
Arnold Mathematical Journal (2023) 9:69–104
https://doi.org/10.1007/s40598-022-00199-x

RESEARCH CONTRIBUT ION

Renormalization of Bicritical Circle Maps

Gabriela Estevez1,2 · Pablo Guarino3,4

Received: 28 October 2020 / Revised: 13 January 2022 / Accepted: 6 February 2022 /
Published online: 3 March 2022
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

Abstract
A general ansatz in Renormalization Theory, already established in many important
situations, states that exponential convergence of renormalization orbits implies that
topological conjugacies are actually smooth (when restricted to the attractors of the
original systems). In this paper, we establish this principle for a large class of bicritical
circle maps, which areC3 circle homeomorphisms with irrational rotation number and
exactly two (non-flat) critical points. The proof presented here is an adaptation, to the
bicritical setting, of the one given by de Faria and de Melo in (J Eur Math Soc 1:339–
392, 1999) for the case of a single critical point. When combined with the recent
papers (Estevez et al. in Complex bounds for multicritical circle maps with bounded
type rotation number, arXiv:2005.02377, 2020; Yampolsky in C R Math Rep Acad
Sci Can 41:57–83, 2019), our main theorem implies C1+α rigidity for real-analytic
bicritical circle maps with rotation number of bounded type (Corollary 1.1).
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70 G. Estevez, P. Guarino

1 Introduction

In the present paper, we study the dynamics ofmulticritical circle maps, which are C3

circle homeomorphisms having finitely many critical points (all of which are non-flat,
seeDefinition 2.2). By a fundamental result due toYoccoz [26], twomulticritical circle
maps f and g with the same irrational rotation number are topologically conjugate to
the corresponding rigid rotation, and in particular to each other. To obtain a smooth
conjugacy between f and g, we need to assume the existence of a topological con-
jugacy h which identifies its critical sets, while preserving corresponding criticalities
(this is a finite codimension condition; see Definition 1.1).

In this paper, we restrict our attention to the bicritical case, and we prove that, for
Lebesgue almost every rotation number, such conjugacy h is a C1+α diffeomorphism,
provided that the successive renormalizations of f and g (around critical points iden-
tified under h) converge together exponentially fast in the C1 topology (Theorem A).
The full Lebesgue measure set of rotation numbers considered here was introduced
by de Faria and de Melo in the nineties [7], and contains all numbers of bounded type
(see Definition 2.3). As already mentioned in the abstract, the proof presented here is
an adaptation, to the bicritical setting, of the one given in [7] for the case of a single
critical point.

As an application, we combine Theorem A with the recent papers [12, 25] to
obtain C1+α rigidity for real-analytic bicritical circle maps with bounded combina-
torics (Corollary 1.1).

1.1 Main Result

Let f be a C3 multicritical circle map with irrational rotation number ρ ∈ (0, 1) and
N ≥ 1 critical points ci , for 0 ≤ i ≤ N − 1 (which are labeled as ordered in the unit
circle). All critical points are assumed to be non-flat: in C3 local coordinates around
ci , the map f can be written as t �→ t |t |di−1 for some di > 1 (we say that di is the
criticality of f around ci ; see Definition 2.1 below). Being topologically conjugate
to an irrational rotation, f is uniquely ergodic; we denote its unique invariant Borel
probability measure by μ f .

Definition 1.1 We define the signature of f to be the (2N + 2)-tuple

(ρ ; N ; d0, d1, . . . , dN−1; δ0, δ1, . . . , δN−1),

where di is the criticality of the critical point ci , and δi = μ f [ci , ci+1) (with the
convention that cN = c0).

Now, consider twoC3 multicritical circlemaps, say f and g, with the same irrational
rotation number. By Yoccoz theorem [26], they are topologically conjugate to each
other. By elementary reasons, if f and g have the same signature, there exists a circle
homeomorphism h, which is a topological conjugacy between f and g, identifying
each critical point of f with one of g having the same criticality (note that such h is
the unique conjugacy between f and g that can be smooth. As it turns out, for almost
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Renormalization of Bicritical Circle Maps 71

every rotation number, most conjugacies between f and g fail to be a quasisymmetric
homeomorphism; see the recent paper [4] for precise statements). This will be our
standing assumption in this article. In particular, a critical point of f and one of g are
said to be corresponding critical points, if they are identified under such conjugacy h.
Our main result is the following.

Theorem A There exists a full Lebesgue measure set A ⊂ (0, 1) of irrational num-
bers with the following property. Let f and g be C3 bicritical circle maps with the
same signature, such that its common rotation number belongs to the set A. If the
renormalizations of f and g around corresponding critical points converge together
exponentially fast in the C1 topology, then f and g are conjugate to each other by a
C1+α diffeomorphism, for some α > 0.

Asmentioned in the abstract, the idea that exponential convergence of renormaliza-
tion implies smoothness of topological conjugacies, when restricted to the attractors
of the original systems, is a cornerstone in Renormalization Theory. As a fundamental
example, see [9, Section VI.9] for the case of unimodal maps with bounded combi-
natorics (more specifically, see Theorem 9.4). In the case of critical circle maps with
a single critical point, this principle has been established by de Faria and de Melo in
[7, First Main Theorem] for rotation numbers in the set A, and extended by Khanin
and Teplinsky in [17] to cover all irrational rotation numbers (see Theorem 2 in page
198 for the specific statement). Both proofs are given for the case of a single critical
point, and our goal in the present paper is to adapt the previous arguments to the case
of two critical points.

We would like to remark that Theorem A is most likely true for circle maps with
any number of critical points, see Remark 5.8 at the end of the present paper. On the
other hand, it is definitely not possible to extend its statement to cover all irrational
rotation numbers: in [1], Avila was able to construct topologically conjugate real-
analytic critical circle maps (with a single critical point) which are not C1+α conjugate
to each other, for any α > 0, although the corresponding renormalization orbits
converge together exponentially fast (in the Cr metric, for any r ≥ 1). We remark that
an analogue statement, in the C∞ class, was previously obtained in [7, Section 5].
However, C1 rigidity may hold for multicritical circle maps with the same signature,
just as in the case of a single critical point. Indeed, any twoC3 circle homeomorphisms
with the same irrational rotation number of bounded type and with a single critical
point (of the same odd integer criticality) are conjugate to each other by a C1+α

circle diffeomorphism, for some universal α > 0 (see [14]). Moreover, any two C4

circle homeomorphisms with the same irrational rotation number and with a unique
critical point (again, of the same odd criticality) are conjugate to each other by a C1

diffeomorphism (see [15]). This conjugacy is in fact aC1+α diffeomorphism, provided
that the common rotation number belongs to the full Lebesgue measure set A (again,
see [15]).
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72 G. Estevez, P. Guarino

1.2 Rigidity of Real-Analytic Bicritical Circle Maps with Bounded Combinatorics

Let f and g be real-analytic bicritical circle maps with both critical points of cubic
type and with the same signature (recall, from Definition 1.1, that this amounts to say
that f and g have the same irrational rotation number, while the relative positions
of its two critical points, viewed with the corresponding unique invariant measure,
coincide). If the common rotation number of f and g is of bounded type, it follows
from the recent papers [12, 25] that the successive renormalizations of f and g, around
corresponding critical points, converge together exponentially fast in theCr topology,
for any r ∈ N. Applying Theorem A, we obtain the following result, announced in the
abstract and in the introduction.

Corollary 1.1 Let f and g be real-analytic bicritical circle maps with the same signa-
ture, and with both critical points of cubic type. If their common rotation number is of
bounded type, then f and g are conjugate to each other by a C1+α diffeomorphism
for some α > 0.

1.3 Strategy of the Proof of Theorem A

Let f and g be two C3 bicritical circle maps with the same irrational rotation number.
As explained in the introduction, a result of Yoccoz [26] implies that f and g are
topologically conjugate to each other. Moreover, assuming that f and g have the same
signature is equivalent to assume that there exists a circle homeomorphism h which
is a topological conjugacy between f and g, identifying each critical point of f with
one of g having the same criticality.

Our main goal in this paper is to prove that such homeomorphism h is actually
a smooth diffeomorphism. Since one-dimensional affine maps are characterized by
the fact that they preserve ratios between lengths of intervals, we would like to show
that h almost preserves such ratios, provided that we consider very small intervals,
which are very close to each other. To achieve this, we will first construct (say, for the
given f ) a suitable sequence of partitions (called fine grid, see Definition 4.1) whose
vertices will be dynamically extracted from the critical set of f . Essentially, this is a
combinatorial construction, to be performed in Sect. 4.

After fine grids are built, it will be enough to control ratios of lengths of correspond-
ing elements of those fine grids, to assure that h is indeed a C1+α diffeomorphism
(see Proposition 4.1). This criterion was used by de Faria and de Melo in [7] to obtain
smoothness (see [7, Section 4.2]), and it is the one that will be used here too. Let us
point out that the fine grids constructed in [7] are not suitable for the case of more
than one critical point. As already mentioned, in Sect. 4, we will construct fine grids
adapted to the bicritical case, which is the main difference between the proof given
here and the one given by de Faria and de Melo for the case of a single critical point.

Our main task in this paper, therefore, is to prove that, for Lebesgue almost every
rotation number, C1 exponential contraction of renormalization (which is the main
assumption of Theorem A) implies the local behaviour for h required by Proposi-
tion 4.1. This is accomplished in Sect. 5.
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Renormalization of Bicritical Circle Maps 73

We finish this introduction by pointing out that to prove exponential contraction for
the renormalization operator of multicritical circle maps is a challenging problem. In
the case of a single critical point and real-analytic dynamics, exponential contraction
was obtained in [8] for rotation numbers of bounded type, and extended in [19] to cover
all irrational rotation numbers. Both papers lean on complex dynamics techniques, and
therefore, an additional hypothesis is required: the criticality at both critical points
has to be an odd integer (note that this condition is also needed for the rigidity results
discussed after the statement of TheoremA). These results have been recently extended
in at least two directions: in [13], exponential contraction is obtained allowing non-
integer criticalities which are close enough to an odd integer, while in [14] and [15],
exponential contraction is established for finitely smooth critical circle maps (still
with odd integer criticalities). Finally, in the case of two critical points, it was recently
proved in [25] both existence of periodic orbits and hyperbolicity of those periodic
orbits, for real-analytic bicritical circle maps (with both critical points of cubic type).
These results were later extended to bounded combinatorics in [12], from where we
deduce Corollary 1.1 (as already explained in Sect. 1.2 above). For much more on the
dynamics of multicritical circle maps, we refer the reader to the recent survey [6].

Brief Summary

InSect. 2,wepresent the basic facts aboutmulticritical circlemaps and renormalization
of commuting pairs. In Sect. 3, we state Theorem B, and we explain why it implies
Theorem A. The two remaining sections are devoted to the proof of Theorem B: in
Sect. 4, we state the announced criterion for smoothness (Proposition 4.1) and we
construct a fine grid for any given bicritical circle map, while in Sect. 5, we prove
Theorem B by establishing the assumptions of Proposition 4.1.

2 Preliminaries

2.1 Bicritical Circle Maps

Let us now define the maps which are the main object of study in the present paper.
We start with the notion of non-flat critical point.
Definition 2.1 We say that a critical point c of a one-dimensional C3 map f is non-
flat of criticality d > 1 if there exists a neighbourhood W of the critical point, such
that f (x) = f (c) + φ(x)

∣
∣φ(x)

∣
∣d−1 for all x ∈ W , where φ : W → φ(W ) is an

orientation-preserving C3 diffeomorphism satisfying φ(c) = 0.

Definition 2.2 Amulticritical circle map is an orientation-preserving C3 circle home-
omorphism f having N ≥ 1 critical points, all of which are non-flat in the sense of
Definition 2.1. If N = 2, we say that f is a bicritical circle map.

As an example, let a ∈ [0, 1), N ∈ N and consider f̃a : R → R given by

f̃a(x) = x + a − 1

2Nπ
sin(2Nπx).
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74 G. Estevez, P. Guarino

Since each f̃a has degree one and commutes with unitary translation, it is the lift of an
orientation preserving real-analytic circle homeomorphism, under the canonical uni-
versal cover x �→ e2π i x . Each circle map in this family has exactly N critical points,

given by
{

e
j
N 2π i : j ∈ {0, 1, . . . , N −1}}, all of themwith criticality equal to 3. Since

they lift to entire maps, these real-analytic multicritical circle maps extend holomor-
phically to the punctured planeC\{0}. It is also possible to constructmulticritical circle
maps whose holomorphic extensions are well defined in the whole Riemann sphere Ĉ.
Indeed, consider the one-parameter family fω : Ĉ → Ĉ of Blaschke products given
by

fω(z) = e2π iωz2
(

z − 3

1 − 3z

)

for ω ∈ [0, 1).

Every map in this family leaves invariant the unit circle, and restricts to a real-analytic
critical circle map with a single critical point at 1, which is of cubic type, and with
critical value e2π iω. Moreover, by monotonicity of the rotation number, for each ρ ∈
(0, 1)\Q, there exists a uniqueω in [0, 1), such that the rotation number of fω|S1 equals
ρ (see [3, Section 6] for more details). Now, let p, q ∈ C with |p| > 1, |q| > 1, let
ω ∈ [0, 1) and consider gp,q,ω : Ĉ → Ĉ given by

gp,q,ω(z) = e2π iωz3
(

z − p

1 − pz

)(
z − q

1 − qz

)

. (2.1)

Just as before, every map in this family leaves invariant the unit circle. The following
fact was proved by Zakeri in [27, Section 7].

Theorem 2.1 For any given ρ ∈ (0, 1)\Q and δ ∈ (0, 1), there exists a unique
gp,q,ω of the form (2.1), such that gp,q,ω|S1 is a bicritical circle map with signature
(ρ ; 2; 3, 3; δ, 1 − δ).

2.2 Real Bounds

Being a homeomorphism, a multicritical circle map f has a well-defined rotation
number. We will focus on the case where f has no periodic orbits, which is equivalent
to say that it has irrational rotation number ρ ∈ [0, 1]. By the already mentioned result
of Yoccoz [26], f has no wandering intervals, and in particular, it is topologically
conjugate with the corresponding rigid rotation.

We consider the continued fraction expansion of ρ

ρ = [a0, a1, . . .] = 1

a0 + 1

a1 + 1

. . .

.
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Renormalization of Bicritical Circle Maps 75

Truncating the expansion at level n − 1, we obtain the so-called convergents of ρ

pn
qn

= [a0, a1, . . . , an−1] = 1

a0 + 1

a1 + 1

. . .
1

an−1

.

The sequence of denominators {qn}n∈N satisfies the following recursive formula (see
for instance [18, Chapter I, Theorem 1, page 4]):

q0 = 1, q1 = a0, qn+1 = an qn + qn−1 for all n ≥ 1.

As mentioned in the introduction, the setA ⊂ (0, 1) considered in the statement of
Theorem A was introduced by de Faria and de Melo in the nineties [7, Section 4.4].
Its precise definition is the following.

Definition 2.3 Let A ⊂ (0, 1) be the set of rotation numbers ρ = [a0, a1, . . .] satis-
fying

(1) lim supn→∞ 1
n

∑ j=n
j=0 log a j < ∞,

(2) limn→∞ 1
n log an = 0,

(3) 1
n

∑k+n
j=k+1 log a j ≤ ω

( n
k

)

,

for all 0 < n ≤ k, where ω is a monotone function (that depends on the rotation
number), such that ω(t) > 0 for all t > 0, and such that t ω(t) → 0 as t → 0.

The set A has full Lebesgue measure in (0, 1); see [7, Appendix C] for a proof.
Obviously, all bounded type numbers satisfy the three conditions above (recall that ρ is
of bounded type if supn∈N{an} is finite). We would like to remark that all constructions
to be performed in Sect. 4 can be done for any irrational rotation number: conditions
(1)-(3) in Definition 2.3 will only be considered in Sect. 5.

Let f a multicritical circle map, x ∈ S1 and n ∈ N. We denote by In(x) the interval
with endpoints x and f qn (x), which contains the point f qn+2(x). The collection of
intervals

Pn(x) =
{

f i (In(x)) : 0 ≤ i ≤ qn+1 − 1
}

∪
{

f j (In+1(x)) : 0 ≤ j ≤ qn − 1
}

is a partition of the circle (modulo endpoints) called the standard n-th dynamical
partition associated with the point x . The following fundamental geometric control
was obtained by Herman [16] and Światek [20] in the eighties.

Theorem 2.2 (The real bounds) Given N ∈ N and d > 1 let FN ,d be the family of
multicritical circle maps with at most N critical points whose maximum criticality is
bounded by d. There exists a constant C = C(N , d) > 1 with the following property:
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76 G. Estevez, P. Guarino

for any given f ∈ FN ,d and c ∈ Crit( f ), there exists n0 ∈ N, such that for all n ≥ n0
and every pair of adjacent intervals I , J ∈ Pn(c), we have

1

C
≤ |I |

|J | ≤ C .

A detailed proof of Theorem 2.2 can also be found in [10, 11]. Given two positive
numbers α and β, we say that α is comparable to β if there exists a constant K > 1
depending only on C (from Theorem 2.2) such that K−1β ≤ α ≤ Kβ. This relation
will be denoted α 
 β. We finish Sect. 2.2 with the following four consequences of
the real bounds, that will be useful later.

Remark 2.3 Let I ∈ Pn(c) and let J be an interval, such that I ⊆ J ⊆ I ∗, where I ∗
denotes the union of I with its left and right neighbours in Pn(c). Then, |I | 
 |J |.
Corollary 2.4 Let f be a multicritical circle map and c ∈ Crit( f ). There exists a
constant 0 < μ < 1, such that for all n ≥ n0, the following holds: if Pn+1(c)  I �

J ∈ Pn(c), then |I | ≤ μ|J |.
Corollary 2.5 (C1-bounds). Let f be a multicritical circle map and c ∈ Crit( f ). There
exists a constant K = K ( f ) > 1, such that for all n > n0 and x ∈ Jn(c), we have

• Df qn+1(x) ≤ K, if x ∈ In(c).
• Df qn (x) ≤ K, if x ∈ In+1(c).

We say that two adjacent intervals I and J are symmetric if their extreme points
are f −qn (x), x, f qn (x) for some x ∈ S1 and n ∈ N.

Corollary 2.6 Any two adjacent symmetric intervals are comparable to each other.

Both Remark 2.3 and Corollary 2.4 follow straightforward from the real bounds.
For a proof of Corollary 2.5, see [11, Lemma 3.1], and for a proof of Corollary 2.6,
see [10, Lemma 3.3].

2.3 Multicritical Commuting Pairs

In this section, we introduce the notion of multicritical commuting pairs, a natural
generalization of the already classical notion of critical commuting pairs.

Definition 2.4 A Cr multicritical commuting pair (r ≥ 3) with N = N1 + N2 −
1 critical points is a pair ζ = (η, ξ) consisting of two Cr orientation-preserving
homeomorphisms ξ : Iξ → ξ(Iξ ) and η : Iη → η(Iη) with a finite number of non-flat
critical points γ0, . . . , γN1−1 = 0 and β0 = 0, β1, . . . , βN2−1, respectively, satisfying

(1) Iξ = [η(0), 0] and Iη = [0, ξ(0)] are compact intervals in the real line;
(2) (η ◦ ξ)(0) = (ξ ◦ η)(0) �= 0;
(3) Dξ(x) > 0 for all γi < x < γi+1, i ∈ {0, 1, . . . , N1 − 1} and Dη(x) > 0 for all

β j < x < β j+1 − 1, j ∈ {0, 1, . . . , N2 − 1};
(4) The origin has the same criticality for η than for ξ ;
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Renormalization of Bicritical Circle Maps 77

Fig. 1 A bicritical commuting
pair ζ = (η, ξ)

η

ξ

0

(5) For each 1 ≤ k ≤ r , we have that Dk−(ξ ◦ η)(0) = Dk+(η ◦ ξ)(0), where Dk− and
Dk+ represent the kth left and right derivative, respectively (Fig. 1).

Let ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) be two Cr multicritical commuting pairs, and
let τ1 : [η1(0), ξ1(0)] → [−1, 1] and τ2 : [η2(0), ξ2(0)] → [−1, 1] be the twoMöbius
transformations given by

τi (ηi (0)) = −1, τi (0) = 0 and τi (ξi (0)) = 1, for each i ∈ {1, 2}.

Definition 2.5 For any given 0 ≤ k ≤ r , we define the Ck distance between ζ1 and ζ2
as

dk(ζ1, ζ2) = max

{∣
∣
∣
∣

η1(0)

ξ1(0)
− η2(0)

ξ2(0)

∣
∣
∣
∣
, ‖τ1 ◦ ζ1 ◦ τ−1

1 − τ2 ◦ ζ2 ◦ τ−1
2 ‖k

}

,

where ‖ · ‖k denotes the Ck norm for maps in the interval [−1, 1] with a discontinuity
at the origin.

Note that dk(, ) is not a distance but a pseudo-distance, since it is invariant under
conjugacies with homothetias. To have a distance, we restrict our attention to normal-
ized pairs: for any given pair ζ = (η, ξ), we denote by ζ̃ the pair (̃η| Ĩη , ξ̃ | Ĩξ ), where
tilde means linear rescaling by the factor 1/|Iη|. In other words, | Ĩη| = 1 and Ĩξ has
length equal to the ratio between the lengths of Iξ and Iη. Equivalently, ξ̃ (0) = 1 and
η̃(0) = −|Iξ |/|Iη| = η(0)/ξ(0).
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78 G. Estevez, P. Guarino

2.4 Renormalization of Multicritical Commuting Pairs

Definition 2.6 We define the period of the pair ζ = (η, ξ) as the natural number a,
such that

ηa+1(ξ(0)) < 0 ≤ ηa(ξ(0)),

when such number exists, and we denote it by χ(ζ ). If such a does not exist, we just
define χ(ζ ) = ∞.

Definition 2.7 Let ζ = (η, ξ) be a multicritical commuting pair with (ξ ◦ η)(0) ∈ Iη
and χ(ζ ) = a < ∞. We define the renormalization of ζ as the normalization of the
pair (η|[0,ηa(ξ(0))] , ηa ◦ ξ |Iξ ), that is

R(ζ ) =
(

η̃|[0, ˜ηa(ξ(0))] , η̃a ◦ ξ | Ĩξ
)

.

If ζ is a multicritical commuting pair with χ(R jζ ) < ∞ for 0 ≤ j ≤ n − 1, we
say that ζ is n-times renormalizable, and if χ(R jζ ) < ∞ for all j ∈ N, we say that
ζ is infinitely renormalizable. In the last case, we define the rotation number of ζ as
the irrational number whose continued fraction expansion is given by

[χ(ζ ), χ(Rζ ), . . . , χ(Rnζ ), . . .].

Now, let f be aCr multicritical circle map with irrational rotation number ρ and N
critical points c0, . . . , cN−1. For each critical point ci , f induces a sequence of multi-
critical commuting pairs in the followingway: let f̂ be the lift of f (under the universal
covering t �→ ci · exp(2π i t)), such that 0 < f̂ (0) < 1 (and note that D f̂ (0) = 0).
For n ≥ 1, let În(ci ) be the closed interval in R, containing the origin as one of its
extreme points, which is projected onto In(ci ). We define ξ : În+1(ci ) → R and
η : În(ci ) → R by ξ = T−pn ◦ f̂ qn and η = T−pn+1 ◦ f̂ qn+1 , where T is the unitary
translation T (x) = x + 1. Then, the pair (η| În(ci ), ξ | În+1(ci )) is an infinitely renormal-
izable multicritical commuting pair, that we denote by ( f qn+1 |In(ci ), f qn |In+1(ci )). Its
normalization will be denoted by Rn

i f , that is (Fig. 2)

Rn
i f =

(

f̃ qn+1 | Ĩn(ci ), f̃ qn |̃In+1(ci )

)

.

3 A Reduction of TheoremA

In this section, we reduce our main result, namely TheoremA, to Theorem B, which is
slightly easier to prove. Right after its statement, we explain why Theorem B implies
Theorem A.

Theorem B Let f and g be C3 bicritical circle maps with the same irrational rotation
number in the set A. Suppose that both f and g have the same signature and exactly
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Renormalization of Bicritical Circle Maps 79

Fig. 2 The nth and (n + 1)th
renormalization of f , before
rescaling

f qn+1

f qn

f qn+2

the same critical set (in other words, there exists a topological conjugacy h fixing each
critical point). Assume, finally, that there exist C > 1 and 0 < μ < 1, such that for
each ci ∈ Crit( f ), we have

∣
∣
∣
∣
∣

|I gn (ci )|
|I f
n (ci )|

− 1

∣
∣
∣
∣
∣
≤ C μn and d1(Rn

i f ,Rn
i g) ≤ C μn .

Then, h is a C1+α diffeomorphism for some α > 0.

Let us briefly explain why Theorem B implies Theorem A. First we note that, as
pointed out in [7, Proposition 2.2], the real bounds (Theorem 2.2) imply that expo-
nential convergence of renormalization is preserved under conjugacy with a smooth
diffeomorphism. Let us be more precise.

Lemma 3.1 Let r ≥ 1, f a Cr multicritical circle map and φ a Cr circle diffeomor-
phism. There exist C = C( f , φ) > 0 and 0 < μ = μ( f ) < 1, such that, for all
k ≤ r − 1 and all n ∈ N, we have

dk
(

Rn
i f , Rn

i (φ ◦ f ◦ φ−1)
)

≤ C μn,

for any given critical point ci of f , where Rn
i (φ ◦ f ◦ φ−1) denotes the n-th renor-

malization of φ ◦ f ◦ φ−1 around its critical point φ(ci ).

The following result is borrowed from [7, Lemma 4.7].

Lemma 3.2 Let f and g be two multicritical circle maps with the same critical set,
such that there exist C > 0 and 0 < μ < 1 satisfying d0(Rn

i f ,Rn
i g) ≤ C μn for all
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i ∈ {0, . . . , N − 1} and for all n ∈ N. Then, the ratio
{|I gn (ci )|/|I f

n (ci )|
}

converges
to a limit exponentially fast for all i ∈ {0, . . . , N − 1}. Moreover, for all m, k ≥ 1, we
have

∣
∣
∣
∣
∣

|I f
m (ci )|

|I f
k (ci )|

− |I gm(ci )|
|I gk (ci )|

∣
∣
∣
∣
∣
≤ C μmin{m,k} |I f

m (ci )|
|I f
k (ci )|

. (3.1)

We remark that estimate (3.1) given by Lemma 3.2 will also be useful in Sect. 5,
during the proof of Lemma 5.1. With Lemmas 3.1 and 3.2 at hand, it is not difficult
to see that Theorem B implies Theorem A. Indeed, let f and g be C3 bicritical circle
maps with the same signature, such that its common rotation number belongs to the
setA. Assume, moreover, that the renormalizations of f and g around corresponding
critical points converge together exponentially fast in theC1 topology. By Lemma 3.1,
we can conjugate one of the two maps (say g) with a suitable C∞ diffeomorphism
that identifies the critical points of g with those of f , while preserving the exponential
contraction in theC1 metric. By Lemma 3.2, we can choose the previous conjugacy in
such a way that the limit of the sequence

{|I gn (ci )|/|I f
n (ci )|

}

is in fact equal to 1, for
all i ∈ {0, . . . , N −1}. By Theorem B, f and g are conjugate to each other by a C1+α

diffeomorphism, for some α > 0. This shows that Theorem B implies Theorem A.
Sections 4 and 5 (the remainder of this paper) are devoted to the proof of TheoremB.

4 Fine Grids

Let f and g be C3 bicritical circle maps with the same irrational rotation number in
the set A (recall Definition 2.3). Suppose that both f and g have the same signature
and exactly the same critical set, and let h be the homeomorphism considered in the
statement of Theorem B (Sect. 3). As explained in the introduction, we would like
to prove that h “almost preserves” ratios between lengths of intervals, provided that
we consider very small intervals, which are very close to each other. To achieve this,
we will construct in this section a suitable sequence of nested partitions of the unit
circle, such that it will be enough to control the action of h on the vertices of those
partitions. The specific type of partitions that we need in the present paper are given
by the following definition, which is borrowed from [7, Section 4.2].

Definition 4.1 A fine grid is a sequence {Qn}n≥0 of finite interval partitions of S1

satisfying the following three conditions.

(1) Each Qn+1 is a strict refinement of Qn ;
(2) There exists b ∈ N such that each atom ofQn coincides with the union of at most

b atoms of Qn+1;
(3) There exists C > 1, such that C−1 |I | ≤ |J | ≤ C |I | for each pair of adjacent

atoms I , J ∈ Qn .

The fundamental property of fine grids that we will use here is the following crite-
rion, which is [7, Proposition 4.3(b)].
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Proposition 4.1 Let {Qn}n∈N be a fine grid as in Definition 4.1. Let h be a circle
homeomorphism, such that there exist constants C > 0 and λ ∈ (0, 1) satisfying

∣
∣
∣
∣

|I |
|J | − |h(I )|

|h(J )|
∣
∣
∣
∣
≤ Cλn, (4.1)

for each pair of adjacent intervals I , J ∈ Qn and for all n ∈ N. Then, h is a C1+α-
diffeomorphism.

Sketch of the proof of Proposition 4.1 As it easily follows from Definition 4.1, given a
fine grid {Qn}n∈N, there exist constants C0 > 1 and 0 < λ0 < λ1 < 1, such that

1

C0
λn0 ≤ min

I∈Qn

{|I |} ≤ max
I∈Qn

{|I |} ≤ C0 λn1 for all n ∈ N. (4.2)

Moreover, an immediate consequence of condition (4.1) in the statement is that the
image under h of the fine grid {Qn}n∈N is also a fine grid. From this and (4.2), we
deduce that the sequence of piecewise affine homeomorphisms that coincide with h
on the vertices of each Qn converges uniformly (C0 exponentially fast) to h. Since
each fine grid is determined by a finite number of vertices, these approximations have
a well-defined right-derivative (which is a step function with finitely many jumps),
and it can be proved [combining Definition 4.1, (4.1), and (4.2)] that these right
derivatives converge uniformly to an α-Hölder continuous function (whose Hölder
constant α depends on λ and λ0). By elementary reasons, this implies that h is a
C1+α-diffeomorphism. For more details, see [7, pages 357–358]. ��

We remark that the standard partitions Pn (see Sect. 2.2) do not determine a fine
grid, unless the rotation number of f is of bounded type. Our goal in this section
is to construct a suitable fine grid for any given bicritical circle map f , while in
Sect. 5, we will prove that such fine grid (together with the topological conjugacy
h considered in Theorem B) satisfies the assumptions of Proposition 4.1. This will
establish Theorem B. As already explained in Sect. 3, Theorem B implies our main
result, namely Theorem A.

4.1 Auxiliary Partitions

Let f be a C3 bicritical circle map with irrational rotation number ρ ∈ (0, 1) and
critical points c0 and c1 (we will focus now on c0, but of course, all constructions
below can be done with c1). As explained in Sect. 2.4, for any given n ∈ N, the
first return map of f to Jn(c0) = In+1(c0) ∪ In(c0) is given by the commuting pair
(

f qn+1 |In(c0), f qn |In+1(c0)
)

. This returnmap has two critical points as well: one of them
being c0 itself, and the other one being the unique preimage of c1 for the return (note
that they coincide if, and only if, c1 belongs to the positive orbit of c0). Such a critical
point for the return map will be called the free critical point at level n, and it will be
denoted by cn .
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Definition 4.2 A natural number n is a two-bridges level for f at c0 if an+1 ≥ 23, the
free critical point cn belongs to In(c0)\In+2(c0) and moreover

cn ∈
an+1−10

⋃

j=11

� j ,

where � j = f ( j−1)qn+1+qn
(

In+1(c0)
)

for all j ∈ {1, . . . , an+1}.

Remark 4.1 Of course, there is nothing special about the number 23. It is just an
arbitrary choice that we fix throughout the remainder of this paper.

In this subsection, we construct a sequence
{P̂n

}

n∈N
of finite interval partitions

(modulo endpoints) of the unit circle, satisfying the following six properties.

(1) Each partition P̂n is dynamically defined from the critical set of f : all its vertices
are iterates (either forward or backward) of c0 or c1.

(2) Both intervals In(c0) and In+1(c0) belong to P̂n .
(3) The partition P̂n+1 is a refinement of P̂n : each interval of P̂n either coincides with

the disjoint union of at least two intervals of P̂n+1, or belongs itself to P̂n+1 (in
which case it coincides with the disjoint union of at least two intervals of P̂n+2).

(4) If n is a two-bridges level for f at c0, the free critical point cn is a vertex of P̂n+1.
(5) Any vertex of the standard partition Pn belongs to P̂m for some m ≥ n.
(6) There exists a constant C > 1 (depending only on f ), such that C−1 |I | ≤ |J | ≤

C |I | for each pair of adjacent atoms I , J ∈ P̂n .

The first five properties above describe the combinatorics of the sequence {P̂n},
while Item (6) bounds its geometry. Themain difference between the partitions P̂n and
the standard partitions Pn(c0) is Item (4). The partitions P̂n will be called auxiliary
partitions around c0. Just as the standard partitions, they do not determine a fine grid,
unless the rotation number of f is of bounded type. However, in Sect. 4.2, we will use
these auxiliary partitions to finally build a fine grid {Qn}n∈N for the bicritical circle
map f (this fine grid will be extracted from the auxiliary partitions, in the sense that
any vertex ofQn will also be a vertex of P̂n ; see Proposition 4.2 in Sect. 4.2.4 below).
Further properties of the auxiliary partitions (such as Lemma 4.6 below) will be useful
in Sect. 5.

4.1.1 Building Auxiliary Partitions

For the initial partition P̂0, we simply consider the standard partition P0(c0) that is:

P̂0 = P0(c0) =
{[

f i (c0), f i+1(c0)
] : i ∈ {0, . . . , a0 − 1}

}

∪ {[

f a0(c0), c0
]}

,

where a0 is the integer part of 1/ρ (see Sect. 2.2). Now, we fix some n ∈ N and we
build P̂n+1 from P̂n (this defines inductively the whole sequence {P̂n}n∈N).
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In+2 Δan+1 Δ− +1
an+1 Δn+1

L
Δ −1

n

f qn+1 f qn+1 f qn+1 f qn+1f−qn+1 f−qn+1 f−qn+1 f−qn+1

cn

Δ1Δn Δ−1
n Δ−r+1

n Δn+1
R Δr−1

1

. . . . . . . . . . . .

Fig. 3 The auxiliary partition P̂n+1 inside In(c0), for a two-bridges level n

On one hand, if n is a two-bridges level for f at c0, consider the following three pair-
wise disjoint fundamental domains for f qn+1 , all of them contained in In(c0)\In+2(c0)
(Fig. 3):

�1 = f qn
(

In+1(c0)
)

,

�̂n = [ f qn+1(cn), cn],
�an+1 = f (an+1−1)qn+1(�1) = [

f qn+2(c0), f (an+1−1)qn+1+qn (c0)
]

.

For each j ∈ Z, denote by �
j
1, �̂

j
n and �

j
an+1 the intervals f jqn+1(�1), f jqn+1(�̂n)

and f jqn+1(�an+1), respectively. Let r(n), �(n) ∈ {0, . . . , an+1} be given by

r(n) = min{ j ∈ N : �̂
− j
n ∩ �

j
1 �= ∅} and �(n) = min{ j ∈ N : �

− j
an+1 ∩ �̂

j
n �= ∅}.

Note that the intersections above may be given by a single point. Just to fix ideas,
let us assume that �−�

an+1
\�̂�

n ⊆ �̂�+1
n and �̂−r

n \�r
1 ⊆ �r+1

1 , and consider �n+1
R =

�r
1∪�̂−r

n and�n+1
L = �−�

an+1
∪�̂�

n . With this at hand, we define the auxiliary partition

P̂n+1 inside In(c0), for a two-bridges level n, as

P̂n+1|In(c0) = {

In+2(c0), {�− j
an+1} j=�−1

j=0 , �n+1
L , {�̂ j

n}�−1
j=1−r , �n+1

R , {� j
1} j=r−1

j=0

}

,

and we spread this definition to the whole circle in the usual way:

P̂n+1 =
{

f i
(

In+1(c0)
) : 0 ≤ i ≤ qn − 1

}

∪
{

f j (I ) : I ∈ P̂n+1|In(c0), 0 ≤ j ≤ qn+1 − 1
}

.

On the other hand, if n is not a two-bridges level for f at c0, we would like to
consider P̂n+1 just as the standard partition Pn+1(c0). However, Pn+1(c0) is given
only by iterates of c0, and then it does not have ci as a vertex for any two-bridges level
i ∈ {0, . . . , n − 1}. In other words, the partition Pn+1(c0) is not a refinement of P̂n

(unless, of course, no previous level was a two-bridges level). To correct this flaw, we
simply proceed as follows: for any given vertex v of P̂n , letw be the vertex ofPn+1(c0)
closest to v (in the Euclidean distance). Then, we just replace w by v: we remove w

from Pn+1(c0), and we add v to this partition (in case v is the middle point of the

123



84 G. Estevez, P. Guarino

interval of Pn+1(c0) that contains it, we just add it to Pn+1(c0) without removing any
point). After this replacement procedure, we denote by P̂n+1 the obtained partition.

With this construction at hand,we define inductively the sequence of finite partitions
{P̂n

}

n∈N
of the unit circle. The combinatorial properties (1) to (5) listed above are not

difficult to check, while Item (6) follows by combining the following lemma with the
real bounds (Theorem 2.2).

Lemma 4.2 If � ∈ P̂n and �′ ∈ Pn(c0) are two atoms, such that � ∩ �′ �= ∅, then
|�| 
 |�′|.
Proof of Lemma 4.2 We fix some n and we prove the desired comparability for inter-
secting atoms of P̂n+1 and Pn+1(c0), respectively. For a two-bridges level n (for f at
c0), we have three different types of atoms of P̂n+1:

• The following atoms of P̂n+1 also belong to Pn+1(c0):

f i
(

In+1(c0)
) : 0 ≤ i ≤ qn − 1,

f i
(

In+2(c0)
) : 0 ≤ i ≤ qn+1 − 1,

f i
(

�
− j
an+1

) : 0 ≤ j ≤ � − 1, 0 ≤ i ≤ qn+1 − 1,

f i
(

�
j
1

) : 0 ≤ j ≤ r − 1, 0 ≤ i ≤ qn+1 − 1.

• For the atoms f i (�n+1
L ) and f i (�n+1

R ), with 0 ≤ i ≤ qn+1 − 1, we just note the
following: both f i

(

�−�
an+1

)

and f i
(

�r
1

)

belong toPn+1(c0) for any 0 ≤ i ≤ qn+1−
1, and then, we can apply Remark 2.3 with I = f i

(

�−�
an+1

)

and J = f i (�n+1
L ),

and also with I = f i
(

�r
1

)

and J = f i (�n+1
R ).

• For any 1−r ≤ j ≤ �−1 and any 0 ≤ i ≤ qn+1−1, the interval f i (�̂ j
n) intersects

at most two atoms of Pn+1(c0), say I and J , both being consecutive fundamental
domains of f qn+1 . Since f i (�̂ j

n) ⊆ I ∪ J ⊆ f i (�̂ j+1
n )∪ f i (�̂ j

n)∪ f i (�̂ j−1
n ), we

are done by Corollary 2.6.

Therefore, we have comparability when n is a two-bridges level. Finally, by the real
bounds, if n is not a two-bridges level, then the replacement procedure described above
(to build the auxiliary partition P̂n+1 from the standard partition Pn+1(c0)) creates
neither small nor big intervals, since, given a missing vertex of P̂n , we remove from
Pn+1(c0) its closest vertex. Therefore, we also have comparability when n is not a
two-bridges level. ��

As proved in [10, Lemma 4.1], any two intersecting atoms belonging to the same
level of the standard dynamical partitions of two distinct critical points are comparable.
WhencombinedwithLemma4.2, this gives us the following fact thatwill bementioned
in Sect. 5 (during the proof of Lemma 5.7).

Corollary 4.3 If � ∈ P̂n and �′ ∈ Pn(c1) are two atoms, such that � ∩ �′ �= ∅, then
|�| 
 |�′|.

In Sect. 5, we will also use the following immediate consequence of properties (3)
and (6) of the auxiliary partitions.
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Corollary 4.4 There exists μ ∈ (0, 1), such that |J | ≤ μ|I | for all I ∈ P̂n and
J ∈ P̂n+1 with J � I .

4.1.2 A Combinatorial Remark

We finish Sect. 4.1 with Lemma 4.6 below, which is an adaptation of [7, Lemma 4.9]
to the auxiliary partitions, that is going to be crucial in Sect. 5, during the proof of
Lemma 5.1. Let us point out first the following fact that follows straightforward from
our construction.

Lemma 4.5 Let n ∈ N and y ∈ Jn(c0)\Jn+1(c0). Then, the following holds.

• If n is not a two-bridges level, there exist x ∈ Jn+1(c0), σ ∈ {0, 1} and k ∈ Z,
with |k| ≤ �an+1/2�, such that y = f kqn+1+σqn (x).

• If n is a two-bridges level, there exist x ∈ Jn+1(c0) ∪ �̂n, σ ∈ {0, 1} and k ∈ Z,
with |k| ≤ �(n) and |k| ≤ r(n), such that y = f kqn+1+σqn (x).

By induction, we obtain the following description (for more details, see [7, pages
363–364]).

Lemma 4.6 Let n, p ∈ N, and let v be a vertex of P̂n+p contained in Jn(c0). Then, there
exist L ∈ {1, . . . , p} and n ≤ m1 < · · · < mL ≤ n+ p, such that v = ϕ1◦· · ·◦ϕL(x),
where

• For each j ∈ {1, . . . , L} we have ϕ j = f k j qm j+1+σ j qm j for some σ j ∈ {0, 1}
and k j ∈ Z, where each k j either satisfies |k j | ≤ �(m j ) and |k j | ≤ r(m j ) or
|k j | ≤ �am j+1/2�, depending on whether m j is or is not a two-bridges level (for
f at c0).

• For each j ∈ {1, . . . , L − 1}, the point ϕ j+1 ◦ · · · ◦ ϕL(x) either belongs to
Jm j+1(c0) ∪ �̂m j or to Jm j+1(c0), depending on whether m j is or is not a two-
bridges level.

• There exists m ∈ {mL , . . . , n+ p}, such that the initial condition x either belongs
to

{

c0, f qm+2(c0), cm
}

or to
{

c0, f qm+2(c0)
}

, depending on whether m is or is
not a two-bridges level.

As already mentioned, the auxiliary partitions do not determine a fine grid, unless
the rotation number of f is of bounded type. In the next subsection,we finally construct
a fine grid for f .

4.2 Building a Fine Grid

In the remainder of Sect. 4, we adapt the construction of [7, Section 4.3] to our setting,
following the exposition in [10]. More precisely, in Sects. 4.2.1, 4.2.2 and 4.2.3, we
follow [10, Sections 4.4–4.6], while in Sect. 4.2.4, we follow [10, Section 5.2].

4.2.1 Intermediate Partitions

Definition 4.3 We define bridges for the auxiliary partitions as follows.
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In+2

G2

cn

Δn Δ−1
n

G1

Δ1

Fig. 4 The bridges Ĝ1 and Ĝ2 contained in In(c0), for a two-bridges level n

• If n is a two-bridges level for f at c0 (see Definition 4.2), then the bridges of
P̂n+1|In(c0) are the intervals Ĝ1 and Ĝ2 given by (Fig. 4)

Ĝ1 =
r−1
⋃

j=1

�
j
1 ∪ �n+1

R ∪
r−1
⋃

j=2

�̂
− j
n and Ĝ2 =

�−1
⋃

j=1

�̂
j
n ∪ �n+1

L ∪
�−1
⋃

j=0

�
− j
an+1 .

• If an+1 ≥ 23 but n is not a two-bridges level, note that all intervals � j with j ∈
{12, . . . , an+1 − 11} belong to P̂n+1, since the replacement procedure described
in the previous section will not affect their vertices. In this case, we consider a
single bridge of P̂n+1|In(c0), which is the interval Ĝ1 given by

Ĝ1 =
an+1−11

⋃

j=12

� j .

In both cases, the bridges of P̂n+1 are the iterates, between 0 and qn+1 − 1, of the
bridges of P̂n+1|In(c0). Finally, if an+1 ≤ 22, no bridges are defined for P̂n+1.

Let I be a bridge of P̂n+1, that is, I is the union of a certain number of adjacent
intervals belonging to P̂n+1. Following the terminology used in [7] and [10], we say
that I is a:

(a) Regular bridge, if the bridge is formed by less than 1000 intervals of P̂n+1.
(b) Saddle-node bridge, if the bridge is formed by at least 1000 intervals of P̂n+1.

Any atom of P̂n+1 disjoint from all bridges will be called a regular interval. In par-
ticular, if an+1 ≤ 22, all intervals of P̂n+1 are regular, since no bridges were defined.

Finally, the intermediatepartition P̃n+1 is defined as the unionof all regular intervals
and all bridges (regular or saddle node) of the auxiliary partition P̂n+1 (note that P̃n+1
is finer than P̂n but coarser than P̂n+1, which is why we call it intermediate).

Remark 4.7 Any atom of P̂n is the union of at most 48 atoms of P̃n+1. This fact will
be mentioned in Sect. 4.2.4, during the proof of Proposition 4.2.

The following lemma shows that all intervals of P̃n+1 contained in the same atom
of P̂n are pairwise comparable.

Lemma 4.8 Any interval of the intermediate partition P̃n+1 is comparable to the inter-
val of the auxiliary partition P̂n that contains it.

In the proof of Lemma 4.8, we will use the following fact, which is [5, Lemma
4.2].
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Lemma 4.9 Let n be a two-bridges level, and let j ∈ {1, . . . , an+1} be such that the
interval � j = f ( j−1)qn+1+qn

(

In+1(c0)
) ⊂ In(c0) contains the free critical point cn of

f qn+1 . Then

∣
∣
∣ f i

(

� j
)
∣
∣
∣ 


∣
∣
∣ f i

(

In(c0)
)
∣
∣
∣ for all i ∈ {0, . . . , qn+1 − 1}.

Proof of Lemma 4.8 Note first that, by Lemma 4.2, it is enough to prove that any regular
interval or bridge of P̂n+1 is comparable to the interval of Pn(c0) that contains it.

• If an+1 ≤ 22, we have P̃n+1 = P̂n+1, and then, Lemma 4.8 follows from the
real bounds (Theorem 2.2) and the fact, already mentioned, that the replacement
procedure (to build P̂n+1 from Pn+1(c0)) creates no small atoms.

• If an+1 ≥ 23, but n is not a two-bridges level, we have two different types of
elements in P̃n+1.

– By the real bounds, any interval of Pn+1(c0) of the form f i
(

In+1(c0)
)

with
0 ≤ i ≤ qn − 1, f i

(

In+2(c0)
)

with 0 ≤ i ≤ qn+1 − 1, or f i (� j ) with j ∈
{1, . . . , 11}∪{an+1−10, . . . , an+1} and 0 ≤ i ≤ qn+1−1 is comparable to the
interval of Pn(c0) that contains it. Using again that the replacement procedure
creates no small atoms, we deduce Lemma 4.8 for any regular interval of P̂n+1
which is not a bridge.

– Any bridge of P̂n+1 contains an intervalwhich is adjacent to one of the intervals
considered in the previous item, and we are done by the real bounds and
Property (6) of the auxiliary partitions.

• For a two-bridges level n, we have four different types of elements in P̃n+1.

– The case of I being an iterate of In+1(c0), In+2(c0) or �1 follows from the
real bounds.

– Let I = f i (�̂n) for some i ∈ {0, . . . , qn+1 − 1}, and let � ∈ Pn+1(c0) be the
interval that contains the free critical point cn . By Lemma 4.9, we have

∣
∣
∣ f i

(

�
)
∣
∣
∣ 


∣
∣
∣ f i

(

In(c0)
)
∣
∣
∣ for all i ∈ {0, 1, . . . , qn+1 − 1},

while by Corollary 2.6, we have | f i (�̂n)| 
 | f i (�̂−1
n )|. Therefore,

| f i (In(c0))| 
 | f i (�)| ≤ | f i (�̂n) ∪ f i (�̂−1
n )| 
 | f i (�̂n)|; see Fig. 5.

– Just as in the previous item, we have | f i (�̂−1
n )| 
 | f i (In(c0))| for all i ∈

{0, . . . , qn+1 − 1}.
– Just as before, if I is a bridge of P̂n+1, it contains an interval which is adjacent
to one of the intervals in the previous items (and then, we are done by the real
bounds and Property (6) of the auxiliary partitions).

��
Remark 4.10 For any given bridge Ĝi ⊂ In(c0), denote by Ĝ∗

i ⊂ In(c0) the union of
Ĝi with its two neighbours in the auxiliary partition P̂n+1, and note that themap f qn+1 :
int(Ĝ∗

i ) → f qn+1(int(Ĝ∗
i )) is a diffeomorphism. By Lemma 4.8, both neighbours of
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Fig. 5 The interval � of the
standard partition Pn+1(c0)
containing the free critical point
cn , for a two-bridges level n

f qn+1(Δ) Δ f−qn+1(Δ)

cn

Δn Δ−1
n

Ĝi are comparable to it (since they are comparable to In(c0)), and the same happens to
all its images up to time qn+1. Therefore, by the standard Koebe’s distortion principle
[9, Section IV.3, Theorem 3.1], there exists a constant K > 1, depending only on the
real bounds, such that

1

K
≤ Df j (x)

Df j (y)
≤ K for all x, y ∈ Ĝi and j ∈ {1, . . . , qn+1}.

This remark will be useful in Sect. 4.2.3, to propagate some geometric bounds from
bridges contained in In(c0) to any bridge along the unit circle.

4.2.2 Balanced Decompositions of Almost Parabolic Maps

Recall that the Schwarzian derivative of a one-dimensionalC3 mapφ is the differential
operator defined at regular points by

Sφ(x) = D3φ(x)

Dφ(x)
− 3

2

(
D2φ(x)

Dφ(x)

)2

.

Definition 4.4 An almost parabolic map is a C3 diffeomorphism

φ : J1 ∪ J2 ∪ · · · ∪ J� → J2 ∪ J3 ∪ · · · ∪ J�+1 ,

where J1, J2, . . . , J�+1 are adjacent intervals on the circle (or on the line), with the
following properties.

(i) One has φ(Jν) = Jν+1 for all 1 ≤ ν ≤ �;
(ii) The Schwarzian derivative of φ is everywhere negative.
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The positive integer � is called the length of φ, and the positive real number

σ = min

{

|J1|
| ∪�

ν=1 Jν |
,

|J�|
| ∪�

ν=1 Jν |

}

is called the width of φ.

The following property about the geometry of the fundamental domains of an almost
parabolic map is due to Yoccoz.

Lemma 4.11 (Yoccoz). Let φ : ⋃�
ν=1 Jν → ⋃�+1

ν=2 Jν be an almost parabolic map with
length � and width σ . There exists a constant Cσ > 1 (depending on σ but not on �),
such that, for all ν = 1, 2, . . . , �, we have

C−1
σ |I |

[min{ν, � + 1 − ν}]2 ≤ |Jν | ≤ Cσ |I |
[min{ν, � + 1 − ν}]2 , (4.3)

where I = ⋃�
ν=1 Jν is the domain of φ.

A proof of this lemma can be found in [7, Appendix B, page 386]. The follow-
ing result is [10, Lemma 4.5], and its proof is a fairly immediate application of
Lemma 4.11.

Lemma 4.12 Let φ be an almost parabolic map with domain I = ⋃�
ν=1 Jν , and let

d ∈ N be largest such that 2d+1 ≤ �/2. There exists a descending chain of (closed)
intervals

I = M0 ⊃ M1 ⊃ · · · ⊃ Md+1

for which, letting Li , Ri denote the (left and right) connected components of Mi\Mi+1
for all 0 ≤ i ≤ d, the following properties hold.

(i) Each of the intervals Li , Ri is the union of exactly 2i adjacent atoms (fundamental
domains) of I .

(ii) We have

I =
d

⋃

i=0

Li ∪ Md+1 ∪
d

⋃

i=0

Ri . (4.4)

(iii) For each 0 ≤ i ≤ d, we have |Li | 
 |Mi+1| 
 |Ri |, with comparability constants
depending only on the width σ of φ.

A decomposition of the form (4.4) satisfying properties (i), (ii), (iii) of Lemma 4.12
is called a balanced decomposition of I . The intervals Mi , 0 ≤ i ≤ d + 1, are said to
be central, whereas the intervals Li , Ri , 0 ≤ i ≤ d, are said to be lateral.
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Remark 4.13 As it follows from Yoccoz’s Lemma 4.11, the following fact holds true
for the fundamental domains Jν (1 ≤ ν ≤ �) of any almost parabolic map φ: for all
1 ≤ k < l < m ≤ �, one has

|Jl+1| + |Jl+2| + · · · + |Jm |
|Jk+1| + |Jk+2| + · · · + |Jl | 
 k(m − l)

m(l − k)
,

with comparability constant depending only on the width σ of φ. In particular, if the
interval

⋃m
k+1 Jν is contained in a lateral or the final central interval of a balanced

decomposition as in (4.4), and ifm− l is at most four times larger than l − k (and vice
versa), one has |Jk+1|+ |Jk+2| + · · ·+ |Jl | 
 |Jl+1|+ |Jl+2| + · · ·+ |Jm |, again with
comparability constant depending only on the width of φ. This fact will be useful in
Sect. 4.2.4, during the proof of Proposition 4.2.

4.2.3 Balanced Decompositions of Bridges

We recall now [11, Lemma 4.1].

Lemma 4.14 For any given multicritical circle map f and any critical point c0 ∈ S1

of f , there exists n0 = n0( f ) ∈ N, such that for all n ≥ n0, we have that

S f j (x) < 0 for all j ∈ {1, . . . , qn+1} and for all x ∈ In(c0) regular point of f
j .

Likewise, we have

S f j (x) < 0 for all j ∈ {1, . . . , qn} and for all x ∈ In+1(c0) regular point of f
j .

At this point, we would like to apply Lemma 4.12 to any saddle-node bridge Ĝi of
P̂n+1|In(c0), for n ≥ n0. Indeed, by construction, the map φ = f qn+1 |Ĝi

has no critical
points; hence, it is a diffeomorphism onto its image. Moreover, by Lemma 4.14, φ

has negative Schwarzian derivative. Finally, note that by Lemma 4.8 and Property
(6) of the auxiliary partitions, the width of φ only depends on the real bounds. The
only problem seems to be that, for a two-bridges level n, both bridges Ĝ1 and Ĝ2
of P̂n+1|In(c0) contain an element of the auxiliary partition P̂n+1 which may not be a
fundamental domain for f qn+1 , namely �n+1

R and �n+1
L , respectively. However, both

of these intervals contain a fundamental domain and are contained in the union of
such fundamental domain with one of its adjacent fundamental domains. Therefore,
estimate (4.3) of Lemma 4.11 still holds, just by adjusting constants.

In other words, there exists a balanced decomposition for any saddle-node bridge of
P̂n+1|In(c0) (with uniform comparability constants, depending only on the real bounds
for f ). With this at hand, we use Remark 4.10 to spread this decomposition to all
bridges around the unit circle, to obtain the following result, which is the goal of
Sects. 4.2.2 and 4.2.3 .

Lemma 4.15 There exists a balanced decomposition for any saddle-node bridge of
P̂n+1, with uniform comparability constants depending only on the real bounds for f .
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Wefinish Sect. 4.2.3with the following estimate (borrowed from [7, Lemma 4.11]),
which will be useful in Sect. 5 (during the proof of Lemma 5.7).

Lemma 4.16 There exists a constant M > 1 depending only on the real bounds, such
that for all k, p ∈ N, we have that if I ∈ P̂k , J ∈ P̂k+p and J ⊂ I , then

|I | ≤ Mp (ak+1 ak+2 . . . ak+p)
2 |J |.

Moreover, the same estimate holds replacing J with its return f qk+1(J ).

Lemma 4.16 follows from Lemma 4.6, Lemma 4.8, Lemma 4.14, Yoccoz’s
Lemma 4.11, Remark 4.10, and a simple inductive argument.

4.2.4 The Fine Grid

In Proposition 4.2, we finally construct a fine grid for f . The partition Qn that we
want is constructed from P̂m and P̃m for various values of m ≤ n. At this point, our
construction is essentially the same as in [7, pages 359–361] or [10, pages 5612–
5614]. We reproduce it here just for the convenience of the reader.

Proposition 4.2 There exists a fine grid {Qn} in S1 with the following properties.

(a) Every atom of Qn is the union of at most b = 1000 atoms of Qn+1.
(b) Every atom � ∈ Qn is a union of atoms of P̂m and P̃m for some m ≤ n, and

there are four possibilities:

(b1) � is a single atom of P̂m, contained in a bridge atom of P̃m;
(b2) � is a single atom of P̃m;
(b3) � is a central interval of a saddle-node bridge atom of P̃m;
(b4) � is the union of at least two atoms of P̂m, contained in a saddle-node

bridge atom of P̃m.

Remark 4.17 Any vertex of Qn is a vertex of P̂m for some m ≤ n, and then, it is also
a vertex of P̂n . In other words, the auxiliary partition P̂n is a refinement of the fine
grid Qn .

Proof of Proposition 4.2 The proof is by induction on n. The first partitionQ1 consists
of all atoms of P̃1 which are not saddle-node atoms, together with the intervals L0,
M1 and R0 of each saddle-node interval I ∈ P̃1 (I = L0 ∪ M1 ∪ R0). It is clear that
each atom of Q1 falls within one of the categories (b1)-(b3) above.

Assuming Qn has been defined, we define Qn+1 as follows. Take an atom I ∈ Qn

and consider the four cases below.

(1) If I is a single atom of P̂m , we break it into the union of at most 48 atoms of
P̃m+1 (recall Remark 4.7), and take them as atoms of Qn+1, all of which are of
type (b2).

(2) If I is a single atom of P̃m , then one of two things can happen:
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(i) I is a saddle-node atom: In this case, write I = L0 ∪ M1 ∪ R0 as above and
take L0, R0, and M1 as atoms of Qn+1. Note that the lateral intervals L0 and
R0 are atoms of type (b1), while the central interval M1 is of type (b3).

(ii) I is not a saddle-node atom: Here, there are two sub-cases to consider. The
first possibility is that I is a single (regular) atom of P̂m , and we proceed as in
Item (1) above. The second possibility is that I is a (regular) bridge, in which
case we break it up into its ≤ 1000 constituent atoms of P̂m+1, and take them
as atoms of Qn+1, all of which are of type (b1).

(3) If I is a central interval of a saddle-node bridge atom of P̃m , then one of two
things can happen. If I is the final central interval, proceed as in Item (4) below
(unless I is just a single atom of P̂m , in which case and we proceed as in Item
(1) above). If I is a central interval which is not the final interval, consider the
next central interval inside I , say M , and the two corresponding lateral intervals
L and R, such that I = L ∪ M ∪ R, and declare L , R, and M members ofQn+1.
Note that L and R are of type (b4), while M is of type (b3).

(4) If I is a union of p ≥ 2 consecutive atoms J1, . . . , Jp of P̂m inside a saddle-
node bridge atom of P̃m , divide it up into two approximately equal parts. More
precisely, write p = 2q + r , where r = 0 or 1, and consider I = L ∪ R where

L =
q

⋃

j=1

J j , R =
p

⋃

j=q+1

J j .

We obtain in this fashion two new atoms of Qn+1 (namely L and R) which are
either single atoms of P̂m , and therefore of type (b1), or once again intervals of
type (b4).

This completes the induction. Both Item (1) and Item (2) in Definition 4.1 follow
directly from our construction, so we finish the proof of Proposition 4.2 verifying
Item (3). Given two adjacent atoms �,�′ ∈ Qn , there are three cases to consider.

(a) There existm,m′ ≤ n, such that� is a single atom of P̂m and�′ is a single atom
of P̂m′ . In this case, either m = m′, or m and m′ differ by 1 (this is easily proved
by induction on n from the construction of Qn given above). But then, we have
|�| 
 |�′| by Property (6) of the auxiliary partitions (see Sect. 4.1).

(b) There exist m,m′ ≤ n, such that � is a single atom of P̃m and �′ is a single
atom of P̃m′ . This case is analogous to the previous one, just replacing Property
(6) with Lemma 4.8.

(c) For some m ≤ n, at least one of the two atoms, say �, is the union of p ≥ 2
atoms of P̂m inside a single atom of P̃m , which is necessarily a bridge Ĝ ∈ P̃m .
If we are not in the previous cases, then �′ is also contained in the bridge Ĝ.
Looking at the balanced decomposition of Ĝ (given by Lemma 4.15), we see that
there are four possibilities.

• The first possibility is that � is a lateral interval (Li or Ri ) and �′ is the
corresponding central interval Mi+1 of the balanced decomposition of Ĝ, for
some i ∈ {0, .., d}. This case follows from Property (iii) of Lemma 4.12.
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• The second possibility is that � is contained in a final lateral interval (Ld or
Rd ) and �′ is contained in the final central interval Md+1 of the balanced
decomposition of Ĝ. This case follows from Property (iii) of Lemma 4.12 and
Remark 4.13.

• The third possibility is that both � and �′ are contained in the same lateral
interval (Li , Ri ) or the same final central interval (Md+1) of said balanced
decomposition. In this case, the number of fundamental domains of Ĝ inside
� differs at most by 1 from the number of those inside �′, and then, we have
|�| 
 |�′| by Remark 4.13.

• The fourth possibility is that � and �′ are contained in adjacent intervals of
the balanced decomposition of Ĝ, both being lateral intervals. In this case, one
of the two atoms, � or �′, is the union of at most four times fundamental
domains of Ĝ than the other, and we have |�| 
 |�′|, again by Remark 4.13.

This establishes the desired comparability of adjacent atoms of Qn in all cases, with
uniform constants depending only on the real bounds, and the proof of Proposition 4.2
is complete. ��

5 Proof of Theorem B

This final section is devoted to the proof of Theorem B (stated in Sect. 3). With this
purpose, let f and g be C3 bicritical circle maps with the same irrational rotation
number, which is contained in the set A (Definition 2.3). Assume that f and g have
the same signature (Definition 1.1) and that the two critical points of f , say c0 and c1,
are also the critical points of g. Assume, finally, that there existC > 1 and 0 < μ < 1,
such that

∣
∣
∣
∣
∣

|I gn (ci )|
|I f
n (ci )|

− 1

∣
∣
∣
∣
∣
≤ C μn and d1(Rn

i f ,Rn
i g) ≤ C μn, (5.1)

both for i = 0 and i = 1, and for all n ∈ N. Using Proposition 4.1 and the fine grid
constructed in Sect. 4, we will prove that the topological conjugacy h between f and
g that fixes both c0 and c1 is a C1+α diffeomorphism. Our first goal is the following
result.

Proposition 5.1 (Key estimate) There exist constants C1 > 0 andμ1 ∈ (0, 1) depend-
ing only on the real bounds for f , such that

‖h − Id ‖
C0(J f

n (c0))
≤ C1

∣
∣J f

n (c0)
∣
∣μn

1 for all n ∈ N.

Proposition 5.1 will be a consequence of the following lemma, borrowed from [7,
Lemma 4.10].
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Lemma 5.1 There exist constants C > 0, K > 1, and μ∗ ∈ (0, 1) for which the
following holds. Let n, p ∈ N and let v be a vertex of the auxiliary partition P̂n+p (of

f around c0) contained in J f
n (c0). Then

∣
∣v − h(v)

∣
∣ ≤ C K p

∣
∣J f

n (c0)
∣
∣ μn∗.

Moreover, the three constants C, K , and μ∗ only depend on the real bounds.

Before giving the proof of Lemma 5.1, let us see why it implies Proposition 5.1.

Proof of Proposition 5.1 Let μ ∈ (0, 1) be given by Corollary 4.4 and let C > 0,
K > 1 and μ∗ ∈ (0, 1) be given by Lemma 5.1. We define C1 = C1(μ,C) and
μ1 = μ1(μ, K , μ∗) as follows: fix some σ ∈ (0, 1) with σ < − logμ∗/ log K , and
let μ1 = max{K σ μ∗, μσ } and C1 = C + 1/μ. Now, given n ∈ N let p = �σn�,
and given x ∈ J f

n (c0), let v1 and v2 be the endpoints of the atom of the auxiliary
partition P̂n+p that contains x . Since both x and h(x) belong to the convex hull of
[v1, v2] ∪ [

h(v1), h(v2)
]

, we deduce from Corollary 4.4 and Lemma 5.1 that

∣
∣x − h(x)

∣
∣ ≤ ∣

∣v1 − v2
∣
∣ + max

i∈{1,2}
∣
∣vi − h(vi )

∣
∣ ≤ μp

∣
∣J f

n (c0)
∣
∣ + C K p

∣
∣J f

n (c0)
∣
∣μn∗

≤ μ−1(μσ )n
∣
∣J f

n (c0)
∣
∣ + C (K σ μ∗)n

∣
∣J f

n (c0)
∣
∣ ≤ C1

∣
∣J f

n (c0)
∣
∣μn

1 .

��
Remark 5.2 Recall that the auxiliary partitions

{P̂n
}

n∈N
built in Sect. 4.1 around c0

can also be constructed around c1. Since we are assuming exponential convergence of
renormalization for both critical points (as in (5.1) above), the statement of Lemma 5.1
remains valid for those partitions around c1. In particular, Proposition 5.1 holds in
J f
n (c1), as well. This will be useful later, during the proof of Lemma 5.7.

We proceed to make some comments before entering the proof of Lemma 5.1. First
of all, since we are renormalizing around c0, let us write I f

n , I
f
n+1 and J f

n instead

of I f
n (c0), I

f
n+1(c0) and J f

n (c0), respectively (and the same for g). For each n ∈ N,

consider the n-th scaling ratio of f , which is the positive number s f
n defined as

s f
n =

∣
∣I f
n+1

∣
∣

∣
∣I f
n

∣
∣

.

By the real bounds (Theorem 2.2), the sequence
{

s f
n
}

n∈N
is bounded away from

zero and infinity. Recall from Sect. 2.4 that the nth renormalization of f at c0 is the
normalized multicritical commuting pair Rn f : [−s f

n , 1] → [−s f
n , 1] given by

Rn f =
{

Bn, f ◦ f qn ◦ B−1
n, f in [−s f

n , 0]
Bn, f ◦ f qn+1 ◦ B−1

n, f in [0, 1],
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where Bn, f is the unique orientation-preserving affine diffeomorphism between J f
n

and [−s f
n , 1].

Remark 5.3 For any n ∈ N, we have

∥
∥Rn f − Rng

∥
∥
C1([−min{s f

n ,sgn },1]) ≤ C μn . (5.2)

Indeed, by hypothesis (recall Definition 2.5), the difference
∣
∣s f
n − sgn

∣
∣ goes to zero

exponentially fast. Since both sequences
{

s f
n
}

n∈N
and

{

sgn
}

n∈N
are bounded away from

zero and infinity, the two Möbius transformations fixing 0 and 1, and mapping −s f
n

(−sgn respectively) to −1 converge together exponentially fast (and also its inverses).
Since d1(Rn f ,Rng) ≤ C μn , we deduce (5.2).

For all i ≥ n, let Ai, f = Bn, f ◦ B−1
i, f , which is just the linear contraction given by

Ai, f (t) =
∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣
t .

Consider the interval �
f
i ⊂ [−s f

n , 1] given by �
f
i = Bn, f (J

f
i ), and consider the

bicritical commuting pair f ∗
i : �

f
i → �

f
i given by

f ∗
i = Ai, f ◦ Ri f ◦ A−1

i, f .

The contraction Ai, f , the interval �
f
i and the pair f ∗

i depend on n. However, since n
is fixed, we omit to mention it just to simplify notation. In the same way, define the
corresponding objects for g.

Lemma 5.4 We have

∥
∥ f ∗

i − g∗
i

∥
∥
C0(�

f
i ∩�

g
i )

≤ C μn

∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣
.

Proof of Lemma 5.4 Take some y ∈ �
f
i ∩�

g
i , and let y f = A−1

i, f (y) and yg = A−1
i,g(y).

Note that |y| ≤ ∣
∣J f

i

∣
∣/

∣
∣I f
n

∣
∣. By combining the real bounds (Theorem 2.2) with estimate

(3.1) in Lemma 3.2, we obtain

|y f − yg| =
∣
∣
∣
∣
∣

|I f
n |

|I f
i |

− |I gn |
|I gi |

∣
∣
∣
∣
∣
|y| ≤ C1 μn

1
|I f
n |

|I f
i |

|J f
i |

|I f
n |

= C1 μn
1

|J f
i |

|I f
i |

≤ C2 μn
1 .

From Corollary 2.5 (the C1-bounds) and the exponential convergence of renormaliza-
tion (recall Remark 5.3), we deduce that
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∣
∣Ri f (y f ) − Ri g(yg)

∣
∣ ≤ C3 |y f − yg| + C4 μi

2 ≤ C3 C2 μn
1 + C4 μi

2 ≤ C5 μn
3,

where μ3 = max{μ1, μ2}. Using again Lemma 3.2, we finally obtain

∣
∣ f ∗

i (y) − g∗
i (y)

∣
∣ = ∣

∣Ai, f
(Ri f (y f )

) − Ai,g
(Ri g(yg)

)∣
∣

≤
∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣

∣
∣Ri f (y f ) − Ri g(yg)

∣
∣ +

∣
∣
∣
∣
∣

|I f
i |

|I f
n |

− |I gi |
|I gn |

∣
∣
∣
∣
∣

∣
∣Ri g(yg)

∣
∣

≤ C5 μn
3

∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣

+ C1 μn
1

∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣
max{1, sgi } ≤ C6 μn

3

∣
∣I f
i

∣
∣

∣
∣I f
n

∣
∣
.

��
Remark 5.5 As it is not difficult to prove, there exists a constant C0 > 1, depending
only on the real bounds for f , with the following property: let m be a two-bridges
level for f at c0 (see Definition 4.2), and let c fm be the free critical point of the first
return map of f to J f

m (just as in Sect. 4.1). Note that cgm = h(c
f
m) is the corresponding

free critical point for the return of g to J gm , and recall that d > 1 is the maximum of
the criticalities of f at c0 and c1. Then

∣
∣Bm, f (c

f
m) − Bm,g(c

g
m)

∣
∣ ≤ C0 d1(Rm f ,Rmg)1/d .

Combined with hypothesis (5.1), Remark 5.5 gives us

∣
∣Bm, f (c

f
m) − Bm,g(c

g
m)

∣
∣ ≤ C0 C

1/d (μm)1/d = C7 (μ1/d)m .

This is the only place in this paper where we need the assumption that exponential
contraction of renormalization holds in the C1 metric (instead of just C0, which is the
assumption in [7]), to be able to control the position of the critical points for the return
maps. Finally, let us recall [7, Proposition 4.1].

Proposition 5.2 Let φ and ϕ be two almost parabolic maps with the same length �

defined on the same interval. Then, for all x ∈ J1(φ)∩ J1(ϕ) and for all 0 ≤ k ≤ �/2,
we have

|φk(x) − ϕk(x)| ≤ C k3 ‖φ − ϕ‖C0 .

Let us mention that Proposition 5.2, which is based on the geometric inequalities
given byYoccoz’s Lemma 4.11, has been significantly improved in [15, Section 6] (see
for instance Lemma 6.6 on page 2155 and Proposition 6.18 on page 2163). However,
such sharper estimates will not be needed in the present paper. We are ready to start
the proof of Lemma 5.1.

Proof of Lemma 5.1 By Lemma 4.6, there exist L ∈ {1, . . . , p} and n ≤ m1 < · · · <

mL ≤ n + p, such that v = ϕ1 ◦ · · · ◦ ϕL(x), where:
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• For each j ∈ {1, . . . , L}, we have ϕ j = f k j qm j+1+σ j qm j for some σ j ∈ {0, 1}
and k j ∈ Z, where each k j either satisfies |k j | ≤ �(m j ) and |k j | ≤ r(m j ) or
|k j | ≤ �am j+1/2�, depending on whether m j is or is not a two-bridges level for
f at c0.

• For each j ∈ {1, . . . , L − 1}, the point ϕ j+1 ◦ · · · ◦ ϕL(x) either belongs to

J f
m j+1 ∪ �̂

f
m j or to J f

m j+1, depending on whether m j is or is not a two-bridges
level.

• There exists m ∈ {mL , . . . , n + p}, such that the initial condition x either belongs
to

{

c0, f qm+2(c0), c
f
m
}

or to
{

c0, f qm+2(c0)
}

, depending on whether m is or is
not a two-bridges level.

Let w = h(v) and y = h(x), and note that w = ψ1 ◦ · · · ◦ ψL(y), where ψ j =
h ◦ ϕ j ◦ h−1 for each j ∈ {1, . . . , L}. To estimate |v − w|, we will first estimate
|v∗ − w∗|, where v∗ = Bn, f (v) and w∗ = Bn,g(w). Let μ2 ∈ (0, 1) be defined as
μ2 = max{μ1/d , μ1}, where μ is given by hypothesis (5.1), d > 1 is the maximum
of the criticalities of f at c0 and c1, and μ1 is given by Corollary 2.4. We start by
considering x∗ = Bn, f (x) and y∗ = Bn,g(y), and we claim that |x∗ − y∗| ≤ C8 μm

2 .
Indeed, note that

x∗ − y∗ = Am, f
(

Bm, f (x)
) − Am, f

(

Bm,g(y)
) + (

Am, f − Am,g
)(

Bm,g(y)
)

=
∣
∣I f
m

∣
∣

∣
∣I f
n

∣
∣

(

Bm, f (x) − Bm,g(y)
) +

(∣
∣I f
m

∣
∣

∣
∣I f
n

∣
∣

−
∣
∣I gm

∣
∣

∣
∣I gn

∣
∣

)

Bm,g(y).

From the exponential convergence of renormalization (recall Remarks 5.3 and 5.5),
we know that

∣
∣Bm, f (x) − Bm,g(y)

∣
∣ ≤ C7 (μ1/d)m ≤ C7 μm

2 , while from estimate
(3.1) in Lemma 3.2, we have

∣
∣
∣
∣
∣

∣
∣I f
m

∣
∣

∣
∣I f
n

∣
∣

−
∣
∣I gm

∣
∣

∣
∣I gn

∣
∣

∣
∣
∣
∣
∣
≤ C1 μn

∣
∣I f
m

∣
∣

∣
∣I f
n

∣
∣

≤ C1 μn
2

∣
∣I f
m

∣
∣

∣
∣I f
n

∣
∣
.

From the real bounds (see Corollary 2.4), we know that

∣
∣I f
m

∣
∣ ≤ μm−n

1

∣
∣I f
n

∣
∣ ≤ μm−n

2

∣
∣I f
n

∣
∣,

and since
∣
∣Bm,g(y)

∣
∣ ≤ max{1, sgm} is bounded, we obtain the claim.

Now, for each j ∈ {1, . . . , L}, let ϕ∗
j = Bn, f ◦ϕ j ◦B−1

n, f andψ∗
j = Bn,g ◦ψ j ◦B−1

n,g .
We claim that

∥
∥ϕ∗

j − ψ∗
j

∥
∥
C0(�

f
m j ∩�

g
m j )

≤ C9 a
3
m j+1 μ

m j
2 .
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Indeed, combining Proposition 5.2 with Lemma 5.4, we have for any j ∈ {1, . . . , L}
and y ∈ �

f
m j ∩ �

g
m j that

∣
∣ϕ∗

j (y) − ψ∗
j (y)

∣
∣ ≤ C9 |k j |3 μn

∣
∣I f
m j

∣
∣

∣
∣I f
n

∣
∣

≤ C9 |k j |3 μn
2

∣
∣I f
m j

∣
∣

∣
∣I f
n

∣
∣
.

As before, we know from the real bounds (see Corollary 2.4) that

∣
∣I f
m j

∣
∣ ≤ μ

m j−n
1

∣
∣I f
n

∣
∣ ≤ μ

m j−n
2

∣
∣I f
n

∣
∣,

and then

∣
∣ϕ∗

j (y) − ψ∗
j (y)

∣
∣ ≤ C9 |k j |3 μ

m j
2 ≤ C9 a

3
m j+1 μ

m j
2

for any j ∈ {1, . . . , L} and y ∈ �
f
m j ∩ �

g
m j , as claimed.

Finally, we deduce from Yoccoz’s Lemma 4.11 (combined with Koebe’s distortion
principle) that there exists a constant K > 1, depending only on the real bounds for
f , such that each ϕ j is C1 uniformly bounded on J f

m j+1 ∪ �̂
f
m j (or just on J f

m j+1,
depending on whether m j is or is not a two-bridges level).

With these three facts at hand, we estimate the distance between ϕ∗
L(x∗) andψ∗

L(y∗)
as follows:

∣
∣ϕ∗

L(x∗) − ψ∗
L(y∗)

∣
∣

≤ ∣
∣ϕ∗

L(x∗) − ϕ∗
L(y∗)

∣
∣ + ∣

∣ϕ∗
L(y∗) − ψ∗

L(y∗)
∣
∣ ≤ K |x∗ − y∗| + C9 a

3
mL+1 μ

mL
2

≤ K C8 μm
2 + C9 a

3
mL+1 μ

mL
2 .

In the same way, we estimate now the distance between ϕ∗
L−1

(

ϕ∗
L(x∗)

)

and
ψ∗
L−1

(

ψ∗
L(y∗)

)

∣
∣ϕ∗

L−1

(

ϕ∗
L(x∗)

) − ψ∗
L−1

(

ψ∗
L(y∗)

)∣
∣

≤ K
∣
∣ϕ∗

L(x∗) − ψ∗
L(y∗)

∣
∣ + ∣

∣ϕ∗
L−1

(

ψ∗
L(y∗)

) − ψ∗
L−1

(

ψ∗
L(y∗)

)∣
∣

≤ K 2 C8 μm
2 + K C9 a

3
mL+1 μ

mL
2 + C9 a

3
mL−1+1 μ

mL−1
2 .

Proceeding inductively, we obtain

|v∗ − w∗| = ∣
∣ϕ∗

1 ◦ · · · ◦ ϕ∗
L(x∗) − ψ∗

1 ◦ · · · ◦ ψ∗
L(y∗)

∣
∣

≤ C10

⎛

⎝K L μm
2 +

j=L
∑

j=1

K j−1 a3m j+1 μ
m j
2

⎞

⎠

≤ C10 K
p

⎛

⎝μm
2 +

j=L
∑

j=1

a3m j+1 μ
m j
2

⎞

⎠ .
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By condition (2) in Definition 2.3, we have lim j→∞(a3j )
1/ j = 1. Therefore, defining

ε > 0 by (1 + ε)
√

μ2 = 1, there exists a constant C11 = C11(ε) > 0, such that
a3j < C11 (1 + ε) j for all j ∈ N. Hence

a3j+1 μ
j
2 < C11 (1 + ε) j+1 μ

j
2 = C11

1√
μ2

(
μ2√
μ2

) j

= C12 (
√

μ2)
j .

Defining μ∗ ∈ (0, 1) as μ∗ = √
μ2 = max{μ1/2d ,

√
μ1}, we have

|v∗ − w∗| ≤ C10 K
p

⎛

⎝μm
2 +

j=L
∑

j=1

a3m j+1 μ
m j
2

⎞

⎠ ≤ C10 K
p

⎛

⎝μm∗ + C12

j=L
∑

j=1

μ
m j∗

⎞

⎠

≤ C13 K
p

⎛

⎝μm∗ +
+∞
∑

j=n

μ
j∗

⎞

⎠ = C13 K
p
(

μm∗ + μn∗
1 − μ∗

)

≤ C14 K
p μn∗.

Combining this with hypothesis (5.1), we finally obtain

|v − w| = ∣
∣B−1

n, f (v
∗) − B−1

n,g(w
∗)

∣
∣ ≤ |I f

n | |v∗ − w∗| + ∣
∣ |I f

n | − |I gn | ∣∣ |w∗|

≤ |I f
n |C14 K

p μn∗ + |I f
n |

∣
∣
∣
∣
∣
1 − |I gn |

|I f
n |

∣
∣
∣
∣
∣
max{1, sgn }

≤ |I f
n |(C14 K

p μn∗ + C max{1, sgn } μn) ≤ C15 K
p |J f

n | μn∗.

This finishes the proof of Lemma 5.1. ��
We consider now the fine grid constructed in Sect. 4, to establish the final estimates

needed for the proof of Theorem B. Following [7, page 367], we define the level of
an interval I ∈ Qn , denoted �(I ), as the largest m ≤ n such that I is contained in an
element of P̂m . Theorem B will be a straightforward consequence of Proposition 4.1
and the following two lemmas, which are [7, Lemma 4.12] and [7, Lemma 4.13],
respectively.

Lemma 5.6 If Qn contains an interval of level m, then

n ≤ C0

m
∑

j=1

log(1 + a j )

for some constantC0 > 0. In particular, ifρ( f ) satisfies condition (1) inDefinition 2.3,
then m ≥ c1 n, for some constant 0 < c1 < 1 that depends only on ρ( f ).

We omit the proof of Lemma 5.6, being the same as in [7, Lemma 4.12].
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Lemma 5.7 If ρ( f ) satisfies conditions (2) and (3) in Definition 2.3, there exists β ∈
(0, 1) with the following property. If L and R are adjacent intervals of Qn with
�(L) ≥ m and �(R) ≥ m, then

∣
∣
∣
∣

|L|
|R| − |h(L)|

|h(R)|
∣
∣
∣
∣
≤ C βm,

where the constant C > 0 only depends on the real bounds.

Proof of Lemma 5.7 Let us write m = k + p with p = �σk�, where σ > 0 is a small
constant (to be determined along the proof). Let us assume that L ∪ R is contained in
a single atom � of P̂k . There are three cases to consider.

(1) L ∪ R ⊂ J f
k (c0). Let v1, v2, v3 be the endpoints of L and R, respectively, and

let w1, w2, w3 be the endpoints of h(L) and h(R), respectively. By the triangle
inequality

∣
∣
∣
∣

|L|
|R| − |h(L)|

|h(R)|
∣
∣
∣
∣
=

∣
∣
∣
∣

|v1 − v2|
|v2 − v3| − |w1 − w2|

|w2 − w3|
∣
∣
∣
∣

≤
∣
∣
∣
∣

|v1 − v2|
|v2 − v3| − |w1 − w2|

|v2 − v3|
∣
∣
∣
∣
+

∣
∣
∣
∣

|w1 − w2|
|v2 − v3| − |w1 − w2|

|w2 − w3|
∣
∣
∣
∣

≤ |v1 − w1| + |v2 − w2|
|v2 − v3| + |w1 − w2|

|w2 − w3|
|w2 − v2| + |w3 − v3|

|v2 − v3|
= |v1 − w1| + |v2 − w2|

|R| +
∣
∣h(L)

∣
∣

∣
∣h(R)

∣
∣

|w2 − v2| + |w3 − v3|
|R| .

(5.3)

We claim that |h(L)|/|h(R)| is (universally) bounded away from zero and infinity.
Indeed, note first that, again by the triangle inequality

|L| − ∑i=2
i=1 |vi − wi |

|R| + ∑i=3
i=2 |vi − wi |

≤
∣
∣h(L)

∣
∣

∣
∣h(R)

∣
∣

≤ |L| + ∑i=2
i=1 |vi − wi |

|R| − ∑i=3
i=2 |vi − wi |

.

By Proposition 5.1, we have

|L|
|R|

1 − 2C1
|J f

k (c0)|
|L| μk

1

1 + 2C1
|J f

k (c0)|
|R| μk

1

≤
∣
∣h(L)

∣
∣

∣
∣h(R)

∣
∣

≤ |L|
|R|

1 + 2C1
|J f

k (c0)|
|L| μk

1

1 − 2C1
|J f

k (c0)|
|R| μk

1

.

From Lemma 4.16 and condition (3) in Definition 2.3, we obtain

∣
∣J f

k (c0)
∣
∣

|L| ≤ Mp (ak+1 ak+2 . . . ak+p)
2 ≤ Mp exp

(

2p ω(p/k)
)

,
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and the same estimate replacing L with R. Let β1 = (

e2σω(σ) Mσ μ1
)1/(2+σ), and

note that β1 ∈ (0, 1) by taking σ > 0 small enough. Then, we have

|L|
|R|

1 − 2C1 βm
1

1 + 2C1 βm
1

≤
∣
∣h(L)

∣
∣

∣
∣h(R)

∣
∣

≤ |L|
|R|

1 + 2C1 βm
1

1 − 2C1 βm
1

.

By Property (6) of the auxiliary partitions (Sect. 4.1), we finally deduce that the
ratio |h(L)|/|h(R)| is bounded, as claimed. With this at hand, and using again
Proposition 5.1, we deduce from (5.3) that

∣
∣
∣
∣

|L|
|R| − |h(L)|

|h(R)|
∣
∣
∣
∣
≤ C2

∣
∣J f

k (c0)
∣
∣μk

1

|R| ,

and then

∣
∣
∣
∣

|L|
|R| − |h(L)|

|h(R)|
∣
∣
∣
∣
≤ C2 βm

1 .

(2) L ∪ R ⊂ J f
k (c1). As explained right after its proof (see Remark 5.2), Proposi-

tion 5.1 holds in J f
n (c1). Then, we proceed just as in the previous case, using also

Lemma 4.16 (note here that |�| 
 |J f
k (c1)|, as it follows from Corollary 4.3)

and Property (6) of the auxiliary partitions in the same way.
(3) L ∪ R is not contained in J f

k (c0) ∪ J f
k (c1). Let �∗ be the union of � with its

left and right neighbours in the auxiliary partition P̂k . Let j < qk+1 be such that
f j |�∗ is a diffeomorphism with f j (�) ⊂ J f

k (ci ), either for i = 0 or i = 1. By
the previous cases

∣
∣
∣
∣

| f j (L)|
| f j (R)| − |h( f j (L))|

|h( f j (R))|
∣
∣
∣
∣
≤ C2 βm

1 . (5.4)

By Koebe’s principle combined with Corollary 4.4, we deduce in the standard
way that the distortion of f j |L∪R is bounded by eC3 μp

. Therefore, defining
μ3 = μσ/(2+σ) ∈ (0, 1), we obtain

∣
∣
∣
∣
∣

∣
∣ f j (L)

∣
∣

∣
∣ f j (R)

∣
∣

− |L|
|R|

∣
∣
∣
∣
∣
≤ C4 μp ≤ C4 μm

3 . (5.5)

In the same way, but replacing f by g, we obtain

∣
∣
∣
∣
∣

∣
∣g j (h(L))

∣
∣

∣
∣g j (h(R))

∣
∣

− |h(L)|
|h(R)|

∣
∣
∣
∣
∣
≤ C5 μm

3 . (5.6)
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By putting together (5.4), (5.5) and (5.6), we finally obtain

∣
∣
∣
∣
∣

∣
∣h(L)

∣
∣

∣
∣h(R)

∣
∣

− |L|
|R|

∣
∣
∣
∣
∣
≤ C6 βm

2 ,

where C6 = C2 + C4 + C5 and β2 = max{μ3, β1}.
��

Proof of Theorem B

Let {Qn}n∈N be the fine grid constructed in Sect. 4, and let h be the topological
conjugacy considered in Theorem B. Let c1 ∈ (0, 1) be given by Lemma 5.6, and let
C > 0 and β ∈ (0, 1) be given by Lemma 5.7. Then, we just apply Proposition 4.1,
with C and λ = βc1 , to deduce that the conjugacy h is a C1+α diffeomorphism.

Remark 5.8 As mentioned in the introduction, the statement of Theorem A is most
likely true for multicritical circle maps with any number of critical points, and we
believe that it should be possible to adapt the proof of Theorem B, developed in
Sects. 4 and 5, to the multicritical case. To be more precise, let f be a C3 circle
homeomorphism with N ≥ 2 critical points {c0, c1, . . . , cN−1} (all of them being
non-flat) and with irrational rotation number ρ ∈ A (recall Definition 2.3). For any
given n ∈ N, let Nn ∈ {0, . . . , N − 1} be the number of critical points of f qn+1 that
belong to In(c0)\In+2(c0). Consider the (ordered) set

{

1 ≤ j1 < · · · < jNn ≤ an+1
}

,

where, for each i ∈ {1, . . . , Nn}, the index ji is defined by the condition that the
fundamental domain

� ji = f ( ji−1)qn+1+qn
(

In+1(c0)
)

contains a critical point, say cn(i), of f qn+1 . To build auxiliary partitions (recall
Sect. 4.1), let

�̂n(0) = �1 = f qn
(

In+1(c0)
)

, �̂n(Nn + 1) = �an+1

= [

f qn+2(c0), f (an+1−1)qn+1+qn (c0)
]

,

and consider for each i ∈ {1, . . . , Nn} the fundamental domain

�̂n(i) = [

f qn+1(cn(i)), cn(i)
]

.

Just as we did in Sect. 4.1.1, spread each of these intervals under f qn+1 , both forward
and backwards, until it meets the corresponding iterates of the next and the previous
one, �̂n(i + 1) and �̂n(i − 1), respectively. With this at hand, it should be possible
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to build balanced decompositions of bridges and fine grids from the auxiliary parti-
tions, adapting the construction developed in Sect. 4.2. Moreover, it is reasonable to
expect that all geometric estimates of both Sects. 4 and 5, that rely heavily on the real
bounds (Theorem 2.2), Koebe’s distortion principle (see Remark 4.10), and Yoccoz’s
lemma 4.11, hold in the same way as for the bicritical case. Note, finally, that the
criterion for smoothness given by Proposition 4.1 is quite general, thus independent of
the number of critical points of the circle maps referred in the statement of TheoremB.
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