, =0.

Note that U"" has a Stein neighborhood. Then following notation in [15, p. 196] we
have an epimorphism by Cartan’s Theorem A:

€1: 05 = (9D«(E'® E")|y,, € >rank(E'® E),
g

where ¢; is defined by finitely many global sections defined in a neighborhood of P;.
When E’ @ E” is a vector bundle, we take ¢ to be the minimal value, the rank of
E’ ® E”, and specify the above ¢; by taking

€r: 81 — 81 = (@1)«{grorer}.

Here we want to obtain a more general description without restricting to a vector
bundle. Define

ClU) := ]_[ otry).

IeZat!

(Set O¢(P;) = 0 when U | " s empty.) We recall that P; = Af:; is independent of the
order of multi-indices. Thus

C1U) = (O, NF = Ok (ar).

Here L < |Z91'|¢. Let (’)h(A;q) be the space of holomorphic functions on A;q with
finite > norm on A}, . Set P; = A}, for I € Z¢*!. We define a Hilbert space

iy = ] onrn =05,

IeZat!

which is a subspace of C4(U").
Using the collection € = {e;: I € 797}, we define

ClU E'® E") := e(ClU")) = CIU") /(kere N CLU")),
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which is the vector space of g-cochains, equipped with the standard coboundary oper-
ator 4.

Remark A.8 Our cochains are not necessary alternating. As in [15, p. 35], we let
Cl U, E' ® E") denote alternating cochains. For the isomorphism of the two kinds of
Cech cohomology groups; see [15, p. 35] and Serre [39]. Since we are interested in
the cohomological solutions with bounds, we fix our notation without requiring that
the cochains be alternating.

Let | - || A be the Hilbert space norm on CZ (") and set
Iz = inf{llvllag, < v e CiU),ew)y=¢}, ¢eClU E' QE".

The inclusion CZ U",E'QE") — C41(U", E'® E") is continuous and compact ([15,
Thm. 3, p. 197]). We also define

Ziuy = NZjU' E'® E")),
1S e = inf{llvll yna s v € ZEWUN), €w) = ¢}, Ve € ZJU, E' @ E),

v:=¢€().

Then ZZ (U", E' ® E”) is an isometric subspace of CZ U", E' ® E") via inclusion.
Let {go, g1, . - - } be a monotone orthogonal base of Z}l(ur) ([15, p. 141, p. 201]). An
important feature of the monotone base is that the vanishing orders of g; at the origin
satisfy

ordggo <ordpg) <---, lim ordgg; = oo.
1—> 00

By [15, Thm. 1, p. 192 and p. 201], for a given v there is an p such that
gi(Z)=0(Z"), i>pn, ZeA". (A24)

Infact,lettheindexsetbeZ = {1, ..., L}.Setw((f1, ..., fr)) = min{(a, Q): fo,0 #
0} by using order < onZ x N defined by (¢, P) < (B, Q)if|P| < |Q],orif |P| = | Q|

and there is an £ such that py < g; and py = gy forall £ > £, orif P = Q and

a < B. Then the basis {g;} satisfies

w(gj) < w(gj+1).

We now return to the case ¢ = 1 with n, = 2n. In the sequel, {|t,2j |} = {|t,éj Do
and {|t;;} = {11 [}

Theorem A.9 (Donin-Grauert-Remmert). Let C be a compact complex manifold and
letU" (ry < r < r* < 1) be afamily of open coverings of C as in Lemma A.6 such
that (A.11) holds for all k, j. Let E = E' ® E" be a holomorphic vector bundle of
positive rank m over C and fix a holomorphic base e;- (resp. e;’)for E’ (resp. E") over
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U;*. Suppose thatr, < 1" <v' <r <r*andr —r" <r* —r.Let® =r'/r. Let

{20, g1, - - - } be a monotone orthogonal base of Z ,ll (U") as above. Assume that |, v
satisfy (A.24) and

C —1
{ = nk 0" <1)2. (A.25)

(r/ _ r//) (I’ _ r/)2n

There exist gmy, - .., 8m,« such that their equivalence classes in H YU, E) form
a C-linear basis of subspace spanned by gq, --- , g, in H'U", E). For any f €
Z,l(l/{r,, E) there exists v € C,?(L{r”, E) satisfying f = dv + Zg Ci&m,; With

Cok YA (E)
leil < =———Ifllyy"» (A.26)
r—r
Coc~ B, (E)
Il < =——2—Wfly, Vr-€lr',m), (A27)
/"*
gj =Y Cjigm +6n5, njeC'U, E), (A.28)
i=0

® iz
Ar(E) = Heig} I3 max > lejils B (E) = e MM DY - 105 -
=t= *j:() j:0
(A.29)

Furthermore, all c; = 0 when f = 0in HI(C, E).

Remark A.10 The solution operator f — v may not be linear. See a proof by Donin [9]
to get a linear solution operator for which the constant C, results from a lemma of
Schwartz.

Remark A.11 The previous theorem gives a solution v, defined on a smaller domain,
to the equation f = §v (i.e cohomological equations) whenever f is O in the first
cohomology group. It also provides a bound of the solution in terms of the data. We
emphasize that this bound depends on the bundle E’ ® E”. In the applications we
have in mind, we will have to consider a sequence of bundles {S™ E"},,, and we will
need to control the growth of these bounds as m goes to infinite, similarly to the small
divisors appearing in local dynamical systems.

Proof Recall that ¢ = 1 and n; = 2n. We may assume that ||gf”A§n = 1. By the
definition of w, v and the monotone basis, we have for any v € Z ,11 o),

y2
C
lo =2 (. 808illay = = ymm /0" IVl (A.30)
Jj=0

where C,,(r — r')™" is the constant M in [15, Thm. 6, p. 191].
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Replacing the smoothing lemma in [15, p. 200] by Theorem A.7, we derive some
estimates following the proof of the finiteness lemma in [15, p. 201]. By assumption,
we have

—1 /
_ Cur 0V <1/2, 9= <1.
(r/ _ r//)(r _ r/)2n r

Let¢gy := f € Z}Z(Z/{’/, E’ ® E”). By Theorem A.7, we have for some & €
Z\U',E'® E")

Zo = &o + dno,
&olleer < 1120l Nmollypr < 210N s

Call e,

with ¢’ := . Let v denote €(v). Then & = vy for some vy satisfying

K(r/fr”) ;
”UOHAEn = ||&ollz4r; see [15, p. 198]. Consider
i
wy = v — Z(vo, 8j)as 8j» §1=wi.
Jj=0

According to (A.30), we have

Cy
181l < llwillper < = '/r) ol g, < tlgollygr -

Therefore,

i
o= (v0,8)a5 8 +6n0+ 1.
j=0

In general, we have

%
= (v, 8y, 8 + e + et
j=0

¢
lvellag, = lgellzer < 2t 11C0 11,

l+1
IZestllypr < el < 1 N0l

14
Imellyprr < t't°11C0 1 -

Then we have

JTCY) %)
Z > e g))ay 8 +8Y e,
=0 ¢=0 =0
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Zl(ve gj)l < vazn% <
£=0 =i

/

> t
> el < 3 Mol
=0

So far we have followed the proof of the finiteness lemma in [15, p. 201]. We
now finish the proof of the theorem. Let us first find the linearly independent elements
8ig» -+ - » 8iy, - Assume first that all g; = OinH':=H'WU", E'®E"). Thendn; =g;
with n; € COU", E). Assume now that 8mo 7 0in H' for some mg. Then we have
two cases again: either g; = ¢jogm, +6n; onU” foralli € {0, ..., u} \ mo, or it fails
for some m . We repeat this to exhaust all elements so that

M
g =005+ cjiqm, m€COUE), 0<j<p (A31)
i=0
while gy, - .., gm,, are linearly independent in H !, (Note that the above expression
means the trivial identity g; = g; when j is notin {my, ..., m,+}.) We have obtained

(A.28) with the decomposition

*

f:chgTj—i—Sv,

j=0

00 o 00
ci=Y (g, + Y cij Y (Ve giay -
=0 i=0 =0
n o oo 00
=Y (e, g)ay 1 + Y e

i=0 ¢=0 =0

The solution n;‘. in (A.31) can be bounded in U~ for any r_ < r. Of course we

need to estimate n’; oniU". Thus, r_ > r’. We have

n oo
ZZKUZ gj)A’ cjil < 1—
j=0¢=0
0 l‘/ I3
Z"HZZW it =T 1+ D Il ¢ 1ol
=0 j=1 - j=0
Set A-(E) = Ny e imaxiZy X5 _g lejil and B, (E) = {1 }IHg 311 +

le:o I njf lz¢— ). We have obtained the required estimates.
Finally, let us assume that f = 0in H 1(C , E) to show that all ¢; = 0 and thus
f = 8v. Since each U"" is Stein, we also have f = 0in H' (", E). Thus f = 87
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with o € CO(U"", E). We get§(v —v) = Zﬁo Cj&m,- By the linear independence,
we conclude that ¢; = 0. We are done. O

Theorem A.12 Let C be a compact complex manifold and let U™ (r, <r <r* < 1)
be nested coverings of C as in Proposition A.19. Let w, v, r,r',r", r, r* be given in
Theorem A.9, which satisfy (A.25). Let f € Z'U" , E' ® E"). Suppose that f = 0
in H'(C, E' ® E"). Then there exists a solution {uj} e c'U"", E' ® E") such that
du = f and

lullyr < KCE"® EM)I fllygr (A.32)
K(E'® E") := C({tg;}yr + K(E" @ E" {15 o0 g pgr)s (A33)

where K«(E' ® E"), defined by (A.8), satisfies

CpnB,_(E'®E")

K E/ E// <
«(E® L = (r—rk

, (A.34)

where k and B,_ are defined by (A.10) and (A.29). The same conclusion holds if both
sides are in sup norms | - |, when (r — r"i is replaced by ((r — r')k)".

Remark A.13 The main conclusion is that (A.32) holds without shrinking the covering
{u;/ '} on which f is defined. The solution operator f +— u may not be linear. The
small divisor conditions are carried by B,_ which is determined by (A.25) and (A.29),
while the bounds in Theorem A.7 as smoothing lemma do not involve small divisors.

Proof By the Leray theorem, we know that [ f] = 0 in Hl(u”, E). By Theorem A.9,
we have a solution u € CO(U"", E) so that

fie =@, UL UL
lullyprr < KNS llygr -
Then the conclusion follows from Lemma A.2.

When the super norm is used, we first obtain a solution u = {uy} for U for
r* = (r"" +r')/2, while (A.34) takes the form

g = KN fllypr < V7Y K| flypger-

By dist(wk(U,:”), 8¢)k(U,§*)) = r*—r" and power series expansion, we have |u;,» <
(V7 (r* —r"))7"|luly;+ . Then the conclusion follows from Lemma A.2 again. O

A.5 Existence of Nested Coverings
In this subsection, our main goal is to construct nested coverings using transversality

theorems and analytic polyhedrons. We recall that C,, is an n-dimensional compact
complex manifold. We shall omit to mention its dimension in what follows.
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We first deal with the transversality for a piecewise smooth boundary of an ana-
lytic polyhedron and we then define the general position property of several analytic
polyhedrons.

Definition A.14 (a) Let M, bea C! real hypersurface defined by r =0, wherer; is
a C! function in an open set w; of a complex manifold C and dr; # 0 on M;.
We say that M, ..., My are in the general position, if drjy A --- Adri, # 0 at
each point of M;, N ---N M, forany 1 <ip <--- <iz <N.

(b) Let w be a proper open set of a complex manifold C and let f € OV (w). We say
that

Q:=0n(f,0):={z€cw||f(@D:=max{|/1D],....|fn@I} <1}
(A.35)

is an analytic N-polyhedron in w if Q is non-empty and relatively compact in
w, and Q does not contain any compact connected component. We say that Q is
generic, if

@l fifl Ao Adlfi,Dx) #0 Vx e{|fi|=---=1fi, =1} N30
(A.36)

forallij <---<igand1 < ¢ < N.

We will apply transversality theorems. This requires us to use open submanifolds in
C" which may not be closed in C". Since Qy = Oy (f, w) does not contain compact
connected component, the closure of each connected component of Q y must intersect
some QY = {|fil = 1} Nw. We will call Q' a face of Qn. Removing each Q'
from w if it does not intersect Q , we geta new @ such thgt Oy intersects each Q.
Applying the same procedure to Q% := Q'y N --- N O, we may assume that the
non-empty intersection of any number of Q jlv e Q% intersects Q y. By (A.36), the

closed set Oy does not intersect the closed subset of  defined by

@l fil A~ dlfi D) =0 [ fil(x) = -+ = | fi,|(x) = 1.
Removing the above sets from w, we find a neighborhood w* of Q y such that if Ql}\l,"‘i"
with i} < ip < --- < iy intersects w™, then it intersects EN and it is a codimension
k smooth submanifold in w*. For brevity we will call * a neat neighborhood of Q.
We will take w = w* without specifying w*.

Definition A.15 Let w; be open setsin C.Fori = 0, ..., p,assume that ¢; € OV (w;)
and Qy; = Oy, (¢;, w;) is an analytic polyhedron in w;. We say that they are in the
general position, if all faces Q{v,- of Qy, forl < j < N;and0 <i < p are in general
position. More precisely, w}‘vi N Q{vi are in the general position, where each o is a

neat neighborhood of Q.
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Let us describe some elementary properties of generic analytic polyhedrons. If
On(f, w) is defined in w by (A.35), we denote for p = (o1, ..., PN)

ON(f.w)={zew: |fi@|<pj.j=1...,N}

LemmaA.16 Let Qn, = O, (¢i, w;) be generic polyhedrons in C for 0 < i < p.
Suppose that Q N, - -+ , ON, are in the general position. Then

ONo+-+N, (D0, ., Pp),wo N+~ Nwp) = 0Ny N---N Oy,
ifnon-empty, is a generic No+- - -+ N analytic polyhedron in wy...p := woN- - -Nwp.

Proof Let N = No + -+ + Np. It is clear that Q = Qn, N --- N Qy, =
On((@0, ..., Pp), wio.i.ip). Since @ C ﬂQ_Nl., then E is compact in wy...,. Write
(90, ..., ¢p) = (Y1, -+, ¥n). Suppose that x € 3 Q. Since 0 is compact in w, then
there exist ;41 < -+ < Wy withm > 1 such that [, (x)| = 1 and [ (x)| < 1 for
Jj # we. By the assumption of the general position, we see that the faces of Q are in
the general position. O

Let X, Y be smooth real manifolds without boundary and W a smooth submanifold
of Y. Following [11, p. 50], we say that a smooth mapping h: X — Y is transversal
to Wat x € X, denoted by h i W at x, if either h(x) ¢ W or

ThooyW +dh(T X) = Th)Y.

Denote h i Won Aif h i W ateach x € A C X. When /4 is the inclusion, we
denote 2 i W on A by X i W on A. Finally, extending Definition A.14 (a), we say
that smooth real submanifolds Wy, ..., Wi in Y are in the general position if for any
0<iy <. <iy <kwehave

k di(
A N\ dri,j(y) #0, ¥yeWyn---NW, (A37)
=1 j=I
where W; C w; isdefined by r; | =--- =r; g =0 withdr; 1 A--- Adrig # 0at

each point of W;. Thus d; is the codimension of W; in w;. It is clear that (A.37) holds
if and only if

Wij m (W, ﬂ~~ﬂWij71)aty, VyeWyn---NW;, 0<j<m. (A38)

For an analytic N-polyhedron Q y in @ with faces Q}V, e Q%, we call Q’}\lf'“i" =
Qé{, N---N Q’X‘, withi; < --- < iy and k > 1 an edge of Q. When Q is generic, a
nonempty edge Q;‘,’“i" is a codimension k submanifold in w. Let {Q }v cee Q%/} be
the set of all edges, with the first N edges being the faces.
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Proposition A.17 Let Oy, = QN (¢i, wi) be generic polyhedrons in C for0 <i < p
with w; being a neat neighborhood of Qy,. Then Qyy, ..., ON, are in the general
position if and only if for all 0 < i} < --- < iy < pand1 < j, < Nl-’z, the edges
Q{\I’il’ e Q%{k are in the general position. Equivalently, each edge Q‘;\,l intersects
transversally with each edge of the intersection of any number of Qpy, ..., ON,_;»
fort=1,...,p.

Proof Since each edge of a polyhedron is the intersection of its faces, it is clear that if
ONys - --» On, are in the general position, then the edges Q“’_I S, Qﬁl_k are in the
general position for 0 < i < --- < iy < p.

Conversely, let ¢; = (¢; 1, ..., ¢i n;) andlet ¥y, ..., ¥, be asubsetof ¢o 1, ...,
QONgs -+ > Pp,1s-nvs qbp,Np. We emphasize that we do not assume that the latter are
distinct functions, although ¢; 1, . .., ¢;, n, are distinct by the general position property
of the faces of Q. Suppose that ¥, isin {¢;, 1, ..., biy.N;, }. We need to show that

dlyi| A= Ad|Yml(x) #0 (A.39)

if forall £, |[{|(x) = land x € ENI-[ . Without loss of generality, we may assume that
i1 <ip <---<1iy.Thus

Wioeeo¥m) = Jayo o V), @1 <0 <00 <

with , being a non-empty subset of components of ¢y, . Without loss of generality,

we may assume that 1}% = (¢aﬁ,1, e, qbaﬁ,yﬁ) with yg > 0. Thus |¢aﬂ’1| =... =
[ag,ys| = 1 define an edge Wy, of Qqp. Then (A.39) is equivalent to

Ye =1 Yy
(/\ d|¢w,a|) A (/\ A\ d|¢aé,,a|> (x) #0.
§=1

U'=14=1

The equivalence of (A.37) and (A.38) implies that (A.39) follows from the assumption
that Wy, d (W, NN Wy, ), fora) <op <+ < ay. O

Lemma A.18 (Golubitsky-Guillemin [11, p. 53]). Let X, B, and Y be smooth man-
ifolds with W a submanifold of Y. Let ¥: B — C*(X,Y) be a mapping (not
necessarily continuous) and define V: X x B — Y by W(x, b) = ¥ (b)(x). Assume
that V is smooth and that ¥  W. Then the set {b € B | ¥ (b) W} is dense in B.

Proposition A.19 Let C be a compact complex manifold of dimension n. Let {U; : i =
1, ..., m} be a finite open covering of C. Assume that ¢ is a biholomorphism from a
neighborhood w; of the star N(U;) of U;j onto &; C C" such that U; = (p;I(An) =
On(@j, wj). There exists § > 0 satisfying the following:

(a) For each j, there are a relatively compact open set @; (resp. U i) inw; (resp.
;) and a dense open set A; of Afl such that if c; € Aj, then ¢; = @j —¢;
is a biholomorphic mapping from U; onto A, and Uy = Q,(¢1,®1), ...,
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Uy = On(@m, @m) are generic n-polyhedrons in the general position, where
(O, ... Uy} remains an open covering of C and & wj is a neighborhood ofN(U ).
In particular each ¢, a translation of ¢;, is injective on @;.

(b) Thereis 0 < ry < 1 such that if r, < p; < 1, then (700, .. ,Ul.':q are generic

n-polyhedrons in the general position, where Uip = ~_1 (AD).
Proof (a) We will apply the transversality theorem for real submanifolds in C". There-
fore, we will use old coordinate charts ¢; to map edges of polyhedrons Q;(¢;, w;)
into C*. Set c; = 0,91 = ¢y, U, = U Let Wy, ..., WLO be all edges of A,. Let
Ull, o, UIN, be all edges of Ul. Set Wf = @2(wy N l}f). Define

W:C"x AS Y i=C"

with W(x, b) = x 4+ b and ¥?(x) = W(x, b). Let 1//b|W be the restriction of ¥’ to

Wg/ Applying Lemma A.18, mainly the density assertion in the lemma, finitely many
times in which W = W] , we can find by € A‘s such that

vy, AW ongy(Uy N, Ve, ¢

where a/z is a relatively compact open subset of w, which is independent of §, and
Uy C a)2 We also remark that (A 18) can be applied for finitely many times since

(pz(U 1N wz) is compact. Since U 1N U, is compact, then
ey, T W onga(Or Nah), Ve (A.40)
when |ca — by | is sufficiently small. Applying ¢, ! to (A.40) yields

(pz—l(wu%) A (N TY) on ) N wh, V. (A41)
With ¢; being determined, set
@' =05 I+

Thus <p2 = goz — ¢2. When § and |cp — bp| are sufficiently small, we have Uz =
N_l (Ay) C ). Therefore, (A.41) 1mphes that every edge of U, intersects each edge
of U 1. We have determined U2 =¢, (An)

We have verified (a) when m = 2. Let us assume that it also holds for m > j. By
Lemma A.16, each edge of a non-empty intersection of any number of Uy, ..., U j1s
a smooth submanifold. We remark the above transversality argument mainly uses the
fact that ¢, is a biholomorphism, while each edge of U 1 1s a smooth submanifold.

To repeat the above argument for m = 2 in details, we list all edges of all possi-
ble intersections of (71, e, 0/~ as Wl/, e, Wi so that each W; is an edge of some

analytic polyhedron U }, where U ]’ is the intersection of some of Uy, ..., U j» which
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are in general position by the induction hypothesis as mentioned above. Therefore, by
Lemma A.16, each U is generic. Now we are in the situation of m = 2 by consid-
ering the sets of two analytic polyhedrons {U;, U1} one by one for £ = 1,..., j’.
Here Ujy1 = <pj_ll (Ay) with @41 being biholomorphic in a neighborhood N(UZH)
of Ujy1. Therefore, we can find ¢ +1 = @j+1 — c;41 such that each edge of U

intersects each W, transversally on U 1N Ué.

The above argument shows the existence of ¢y, ..., cy in Afl when § is sufficiently
small. The openness property on A is clear, since by shrinking @ ; slightly the general
position and generic properties are preserved under small perturbation of ¢;. Then
density of A; when § is sufficiently small can also be achieved; indeed when c;
is sufficiently small, we may shrink w; slightly and apply the above argument by
replacing ¢; — ¢; with ¢;. Finally, {Uy, ..., Uy} still covers C when § is sufficiently
small. We have verified (a).

The assertion (b) follows from (a) and Proposition A.17. Indeed, we first note that
when r, is less than 1, but it is sufficiently close to 1, the dQ”(¢;) is in a given
neighborhood of dQ(¢;, @;), as O”(¢;, @;) does not have any compact connected
component. By the relative compactness of Q,,(¢;, @;), the condition (A.36) with f;
being replaced by f;/p; and the general position condition remain true when p; are
in [ry, 1] when r, < 1 is sufficiently close to 1. The proof is complete. O

The following is a basic property of a generic analytic polyhedron.

Proposition A.20 Let C be a compact complex manifold of dimensionn. Let Q n (f, ®)
be a generic analytic N-polyhedron C defined by (A.35) and (A.36). There exists
r« € (0, 1) satisfying the following.

@ If p = (p1,....pN) and p' = (p}, ..., py) satisfy r« < p. < p; < 1, every
connected component of Qﬁ,( f, w) intersects Qﬁ,( f, w) and the latter is non-

empry.
(b) There are finitely many open sets a);/ in C and smooth diffeomorphisms ¢ ; sending
/!
J
bj (w;./ N Qﬁ,(f, w)) there is a smooth curve y in ¢ (a);’ n Qﬁ, (f, w)) connecting

po and py with length |y| < C|p1 — pol, where C depends only on ¢; and a);./.

'l onto c?);./ in R¥" such that {a);./} covers QN (f, w), and for any pg, p1 €

Proof (a) Set Q = On(f,w) and Qf = Ql’i](f,a)). For each x € 9Q, we find
U1 < -+ < Wy withm < N such that

[fu I =1, i =m; |fj()l <1, j#u, ..., ln- (A.42)

Note that {1, ..., U, } is uniquely determined by x. By the transversality condition
(A.36), we have m < 2n. Choose an open set @’ such that x € o’ C w and

i) <1, Yzeo, i# ..., 1
In particular, we have

ONo' ={zed: |f, @Dl <1, i=1,...,m}.
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By (A.36), we can take (| fi, |, ..., | fu,|) to be the first m components of a smooth
diffeomorphism ¢ : @ — @, shrinking @’ if necessary. Taking a smaller open subset
" of o with x € ", we may assume that

ttewn, Vied =9, 1-8=<t<1,

for some 6 € (0, 1].
Since 9 Q is compact, there exists {x;, a)’/.’, a); Jj = 1, ..., k} satisfying the fol-
lowing: '

(a) The k is finite. For each j, we have that x; € a);’ - a); Cw,xj €90, and a); is
an open subset of w. For each j, we have mj and wj1 < ... < [jm;, whichare
the numbers associated to x, so that (A.42) holds for x = x;. {»], ... ]} is an
open covering of 4 Q.

®) | fu; (xj)l=1for&=1,...,m;and

M; = sup{[fi(DI: 1 # wj1 ... ijm;y <1,

7
ZEa)j

a);ﬁQz{zea);-: |fu @1 <1,6=1,...,mj}.

Here weset M; =0ifm; = N.
(¢) The (| fu ls -1 fu Jom; |) are the first m; components of a smooth diffeomor-
phism ¢; from w; onto a subset @; of C". There exists §* > 0 such that

~

"o .
w; = oy (a)j) satisfies

{tg:g“ec?);/}cd)j, Vj, Vvt e[l —8*1] (A.43)
Indeed, let ¢ (x;) = (1,...,1,%;) withx; € R2"—™j We can take

@f = (1= 8% 148" x B, (i)) (A.44)
where Bg;_mj (x;) is the ball in R>"j centered at X 7 with a sufficiently small radius

8”. Note that
$;(Q° N = (1 =8 p1) x -+ x (1= 8% pp)) x BY,_, (F)). (A43)
Define
* . k 17
M* =sup{|f(2)|: z € Q\Uj_ 0}

Then M* < 1. By the maximum principle, we have | f| < M* on Q \ U’]?le;.’. Fix r,
so that

1 > ry > max{l — 8%, M* My, ..., My}.
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Suppose that r, < pl.’ <pi <lfori=1,..., N.Let Qbe aconnected component
of Qﬁ,. Since 2 does not have a compact connected component, there exists z* €
0Q satisfying | f; (z*)| = p; for some i. Since p; > M*, then z* € w}’ for some

Jj. Let us assume that z* € o/, and (u1,1,..., 1,m;) = (1,...,my). Thus ¢; =

fils oo 1Dy i1y -« s fon). We now replace z* by some z, € Q N w]. We
consider a path defined by

t—y0) =6, (1), 1-8"<1<1L
Note that by (A.43), y is well defined and is contained in w;. We now have

[fe(y DI =t fe(z)| < tpe, £ =<my. (A.46)

Since y (t) € w1, we also have
[fe(yO) = My <71y, £>my. (A.47)

This shows that y(¢) € Qﬁ,. Since €2 is a connected component of Qﬁ, and y(1) =
Zx € 2, we must have y () € Q. By the definition of M;, atr = 1 — §* we have

tpe <1 —-68% < pé. Combining with (A.46)—(A.47), we get y (1 — §*) € QZ'
(b) Since pg, p1 are in the same c?);/ , the assertion also follows from the above
construction of d)}’ via (A.44)—(A.45) and the convexity of c?);.’ . O

In summary, by Proposition A.19 we cover C by generic analytic n-polyhedrons
U; = (pfl(A,,) (i =1,...,m), which are in the general position. By Lemma A.16,
each U; N Uj, if non-empty, is a generic analytic polyhedron. Applying Proposi-
tion A.20 (a) to all non-empty U; NUj, we know that {U] = goi_l(AZ): i=1,...,m}
for r, <r < 1is afamily of nested coverings. Therefore, we can apply Theorem A.9
and Theorem A.12.
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