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Abstract
A portrait is a combinatorial model for a discrete dynamical system on a finite set. We
study the geometry of portrait moduli spaces, whose points correspond to equivalence
classes of point configurations on the affine line for which there exist polynomials
realizing the dynamics of a given portrait. We present results and pose questions
inspired by a large-scale computational survey of intersections of portrait moduli
spaces for polynomials in low degree.
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1 Introduction

The study of preperiodic points of polynomials is of central importance in complex
and arithmetic dynamics. Typically, one starts with a polynomial f (x) ∈ C[x] and
then tries to understand the preperiodic points of f (x); that is, the points α ∈ C

for which the orbit {α, f (α), f ( f (α)), f ( f ( f (α))), . . .} is finite. We take a different
perspective: given a configuration q of finitelymany points inC, we seek to understand
the collection of all polynomials f (x) ∈ C[x] such that f (q) ⊆ q. To that end, let

Confn := {(q1, q2, . . . , qn) ∈ C
n : qi �= q j for all i �= j}

denote the configuration space of n distinct points on the affine line overC, and define

End(q) := { f (x) ∈ C[x] : f (q) ⊆ q}

to be the semigroup (with respect to composition) of all polynomials which stabilize
q ∈ Confn as a set. Note that Confn naturally carries the structure of a complex
algebraic variety.

Remark We have chosen, for the sake of concreteness, to work exclusively over the
complex fieldC. However, the main results of this article may be extended to arbitrary
algebraically closed fields of characteristic 0 by appealing to the Lefschetz principle.

Our general goal is to begin addressing the following question.

Question 1.1 How does the semigroup End(q) vary with q ∈ Confn?

Lagrange interpolation implies the existence of a unique polynomial of degree at
most n − 1 interpolating any set-theoretic endomorphism of q ∈ Confn . For this
reason, we focus on the elements of End(q) with degree less than n. Let Endd(q)

denote the degree-d graded component of End(q).

Question 1.2 For 0 ≤ d ≤ n − 1, how does Endd(q) vary with q ∈ Confn? What
is the maximum cardinality En,d of Endd(q) as q ranges over Confn , and which
configurations achieve this maximum?

A portrait on [n] := {1, . . . , n} is a function P : [n] → [n]. The space ConfP,d of
degree-d realizations of a portrait P on [n] is the subspace of Confn defined by

ConfP,d := {q ∈ Confn : there exists f (x) ∈ C[x]
of degree d such that f (qi ) = qP(i) for all i}.
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Fig. 1 An illustration of
portraits P (red, solid) andQ
(black, dashed) acting on
{1, 2, 3, 4, 5, 6}. For example,
the red, solid arrow from 2 to 4
indicates that P(2) = 4 (color
figure online)
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The affine group Aff1 of linear polynomials �(x) = ax + b ∈ C[x] acts naturally on
Confn by

�(q) := (�(q1), . . . , �(qn)).

Observe that the action of Aff1 stabilizes ConfP,d : Indeed, if there exists a degree-d
polynomial f such that f (qi ) = qP(i) for all i ∈ [n], then ˜f := �◦ f ◦�−1(x) is also a
degree-d polynomial such that ˜f (�(qi )) = �(qP(i)) for all i ∈ [n], so �(q) ∈ ConfP,d .
The degree-d portrait moduli space of a portrait P is defined to be the quotient

MP,d := ConfP,d/Aff1.

Since Aff1 acts sharply 2-transitively on A
1, MP,d has the following simple model

as a complex algebraic variety:

MP,d = {(q1, . . . , qn) ∈ ConfP,d : q1 = 0 and q2 = 1}.

Observe that a configuration q has several degree-d endomorphisms preciselywhen
q lies in the intersection of several portrait realization spaces. Thus, Question 1.2 leads
us to consider the spaces

ConfP,Q,d := ConfP,d ∩ ConfQ,d and MP,Q,d := ConfP,Q,d/Aff1.

We refer to ConfP,d and ConfP,Q,d collectively as portrait realization spaces, and
toMP,d and MP,Q,d as portrait moduli spaces.

A portrait P (resp., a pair of portraits {P,Q}) on [n] naturally yields a functional
graph (resp., a pair of functional graphs) on the vertex set [n]; see Fig. 1 for an example.
The isomorphism classes of the moduli spaces MP,d and MP,Q,d depend only on
the combinatorial type of the portrait P and the portrait pair {P,Q}, respectively; see
Proposition 2.4 for a more precise statement. We therefore ask the following:

Question 1.3 How do combinatorial properties of portraits P and Q determine geo-
metric properties of the moduli spaces MP,d and MP,Q,d?

In this paper, we initiate the study of these questions guided by computational
results in low degrees.
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1.1 Results

We briefly summarize the main results of this article.

1.1.1 The Geometry ofMP,d andMP,Q,d

Our first result provides a combinatorial characterization of portraits P for which the
moduli space MP,d is nonempty and achieves the expected dimension.

Theorem 1.4 Let n, d ≥ 2 be integers and let P : [n] → [n] be a portrait. Then,
MP,d �= ∅ if and only if

(1) every element of [n] has at most d preimages under P , and
(2) for every integer k ≥ 1, P has at most 1

k

∑

j |k μ(k/ j)d j periodic cycles of length
k.

In this case, dimMP,d = min{d − 1, n − 2}.
Remark One direction of Theorem 1.4 follows almost immediately from Proposition
15.1 and Theorem 15.8 of [5]. More precisely, the cited results of [5] are used in the
proof of Theorem 1.4 to show that if n ≥ d+1 andMP,d is nonempty, then conditions
(1) and (2) are satisfied and dimMP,d = d − 1; see the proof of Proposition 2.8. The
other direction of the statement does not follow directly from the results of [5], nor
does the statement in the case that n ≤ d.

We will call a portraitP satisfying the two conditions in Theorem 1.4 an admissible
degree-d portrait. If P and Q are admissible degree-d portraits on n points, then a
simple count of parameters and constraints suggests that the dimension of MP,Q,d
should be 2d−n (see Sect. 3). There are finitely many admissible degree-d portraits—
hence finitely many pairs {P,Q} of such portraits—on a set with n elements, so in
principle one can survey all of the portrait moduli spacesMP,Q,d for any fixed n and
d. We have conducted this survey for (n, d) = (4, 2) and (n, d) = (6, 3); in these
instances, the expected dimension is zero.

For computational reasons, it is simpler to work with the moduli spaces

̂MP,Q,d :=
⋃

e≤d

MP,Q,e ⊆ Confn/Aff1

of all affine equivalence classes of degree-at-most-d realizations of P and Q. Since

we are considering the case n = 2d, and since ̂MP,Q,d ⊆ ̂MP,d by definition,

it follows from Theorem 1.4 that the dimension of ̂MP,Q,d is bounded above by
min{d − 1, n − 2} = d − 1. Table 1 (which we also include as Table 3 in Sect. 3.3
for convenience) lists, for d = 2, 3 and −1 ≤ e ≤ d − 1, the number of pairs of
admissible degree-d portraits on 2d points up to combinatorial equivalence for which
we have dim ̂MP,Q,d = e. Here and throughout the article, we use the convention
that the empty variety has dimension −1.
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Table 1 For each d ∈ {2, 3} and
e ∈ {−1, 0, 1, 2}, the number of
equivalence classes of pairs
{P,Q} of admissible degree-d
portraits on [2d] satisfying
dim ̂MP,Q,d = e

dim ̂MP,Q,d

d
e −1 0 1 2 Total

2 198 568 14 780
3 52310 1297349 1065 18 1350742

While the dimension of ̂MP,Q,d typically agrees with our expectation that gener-
ically dim ̂MP,Q,d = 0, there are portrait pairs {P,Q} achieving the full range of
possible dimensions for ̂MP,Q,d .

Theorem 1.5 identifies an interesting family of extreme examples of portraits on
n = 2d points for whichMP,Q,d is either as small as possible (i.e.,MP,Q,d = ∅) or
as large as possible (i.e., (d − 1)-dimensional). Theorem 1.5 accounts for all but one
of the 14 equivalence classes of portrait pairs {P,Q} for which dim ̂MP,Q,2 = 1 and
all of the 18 pairs for which dim ̂MP,Q,3 = 2.

First, some terminology: The fiber partition of a portrait P on n points is the
partition of [n] given by �P := {P−1(i) : i ∈ P([n])}. A two-image portrait is a
portrait P : [2d] → [2d] such that �P consists of two sets with d elements each.

Theorem 1.5 Let d ≥ 1 and let � := {A, B} be a partition of [2d] into two sets with
d elements each.

(1) If P and Q are two-image portraits with �P = �Q = �, then

ConfP,d = ConfQ,d .

Hence, ConfP,d depends only on the partition �; let Conf�,d := ConfP,d and
M�,d := Conf�,d/Aff1. Thus

MP,Q,d = M�,d .

(2) Conf�,d is the (d + 1)-dimensional Zariski closed subspace of Conf2d defined
by the equations

ek(xA) = ek(xB),

for 1 ≤ k < d, where ek is the kth elementary symmetric function in d variables
and xA := {xa : a ∈ A} is the subset of {x1, x2, . . . , x2d} of variables indexed by
A, likewise for xB.

(3) If �′ �= � is any other partition of [2d] into two sets of d elements each, then

Conf�,d ∩ Conf�′,d = ∅.

Equivalently, if P and Q are two-image portraits with distinct fiber partitions,
then

MP,Q,d = ∅.
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(4) For each q ∈ Conf�,d , End(q) contains at least 2d(2d − 1) degree-d endomor-
phisms of q. Hence

E2d,d := max
q∈Conf2d

|End(q)| ≥ 2d(2d − 1).

We deduce Theorem 1.5(3) as a corollary of the following result of possible inde-
pendent interest.

Theorem 1.6 Let K be an algebraically closed field, and suppose that f (x), g(x) ∈
K [x] are polynomials such that for some distinct a, b ∈ K,

f −1({a, b}) = g−1({a, b})

as sets with multiplicity. If either char(K ) �= 2 or f and g have odd degree, then
f (x) = g(x) or f (x) = a + b − g(x).

A close analysis of portrait pairs {P,Q} for which the dimension of ̂MP,Q,d
differs from expectation revealed the following result as the most common source of
deviations.

Theorem 1.7 Let P and Q be admissible degree-d portraits on n points and suppose
that either

(1) d = 2 and there is at least one pair i, j ∈ [n] such that P(i) = P( j) and
Q(i) = Q( j),

(2) d = 3 and there are at least two pairs i, j ∈ [n] such that P(i) = P( j) and
Q(i) = Q( j), or

(3) d is arbitrary and the fiber partitions �P , �Q have a common fiber with d
elements.

If q is a degree-at-most-d realization of both P and Q via the polynomials f and g,
respectively, then f (x) = �(g(x)) for some linear polynomial �(x).

The condition f (x) = �(g(x)) for any pair of realizations f (x), g(x) is highly
restrictive. In Sect. 3.4.1 we identify a number of ways in which Theorem 1.7 can be
used to explain why ̂MP,Q,d = ∅ for P andQ satisfying one of the conditions of the
theorem. Furthermore, in Sect. 3.4.2 we show how Theorem 1.7 leads to a conditional
revised expected dimension for ̂MP,Q,d which heuristically accounts for the majority
of the deviations towards higher dimensions.

1.1.2 Endomorphisms of Symmetric Configurations

Our survey of ̂MP,Q,2 for portraits on 4 points allows us to answer Question 1.2
for (n, d) = (4, 2) in characteristic 0: the maximum cardinality of End2(q) with
q ∈ Conf4(C) is E4,2 = 28 and is realized by the highly symmetric configuration
q = μ4 = (1, i,−1,−i) of 4th roots of unity. Note that this more than doubles the
lower bound of E4,2 ≥ 12 given by Theorem 1.5. This suggests that the sequence of
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Table 2 The cardinality of Endd (μn) for 3 ≤ n ≤ d and 0 ≤ d ≤ n − 1

n d 0 1 2 3 4 5 6 7

3 3 3 21
4 4 4 28 220
5 5 5 5 105 3005
6 6 6 6 30 1992 44616
7 7 7 7 7 105 4907 818503
8 8 8 8 8 280 2968 186840 16587096

configurations q = μn of nth roots of unity may be good candidates for understanding
the extremal behavior of End(q). Table 2 lists the number of degree-d endomorphisms
of μn for 3 ≤ n ≤ 8 and 0 ≤ d < n.

Note that for each degree d, the n monomials ζ k
n x

d belong to Endd(μn). In Sect. 4,
we prove that, as suggested by the table, these are the only endomorphisms of μn with
degree less than n/2.

Theorem 1.8 If n > 2d ≥ 1, then the only degree-d polynomial endomorphisms of
μn in C[x] are of the form ζ k

n x
d for some k ≥ 0.

Theorem 1.8 is an immediate consequence of a result of Cargo and Schneider [2,
Theorem 1]; however, we provide a self-contained proof in Sect. 4.

1.2 RelatedWork

Questions 1.1 and 1.2 relate to several conjectures on preperiodic points in arithmetic
dynamics. We note two examples below.

1.2.1 Uniform Boundedness Conjecture

The Morton–Silverman uniform boundedness conjecture [6, p. 100] asserts, in part,
that for any number field K of degree e over Q and any polynomial f (x) ∈ K [x]with
degree d, the number of K -rational preperiodic points of f (x) is uniformly bounded by
a constant Bd,e depending only on d and e. See [7, Sect. 3.3] for the precise statement
of the uniform boundedness conjecture and a list of further references.

The uniform boundedness conjecture is equivalent to the statement that Endd(q) =
∅ for any configuration q consisting of more than Bd,e points in A

1(K ). We now
briefly justify this equivalence, which relies on the fact that if q1, . . . , qn is the full
set of K -rational preperiodic points for a polynomial f (x) ∈ K [x] of degree d, then
for q = (q1, . . . , qn) we have f ∈ Endd(q). In fact, from this observation it follows
immediately that if Endd(q) = ∅ for all configurations q of more than Bd,e points in
A
1(K ), then no degree-d polynomial can have more than Bd,e K -rational preperiodic

points.
Now suppose the uniform boundedness conjecture holds, and let q be a config-

uration of points in A
1(K ) with more than Bd,e points. Since Bd,e depends on d,
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we may as well assume1 that Bd,e ≥ d. Suppose for contradiction that there exists
f (x) ∈ Endd(q). Then q is a set of preperiodic points for f , so it remains to show that
f has coefficients in K , which would then contradict the uniform boundedness con-
jecture. But the fact that f has coefficients in K follows immediately from Lagrange
interpolation (see also the proof of Proposition 2.3) since q has more than d = deg f
points.

1.2.2 Common Preperiodic Point Conjecture

De Marco et al. [4] conjecture that for any degree d, there exists a uniform bound Cd

such that if f (x), g(x) ∈ C[x] are polynomials of degree d, then either

|PrePer( f ) ∩ PrePer(g)| ≤ Cd or PrePer( f ) = PrePer(g),

where PrePer( f ) denotes the set of all complex preperiodic points for f . Hence, if q
is a configuration of more than Cd complex points, then this conjecture implies that
all the elements of Endd(q) have identical sets of preperiodic points.

1.2.3 Dynamical Moduli Spaces

The portrait moduli spaces MP,d are closely related, but not identical, to dynamical
moduli spaces that have been studied since at least the 1980s. Typically one begins
with a family F of endomorphisms of the projective line P

1 (e.g., degree-d rational
functions, degree-d polynomials, or degree-d polynomials with a single critical point)
and a portrait P on [n], then constructs the space

F[P] := {( f , q1, . . . , qn) : f ∈ F , f (qi ) = qP(i) for all i, and qi �= q j for i �= j}.

If G ⊆ Aut(P1) ∼= PGL2 is a subgroup stabilizing F under conjugation, then φ ∈ G
acts on F[P] by

( f , q1, . . . , qn)
φ = (φ ◦ f ◦ φ−1, φ(q1), . . . , φ(qn)).

Then, we get a moduli space of dynamical systems of type F with level structure P
by taking the quotient M[P] := F[P]/G.

Our spaces ConfP,d and MP,d are the projections of F[P] and M[P], respec-
tively, onto the q-coordinates, where we have taken F to be the family of degree-d
polynomials and G = Aff1 the group of affine linear transformations. The spaces
ConfP,d are more natural thanF[P] in the context of Questions 1.1 and 1.2, as config-
urations q with exceptional endomorphism semigroups arise as points of intersection
of ConfP,d for several P and d. Furthermore, when n > d, Lagrange interpolation
implies that the degree-d polynomial f (x)witnessing q ∈ ConfP,d is uniquely deter-
mined by q, hence no information is lost in the projection π : F[P] → ConfP,d (see
Theorem 1.4).

1 In fact, if Bd,e exists, it is not too difficult to show that the inequality Bd,e ≥ d must necessarily hold.
For the purposes of this discussion, though, we do not need to prove this.
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There is a large and growing literature on dynamical moduli spaces. We recom-
mend the article [5], which constructs the parameter spaces EndNd [P] and moduli
spacesMN

d [P] := EndNd [P]/PGLN+1, where EndNd denotes the family of all degree-
d endomorphisms of P

N , and develops the basic theory of such spaces. See [5, Sect. 2]
for a brief survey of prior work on dynamical moduli spaces and [5, Theorem 17.5]
for a statement showing that the general Morton-Silverman uniform boundedness
conjecture can be rephrased in terms of K -rational points on dynamical moduli
spaces.

1.3 Organization

The remainder of the paper is divided into three sections. The parameter and moduli
spaces ConfP,d andMP,d are constructed in Sect. 2. Theorem 1.4 is proved as Corol-
lary 2.9. In Sect. 3, we study intersections of the portrait realization spaces and discuss
the results of computational surveys in low degrees. Theorem 1.5 appears in parts as
Theorem 3.20 and Proposition 3.24; Theorem 1.6 is proved as Theorem 3.25; and
Theorem 1.7 is proved as Theorem 3.15. Finally, in Sect. 4, we prove that E4,2 = 28
(Proposition 4.1) and prove Theorem 1.8 as Theorem 4.2.

1.4 Supplementary Code

A Sage notebook containing functions and calculations related to the contents of this
paper is available at:

https://github.com/tghyde/portrait_moduli_supplement.

2 Portrait Realization Spaces andModuli Spaces

Let P be a portrait on n points, that is, P : [n] → [n] is a set-theoretic endomorphism
of [n] := {1, 2, . . . , n}. Recall from the introduction that (q1, . . . , qn) ∈ Confn is a
degree-d realization ofP if there exists a degree-d polynomial f (x) ∈ C[x] such that
f (qi ) = qP(i) for all 1 ≤ i ≤ n. For the purposes of this paper, we consider the zero
polynomial to have degree 0.

Example 2.1 It is convenient to represent portraits on [n] as directed graphs with ver-
tices labeled 1, 2, . . . , n. Figure2 illustrates three such diagrams: On the left is the
portrait P that maps 1, 2, 3, and 4 to 1, 1, 2, and 4, respectively. In the middle is the
portrait Q that maps 1, 2, 3, and 4 to 1, 3, 3, and 1, respectively. On the right is the
pair of portraits {P,Q}: P is drawn with solid red arrows andQ is drawn with dashed
black arrows.

To conclude this example, note that q = (q1, q2, q3, q4) = (0, 1, 2, 3) is a degree-2
realization of the pair of portraits {P,Q}. Indeed, if f (x) := 1

2 x(x − 1) and g(x) :=
−x(x − 3), then
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1

2 3

4 1

2 3

4 1

2 3

4

Fig. 2 An illustration of P , Q, and {P,Q}, respectively

f (q1) = f (0) = 0 = q1 g(q1) = g(0) = 0 = q1
f (q2) = f (1) = 0 = q1 g(q2) = g(1) = 2 = q3
f (q3) = f (2) = 1 = q2 g(q3) = g(2) = 2 = q3
f (q4) = f (3) = 3 = q4 g(q4) = g(3) = 0 = q1,

so q realizes P and Q via the polynomials f and g, respectively.

We are interested in the portrait realization spaces

ConfP,d := {q ∈ Confn : q is a degree-d realization of P},
ĈonfP,d :=

⋃

0≤e≤d

ConfP,e = {q ∈ Confn : q is a degree-at-most-d realization of P}.

In this section, we study portrait realization spaces, culminating in a proof of Theo-
rem 1.4.

2.1 ConfP,d as a Complex Algebraic Variety

The following lemma is used in the proofs of Propositions 2.3 and 2.8.

Lemma 2.2 Let (q1, q2, . . . , qn) ∈ Confn be a configuration of n distinct points in C,
and let d ≥ n. Then for any portrait P : [n] → [n], there exists a monic polynomial
f (x) ∈ C[x] of degree d such that f (qi ) = qP(i) for all 1 ≤ i ≤ n.

Proof Lagrange interpolation implies there exists a polynomial g(x) ∈ C[x] with
degree at most d−1 such that g(qi ) = qP(i)−qdi for each i . Hence f (x) := xd +g(x)
is a monic degree-d polynomial such that f (qi ) = qP(i) for each 1 ≤ i ≤ n. �
Proposition 2.3 For any portrait P : [n] → [n] and any degree d ≥ 0, ĈonfP,d is a

Zariski closed subset of Confn, and ConfP,d is a Zariski open subset of ĈonfP,d .

Proof If d ≥ n, then it follows from Lemma 2.2 that for any configuration q ∈ Confn ,
there exists amonic degree-d polynomial f (x) such that f (qi ) = qP(i) for all i ∈ [n].
Therefore, in this case
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ConfP,d = ĈonfP,d = Confn,

so the conclusion holds trivially.
Now, suppose d ≤ n − 1. The configuration space Confn is, by definition, the

complement of the hyperplane arrangement {xi = x j : i �= j} in A
n . Let

Rn := Z[xi , (x j − xk)
−1 : 1 ≤ i, j, k ≤ n, j �= k]

be the coordinate ring of Confn . Lagrange interpolation tells us that

f (x) :=
n

∑

i=1

xP(i)

n
∏

j=1
j �=i

x − x j
xi − x j

= bn−1x
n−1 + bn−2x

n−2 + · · · + b1x + b0 ∈ Rn[x]

is the unique polynomial of degree at most n−1 with coefficients in Rn which realizes
the portrait P on the indeterminates xi . Thus, a configuration q = (q1, q2, . . . , qn)
is a degree-at-most-d realization of P if and only if bn−1(q) = bn−2(q) =
· · · = bd+1(q) = 0. In other words, ĈonfP,d is the Zariski closed subset of Confn

defined by the vanishing of bk with d < k ≤ n − 1. Moreover, the space ConfP,d of

degree-d realizations of P is the open subset of ĈonfP,d defined by bd(q) �= 0. �
If P : [n] → [n] is a portrait and σ is a permutation of [n], then we let Pσ :=

σ−1 ◦ P ◦ σ denote the conjugate of P by σ , which amounts to the relabeling of
P induced by σ . We end this section by recording the fact that relabeled portraits
have isomorphic realization spaces. We omit the proof, which is a straightforward
application of the definitions.

Proposition 2.4 Let P : [n] → [n] be a portrait and let σ be a permutation of [n].
The map

	σ : Confn −→ Confn

(q1, . . . , qn) �−→ (qσ(1), . . . , qσ(n))
(2.1)

induces isomorphisms ConfP,d
∼−→ ConfPσ ,d and ĈonfP,d

∼−→ ĈonfPσ ,d for all
d ≥ 0.

2.2 Dimension of ConfP,d

We now state necessary and sufficient conditions on a portrait P for the degree-d
realization space ConfP,d to be nonempty and, in that case, compute the dimension
of ConfP,d .

The most dynamically interesting situation is when d ≥ 2, but for completeness we
also briefly discuss the cases d = 0 and d = 1. Certainly for a portraitP on [n] to have
degree-0 realizations, P must be a constant portrait, and conversely any configuration
in Confn can realize a constant portrait. We now record Proposition 2.5, which is a
consequence of the following elementary facts about degree-1 polynomials �(x):

(i) � is determined by how it acts on any two points;
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(ii) If �(x) �= x , then � has at most one fixed point; and
(iii) If � has a periodic point of exact period k > 1, then �k(x) = x and �m(x) �= x for

all 1 ≤ m < k, where �k(x) denotes the kth iterate of �. In particular, every point
except the unique fixed point has period equal to k.

Proposition 2.5 Let n ≥ 1 be an integer and let P : [n] → [n] be a portrait.
(1) ConfP,0 �= ∅ if and only if P is constant. In this case, ConfP,0 = Confn and

dim ConfP,0 = n.
(2) ConfP,1 �= ∅ if and only if the following three conditions hold,

(a) P is a bijection,
(b) P is either the identity function or has at most one fixed point, and
(c) If P has a k-cycle for some k > 1, then all but at most one point in [n] belongs

to a k-cycle.

In this case, if γ (P) denotes the number of orbits of P , then dim ConfP,1 is equal
to γ (P) when P has a fixed point and is equal to γ (P) + 1 otherwise.

Now suppose that d ≥ 2. There are two natural combinatorial obstructions to P
admitting degree-d realizations: First, if P is to be realized by a polynomial of degree
d, then no element of [n] should have more than d preimages under P . Second, for a
given integer k ≥ 1, a polynomial of degree d ≥ 2 can have at most Mk(d) periodic
cycles of length k, where

Mk(x) := 1

k

∑

j |k
μ(k/ j)x j

is the kth necklace polynomial; this follows from the fact that a point of period k for
a degree-d polynomial f is a root of the kth dynatomic polynomial

	k(x) :=
∏

j |k

(

f j (x) − x
)μ(k/ j)

,

which has degree kMk(d), so that f has at most Mk(d) cycles of length k. Here f j

denotes the j th iterate f ◦ · · · ◦ f of f .

Definition 2.6 A portrait P : [n] → [n] is admissible in degree d for d ≥ 2 if

(1) Every element of [n] has at most d preimages under P , and
(2) For every integer k ≥ 1, P has at most Mk(d) periodic cycles of length k.

Our discussion above implies that admissibility in degree d is a necessary condition
for ConfP,d to be nonempty. We prove that admissibility is also sufficient; one should
compare this to [5, Theorem 14.2].

Lemma 2.7 Let d ≥ 2, and let P be a degree-d admissible portrait. Then ConfP,d �=
∅.
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Proof It suffices to show that for each d ≥ 2 there exists at least one degree-d poly-
nomial f (x) ∈ C[x] with the following properties:

(1) For all k ≥ 1, f has exactly Mk(d) periodic cycles of length k, and
(2) Every preperiodic point for f has exactly d preimages in C; equivalently, f has

no preperiodic critical points.

We claim that f (x) = xd + 1 satisfies these properties. Indeed, 0 is the only critical
point for f , and a simple induction argument shows that f n(0) ≥ 22

n−2
for all n ≥ 2,

so it follows that the sequence of iterates 0, f (0), f 2(0), . . . tends to ∞. Hence, f
has no preperiodic critical points. Thus, (2) holds.

Suppose for contradiction that (1) fails—that is, suppose f has fewer than Mk(d)

periodic cycles of length k. Then, the polynomial g(x) := f k(x) − x has fewer zeros
than expected; hence, g and g′ have a common root α. Since g(α) = f k(α) − α = 0,
α is periodic with period dividing k, and ( f k)′(α) = g′(α)+1 = 1. This means that α
belongs to a rationally indifferent cycle. By [1, Theorem 9.3.2], this cycle must attract
a critical point; since 0 is the only critical point, the orbit of 0 must approach the cycle
containing α, contradicting the fact that 0 has orbit tending to ∞. �
Proposition 2.8 Let n ≥ 1 and d ≥ 2 be integers, and let P : [n] → [n] be a portrait.
The following are equivalent:

(1) P is admissible in degree d.
(2) ConfP,d �= ∅.
(3) dim ConfP,d = min{d + 1, n}.
Proof First, supposen ≤ d. Ifq = (q1, q2, . . . , qn) ∈ Confn is any configuration, then
byLemma 2.2 there exists amonic degree-d polynomial f (x) such that f (qi ) = qP(i).
As in the proof of Proposition 2.3, it follows thatConfP,d = Confn . Thus,whenn ≤ d,
(2) and (3) are true, and (1) is true since a portrait on at most d points is automatically
admissible in degree d.

Now suppose n ≥ d + 1. Consider the augmented realization space

PolyP,d := {( f , q1, . . . , qn) : deg f = d and f (qi ) = qP(i) for all 1 ≤ i ≤ n}.

Thinking of a polynomial as a rational map for which ∞ is a totally ramified fixed
point, the dimension counting results2 of [5, Theorem 15.8 and Remark 15.9] imply
that

P is a degree-d admissible portrait ⇐� PolyP,d �= ∅ ⇐⇒ dim PolyP,d = d + 1.

Since we have already shown that (1) implies (2) in Lemma 2.7, it therefore suffices
to show that PolyP,d

∼= ConfP,d . Consider the projection map

2 LetP ′ be the weighted portrait, in the terminology of [5], obtained by adding toP a single fixed point of
weight d, corresponding to a totally ramified fixed point. The cited results of [5] show that the parameter
space associated toP ′—denoted End1d [P ′] in [5]—has dimension d+2, but we lose a dimension bymoving
the totally ramified fixed point to ∞.
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�d : PolyP,d −→ ConfP,d

( f , q1, . . . , qn) �−→ (q1, . . . , qn).

Certainly�d is amorphism, and it is surjective by the definition ofConfP,d .Moreover,
since n ≥ d + 1, Lagrange interpolation implies that for each configuration q ∈
ConfP,d there is a unique polynomial f for which �d( f , q) = q, so �d is bijective
as a map on sets. The coefficients of f may be expressed as regular functions on Confn

(see the proof of Proposition 2.3) so the inverse �−1
d is also a morphism. Therefore,

�d is an isomorphism, completing the proof. �

2.3 Remarks on theModuli SpacesMP,d and ̂MP,d

LetAff1 denote the group of linear polynomialswith respect to composition.3 If �(x) ∈
Aff1 and f (x) is the degree-d polynomial witnessing the realization q ∈ ConfP,d ,
then ˜f := � ◦ f ◦ �−1 has degree d and

˜f (�(qi )) = �( f (qi )) = �(qP(i)).

Hence �(q) = (�(q1), �(q2), . . . , �(qn)) ∈ ConfP,d . Thus we define the portrait
moduli spaces MP,d and ̂MP,d as the quotients

MP,d := ConfP,d/Aff1 and ̂MP,d := ĈonfP,d/Aff1.

For n ≥ 2, MP,d (resp., ̂MP,d ) is a fine moduli space for the moduli problem of
degree-d realizations (resp., degree-at-most-d realizations) of P . Indeed, MP,d and
̂MP,d are coarse moduli spaces by construction; hence, it suffices to show that no

point on ĈonfP,d (thus no point on ConfP,d ) has a nontrivial stabilizer. Recall that

Aff1 acts sharply 2-transitively on A
1. Thus, if q = (q1, q2, . . . , qn) ∈ ĈonfP,d and

�(x) ∈ Aff1 fixes q1 and q2, then �(x) = x .
Moreover, for n ≥ 2, dimMP,d = dim ConfP,d−2, since Aff1 is a 2-dimensional

algebraic group acting faithfully on ConfP,d . Thus Corollary 2.9 is an immediate
consequence of Proposition 2.8.

Corollary 2.9 Let n, d ≥ 2, and let P : [n] → [n] be a portrait. The following are
equivalent in characteristic 0:

(1) P is a degree-d admissible portrait.
(2) MP,d �= ∅.
(3) dimMP,d = min{d − 1, n − 2}.

WhileConfP,d is a Zariski open subset of ĈonfP,d , it need not be dense in ĈonfP,d .

In fact, ĈonfP,d may have components with dimension strictly larger than the dimen-
sion of ConfP,d . We illustrate with two examples:

3 From the perspective of PGL2 acting on ̂C by Möbius transformations, the group Aff1 is the Borel
subgroup of upper triangular matrices in PGL2.
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(1) If P is the portrait consisting of two 2-cycles, then P is not degree-2 admissible,
hence ConfP,2 = ∅. On the other hand, ĈonfP,2 = ConfP,1 has dimension 3 by
Proposition 2.5(2).

(2) If P is the portrait consisting of three 4-cycles, then P is degree-2 admissible, so
ConfP,2 is nonempty; in fact, the dimension of ConfP,2 is 3 by Proposition 2.8. On

the other hand, by Proposition 2.5(2), we have dim ConfP,1 = 4. Since ĈonfP,2

is the (disjoint) union of ConfP,1 and ConfP,2, we have dim ĈonfP,2 = 4 >

dim ConfP,2.

On the other hand, if n ≤ 2d andP is not the identity portrait4, then dim ConfP,1 ≤
d + 1 by Proposition 2.5, with equality when P consists of d 2-cycles. Hence if P is
admissible in degree d, then

dim ĈonfP,d = dim ConfP,d = d + 1.

However, if dim ConfP,1 = dim ConfP,d = d + 1, then the space ConfP,d will still

not be Zariski dense in ĈonfP,d . Taking quotients, the above remarks are also valid
forMP,d ⊂ ̂MP,d . In particular, if n ≤ 2d and P is not the identity portrait, then

dim ̂MP,d = dimMP,d = d − 1. (2.2)

Finally, note that Theorem 1.4 is equivalent to Corollary 2.9.

3 Intersections of Realization Spaces

In this section, we study the intersections of portrait realization spaces. If P,Q :
[n] → [n] are portraits, then ConfP,d and ConfQ,d live in the same ambient space
Confn . Let

MP,Q,d := (ConfP,d ∩ ConfQ,d )/Aff1 and ̂MP,Q,d := (ĈonfP,d ∩ ĈonfQ,d )/Aff1

denote the moduli space of affine equivalence classes of configurations q ∈ Confn

which have degree-d (respectively, degree-at-most-d) realizations of both P and Q.
Just as we defined in Definition 2.6 what it means for a single portrait to be admis-

sible (in degree d), we now do the same for pairs of portraits:

Definition 3.1 A pair {P,Q} of portraits is admissible in degree d if P and Q are
distinct portraits, each of which is admissible in degree d.

For (n, d) = (4, 2) and (6, 3) we have conducted a computational survey of all the
spaces ̂MP,Q,d with {P,Q} an admissible degree-d pair of portraits. An analysis of
the findings and results inspired by the data are discussed below.

4 If P is the identity portrait on n elements, then dimP,1 = n by Proposition 2.5. Moreover, by Proposi-
tion 2.8,P is admissible in degreed if and only ifn ≤ d. In this case, dim ConfP,d = d+1 > n = ConfP,1,
so the subsequent discussion is still valid for the identity portrait P .
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P Q1 Q2 Q3

Fig. 3 Some admissible degree-2 portraits on {1, 2, 3, 4}

3.1 Dimension Heuristic

Suppose for simplicity that n > d ≥ 1. Let q ∈ Confn be a configuration of n points.
If q ∈ ConfP,d , then the existence of a degree-d endomorphism f (x) of q imposes
n − d − 1 algebraic constraints on the coordinates of q. (See the proof of Proposition
2.3.) Thus, the expected dimension of ConfP,d ∩ ConfQ,d is n − 2(n − d − 1)
= 2d − n + 2, where we interpret a negative dimension to mean that the space is
empty.

The two-dimensional group Aff1 acts freely on Confn , hence the expected dimen-
sion of the quotient MP,Q,d is 2d − n. The same dimension heuristic applies to
̂MP,Q,d . We emphasize that this is only a heuristic: the algebraic conditions imposed
by the two portraits may not be independent, or the system of equations may only have
degenerate solutions in A

n\Confn . Since MP,Q,d ⊆ MP,d , Corollary 2.9 implies
that in characteristic 0 we have dimMP,Q,d ≤ d − 1, and if we restrict to n ≤ 2d,
(2.2) implies that dim ̂MP,Q,d ≤ d − 1.

Example 3.2 As noted above, if n = 4 and d = 2, then the expected dimension of
MP,Q,2 is 0 and the maximum possible dimension is 1. Consider the portraitsP ,Q1,
Q2, and Q3 illustrated in Fig. 3. For i = 1, 2, 3, a quick computation shows that the
spacesMP,Qi ,2 have dimensions−1, 0 and 1, respectively. More precisely, the space
MP,Q1,2 = ∅,MP,Q2,2 = {(0, 1, 2, 3)} consists of exactly one point, andMP,Q3,2
is a genus-0 curve.

3.2 Combinatorial Equivalence

Recall that if P : [n] → [n] is a portrait and σ is a permutation of [n], then Pσ :=
σ−1 ◦ P ◦ σ is the relabeling of P by σ .

Definition 3.3 Two unordered pairs {P,Q} and {P ′,Q′} of distinct portraits on [n] are
combinatorially equivalent if there exists a permutation σ of [n] such that {P ′,Q′} =
{Pσ ,Qσ }. The combinatorial equivalence class of {P,Q} is denoted 〈P,Q〉. We
say that the equivalence class 〈P,Q〉 is admissible in degree d if one (hence every)
representative of the equivalence class is admissible in degree d.

A combinatorial equivalence class of portraits {P,Q}may be visualized as a pair of
phase portraits acting on an unlabeled set; see Fig. 4. Note that if {P,Q} and {P ′,Q′}

123



Dynamical Moduli Spaces and Polynomial... 301
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Fig. 4 The first two diagrams illustrate distinct but equivalent portrait pairs, and the third diagram illustrates
their equivalence class

Table 3 For each e ∈ {−1, 0, 1, 2}, the number of quadratic and cubic portrait pairs 〈P,Q〉 satisfying
dim ̂MP,Q,d = e

Dimension −1 0 1 2 Total

Quadratic pairs 198 568 14 780
Cubic pairs 52310 1297349 1065 18 1350742

are combinatorially equivalent, then applying Proposition 2.4 and taking intersections
implies that MP,Q,d

∼= MP ′,Q′,d and ̂MP,Q,d
∼= ̂MP ′,Q′,d .

3.3 Computational Results

We refer to a degree-2 (resp., degree-3) admissible combinatorial equivalence class
〈P,Q〉 on four (resp., six) points as a quadratic portrait pair (resp., cubic portrait
pair). Note that the definition of admissibility requiresP �= Q. There are 780 quadratic
portrait pairs and 1,350,742 cubic portrait pairs. For all such portrait pairswe computed
basic invariants of the moduli spaces ̂MP,Q,d of degree-at-most-d realizations of P
and Q.

The first invariant of ̂MP,Q,d we consider is dimension. Note that

−1 ≤ dim ̂MP,Q,d ≤ d − 1,

where the upper bound holds because n = 2d for (n, d) = (4, 2) or (6, 3) (see
Sect. 3.1). Recall that we say the dimension of a space M is −1 when M = ∅. The
dimension heuristic derived in Sect. 3.1 suggests that ̂MP,Q,d should typically have
dimension 0, hence that ̂MP,Q,d should be a finite set. The dimensions of ̂MP,Q,d
for each quadratic and cubic portrait pair are tabulated in Table 3 (labeled Table 1 in
the introduction).

In both degrees, the most common dimension is 0, matching our expectation. How-
ever, there are many portrait pairs for which the dimension of ̂MP,Q,d takes an
unexpected value.

Question 3.4 What combinatorial properties of 〈P,Q〉 imply that the dimension
̂MP,Q,d will differ from the expected dimension?

In the remainder of Sect. 3.3 we discuss our findings on the cases when ̂MP,Q,d
is zero-dimensional (Sect. 3.3.1), when ̂MP,Q,d achieves the maximum dimension
(Sect. 3.3.2), and when ̂MP,Q,d = ∅ (Sect. 3.3.3).
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Table 4 For each degree e ∈ {1, . . . , 7}, the number of quadratic portrait pairs 〈P,Q〉with dim ̂MP,Q,2 =
0 and deg ̂MP,Q,2 = e

Degree 1 2 3 4 5 6 7 Total

Quadratic pairs 65 166 121 116 62 29 9 568

Fig. 5 Degree of ̂MP,Q,3 for cubic pairs 〈P,Q〉 with dim ̂MP,Q,3 = 0. Degrees are listed along the
horizontal axis; the vertical axis lists the number of cubic portrait pairs for which ̂MP,Q,3 has the given
degree

3.3.1 Dimension 0

In this section, we discuss fields of definition of points on the spaces ̂MP,Q,d as well
as multiplicities of points on those schemes ̂MP,Q,d which are zero-dimensional.
Thus, for this section only, we consider ̂MP,Q,d as a scheme over Q rather than as a

variety over C. We justify this by noting that ̂MP,Q,d is the subvariety of ĈonfP,Q,d
obtained by setting q1 = 0 and q2 = 1, and the equations from Proposition 2.3 cutting
ĈonfP,Q,d out of affine space have rational coefficients.

Recall that the degree of a zero-dimensional scheme is the (finite) number of points
on that scheme counted with multiplicity. For every quadratic portrait pair 〈P,Q〉with
dim ̂MP,Q,2 = 0, the degree of ̂MP,Q,2 was at most 7, and in Table 4 we list the
number of quadratic portrait pairs with dim ̂MP,Q,2 = 0 of each given degree.

Since ̂MP,Q,d is defined over Q, it is natural to ask, when dim ̂MP,Q,d = 0, for
the extension of Q over which the finitely many points on ̂MP,Q,d are defined. Of
the 568 quadratic portrait pairs with zero-dimensional moduli spaces, the only pairs
with any Q-rational realizations are the 65 with degree 1; note that since the spaces
̂MP,Q,d are defined over Z, degree 1 forces the unique point to be rational.

Question 3.5 If dim ̂MP,Q,d = 0, how do properties of the splitting fields of ̂MP,Q,d
reflect combinatorial properties of 〈P,Q〉?

Over 96% of the cubic portrait pairs 〈P,Q〉 have dim ̂MP,Q,3 = 0. The histogram
in Fig. 5 summarizes the frequency with which each degree occurs for these portraits.

The maximum degree is 144, achieved by the unique cubic portrait pair 〈P,Q〉
illustrated in Fig. 6. We note that for this pair 〈P,Q〉, the space ̂MP,Q,3 is irreducible

123



Dynamical Moduli Spaces and Polynomial... 303

Fig. 6 The unique cubic portrait
pair 〈P,Q〉 for which ̂MP,Q,3
is zero-dimensional and achieves
the maximum degree of 144

• • •

• • •

over Q, hence consists of 144 distinct, Galois conjugate points. The most common
degree is 22, followed closely by 24, realized by 26,083 and 26,071 cubic portrait
pairs respectively.

Remark When ̂MP,Q,d is zero-dimensional, one can typically apply Bézout’s the-
orem to the defining equations for ̂MP,d and ̂MQ,d to get an upper bound on the
degree of ̂MP,Q,d . (See the proof of Proposition 2.3 for the equations, and recall that

to construct ̂M from Ĉonf one may set q1 = 0 and q2 = 1.) This bound depends on
the portraitsP andQ, but in any case the upper bound coming from Bézout’s theorem
appears to be quite a bit higher than the degree of ̂MP,Q,d . One reason for this seems
to be that a significant number of common “realizations” q ofP andQ are degenerate,
in the sense that qi = q j for some pair i �= j .

We also observe an apparent bias towards even degrees in Fig. 5, most easily seen
in the interlaced spikes near and to the left of the mean. In fact, there are 28,911 more
cubic portrait pairs for which ̂MP,Q,3 has even degree than odd degree. This bias also
occurs in the quadratic case, although it is less pronounced given the smaller data set.

Question 3.6 Is it the case for all degrees d ≥ 2 that if ̂MP,Q,d has dimension 0, then
the degree of ̂MP,Q,d is more likely to be even? If so, why does this bias occur?

3.3.2 MaximumDimension

There are 14 quadratic portrait pairs and 18 cubic portrait pairs 〈P,Q〉 for which
̂MP,Q,d achieves the largest possible dimension of d − 1. The 14 quadratic portrait
pairs are illustrated in Fig. 7. All but one of these 14 quadratic portrait pairs and all
18 of these cubic portrait pairs are examples of two-image portraits with the same
fiber partition (see Sect. 3.5). In Theorem 3.20 we prove that ̂MP,Q,d achieves the
maximum dimension of d − 1 for all such portrait pairs.

Example 3.7 The bottom rightmost portrait in Fig. 7 is the one example not explained
by Theorem 3.20. In this case, both portraits have the combinatorial type of the portrait
P shown below:

q1 q2 q3 q4
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Fig. 7 Quadratic pairs with moduli spaces of maximal dimension. For each pair, we indicate one portrait
with solid red arrows and the other with dashed black arrows (color figure online)

The proof of Proposition 2.3 implies that ConfP,2 is the hypersurface in Conf4

defined by

q22 − q2q3 + q23 + q1q4 − q1q3 − q2q4 = 0.

Observe that qi �→ q5−i is an automorphism of this hypersurface. Hence if
(q1, q2, q3, q4) is a realization of P , then so is (q4, q3, q2, q1). Thus, if σ is the
permutation of {1, 2, 3, 4} defined by i �→ 5 − i , then ConfP,2 = ConfPσ ,2 and
consequently MP,Pσ ,2 = MP,2 has dimension 1. Note that P is not admissible in
degree less than 2, hence ̂MP,2 = MP,2.

3.3.3 Impossible Portraits

We say a degree-d admissible equivalence class 〈P,Q〉 is impossible in degree d
(resp., impossible in degree at most d) ifMP,Q,d = ∅ (resp., ̂MP,Q,d = ∅).
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Fig. 8 Two quadratic portrait
pairs

• •

••

• •

••

Example 3.8 The quadratic portrait pair 〈P,Q〉 on the left of Fig. 8 is impossible in
degree 2 but has realizations in degree 1; for example, q = (1, i,−1,−i) realizes P
and Q via the degree-1 polynomials f (x) = i x and g(x) = −i x , respectively. The
quadratic portrait pair on the right is impossible in degree at most 2.

There are 198 quadratic portrait pairs and 52,310 cubic portrait pairs which are
impossible in degree at most 2 and 3, respectively. We now turn to the following
natural problem:

Obstruction Problem 3.9 Determine whether an admissible degree-d combinatorial
class 〈P,Q〉 is impossible based on the combinatorics of the portraits P and Q.

The simplest obstruction stems from Lagrange interpolation.

Proposition 3.10 (Interpolation Obstruction) Suppose that P and Q are admissible
degree-d portraits on [n]. If P(i) = Q(i) for at least d + 1 elements i ∈ [n] but
P �= Q, then 〈P,Q〉 is impossible in degree at most d.
Proof Lagrange interpolation implies that a degree-at-most-d polynomial is uniquely
determined by its values on d+1 distinct points. If f (x) and g(x) are degree-at-most-d
polynomials realizingP andQ, respectively, on a configuration q, then our assumption
implies that f (qi ) = g(qi ) for at least d + 1 distinct i , hence that f (x) = g(x) as
polynomials. But the assumption that P �= Q implies that f (q j ) �= g(q j ) for some j ,
a contradiction. Hence 〈P,Q〉 is impossible in degree at most d. �

There are 39 quadratic portrait pairs and 12,773 cubic portrait pairs obstructed by
Proposition 3.10; approximately 20% and 24% of the impossible portraits in degree 2
and 3, respectively.

Example 3.11 The following pair of admissible degree-3 portraits is obstructed by
Proposition 3.10 since the functions agree on {1, 3, 4, 6} but disagree on {2, 5}.

2 4

31

6

5

The obstruction problem is discussed further in Sects. 3.4 and 3.5.
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3.4 Left Associate Realizations

In this section, we introduce the restrictive notion of left associate polynomials, show
how left associate realizations of portrait pairs may be detected combinatorially, and
demonstrate their relation to deviations in the dimension of ̂MP,Q,d from the generic
expectation.

Definition 3.12 Polynomials f (x) and g(x) are said to be left associates if there exists
a linear polynomial �(x) such that f (x) = �(g(x)).

Left association is a degree-respecting equivalence relation. One immediate and
essential property of left associate polynomials is that they have the samefiber partition
as self-maps of the affine line.

Definition 3.13 If F : X → X is an self-map of a set X , then the fiber partition of F
is the set partition �F of X defined by

�F := {F−1(x) : x ∈ X}.

There are several ways to detect combinatorially when realizations of a portrait
pair must be left associates. The most robust method, especially in low degree, is via
common collisions.

Definition 3.14 A collision for a function F : X → Y is a pair x1, x2 ∈ X of distinct
elements such that F(x1) = F(x2).

We now restate Theorem 1.7 using this terminology.

Theorem 3.15 Let P andQ be admissible degree-d portraits on n points such that at
least one of the following conditions holds:

(1) d = 2 and P , Q have a common collision,
(2) d = 3 and P , Q have two common collisions, or
(3) d is arbitrary and the fiber partitions �P , �Q share a set with d elements.

If q is a degree-at-most-d realization of both P and Q via the polynomials f and g,
respectively, then f and g are left associates.

Remark Note that condition (1) in the statement of Theorem 3.15 is a special case
of condition (3); however, we state (1) separately to emphasize the theme of portraits
having common collisions.

We first establish a lemma which provides a general test for left associates. Given a
polynomial f (x), let δ f (x, y) be the two-variable symmetric polynomial defined by

δ f (x, y) := f (x) − f (y)

x − y
.

For each integer d ≥ 1, let ρd : C
2 → C

d be the function defined by

ρd(x, y) :=
( x − y

x − y
,
x2 − y2

x − y
, . . . ,

xd − yd

x − y

)

,
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where xk−yk

x−y should be interpreted as xk−1 + xk−2y+ . . .+ yk−1 so that ρd is defined

on all of C
2.

Lemma 3.16 Let f (x), g(x) ∈ C[x] be degree-at-most-d polynomials. Suppose that
{xi , yi } for 1 ≤ i < d are d − 1 pairs of distinct points in C such that

(1) δ f (xi , yi ) = δg(xi , yi ) = 0 for each i , and
(2) the d − 1 vectors ρd(xi , yi ) with 1 ≤ i < d are linearly independent.

Then f and g are left associates.

Proof If f (x) = a0 + a1x + a2x2 + · · · + ad xd , then

δ f (x, y) = f (x) − f (y)

x − y
= a1

x − y

x − y
+ a2

x2 − y2

x − y
+ · · · + ad

xd − yd

x − y
.

Hence each point (xi , yi ) on the curve δ f (x, y) = 0 imposes a linear condition
on the vector of coefficients (a1, a2, . . . , ad). From the definition of ρd(x, y) and
the assumed independence of ρd(xi , yi ) for 1 ≤ i < d, it follows that the points
(xi , yi ) determine the vector (a1, a2, . . . , ad) up to a scalar multiple. Thus if g(x) =
b0 + b1x + b2x2 + · · · + bd xd , then there is some nonzero scalar c such that

(a1, a2, . . . , ad) = c(b1, b2, . . . , bd).

Let �(x) = cx + (a0 − cb0). Then f (x) = �(g(x)), as we wished to show. �
Now we turn to the proof of Theorem 3.15.

Proof of Theorem 3.15 Suppose that f (x) and g(x) are degree-at-most-d polynomials
realizing 〈P,Q〉 on some configuration q. We show that in each of the three listed
cases, f (x) and g(x) are left associates. As we remarked following the statement of
Theorem 3.15, condition (1) is a special case of (3), so we omit the case of condition
(1).

Assume that condition (2) holds. First, suppose that q1, q2, q3, q4 ∈ A
1 are points

such that ρ3(q1, q2) = cρ3(q3, q4) for some scalar c. Comparing first components,
we see that c = 1, hence

q1 + q2 = q3 + q4

q21 + q1q2 + q22 = q23 + q3q4 + q24 .

Since x2 + xy + y2 = (x + y)2 − xy, it follows that q1q2 = q3q4. The first two
elementary symmetric functions of a pair of numbers uniquely determines the pair
as a set, hence {q1, q2} = {q3, q4}. Therefore if {q1, q2} �= {q3, q4} are common
collisions for cubic polynomials f (x) and g(x), then ρ3(q1, q2) and ρ3(q3, q4) are
linearly independent and thus f (x) is left associate to g(x) by Lemma 3.16.

We now assume that (3) holds. If �P and �Q share a part with d elements, then
f −1(qi ) = g−1(q j ) for some i and j . Thus f (x) − qi and g(x) − q j have the same
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roots with multiplicity. Unique factorization implies the existence of some c �= 0 such
that f (x)−qi = c(g(x)−q j ). If we let �(x) := cx+(qi −cq j ), then f (x) = �(g(x)).

�

We apply Theorem 3.15 in Sect. 3.4.1 to identify several obstructions to the realiza-
tions of quadratic and cubic portraits, and in Sect. 3.4.2 we show how Theorem 3.15
leads to a conditional dimension heuristic that explains most of the unexpectedly large
dimensions of ̂MP,Q,d for degrees d = 2, 3.

3.4.1 Obstructions

Suppose {P,Q} is a pair of admissible degree-d portraits with distinct fiber partitions
�P �= �Q and which satisfies any of the conditions in Theorem 3.15. We claim that
〈P,Q〉 is an impossible portrait pair. Indeed, if f (x), g(x) is a pair of degree-at-most-
d polynomials realizing P and Q on some configuration q, then Theorem 3.15 tells
us that f and g are left associates, and it follows that f (x) and g(x) must have the
same fiber partition. In particular, this implies that P andQ must have the same fiber
partition, a contradiction. Hence, 〈P,Q〉 is impossible in degree at most d. We call
this the collision obstruction.

The collision obstruction accounts for 133 (approximately 67%) of the 198
quadratic portrait pairs which are impossible in degree at most 2 and accounts for
39,519 (approximately 75.5%) of the 52310 cubic portrait pairs which are impossible
in degree at most 3. This is the most common known obstruction in degrees 2 and 3.

Example 3.17 The following cubic portrait pair 〈P,Q〉 illustrates the collision obstruc-
tion. Let P be the solid red portrait and let Q be the dashed black portrait.

2 4

31

6

5

Then {1, 2} and {3, 4} are common collisions for P and Q, but

�P = {{1, 2}, {3, 4, 6}, {5}} �= {{1, 2, 6}, {3, 4}, {5}} = �Q.

Hence, Theorem 3.15 implies that 〈P,Q〉 is impossible in degree at most 3.

In Sect. 3.5 we discuss one more obstruction related to the special family of two-
image portraits.
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Table 5 For 2 ≤ m ≤ 4 and
−1 ≤ n ≤ 2, the number of
cubic portrait pairs 〈P,Q〉 with
at least 2 collisions and m image
points satisfying
dim ̂MP,Q,3 = n

dim ̂MP,Q,3

m n −1 0 1 2

2 0 0 0 18
3 98 0 818 0
4 1536 4421 73 0

The bold entries denote the expected dimension

3.4.2 Conditional Dimension Heuristic

Suppose that P and Q are admissible degree-d portraits on n > d points with the
same fiber partition for which we know that any pair of degree-at-most-d polynomials
realizing P and Q, respectively, must be left associates. In this situation, a different
dimension heuristic for ̂MP,Q,d applies.

The data of a pair of degree-at-most-d polynomials f (x) and g(x) realizing P and
Q are, in this case, equivalent to the data of a degree-at-most-d polynomial f (x) and
a linear polynomial �(x) such that g(x) = �( f (x)). Let m be the number of points in
the image ofP , which is necessarily the same as that ofQ. Thus, a point in ̂MP,Q,d is
specified by n parameters subject to n − d − 1 constraints from interpolating f (x) in
degree d andm−2 constraints from interpolating �(x) in degree 1, modulo the action
of the two-dimensional group Aff1. Hence, the expected dimension of ̂MP,Q,d is

n − (n − d − 1) − (m − 2) − 2 = d − m + 1.

Example 3.18 Suppose that 〈P,Q〉 is a cubic portrait pair with at least 2 common
collisions and the same fiber partition. Then Theorem 3.15 implies that any pair
of realizations of 〈P,Q〉 must be left associates. Thus we expect the dimension of
̂MP,Q,3 to be 4 − m. There are 6964 cubic portrait pairs satisfying these conditions;
Table 5 shows the number of such cubic portrait pairs with a given dimension and
image size m. The bold entries denote the expected dimension.

Comparing Tables 3 and 5, we see that the conditional dimension heuristic accounts
for the majority of cubic portrait pairs for which dim ̂MP,Q,3 = 1 and all of those for
which dim ̂MP,Q,3 = 2.

3.5 Two-Image Portraits

In this section, we study another exceptional family of portraits.

Definition 3.19 A two-image portraitP is an admissible degree-d portrait on 2d points
such that |P([2d])| = 2. That is, �P consists of two sets with d elements each.

There are three combinatorial types of two-image portraits P in each degree d,
determined by their action on the points in the image of P . Examples of these three
types in the degree 3 case are illustrated below.
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Theorem 3.20 shows that the degree-d realization space of a two-image portrait P
depends only on the fiber partition �P of P . As we will see, the special properties of
two-image portraits all stem from the fact that Aff1 acts sharply two-transitively on
the affine line. Note that if h is a symmetric function and q is a multiset of complex
numbers, then h(q) has a well-defined value.

Theorem 3.20 Let d ≥ 1 and let � = {A, B} be a partition of [2d] into two sets with
d elements.

(1) If P and Q are two-image portraits on [2d] with the same fiber partition �P =
�Q = �, then

ĈonfP,d = ConfP,d = ConfQ,d = ĈonfQ,d .

Hence,ConfP,d depends only on the partition�, andwe letConf� := ConfP,d =
ConfQ,d denote this common subspace of Conf2d .

(2) Conf� is the (d + 1)-dimensional Zariski closed subspace of Conf2d defined by
the equations

ek(xA) = ek(xB)

for 1 ≤ k < d, where ek is the kth elementary symmetric function in d variables,
and xA, xB are the subsets of the set of indeterminates {x1, x2, . . . , x2d} indexed
by the elements of A and B, respectively.

(3) For each configuration q ∈ Conf�, there exist at least 2d(2d−1) distinct degree-d
polynomials f (x) such that f (q) ⊆ q.

Proof (1) First note that sinceP contains afiberwithd elements,P is not admissible for
any degree less than d. Hence ĈonfP,d = ConfP,d . Now suppose that q ∈ ConfP,d ,
and let f (x) be the degree-d polynomial realizing P . Without loss of generality,
suppose that im(P) = {1, 2} and im(Q) = {i, j}. Furthermore, since �P = �Q =
{A, B} we may suppose that P−1(1) = Q−1(i) = A and P−1(2) = Q−1( j) = B.
Let �(x) be the unique linear polynomial such that �(q1) = qi and �(q2) = q j . Then,
g := � ◦ f is a degree-d polynomial such that for each a ∈ A,

g(qa) = �( f (qa)) = �(q1) = qi ,
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and similarly, g(qb) = q j for each b ∈ B. Hence g(x) realizesQ on the configuration
q, which is to say that q ∈ ConfQ,d . Thus, ConfP,d ⊆ ConfQ,d , and the reverse
inclusion follows by symmetry.

(2) Let P : [2d] → [2d] be a portrait with fiber partition � = {A, B}, and
let i := P(A) and j := P(B). By construction, P is admissible in degree d. If
q ∈ Conf� = ConfP,d , and f is a degree-d polynomial realizing P , then f (x) − qi
and f (x)−q j vanish at the elements ofqA andqB respectively.Comparing coefficients,
we conclude that ek(qA) = ek(qB) for all 1 ≤ k < d.

Conversely, if q = (qA, qB) is a configuration such that ek(qA) = ek(qB) for
1 ≤ k < d, then the polynomial

f (x) := xd − e1(qA)xd−1 + e2(qA)xd−2 + . . . + (−1)d−1ed−1(qA)x

is constant on each of qA and qB . Let a and b be the images of qA and qB under
f , respectively, and let � be the unique linear polynomial such that �(a) = qi and
�(b) = q j . Then � ◦ f maps qA to qi and qB to q j , thus q is in ConfP,d = Conf�.
Therefore, Conf� is equal to the space defined by the equations ek(xA) = ek(xB) for
1 ≤ k < d.

Given q := (qA, qB) ∈ Conf�, let f (x) = bd xd + . . . + b1x + b0 be the unique
degree-d polynomial such that f (qA) = 0 and f (qB) = 1. (The first condition deter-
mines the roots, hence determines the coefficients up to scaling; the second condition
determines the leading coefficient.) Now consider themap ι : Conf� → C

d+1 defined
by ι(q) = (b0, b1, . . . , bd). Lagrange interpolation implies that ι is a well-defined
finite-to-one morphism onto a dense open subset of C

d+1 corresponding to all degree-
d polynomials forwhich 0 and 1 are not critical values. Therefore, dim Conf� = d+1.

(3)Given the partition�, a two-imageportraitP withfiber partition� is determined
by choosing the ordered pair of values (P(A),P(B)). Hence there are 2d(2d−1) such
portraits. Part (1) shows that ConfP,d = Conf� for any such portrait P . Therefore,
given a configuration q ∈ Conf�, there exist at least 2d(2d − 1) distinct degree-d
polynomials f (x) such that f (q) ⊆ q. �
Remark Theproof of part (1) ofTheorem3.20 generalizes directly to rational functions
and three-image portraits on 3d points: For a portrait P : [n] → [n], let ConfP,d(̂C)

denote the space of all configurations q of n distinct points on the projective line
̂C := P

1(C) for which there is a degree-d rational function f realizing the portrait P
on q. Then, ifP,Q are three-image portraits on 3d points with the same fiber partition,
we have that

ConfP,d(̂C) = ConfQ,d(̂C).

Themain point is that the automorphism group of the affine line is sharply 2-transitive,
whereas the automorphism group of the projective line is sharply 3-transitive.

Continuing with the notation of Theorem 3.20, letM�,d be the space defined by

M�,d := Conf�,d/Aff1.
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The following corollary is an immediate consequence of Theorem 3.20.

Corollary 3.21 Let P and Q be two-image portraits on [2d] with the same fiber par-
tition. Then

̂MP,Q,d = MP,Q,d = M�,d and dimM�,d = d − 1.

Since any twopartitions of [2d] into two d-element sets are related by a permutation,
it follows fromProposition 2.4 andCorollary 3.21 that the isomorphism class ofM�,d

depends only on the degree d and not the partition �.

Example 3.22 If d = 2 and � := {{1, 2}, {3, 4}}, then Theorem 3.20 (2) implies that

M�,2 =
{

(0, 1, q3, q4) ∈ Conf4 : q3 + q4 = 1
}

,

soM�,2 is a line minus the points at which 0, 1, q3, and q4 are not pairwise distinct.
In particular, M�,2 has infinitely many rational points. Of the 14 quadratic portrait
pairs 〈P,Q〉 with dim ̂MP,Q,2 = 1, all but one is isomorphic toM�,2 (see Example
3.7).

Example 3.23 If d = 3 and � := {{1, 2, 3}, {4, 5, 6}}, then Theorem 3.20 (2) tells us
that

M�,3 =
{

(0, 1, q3, q4, q5, q6) ∈ Conf6 : 1 + q3 = q4 + q5 + q6

and q3 = q4q5 + q4q6 + q5q6

}

.

(3.1)

Since (3.1) defines a quadric surface, M�,3 is birational over Q to P
2. Further-

more, since this model of M�,3 has a Q-rational point—take (q1, q2, q3, q4, q5, q6)
= (0, 1,−4,−2, 2,−3), for example—it follows that M�,3 is birational over Q to
P
2. In particular, M�,3 has infinitely many rational points.
For all 18 of the cubic portrait pairs 〈P,Q〉 with dim ̂MP,Q,3 = 2, the space

̂MP,Q,3 is isomorphic to the surface M�,3.

Two-image portraits exhibit a remarkable rigidity: Theorem 3.20 tells us that two-
image portraitsP andQwith the same fiber partition have identical realization spaces.
On the other hand, we now show that two-image portraits with different fiber partitions
have disjoint realization spaces.

Proposition 3.24 (Two-Image Obstruction) Suppose thatP andQ are two-image por-
traits on 2d points. If �P �= �Q, then 〈P,Q〉 is impossible in degree at most d.
Remark Note that Theorem 3.20 and Proposition 3.24 combine to give Theorem 1.5.

The two-image obstruction is relatively rare: there are 24 quadratic portrait pairs
and 91 cubic portrait pairs obstructed by Proposition 3.24. We deduce Proposition
3.24 from the following result.
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Theorem 3.25 Let K be an algebraically closed field, and suppose that f (x), g(x) ∈
K [x] are polynomials such that for some distinct a, b ∈ K

f −1({a, b}) = g−1({a, b}), (3.2)

as sets with multiplicity. If either char(K ) �= 2 or f and g have odd degree, then
f (x) = g(x) or f (x) = a + b − g(x).

Remark We thank the anonymous referee for suggesting the more general hypotheses
and the following argument.

Proof of Theorem 3.25 Note that our hypothesis (3.2) implies that f and g must have
the same degree d, and we may assume that d ≥ 1 as the conclusion is immediate for
f and g constant.
First suppose that char(K ) �= 2. Then, there exists a linear polynomial �(x) ∈ K [x]

such that �(a) = 1 and �(b) = −1, as char(K ) �= 2 implies that ±1 are distinct in K .
Replacing f and g by � ◦ f and � ◦ g, it suffices to show that f (x) = ±g(x). Our
hypothesis implies that

f (x)2 − 1 = c2(g(x)2 − 1)

for some c ∈ K . Rearranging this identity, we have

1 − c2 = f (x)2 − c2g(x)2 = ( f (x) − cg(x))( f (x) + cg(x)).

Unique factorization in K [x] implies that c2 = 1, whence f (x) = ±g(x).
Now suppose that K is an arbitrary field and that f and g have odd degree d. Let

ra := | f −1(a) ∩ g−1(a)|, rb := | f −1(a) ∩ g−1(b)|,
sa := | f −1(b) ∩ g−1(a)|, sb := | f −1(b) ∩ g−1(b)|,

where the intersections are considered as sets with multiplicity. By hypothesis we
have

d = ra + rb = sa + sb = ra + sa = rb + sb.

After possibly replacing g(x) by a + b − g(x), we may assume that ra > d/2. Here,
we use the assumption that d is odd to eliminate the possibility that ra = d/2. Thus,
sa < d/2, which in turn implies that sb > d/2. Therefore, f (x) and g(x) are degree-d
polynomials which agree on ra + sb > d points with multiplicity, hence f (x) = g(x).

�
Remark A unique range set for a family F of meromorphic functions is a set S such
that if f −1(S) = g−1(S) as sets with multiplicity for f , g ∈ F , then f = g. Theorem
3.25 implies that {a, b} is as close to being a unique range set for the familyF = C[x]
as a set with two elements can be. See Chen [3, Question 1.2] and the discussion that
follows for a survey of results related to unique range sets.
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Fig. 9 A pair {P,Q} of
two-image portraits with
degree-at-most-2 realizations in
characteristic 2 but not in
characteristic 0. The portraits P
andQ are indicated by solid red
and dashed black arrows,
respectively (color figure online)

1

2

3

4

Remark Theorem 3.25 may fail in even characteristic if f and g have even degree.
Let F4 = F2(ω) where ω2 + ω + 1 = 0. Then, the polynomials f (x) = x2 + x and
g(x) = ωx2 + (ω + 1)x in F4[x] satisfy the condition

f −1({0, 1}) = g−1({0, 1}),

but clearly f (x) is not equal to g(x) or 1 − g(x).

Proof of Proposition 3.24 We prove the contrapositive. Suppose that q ∈ ĈonfP,d ∩
ĈonfQ,d , and let f (x), g(x) ∈ C[x] be degree-at-most-d polynomials realizingP and
Q on q. Since P and Q are two-image portraits, we have f (q) = g(q) = {a, b} for
some distinct a, b ∈ C. Therefore, f (x) = g(x) or f (x) = a + b− g(x) by Theorem
3.25. In either case, f is left associate to g. Thus f and g have the same fiber partition
on C; in particular, �P = �Q. �

Remark Unlike Theorem 3.20, Proposition 3.24 cannot be directly generalized to
rational realizations of three-image portraits. Consider the family of rational functions
ft (x) with t ∈ C defined by

ft (x) = − x2 − t x

t x − 1
.

If t �= ±1, then ft is a degree-2 rational map with fixed points at 0, 1, and ∞. Each
fixed point has an additional preimage: the non-fixed preimages of 0, 1, and ∞ are
t , −1, and 1/t , respectively. Thus, if t /∈ {0,±1}, then ft is an endomorphism of the
configuration of six distinct points given by

qt := (0, 1,∞, t,−1, 1/t) ∈ Conf6,

with fiber partition � ft = {{0, t}, {−1, 1}, {∞, 1/t}}. If t �= ±1, then q1/t and qt
are different as configurations but equal as sets; hence f1/t is a degree-2 rational
endomorphism of qt with a fiber partition different from that of ft . Thus if P and Q
are the three-image portraits corresponding to the action of ft and f1/t on qt , then P
and Q have distinct fiber partitions, yet

qt ∈ ConfP,2(̂C) ∩ ConfQ,2(̂C).
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4 Endomorphism Semigroups of Roots of Unity

Recall from the introduction that End(q) is the semigroup of polynomial endomor-
phisms of a configuration q ∈ Confn ; that is, polynomials f (x) such that f (q) ⊆ q.
If d ≥ 0, then Endd(q) is the degree-d graded component of End(q). In Question 1.2
we asked for the maximum cardinality En,d of Endd(q) as q varies over Confn and
0 ≤ d < n − 1. Theorem 3.20(3) gives us the first nontrivial lower bound of

E2d,d ≥ 2d(2d − 1)

coming from any configuration supporting a two-image portrait. Our survey of all
quadratic pairs of portraits on 4 points gives the following determination of E4,2.

Proposition 4.1 Themaximumcardinality ofEnd2(q) as q varies overConf4 is E4,2 =
28. This cardinality is achieved by a unique affine equivalence class of configurations,
namely the class represented by q = μ4 := (1, i,−1,−i), the 4th roots of unity.

Proof Let q ∈ Conf4 be a configuration with m := |End2(q)| quadratic endomor-
phisms. Then there are portraits P1,P2, . . . ,Pm on [4] such that q ∈ ⋂m

i=1 ConfPi ,2.

If m is sufficiently large, then
(

⋂m
i=1 ConfPi ,2

)

/Aff1 is 0-dimensional, and a com-

putation shows that m > 12 suffices. Specifically, there are finitely many portraits
on [4], and we may check by exhaustion that if P1,P2,P3 are three distinct portraits

for which
(

⋂3
i=1 ConfPi ,2

)

/Aff1 is one-dimensional, then the Pi are all two-image

portraits with the same fiber partition; there are 12 admissible degree-2 two-image por-
traits on [4]. In this case, the affine equivalence class of q belongs to one of the finitely
many portrait moduli spaces MP,Q,2 of dimension 0, and hence we have finitely
many candidates for configurations q maximizing |End2(q)|. For each of these can-
didates q, one may compute the degree of the unique degree-at-most-2 realization
(if it exists) of each of the 44 portraits on q. This procedure yields the configuration
q = μ4 = (1, i,−1,−i) as the unique affine equivalence class of complex configu-
rations maximizing |End2(q)|, with a total of 28 quadratic endomorphisms, which we
construct explicitly below. We note that the configuration q = (0, 1, 1+√

2, 2+√
2)

comes in second place with 20 quadratic endomorphisms.5

One may check that the three polynomials

g1(x) := x2, g2(x) := i + 1

2

(

x2 + i
)

, and g3(x) := 1

2

(

x2 + (i − 1)x + i
)

are endomorphisms ofμ4. Furthermore, since i x is a linear automorphism ofμ4, each
of the polynomials i j gk(i�x) is an endomorphism of μ4. There are 28 such maps,
hence these are all quadratic endomorphisms of μ4. �
Remark Note that both (1, i,−1,−i) and (0, 1, 1+ √

2, 2+ √
2) support two-image

portraits, hence Theorem 3.20(3) delivers 2d(2d − 1) = 12 of their quadratic endo-
morphisms. Moreover, each of these configurations has nontrivial automorphisms: the

5 Details of the calculations described here may be found in the Sage notebook https://github.com/tghyde/
portrait_moduli_supplement.
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configuration (1, i,−1,−i) has the nontrivial automorphisms i k x for 1 ≤ k ≤ 3, and
(0, 1, 1 + √

2, 2 + √
2) has the nontrivial automorphism −x + 2 + √

2.

In retrospect, it is clear that configurations with an exceptional number of linear
automorphisms should have more than the average number of degree-d endo-
morphisms, since any one such endomorphism gives rise to more by pre- and
post-composing with automorphisms as in Proposition 4.1. The automorphism group
of any configuration is finite cyclic—typically trivial—so in the interest of finding
configurations in Confn(C) with many low degree endomorphisms, a natural starting
point is to consider the familyμn of configurations of nth roots of unity in C, sinceμn

is the unique smallest configuration (up to affine conjugation) with an automorphism
group of order n. Note that the endomorphism semigroup of q is independent of the
ordering of the points in the configuration, hence the ordering of μn is immaterial.

By Lagrange interpolation, each of the nn portraits on n points is realized on μn

by some polynomial of degree at most n − 1. In Table 2 we listed the cardinality of
Endd(μn) for 3 ≤ n ≤ 8 and 0 ≤ d ≤ n − 1. Let ζn ∈ μn be a primitive nth root
of unity, and note that for each degree d, the n monomials ζ k

n x
d belong to Endd(μn).

Table 2 suggests that these are the only degree-d endomorphisms of μn for d < n/2.
We prove this in Theorem 4.2 below.

Theorem 4.2 If n > 2d ≥ 1, then the only degree-d polynomial endomorphisms of
μn in C[x] are of the form ζ k

n x
d for some k ≥ 0.

Proof Let C denote the unit circle in C and let f (x) ∈ C[x] be a degree-d polynomial.
We claim that if there are more than 2d points ζ ∈ C for which f (ζ ) ∈ C, then
f (x) = ξ xd for some ξ ∈ C. The result then follows: if f (μn) ⊆ μn with n > 2d,
then f (x) = ξ xd and ξ = f (1) ∈ f (μn) ⊆ μn .

We nowprove the claim. This is a special case of a result due toCargo and Schneider
[2, Theorem 1]; we recreate their argument for the reader’s convenience.

Let f (x) := bd xd + . . . + b1x + b0 ∈ C[x] with bd �= 0 and let f (x) be the result
of applying complex conjugation to the coefficients of f (x). If ζ ∈ C is a point on the
unit circle such that f (ζ ) ∈ C, then

1 = f (ζ ) f (ζ ) = f (ζ ) f (ζ−1).

Hence ζ is a root of the degree-2d polynomial xd( f (x) f (x−1) − 1). Thus if f (μn)

⊆ μn for n > 2d, it follows that

1 = f (x) f (x−1)

= (bdb0)x
d + (bdb1 + bd−1b0)x

d−1 + . . . + bdbd + . . . + (b0bd)x
−d .

Comparing coefficients we conclude that f (x) = bd xd and bdbd = 1, which is to say
that bd ∈ C. �

Theorem 4.2 is sharp in the sense that for each d ≥ 2, there exist degree-d endomor-
phisms ofμ2d that are notmonomials. The polynomial xd realizes a two-image portrait
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on μ2d , since if ζ ∈ μ2d , then ζ d ∈ {±1} ⊆ μ2d . Thus, Theorem 3.20(3) implies
that μ2d has at least 2d(2d − 1) degree-d endomorphisms. These may be explicitly
constructed as �(xd) where �(x) is any linear polynomial such that �(±1) ∈ μ2d , and
only 2d of these endomorphisms are monomials. Note that Table 2 implies that these
two-image portrait realizations are the only cubic endomorphisms of μ6, but far from
the only degree-4 endomorphisms of μ8.
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