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Abstract
We discuss elastic tensegrity frameworks made from rigid bars and elastic cables,
depending onmany parameters. For any fixed parameter values, the stable equilibrium
position of the framework is determined by minimizing an energy function subject to
algebraic constraints. As parameters smoothly change, it can happen that a stable equi-
librium disappears. This loss of equilibrium is called catastrophe, since the framework
will experience large-scale shape changes despite small changes of parameters. Using
nonlinear algebra, we characterize a semialgebraic subset of the parameter space, the
catastrophe set, which detects the merging of local extrema from this parametrized
family of constrained optimization problems, and hence detects possible catastrophe.
Tools from numerical nonlinear algebra allow reliable and efficient computation of all
stable equilibrium positions as well as the catastrophe set itself.

Keywords tensegrity · catastrophe · discriminant · homotopy continuation ·
numerical algebraic geometry

1 Introduction

Tensegrity structures appear in nature and engineering, scaling in size fromnanometers
[14] to meters [24], used on the earth [16,20] and in outer space [23,28]. Since the
tension in the lightweight cables provides stability [5,30], they can hold their shape
without any locking mechanisms. This and other advantages make tensegrity highly
appealing for deployable structures [18]. They can significantly change size and shape,
using several different functional configurations during their application.
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In this article, we discuss elastic tensegrity frameworks (Definition 1) made from
rigid bars and elastic cables, similar to those appearing in [15,21], but also similar to
the tensegrity frameworks defined in [7] which are popular in the mathematics and
combinatorics literature. Instead of edge length inequalities as in [7], we use Hooke’s
law to introduce an energy function that distinguishes between bars and elastic cables.
The configuration is then determined by solving a constrained optimization problem.
This provides a large family of simple models which are effectively treated using the
theory of elasticity and energy minimization (see Definition 2). We use numerical
nonlinear algebra to calculate all equilibrium positions, in contrast to the more widely
used iterative methods (e.g., Newton–Raphson) which can only find one solution at a
time, with no guarantees on finding them all.

Elastic tensegrity frameworks depend on many parameters, e.g., the length of its
rigid bars or the fixed position of some nodes. For a given framework, we can choose
a space of control parameters � whose values are viewed as the parameters we can
manipulate.A path is amap from the unit interval y : [0, 1] ⊂ R → �which describes
how the controls y(t) vary in time. We use numerical nonlinear algebra to track the
changes in stable equilibrium positions of the framework as the control parameters
vary. Most importantly, we are interested in a positive-dimensional semialgebraic
subset C� ⊂ � called the catastrophe set (Definition 7). This set records those values
of control parameters whose crossing could result in a discontinuous jump in the
location of the nearest local equilibrium, since the current equilibrium can disappear
after crossing C�. This loss of equilibrium and the resulting behavior are called a
catastrophe. The importance of this set is well known (see [1] for an overview), but
we find that studying it from the algebraic perspective provides useful benefits.

Therefore, the purpose of this article is to show how techniques from numerical
nonlinear algebra can be used to compute the catastrophe set C�. For this, we introduce
an algebraic reformulation in Sect. 3 thatwe use to compute a supersetD� ⊃ C� which
contains the relevant information for the original problem (Sect. 2). This algebraic set
D�, the catastrophe discriminant, detects the merging of equilibrium solutions from
a parametrized family of constrained optimization problems.

Hooke’s law provides a simple model which has proven extremely effective in
an enormous amount of real-world situations. Also, in the article The Catastrophe
Controversy [10], Guckenheimer writes “The application of Catastrophe—Singularity
Theory to problems of elastic stability has been the greatest success of the theory thus
far.” Thus, catastrophe discriminants are of known importance, but they are very diffi-
cult to explicitly compute and this has limited their usefulness. With the development
of efficient techniques in numerical nonlinear algebra, explicit computation of catas-
trophe discriminants is now within reach. Therefore, another purpose of this article
is to explicitly describe these computations for a family of simple models (elastic
tensegrity frameworks) which will be useful in many different applications.

A running example, simple enough to understand yet complicated enough to illus-
trate the advantage of knowing C�, is Zeeman’s catastrophe machine. Zeeman’s
catastrophe machine consists of a rigid bar which can rotate freely around one of
its endpoints. Attached to the non-fixed endpoint are two elastic cables. The end of
one of the cables is fixed; the other can be moved freely. The machine and its behavior
is depicted in Fig. 1 at six discrete-time snapshots. For more on this example, see
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Fig. 1 Loop crossing the catastrophe set. The black edge is a rigid bar and the green edges are elastic
cables. Square nodes have fixed positions, the cross node is controlled around a loop, and the circular
node’s position is determined by minimizing the potential energy in the green elastic cables

[19], where they give a parametrization of C� for a simplified machine, and implicit
equations defining C� for the actual machine. See also [1, Section 4]. In contrast, we
use sample points to encode C� not only for Zeeman’s machine but for any elastic
tensegrity framework. The basic idea of Zeeman’s machine is to control the free end-
point y(t) ∈ � � R

2 of one cable, while the rotating rigid bar settles into a position
of minimum energy. Using numerical nonlinear algebra, we can reliably compute all
complex solutions to this constrained optimization problem and find among them the
real-valued and stable local minima. In addition, we compute a pseudo-witness set
[11] for D� allowing effective sampling of the catastrophe set C�, and therefore eas-
ily computable information on when catastrophes may occur, and how to avoid them
entirely.

For those readers new to Zeeman’s machine, consider the behavior depicted in
Fig. 1. The black bar can rotate around its base, as the green elastic cables pull on its
free endpoint. As one of the cable endpoints moves smoothly, the stable equilibrium
position of the machine also moves smoothly... usually. Upon crossing C�, it can
happen that this stable equilibrium disappears. This forces the machine to rapidly
change shape, moving toward some new equilibrium.Without knowledge of C�, these
behaviors can be very surprising. For example,moving the control point in a small loop
does not ensure a return to the original position for the machine (see Fig. 1). Playing
with this example, one quickly discovers the advantages of knowing C�. Seemingly,
random catastrophes become easily predictable.

Section 2 gives the basic definitions for elastic tensegrity frameworks. In Sect. 3,
we describe an algebraic reformulation of the relevant energy minimization problem.
In so doing, we naturally arrive at the equilibrium degree of an elastic tensegrity
framework (Definition 4), and the catastrophe degree of its catastrophe discriminant
(Definition 6). These numbers are intrinsic to the algebraic approach and characterize
the algebraic complexity of each elastic tensegrity framework for a dense set of control
parameters. Though the algebraic approach naturally deals with the algebraic setD�,
the original problem deals with the semialgebraic set C� (Definition 7). For Zeeman’s
machine, both sets are shown in Fig. 2. We note that C� in Fig. 2 is the envelope
of a family of curves, each of which is a conchoid of Nicomedes [13,19]. Section 3
finishes by proving the main Theorem 2, which shows that to any control path y(t)
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Fig. 2 Catastrophe discriminantD� (left, degree 72) and catastrophe set C� (right) for Zeeman’s machine,
sampled numerically using homotopy continuation methods

that avoids C�, there corresponds a unique path of stable configurations of the elastic
tensegrity framework. In Sect. 4, we give more details on the required computations
using numerical nonlinear algebra. Finally, in Sect. 5, we demonstrate our newly
developed tools on a four-bar linkage, which easily becomes an elastic tensegrity
framework upon the attachment of two elastic cables (Fig. 5). We compute both D�

and C� (Fig. 6) and explicitly demonstrate one possible catastrophe (Fig. 7). Code
that reproduces all examples in this article can be found at https://doi.org/10.5281/
zenodo.4056121.

2 Elastic Tensegrity Frameworks

In this section, we formally introduce elastic tensegrity frameworks and the necessary
definitions and concepts to talk about their equilibrium positions. Let G = ([n], E) be
a graph on [n] := {1, 2, . . . , n} nodes and E = B ∪ C edges. Edges are two-element
subsets of [n]. Every i j ∈ B is a rigid bar between nodes i and j and we have �i j as
its length. Similarly, every i j ∈ C is an elastic cable between nodes i and j that has
natural resting length ri j and a constant of elasticity ci j . The graph G is embedded
by a map p : [n] → R

d and we denote the coordinates of the n nodes of G by
p1 = (p11, . . . , p1d), . . . , pn ∈ R

d and identify the space of coordinates with R
nd .

Example 1 (Zeeman’s catastrophe machine) We illustrate the definitions and concepts
of this and the next section on Zeeman’s catastrophe machine. Zeeman’s machine is an
elastic tensegrity framework on n = 4 nodes with edges E = {14, 24, 34} partitioned
as B = {14} and C = {24, 34}. See Fig. 3 for an illustration.

For every rigid bar i j ∈ B, we define the bar constraint polynomial

bi j :=
∑

k∈[d]
(pik − p jk)

2 − �2i j , (1)

and denote by b the polynomial system whose component functions are the bi j for
i j ∈ B. For each elastic cable i j ∈ C , we define its potential energy qi j using Hooke’s
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Fig. 3 Our setup of Zeeman’s
catastrophe machine

law

qi j := 1

2
ci j

⎛

⎝max

⎧
⎨

⎩0,
√∑

k∈[d]
(pik − p jk)2 − ri j

⎫
⎬

⎭

⎞

⎠
2

with Q =
∑

i j∈C

qi j . (2)

This says that the energy qi j is proportional to the square of the distance the elastic
cable has been stretched past its natural resting length. Thoughwehave only introduced
rigid bars and elastic cables, one could easily add compressed elastic edgeswhichwant
to expand according to Hooke’s law. For ease of exposition, we proceed with elastic
cables and rigid bars, rather than also including compressive struts in our notation.

We have introduced several variables. As shorthand, we use the symbols p, �, r , c
to refer to the variables

pik for i ∈ [n], k ∈ [d]
�i j for i j ∈ B
ri j for i j ∈ C
ci j for i j ∈ C .

(3)

In various examples, some of these variables will be viewed as control parameters
y ∈ Y � R

m1 whose values we can fix or manipulate at will, while the other variables
will be viewed as internal parameters x ∈ X � R

m2 whose values are determined
by the controls y and the principle of energy minimization. Often, we may fix several
control parameters and let others vary in some subset � ⊂ Y .

Example 2 (Zeeman’s catastrophe machine (continued)) We continue with Example
1. We choose X , Y as

X = { (p41, p42) } � R
2

Y = { (p11, p12, p21, p22, p31, p32, �14, r24, r34, c24, c34) } � R
11

but only consider the subset � ⊂ Y as in

� =
{

(0, 0, 2,−1, p31, p32, 1, 1, 1, 0.5, 0.5) : (p31, p32) ∈ R
2
}

⊂ Y .

In this setup, we have fixed everything except the coordinates of nodes 3 and 4. We
control the y = (p31, p32) ∈ � and solve for the x = (p41, p42) ∈ X . This means
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that for a given y = (p31, p32) ∈ �, we find the coordinates x = (p41, p42) ∈ X
which minimize

Q(p41, p42) = 1

4
max

{
0,
√

(2 − p41)2 + (−1 − p42)2 − 1

}

+1

4
max

{
0,
√

(p31 − p41)2 + (p32 − p42)2 − 1

}

restricted to the set {(x, y) : b(x, y) = 0} ∩ (X × �). In this case, since B = {14},
the constraints b(x, y) = 0 have only one equation b14(x, y) = 0 which reads

b14(x, y) = (0 − p41)
2 + (0 − p42)

2 − 12 = 0.

Definition 1 An elastic tensegrity framework is a graph on nodes [n] with edges E ⊂([n]
2

)
along with the energy function Q of (2), a partition E = B ∪ C of the edge

set into rigid bars and elastic cables, and a partition of variables p, �, r , c of (3) into
internal and control parameters X and� ⊂ Y . A configuration of an elastic tensegrity
framework is a tuple (x, y) ∈ X × Y satisfying the bar constraints b(x, y) = 0 from
(1).

Remark 1 We note that [7] used the concept of an energy function as motivation for
their definition of prestress stability. Their definition of a tensegrity framework uses
inequalities on edge lengths to distinguish bars from cables and struts. Our definition
puts the energy function at center stage and also allows for a space of control parameters
�, which we need to define catastrophe discriminants D� ⊂ � below.

Definition 2 We describe the interaction between an elastic tensegrity framework and
the energy function given in (2) with the following definitions.

1. Fix a tuple of control parameters y ∈ Y . An elastic tensegrity framework in config-
uration (x, y) is stable if the internal parameters x ∈ X are a strict local minimum
of the energy function Q restricted to the algebraic set {x ∈ X : b(x, y) = 0} of
internal parameters satisfying the bar constraints b(x, y) = 0 of (1).

2. For fixed controls y ∈ Y , we collect all strict local minima in the stability set
Sy , defined as all internal parameters x ∈ X , such that the corresponding elastic
tensegrity framework (x, y) is stable.

3. The stability correspondenceSC is the set of pairs (x, y) ∈ X×Y such that x ∈ Sy .
For a given subset� ⊂ Y of controls, we let SC� be all (x, y) ∈ X ×� ⊂ X ×Y ,
such that x ∈ Sy .

If we are only interested in a subset of control parameters � ⊂ Y , these definitions
apply verbatim with � replacing Y .

Example 3 (Zeeman’s catastrophe machine (continued)) We continue with Example
2. Figure 4 shows Zeeman’s catastrophe machine in a stable configuration. However,
for that specific value of y, the stability set Sy contains two points, with the second
configuration shown in gray. Since the constraints b(x, y) = 0 essentially describe a
circle, we can also plot the periodic energy function in Fig. 4. For the particular value
of the controls y ∈ � we chose, there are two local minima, and hence, |Sy | = 2.
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Fig. 4 Zeeman machine in a stable configuration with |Sy | = 2. The second stable position of node 4 is
depicted in gray

In the following, we focus on stable elastic tensegrity frameworks and the behavior
when control parameters y ∈ � ⊂ Y change. For this, consider a smooth path of
control parameters

y : [0, 1] ⊂ R → � ⊂ Y

t 	→ y(t) (4)

and an initial condition (x(0), y(0)) which is stable according to Definition 2. We
are interested in the time evolution of the internal parameters x(t) determined by
minimizing Q constrained by b for the given path y(t) of control parameters. In
particular, can we identify certain regions where small changes in y(t) can cause large
changes in the tensegrity framework? In Sect. 3, we solve an algebraic reformulation
of this problem, defining the catastrophe discriminant D� ⊂ � ⊂ Y and proving that
as long as our controls y(t) avoid a smaller, semialgebraic catastrophe set C� ⊂ D�,
then stable local minima at the initial condition are preserved, evolving as a unique
path of stable local minima (x(t), y(t)) ∈ SC.
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3 Algebraic Reformulation

In this section,we transfer questions about the stability of elastic tensegrity frameworks
into an algebraic problem. The motivation is as follows. The computation of Sy is in
general a very hard problem, since the points inSy are all localminima of a constrained
optimization problem. Thus, standard optimization methods are not sufficient, since
they yield in each run at most one local minimum and cannot provide guarantees to
find all local minima. In contrast, if we work with systems of polynomial equations,
we can apply tools from numerical nonlinear algebra to obtain all solutions. This is
discussed in more detail in Sect. 4.

In the following, let ([n], E) be an elastic tensegrity framework with variables
p, �, r , c from (3) partitioned into the internal parameters x ∈ X � C

m1 and the
control parameters y ∈ Y � C

m2 . Compared to the previous section,wenowworkover
the complex numbers and the real numbers both. This will allow us to use homotopy
continuation in Sect. 4 to find all critical points of the optimization problem. It also
allows us to use the degree of an algebraic set. If A is any subset of some Cm , then let
AR denote the points with real-valued coordinates. Finally, we will sometimes refer
to general a ∈ A, by which we mean that a lies outside some algebraic subset of A,
i.e., a lies in some Zariski-open subset of A.

Let� be a smooth algebraic subset of the control parameters Y we wish to manipu-
late with controls y(t) ∈ �. This allows us, among other things, to consider movement
of a node constrained to motion in a sphere, perhaps determined by a rigid bar. We
introduce variables δi j for i j ∈ C to eliminate the square roots in the potential energies
qi j . For i j ∈ E , let

gi j =
{

�2i j −∑
k∈[d](pik − p jk)

2 if i j ∈ B

δ2i j −∑
k∈[d](pik − p jk)

2 if i j ∈ C

and denote by g : X × C
|C| × Y → C

|E | the polynomial system whose component
functions are the gi j . Furthermore, denote by Gy the zero set of g for a fixed y ∈ Y

Gy := {(x, δ) ∈ X × C
|C| | g(x, δ, y) = 0} .

For i j ∈ C , let

q̃i j = 1

2
ci j (δi j − ri j )

2 with Q̃y =
∑

i j∈C

q̃i j

an algebraic energy function Q̃y . The subscript emphasizes possible dependencyon y ∈
Y .

To study the stability set Sy , we look at the critical points of Q̃y(x, δ) subject to
(x, δ) ∈ (Gy)R. A point (x, δ) ∈ (Gy)R is a critical point of the energy function Q̃y if
the gradient∇ Q̃y is orthogonal to the tangent space of (Gy)R at (x, δ). If the algebraic
set Gy is a complete intersection, i.e., the codimension of Gy equals |E |, then we can
directly apply the technique of Lagrange multipliers to compute the critical points.
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In the following, we assume for ease of exposition that this is the case. However,
this is not a critical assumption and the results can be extended to non-complete
intersection using standard numerical nonlinear algebra techniques for randomizing
overdetermined systems (see [22, Chapter 13]).

Throughout the article, we will assume that Gy is smooth, since at non-manifold
points, the first-order conditions for critical points are not applicable. This is really
a requirement on the choice of y ∈ � ⊂ Y . In particular, Gy should be nonempty
and smooth for all y ∈ �. Singular configuration spaces of the underlying bar and
joint framework would introduce even more difficulties than we address here, and the
behavior of local minima would be highly complicated. The disappearance of local
minima on smooth configuration spaces is already difficult and interesting, and this
is our topic. Both Zeeman’s catastrophe machine and the larger example we discuss
in Sect. 5 have Gy smooth for every y ∈ �, but still display interesting catastrophic
behavior which can be predicted or avoided using our methods.

We introduce the variables λi j for i j ∈ E to act as Lagrange multipliers and let

L y(x, δ, λ) = Q̃y +
∑

i j∈E

λi j gi j . (5)

Definition 3 Define the polynomial map d L y by letting its component functions be
the various partial derivatives of L y with respect to x, δ, and λ

d L y := ∂L y

∂(x, δ, λ)
: X × C

|C| × C
|E | → X × C

|C| × C
|E |, (x, δ, λ) 	→ d L y

(
x, δ, λ

)
.

Denote the algebraic sets Ly := d L−1
y (0) ⊂ X × C

|C| × C
|E | and

LC := {(x, δ, λ, y) | (x, δ, λ) ∈ Ly} ⊂ X × C
|C| × C

|E | × �,

and let LCreg denote its open dense subset of smooth points and LCsing its singular
locus.

Proposition 1 If the dimension of � and LC coincide, then for general y ∈ �, the
variety Ly is finite and has the same cardinality N . For all y ∈ �, the variety Ly

contains at most N isolated points.

Proof This is a standard result in algebraic geometry, e.g., [22, Theorem 7.1.6]. ��
Definition 4 Given� ⊂ Y , we define the equilibrium degree of a framework to be the
cardinality of Ly for general y ∈ �. Proposition 1 implies that the equilibrium degree
is well defined.

Example 4 (Zeeman’s catastrophe machine (continued)) We continue our running
example with edges E = {14, 24, 34} partitioned as B = {14} and C = {24, 34}.
Recall from Example 2, we had �R = { (0, 0, 2,−1, p31, p32, 1, 1, 1, 0.5, 0.5) :
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(p31, p32) ∈ R
2
} ⊂ Y , and XR = { (p41, p42) } � R

2. We write x = (p41, p42). The
polynomials defining our constraints are

g(x, δ, y) =
⎡

⎣
12 − (0 − p41)2 − (0 − p42)2

δ224 − (2 − p41)2 − (−1 − p42)2

δ234 − (p31 − p41)2 − (p32 − p42)2

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

We obtain the Lagrangian of (5) as

L(p31,p32) = 1

4
(δ24 − 1)2 + 1

4
(δ34 − 1)2 +

(
1 − p41

2 − p42
2
)
λ14

+
(
δ224 − (2 − p41)

2 − (−1 − p42)
2
)
λ24

+
(
δ234 − (p31 − p41)

2 − (p32 − p42)
2
)
λ34.

The polynomial system d L y is given by

d L(p31,p32)(x, δ, λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 λ14 p41 − 2 λ24(2 − p41) − 2 λ34(p31 − p41)
−2 λ14 p42 − 2 λ24(−1 − p42) − 2 λ34(p32 − p42)

1
2 (δ24 − 1) + 2 δ24λ24
1
2 (δ34 − 1) + 2 δ34λ34
1 − p412 − p422

δ224 − (2 − p41)2 − (−1 − p42)2

δ234 − (p31 − p41)2 − (p32 − p42)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The equilibrium degree for this framework is 16. This means that for generic
(p31, p32) ∈ �, the equations d L(p31,p32)(x, δ, λ) = 0 have 16 isolated solutions
over the complex numbers.

We have particular interest in those parameter values y ∈ � where the number of
regular isolated solutions |Ly | of d L y(x, δ, λ) = 0 is less than the equilibrium degree
of the framework.

Definition 5 Define the catastrophe discriminant D� ⊂ � as the Zariski closure of
the set of critical values of the projection map

π : LC → �, z = (x, δ, λ, y) 	→ y = π(z).

By critical values, we mean those π(z) ∈ �, such that there exists a nonzero tangent
vector v ∈ TzLC in the kernel of the linear map dπz . The catastrophe discriminant is
an algebraic subset of � of codimension 1.

Definition 6 The catastrophe degree of an elastic tensegrity framework is the degree
of the algebraic set D�, i.e., the number of complex-valued points in the intersection
of D� with a general linear space of complementary dimension.
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Example 5 (Zeeman’s catastrophemachine (continued))We continue with Example 4.
Refer back to Fig. 2 which shows the catastrophe discriminantD� ∩�R for Zeeman’s
machine with controls �R defined in Example 2. Note that D� does not depend on y
but just on the choice of X and� ⊂ Y . Here,D� is an algebraic plane curve of degree
72. That is, the catastrophe degree is 72. Over the finite field Z65521, the catastrophe
discriminant D� is the zero set of the 2701-term polynomial

p7231 + 13109 p7131 p32 − 13055 p7031 p232 + 10676 p6931 p332 + 7407 p6831 p432 + 4476 p6731 p532

+31981 p6631 p632 +
12338 p6531 p732 − 8796 p6431 p832 + 19319 p6331 p932 + 4482 p6231 p1032 + . . .

−709 p31 − 32406 p32 + 540.

Figure 2 also shows the catastrophe setC� whichwedefine below.Aswemove controls
y(t) ∈ �R, the set C� detects possible changes in the number of local minima, and
hence possible catastrophe. This was the largest catastrophe discriminant we could
compute using symbolic methods, and we had to replace Q by a finite field for the
computation to terminate. See Sect. 4 for a bit more discussion of this example. In
contrast, the homotopy continuation methods we discuss in Sect. 4 can handle much
larger examples.

Definition 7 Using the map π of Definition 5, we define

C� := {y ∈ D� ∩ �R | there exists (x, δ, λ, y) ∈
(
π−1(y)

)

R
withδ ≥ 0 } ⊂ D� ∩ �R

to be the catastrophe set. This is the part of the catastrophe discriminant D� that
relates to the original problem.

We note that the catastrophe set C� partitions �R into cells within which the
number of strict local minima is constant. Figure 2 depicts the number |Sy | of stable
local minima for a typical point y in each connected component of the complement
�R\C�. Look ahead to Fig. 6 for another illustration of this phenomenon for the elastic
four-bar linkage discussed in Sect. 5.

Proposition 2 The catastrophe set C� is a semialgebraic set.

Proof C� is the projection of a semialgebraic set and hence again semialgebraic by
Tarski–Seidenberg. ��

We now begin to prove theorems justifying our interest inD� and C�. Our goal is to
prove Theorem 2, which says that controls y(t) avoiding the semialgebraic catastrophe
set C� always correspond to stable local minima, and thus avoid catastrophes where
local minima disappear discontinuously. This is called catastrophe, since a real-world
system would be forced to move rapidly toward the nearest remaining local minima,
and since without knowledge of C�, this sudden change in behavior would be very
surprising.

For the remainder of this section, we work mostly with real algebraic sets, since our
goal is connecting back to the original problem. Since all the complex algebraic sets
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were defined by polynomials with real coefficients, the same polynomials define real
algebraic sets which can be identified with subsets of the complex sets whose coordi-
nates have zero imaginary part. In particular, at smooth points of a complex algebraic
set, the tangent space is equal to the kernel of the Jacobian of the defining polynomials,
which has full rank if we have a complete intersection, or if we have applied standard
methods of randomizing overdetermined systems in numerical algebraic geometry.
Since the defining polynomials have real coefficients, so do their partial derivatives,
so that evaluating the Jacobian at a real point yields a matrix with real entries. A basis
for the kernel of such a matrix can always be chosen with vectors whose coordinates
are also real-valued. In what follows, if A ⊂ C

m then Ta AR denotes such a real tan-
gent space at the real point a ∈ AR. In particular, if a ∈ AR is a smooth point of the
complex algebraic set A, then dimCTa A = dimRTa AR and the set AR is a manifold
near a.

Lemma 1 If z = (x, δ, λ, y) ∈ LCsing, then π(z) ∈ D�.

Proof Since � is a smooth algebraic set � = φ−1(0) for some polynomial map
φ : Y → C

k not depending on (x, δ, λ). Then, z ∈ LCsing implies a rank drop in the
Jacobian matrix d F of the polynomial map F = (d L y, φ). However, d F has a block
structure with top rows [A|B] and bottom rows [0|C] where A is the square Jacobian
of d L y at (x, δ, λ), B is unimportant, and C is the Jacobian of φ at y. Since � is
smooth, the bottom rows have full rank, and since z ∈ LCsing, there exists (w, 0) �= 0
with (w, 0)T d F = 0, which implies wT A = 0 and, hence, the square matrix A drops
rank. Thus, there is v �= 0 with Av = 0 and so (v, 0) ∈ TzLC with dπz(v, 0) = 0,
which completes the proof. ��
Lemma 2 If z ∈ LCR is singular and δ ≥ 0, then π(z) ∈ C�.

Proof By Lemma 1, π(z) ∈ D�. However, z ∈ LCR implies all of x, δ, λ, y are real-
valued, and with δ ≥ 0, we have that π(z) satisfies the requirements for belonging to
C�. ��
Lemma 3 Let y : [0, 1] → (�R\C�) avoid C�. If the smooth curve z : [0, 1] → LCR
satisfies π(z(t)) = y(t) and δ(t) ≥ 0, then dim Tz(t)LCR = dim Ty(t)�R holds for all
t if it holds for some t.

Proof Since � is assumed smooth, then �R is smooth and t 	→ y(t) stays within one
path-connected component; hence, dim Ty(t)�R is constant for all t . Since the path
t 	→ z(t) stays in one path-connected component of LCR, the dimension may only
change if some z(t∗) is singular. However, since z(t∗) is real-valued and δ(t∗) ≥ 0,
then Lemma 2 implies that π(z(t∗)) = y(t∗) ∈ C�, contradicting our assumption. ��

We now introduce conditions that will eventually correspond to stability of the
elastic tensegrity framework. For this, we first define a nondegenerate point z ∈ LCR
using second-order sufficient conditions for local minima of nonlinear constrained
optimization problems.

Definition 8 Let d2 Q̃y and d2gi j be the Hessian matrices of Q̃y and gi j , respectively,
when viewed as real-valued functions of the real variables x and δ, with d2 Q̃(x, δ) and
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d2gi j (x, δ) denoting their evaluation at the point (x, δ). Let dg denote the Jacobian
of the constraints g viewed again as real-valued functions of the real variables x and
δ, with dg(x, δ) its evaluation at a point. Let

H = d2 Q̃y(x, δ) +
∑

i j∈E

λi j d
2gi j (x, δ). (6)

We say that z = (x, δ, λ, y) ∈ LCR is nondegenerate if there is a positive definite
matrix

W (z) := V T H V , (7)

where V has columns a real orthonormal basis of the kernel of dg(x, δ). The matrix W
is called the projectedHessian and,with our setup, its being positive definite guarantees
that (x, δ) is a strict local minimum for Q̃y restricted to (Gy)R. See, e.g., [9, page 81].

Lemma 4 Let z ∈ LCR have singular W (z) and δ ≥ 0. Then, π(z) ∈ C�.

Proof First, note that W (z) is only defined up to a choice of orthonormal basis in
V , but the property of being singular is invariant under such changes. Since W (z) is

singular, there exists u �= 0 with V T H V u = 0. Placing parentheses V T
(

H V u
)

= 0,

we see that H V u is in the normal space of (Gy)R at (x, δ). But then, there must exist a
linear combination w writing H V u in terms of the columns of dg(x, δ)T , and hence,
(V u,−w) ∈ ker d2L where

d2L =
[

H dg(x, δ)T

dg(x, δ) 0

]

is the Hessian of the Lagrangian L y of (5). Note that the vector (V u,−w) extends to a
tangent vector (V u,−w, 0) of TzLCR by appending zeros in the � components. This
tangent vector clearly projects to zero by dπz . Since z ∈ LCR and δ ≥ 0, this means
that π(z) ∈ C�. ��
Theorem 1 Let z : [0, 1] → LCR with components z(t) = (x(t), δ(t), λ(t), y(t)) be
a smooth curve of smooth points in LCR with δ(t) ≥ 0 and π(z(t)) /∈ C� for all t .
If the initial point z(0) is nondegenerate, then (x(t), δ(t)) are strict local minima for
Q̃y(t) on (Gy(t))R for all t .

Proof Since t 	→ z(t) is a smooth curve of smooth points, we can find a smooth curve
t 	→ V (t) of matrices whose columns form a basis for ker dg(x(t), δ(t)) at each t ,
and an associated smooth curve of matrices t 	→ H(t) using x(t), δ(t), λ(t), y(t)
in formula (6) above. Since z(0) is assumed nondegenerate, V (0)T H(0)V (0) has all
positive eigenvalues. As t varies smoothly, so do the real eigenvalues of the symmet-
ric matrices V (t)T H(t)V (t). Suppose at some t , there appears a zero eigenvalue in
V (t)T H(t)V (t). Then, Lemma4 implies thatπ(z(t)) ∈ C�, a contradiction. Therefore
V (t)T H(t)V (t) remains positive definite for all t , which by the sufficient conditions
for strict local minima [9, page 81] completes the proof. ��
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We now discuss how our algebraic reformulation relates back to the original prob-
lem. In our algebraic reformulation, we removed the square roots by introducing the
additional variables δi j for i j ∈ C . In the following Lemma, we assume that all elastic
cables are in tension, since such systems are only structurally stable when self-stress
is induced.

Lemma 5 Consider an elastic tensegrity framework in stable configuration (x, y) ∈
SC. Define δi j =

√∑
k∈[d](pik − p jk)2 and let

δi j > ri j > 0 (8)

for every i j ∈ C, so that all elastic cables are in tension. Then, there exists λ ∈ R
|E |,

such that (x, δ, λ, y) ∈ LCR.

Proof Let Vb,y := {x ∈ X : b(x, y) = 0}. Now, consider the map sy : X → R
|C|

defined by coordinate functions (sy)i j (x) =
√∑

k∈[d](pik − p jk)2. Restricting this

map to Vb,y , we have a local diffeomorphism between Vb,y and its graph

{ (x, sy(x)) : x ∈ Vb,y} ⊂ X × R
|C|

which provides a local diffeomorphism between Vb,y and (Gy)R near any point x ∈
Vb,y satisfying (8). Observe that, by construction, Q̃y takes values on the image points
equal to the values taken by Q on the domain Vb,y , provided that condition (8) holds.
Therefore, x ∈ Vb,y is a strict local minimum of Q on Vb,y if and only if (x, sy(x))

is a strict local minimum of Q̃y on (Gy)R. Hence, by first-order necessary conditions
for local extrema, we know that there exists λ, such that (x, sy(x), λ, y) ∈ LCR,
completing the proof. ��

Finally, we are able to prove that the stability of the corresponding elastic tensegrity
framework is preserved by avoiding only C� ⊂ �R.

Theorem 2 If z(0) ∈ LCR is nondegenerate, dim Tz(0)LCR = dim Ty(0)�R, and y :
[0, 1] → (�R\C�) is a smooth path of controls, then there exists a unique smooth
map z : [0, 1] → LCR with π(z(t)) = y(t) and (x(t), y(t)) ∈ SC for all t ∈ [0, 1],
provided that condition (8) holds for all t ∈ [0, 1].
Proof Since z(0) is nondegenerate, we claim that d(π |LCR)z(0) : Tz(0)LCR →
Ty(0)�R is an isomorphism. First, note that z(0) is a smooth point of LCR by Lemma
2 and the assumption that y(t) /∈ C�. Thus, d(π |LCR)z(0) is an isomorphism unless
there is v �= 0 with v ∈ Tz(0)LCR and dπz(0)(v) = 0. The second condition implies
that v = (v1, v2, 0) where at least one of vi �= 0. But then, (v1, v2, 0) ∈ Tz(0)LCR
implies Hv1 +dgT v2 = 0 and dg v1 = 0. If v1 = 0, then dgT v2 = 0 implies v2 = 0,
since dg is surjective. Thus, v �= 0 implies v1 �= 0, so that v1 = V u for some u �= 0.
Then, Hv1 + dgT v2 = 0 implies H V u + dgT v2 = 0. However, V T dgT = 0, so
that V T H V u = 0 for u �= 0, contradicting the nondegeneracy of z(0). Therefore,
d(π |LCR)z(0) is an isomorphism and the inverse function theorem implies that π is a
local diffeomorphism at z(0).
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Let U be the largest neighborhood of y(0) in �R, such that there is a neighborhood
V of z(0) inLCR with π |V : V → U a diffeomorphism. Assume for now that U exists.
We then define z(t) := π |−1

V (y(t)) for all t with y(t) ∈ U . With z(t) defined, we check
if δi j (t) > ri j (t) > 0 holds. By Lemma 2 and y(t) /∈ C� all such z(t) are smooth
points of LCR. By Theorem 1, we conclude that (x(t), δ(t)) are strict local minima
for Q̃y(t) on Gy(t) for all such t . Using the maps sy(t) from the proof of Lemma 5, we
have local diffeomorphisms mapping the strict local minima for Q̃y(t) on Gy(t) to strict
local minima of Q on Vb,y(t), so that (x(t), y(t)) ∈ SC for all such t . If y(1) ∈ U , we
are done.

Otherwise, there exists ε > 0 with y(t) ∈ U for all t ∈ [0, ε) and y(ε) /∈ U .
Define z(t) as above for all t ∈ [0, ε) and consider the limit as t → ε. We know
that y(ε) /∈ C� by assumption. Let z(ε) := lim z(t) as t → ε. Then, z(ε) is again
real-valued. If z(ε) were singular, then Lemma 2 implies π(z(ε)) = y(ε) ∈ C�, a
contradiction. Thus, z(ε) is a smooth point of LCR. Also by the same argument as the
proof of Theorem 1, we know that all W (z(t)) for t < ε have positive eigenvalues. If
W (z(ε)) := lim W (z(t)) as t → ε has a zero eigenvalue, then Lemma 4 implies that
π(z(ε)) ∈ C�, again a contradiction. Thus, all eigenvalues of W (z(ε)) are positive, so
that z(ε) is nondegenerate, and previous arguments imply that (x(ε), y(ε)) ∈ SC as
well. By Lemma 3, we have dim Tz(ε)LCR = dim Ty(ε)�R. Replacing z(0) by z(ε)
in our previous argument, we can find neighborhoods U ′ of y(ε) and V ′ of z(ε) with
π |V ′ : V ′ → U ′ a diffeomorphism. But then, U ∪ U ′ is a strictly larger neighborhood
of y(0) satisfying the same conditions, contradicting our choice of U . Thus, y(1) ∈ U ,
as needed.

To complete the proof, we use Zorn’s lemma to show U exists. Let A contain all
neighborhoods Ua of y(0) in �R, such that there exists a neighborhood Va of z(0)
in LCR which is diffeomorphic to Ua by restricting π to Va . A is partially ordered
by set inclusion. A is nonempty, since we showed π is a local diffeomorphism at
π(z(0)) = y(0). Let B be a chain inA, i.e., a subset ofA that is totally ordered. Then,
the union C = ∪ Ub of all the elements of B is an upper bound for the chain B, since
it contains each element of B and it is an element ofA. To see this, consider that C is a
union of open sets containing y(0) and, therefore, is a neighborhood of y(0). LetD be
the union of all the neighborhoods Vb of z(0) which exist for each Ub ∈ B. Then,D is
again a neighborhood of z(0) and the same map π was used for the diffeomorphisms
by restricting to each of the Vb and hence also provides the required diffeomorphism
between D and C. Thus, every chain has an upper bound, and Zorn’s lemma implies
that there is a maximal element in A. This completes the proof. ��

4 Computations Using Numerical Nonlinear Algebra

In this section, we use the algebraic reformulation developed in the previous section to
describe numerical nonlinear algebra routines that can be used to answer the following
three computational problems:

1. Given γ ∈ �R compute Sγ .
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2. Given an algebraic path y(t) : [0, 1] → �R ⊂ Y and an initial configuration
x0 ∈ Sy(0), compute the path points γ ⊂ y([0, 1]) where a catastrophe might
occur (a local minimum disappears).

3. Given a control set �, compute the catastrophe set C�.

We start with the first question. Recall that d L y is a polynomial system. We can
compute all isolated solutions of a polynomial system using homotopy continuation
methods [22]. Homotopy continuation methods work by first solving a compatible but
simpler start system and then keeping track of these solutions as the start system is
deformed into the system we intended to solve originally (the target system). For our
computations, we use the software package HomotopyContinuation.jl [4]. To
compute Sγ for a given γ ∈ �R, we therefore first solve d Lγ (x, δ, λ) = 0 which
results in finitely many complex solutions Lγ . Of these complex solutions, we then
select those solutions whose components are real-valued and then further select those
real-valued solutions where the projected Hessian defined in (7) is positive definite.
Note that computing solutions to d Lγ (x, δ, λ) = 0 usually require that we track many
more paths than the equilibrium degree of Lγ . If the goal is to compute Sy for many
different y ∈ �R, it is more efficient to use a parameter homotopy [17,22]. There,
the idea is to first compute Ly0 for a general (complex) y0 ∈ � and then to use the
parameter homotopy H(z, t) = d Lty0+(1−t)y(z) to efficiently compute Ly . Using this
parameter homotopy approach allows us to track only the minimal numbers of paths
that still guarantee all solutions in Sy are computed correctly.

Consider the second question where we are given an algebraic path y(t) : [0, 1] →
�R ⊂ Y and an initial configuration x0 ∈ Sy(0). We want to compute the path points
γ ⊆ y([0, 1]) where a catastrophe might occur. From the results in Sect. 3, it follows
that we want to compute the intersection of C� and y([0, 1]). For this, we first compute
the intersection D� ∩ α where α ⊂ � is an algebraic curve containing y([0, 1]). For
simplicity, we assume that we have the general situation that α �⊂ D�. The catastrophe
discriminant D� is given by π(H−1

� (0))) with π from Definition 5 and

H�(x, δ, λ, y) =
[

d L y(x, δ, λ)

det d2L y(x, δ, λ)

]
.

Since the evaluation of a determinant is numerically unstable, it is better to instead use
the formulation that there exists a v ∈ P

n , such that d2L y(x, δ, λ) · v = 0. Consider
the collection {H�, π, π−1(α),W}where H� and π are the polynomial maps defined
above andW = π−1(α) ∩ H−1

� (0) contains finitely many solution points. In the case
that α is a line this is known as a pseudo-witness set [11], since it allows us to perform
computations on D� without knowing its defining polynomials explicitly. Since W
is the zero set of a polynomial system, it can again be computed using homotopy
continuation techniques. If α is a line, then cardinality ofW is the catastrophe degree
of the tensegrity framework. To compute C� ∩ y([0, 1]) given W , we have to select
from (x, δ, λ, γ ) ∈ W all those solutions which have real-valued coordinates, δ > 0,
and γ ∈ y([0, 1]) ⊆ α.

We move to the third question and discuss the computation of the catastrophe
set C�. This is more involved, since C� is a positive-dimensional set and we have
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Fig. 5 Setup of a four-bar elastic
tensegrity framework

to decide what “compute” means in our context. Since C� is a semialgebraic set, it
can theoretically be defined by a union of finite lists of polynomial equalities and
inequalities. However, computing the describing polynomials is a very challenging
computational problem, since it requires Gröbner bases computations which have
exponential complexity. We were able to compute the polynomial defining D� in
Example 5, but only over a finite field, and larger examples will likely fail to terminate.
Instead,we opt to obtain a sufficiently dense point sample ofC�. The idea is to apply the
previously described technique to compute repeatedly the intersection of C� and a real
line � ⊂ �R. To proceed,wefirst compute a pseudo-witness set {H�, π, π−1(�0),W0}
for a general (complex) line �0 ⊂ �, and then, we can compute the pseudo-witness
set {H�, π, π−1(�),W} by utilizing a parameter homotopy. As discussed above, this
is much more efficient for the repeated solution of our equations. Note that even
if the real lines � ⊂ �R are sampled uniformly, this does not guarantee that the
obtained sample points converge to a uniform sample of C�. If uniform sampling is of
interest, the procedure can be augmented with a rejection step as described in [3]. The
outlined procedure is an effective method to sample the catastrophe discriminantD�.
Figure 2 depicts the point samples obtained for Zeeman’s catastrophe machine using
this method, while Fig. 6 depicts those obtained for the elastic four-bar framework of
Sect. 5.

5 Example: Elastic Four-Bar Framework

We want to demonstrate the developed techniques on another example. For this, we
consider a planar four-bar linkage which is constructed from four bars connected
in a loop by four rotating joints where one link of the chain is fixed. The resulting
mechanism has one degree of freedom. Four-bar linkages are extensively studied
in mechanics as well as numerical nonlinear algebra [26]. Here, we extend a four-
bar linkage to an elastic tensegrity framework by introducing two nodes which are
attached to the two non-fixed joints by elastic cables. Formally, we introduce six
nodes with coordinates p1, . . . , p6 ∈ R

2, bars B = {12, 23, 34, 41} and elastic cables
C = {35, 46}. See Fig. 5 for an illustration of this basic setup.

The zero set of the bar constraints bi j , i j ∈ B, is a curve of degree 6 which can be
parameterized by the plane curve traced out by themotion of themidpoint (p3+ p4)/2.
In kinematics terminology, themidpoint is a coupler point and the plane curve is called
the coupler curve of the mechanism.
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Fig. 6 The catastrophe discriminant (left) and catastrophe set (right) of the elastic four-bar framework. The
cardinality of the stability set for points in each chamber of the complement of the catastrophe set is shown
in the upper right corner

The idea is to fix nodes 1, 2, and 5, and control node 6. For our model, this
means choosing X = {(p31, p32, p41, p42)} � R

4 as internal parameters and � =
{(p61, p62)} � R

2 as control parameters. Furthermore, we fix nodes p1 = (−1, 0),
p2 = (1, 0), p5 = (4, 3), bar lengths l23 = 3, l34 = 1, l14 = 1.5, resting lengths
r35 = r46 = 0.1, and elasticities c35 = 1, c46 = 2.

In this setup, the framework has an equilibrium degree of 64. The resulting catas-
trophe discriminant D� is a curve of degree 288. D� and the catastrophe set C� are
depicted in Fig. 6. The typical sizes of the stability set Sγ , γ ∈ �, are 2, 3, and 4.

Finally, we also want to give in Fig. 7 another concrete example of a catastrophe.
There, the control node 5 is depicted by a cross and it is dragged in a straight line
between its position in the left figure and its position in the right figure. When the
control node crosses the catastrophe set C�, its previously stable position disappears
from Sy , and the framework “jumps” to a new position. Again, without knowledge of
C�, these catastrophes are extremely surprising. With knowledge of C� and Theorem
2, they become avoidable.

6 Conclusion and FutureWork

This article described elastic tensegrity frameworks as a large family of simple models
based on Hooke’s law and energy minimization. For this family, we showed how to
explicitly calculate and track all stable equilibrium positions of a given framework.
More importantly, we showed how to calculate the catastrophe set C� using pseudo-
witness sets to encode a superset D� ⊃ C�. To do this, we reformulated the problem
algebraically to take advantage of tools in numerical nonlinear algebra. Knowing
the catastrophe set provides extremely useful information, since Theorem 2 shows
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Fig. 7 Left: the elastic four-bar framework in a stable configuration. Right: configuration of the framework
after crossing the catastrophe set. The gray dashed line is the coupler curve of the four-bar linkage traced out
by the midpoint of the bar connecting node 2 and 3. The coupler curve parameterizes all possible four-bar
positions. The catastrophe set C� is depicted in red. At the bottom are the energy landscapes along the
coupler curve with the current position depicted in green (color figure online)

that paths of control parameters avoiding C� will also avoid discontinuous loss of
equilibrium, and hence avoid surprising large-scale shape changes.

In our two illustrative examples, we chose the controls � as a two-dimensional
space overlaid with the configuration itself. These choices were made to demonstrate
the ideas.However, the calculation and tracking of all stable localminima by parameter
homotopy and the encoding of D� ⊃ C� by pseudo-witness sets apply much more
generally. The control set� can be chosen in any way, and all the samemethods apply,
even if there are no easy visualizations for the controls desired. Therefore, for more
complicated sets of control parameters �, it is of interest to develop more efficient
local sampling techniques based onMonte Carlo methods [29], perhaps only sampling
C� locally near the initial configuration (x(0), y(0)) or locally near the intended path
y([0, 1]). For example, it may be enough to know only the points of C� nearest to a
given initial or current position y(t).

We would also mention recent work [2] which details a sampling scheme whose
goal is to learn the real discriminant of a parametrized polynomial system, as well as
the number of real solutions on each connected component. They combine homotopy
continuation methods with k-nearest neighbors and deep learning techniques. For
elastic tensegrity frameworks, these techniques might be used to learn D� ∩ �R.

Finally,wediscuss the potential of our results for use inmechanobiology [12],where
scientists have frequently and successfully used tensegrity to model cell mechanics.
Even small and simple elastic tensegrity frameworks (e.g., with 6 or 12 rigid bars,
plus more cables) have been used to explain and predict experimental results observed
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in actual cells and living tissue [6,8,25,27]. However, the tensegrity paradigm is not
universally accepted in mechanobiology in part because it is viewed as a static theory,
unable to explain dynamic, time-dependent phenomena [12, see pages 13–16]. It is
here where catastrophe sets could play a role. We believe that qualitative phenomena
observed in actual experiments could be predicted or explained by elastic tensegrity
frameworks. Knowing the catastrophe set for a simple tensegritymodelwith a biology-
informed choice of � would give catastrophe predictions that could then be tested
experimentally.
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6. Coughlin, M.F., Stamenović, D.: A prestressed cable network model of the adherent cell cytoskeleton.

Biophys. J. 84(2), 1328–1336 (2003)
7. Connelly, R., Whiteley, W.: Second-order rigidity and prestress stability for tensegrity frameworks.

SIAM J. Discrete Math. 9(3), 453–491 (1996)
8. De Santis, G., Lennon, A.B., Boschetti, F., Verhegghe, B., Verdonck, P., Prendergast, P.J.: How can

cells sense the elasticity of a substrate? An analysis using a cell tensegrity model. Eur. Cell Mater. 22,
202–213 (2011)

9. Gill, P.E., Murray, W.: Practical Optimization. Emerald Group Publishing Limited, Bingley (1982)
10. Guckenheimer, J.: The catastrophe controversy. Math. Intell. 1(1), 15–20 (1978/79)
11. Hauenstein, J.D., Sommese, A.J.:Witness sets of projections. Appl.Math. Comput. 217(7), 3349–3354

(2010)
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27. Wang, N., Tolić-Nørrelykke, I.M., Chen, J., Mijailovich, S.M., Butler, J.P., Fredberg, J.J., Stamenović,
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