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Abstract
In holomorphic dynamics, complex box mappings arise as first return maps to well-
chosen domains. They are a generalization of polynomial-like mapping, where the
domain of the return map can have infinitely many components. They turned out to
be extremely useful in tackling diverse problems. The purpose of this paper is:

• To illustrate some pathologies that can occur when a complex box mapping is
not induced by a globally defined map and when its domain has infinitely many
components, and to give conditions to avoid these issues.

• To show that once one has a box mapping for a rational map, these conditions
can be assumed to hold in a very natural setting. Thus, we call such complex
box mappings dynamically natural. Having such box mappings is the first step in
tackling many problems in one-dimensional dynamics.

• Many results in holomorphic dynamics rely on an interplay between combinatorial
and analytic techniques. In this setting, some of these tools are:
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320 T. Clark et al.

• the Enhanced Nest (a nest of puzzle pieces around critical points) from
Kozlovski, Shen, van Strien (AnnMath 165:749–841, 2007), referred to below
as KSS;

• the Covering Lemma (which controls the moduli of pullbacks of annuli) from
Kahn and Lyubich (Ann Math 169(2):561–593, 2009);

• the QC-Criterion and the Spreading Principle from KSS.

The purpose of this paper is to make these tools more accessible so that they can
be used as a ‘black box’, so one does not have to redo the proofs in new settings.

• To give an intuitive, but also rather detailed, outline of the proof from KSS and
Kozlovski and van Strien (Proc Lond Math Soc (3) 99:275–296, 2009) of the
following results for non-renormalizable dynamically natural complex box map-
pings:

• puzzle pieces shrink to points,
• (under some assumptions) topologically conjugate non-renormalizable poly-
nomials and box mappings are quasiconformally conjugate.

• We prove the fundamental ergodic properties for dynamically natural box map-
pings. This leads to some necessary conditions for when such a box mapping
supports a measurable invariant line field on its filled Julia set. These mappings
are the analogues of Lattès maps in this setting.

• We prove a version of Mañé’s Theorem for complex box mappings concerning
expansion along orbits of points that avoid a neighborhood of the set of critical
points.

Keywords Holomorphic dynamics · Complex bounds · Rigidity · Renormalization ·
Box mappings
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The Dynamics of Complex Box Mappings 321

1 Introduction

In dynamical systems, a natural and effective way to understand the detailed behavior
of a given map f is to consider the first return map under f to a certain set V , see
Fig. 1. In this way, if the orbit of a point under iteration of f intersects V infinitely
many times, then the first return map will send each point of intersection to the next
point of intersection along the orbit. Therefore, by iterating the first return map instead
of f , one can study properties of certain orbits of f “at a faster speed”. However, there
is a trade-off: the first return map might have a rather complicated, even undesirable,1

structure.
In the analytic setting, a return map might have the structure of a polynomial-like

map. A polynomial-like map is a holomorphic branched covering F : U → V of
degree at least two between a pair of open topological disks U ⊂ V such that U is
relatively compact in V . The restriction of a complex polynomial to a sufficiently large
topological disk in C is an example of a polynomial-like map. Such mappings are an
indispensable tool in the field of holomorphic dynamics due to their fundamental role
in renormalization and self-similarity phenomena.

However, in general, the topological dynamics of a return mapping even under a
polynomial cannot be described by a polynomial-like mapping. This motivates and
explains the need for amore flexible class of mappings, namely complex boxmappings
(see Fig. 2):

Definition 1.1 (Complex box mapping) A holomorphic map F : U → V between two
open sets U ⊂ V ⊂ C is a complex box mapping if the following holds:

1. F has finitely many critical points;
2. V is the union of finitely many open Jordan disks with disjoint closures;
3. every component V of V is either a component of U , or V ∩U is a union of Jordan

disks with pairwise disjoint closures, each of which is compactly contained in V ;
4. for every component U of U , the image F(U ) is a component of V , and the

restriction F : U → F(U ) is a proper map.2

In the above definition of complex box mapping, we assumed that each component
of U and V is a Jordan domain. In some settings, it is convenient to relax this, and
assume that each component U of U and V of V
(a) is simply connected;
(b) when U � V , then V \U is a topological annulus;
(c) has a locally connected boundary.

In Sect. 6.2, we will discuss why and when the theorems in this paper will go through
in this setting.

In one-dimensional holomorphic dynamics, it is often the case that the first step
in understanding the dynamics of a family of mappings is to obtain a good combina-
torial model for the dynamics in the family. Once that is at hand, one can go on to

1 For example, a component of the domain might not properly map onto a component of the range.
2 In [47], where the definition of complex box mapping was given, the requirement that F maps each
component of U onto a component of V properly was implicit.
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322 T. Clark et al.

Fig. 1 The first return map to V

Fig. 2 An example of a complex box mapping F : U → V . The components of U are shaded in grey, there
might be infinitely many of those; the components of V are the topological disks bounded by orange curves.
The critical points of F are marked with crosses (colour figure online)

study deeper properties of the dynamics in the family, for example, rigidity, ergodic
properties and the geometric properties of the Julia sets. It turns out that complex box
mappings are often part of these combinatorial models. Indeed, recent progress on the
rigidity question for a large family of non-polynomial rational maps, so-calledNewton
maps [DS]) made it clear that complex box mappings can be effectively used in the
holomorphic setting well past polynomials: by “boxing away” the most essential part
of the ambient dynamics into a boxmapping one can readily apply the existing rigidity
results without redoing much of the theory from scratch.

These developments motivated us to give a comprehensive survey of the dynamics
of such mappings. The subtlety is that Definition 1.1 is extremely flexible and thus
allows for undesirable pathologies:

Pathologies of General Complex Box Mappings There exists

• a complex box mapping with empty Julia set,
• a complex box mapping with a set of positive measure that does not accumulate
on the postcritical set, and

• a complex box mapping with a wandering domain.
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The Dynamics of Complex Box Mappings 323

These examples are given in Sect. 3. We go on to introduce a class of complex box
mappings, called dynamically natural (see Definition 4.1), for which none of these
pathologies can occur. This class of mappings includes many of the complex box
mappings induced by rational maps and real-analytic maps (and even in some weaker
sense by a broad class of C3 interval maps), see Sect. 2. Moreover, quite often gen-
eral complex box mappings induce dynamically natural complex box mappings, see
Proposition 4.5.

We go on to give a detailed outline of the proof of qc (quasiconformal) rigidity
of dynamically natural complex box mappings. This result was first proved in [47]
relying on techniques introduced in [45]:

QC Rigidity for Complex Box Mappings Every two combinatorially equivalent non-
renormalizable dynamically natural complex box mappings (satisfying some standard
necessary conditions) are quasiconformally conjugate.

We state a precise version of this result in Theorem 6.1. For the definition of
combinatorial equivalence of boxmappings, see Definition 5.4. A dynamically natural
complex boxmapping is non-renormalizable if none of its iterates admit a polynomial-
like restriction with connected filled Julia set; renormalization of box mappings is
discussed in detail in Sect. 5.3.

Since the proofs in [47] and [45] are quite involved, and part of [45] only deals
with real polynomials, we will give a quite detailed outline of the proof of quasicon-
formal rigidity for complex box mappings (our Theorem 6.1). We will pay particular
attention to the places in [47] where the assumption that the complex box mappings
are dynamically natural is used while applying the results from Kozlovski et al. ([45],
Sections 5–6).

The main technical result that underlies qc rigidity are the complex or a priori
bounds. These results give compactness properties for certain return mappings and
control on the geometry of their domains.

Complex bounds for non-renormalizable complex box mappings Suppose that F :
U → V is a non-renormalizable dynamically natural complex box mapping. Then,
there exist arbitrarily small combinatorially defined critical puzzle pieces P (compo-
nents of F−n(V) for some n ∈ N) with complex bounds.

See Theorem 7.1 for a precise statement of what we mean by complex bounds.
Roughly speaking, for a combinatorially defined sequence Vn of pullbacks of V , com-
plex bounds express how well return domains to Vn are inside of Vn in terms of a
lower bound of the modulus of the corresponding annulus.

One of the first applications of complex bounds in one-dimensional dynamics was
in the study of the renormalization of interval mappings. Suppose that f is unimodal
mapping with critical point at 0. One says that f is infinitely renormalizable if there
exist a sequence {Ii } of intervals about 0 and an increasing sequence {si }, si ∈ N, so
that si is the first return time of 0 to Ii and f si (∂ Ii ) ⊂ ∂ Ii . For certain analytic infinitely
renormalizable mappings with bounded combinatorics, Sullivan [97] proved that for
all i sufficiently large, we have that the first return mapping f si : Ii → Ii extends to
a polynomial-like mapping Fi : Ui → Vi (see also [65]). Moreover, he proved that
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324 T. Clark et al.

one has the following complex bounds: there exist a constant δ > 0 and i0 so that
mod(Vi\Ui ) > δ for all i � i0. In fact, here δ is universal in the sense that it can be
chosen so that it only depends on the order of the critical point of f , but i0 does depend
on f . This property is known as beau bounds.3 If there are several critical points we
say that such a δ is beau if it depends only on the number and degrees of the critical
points of f (and not on f itself).

In fact, the complex bounds given by Theorem 7.1 for non-renormalizable box
mappings are also beau for persistently recurrent critical points, see Sect. 5.2 for the
definition. For reluctantly recurrent or non-recurrent critical points, the estimates are
not beau—they depend on the initial geometry of the box mapping, and there is no
general mechanism for them to improve at small scales.

We will not go into the history of results on complex bounds both for real and
complex maps, but refer for references to [17]. That paper deals with real polynomial
maps and shows that beau complex bounds hold in both the finitely renormalizable
and the infinitely renormalizable cases, regardless whether critical points have even or
odd order, or are persistently recurrent or not. This result is proved in [17]. In fact, in
[17], these complex bounds are also established for real analytic maps (and even more
general maps). Note that in the infinitely renormalizable case, such bounds cannot be
obtained from Theorem 7.1. Indeed, in that case, puzzle pieces do not shrink to points,
and so one has to restart the initial puzzle partition at deeper and deeper levels. It turns
out that for non-real infinitely renormalizable polynomials, such complex bounds do
not hold in general ([69]).

As discussed below, complex bounds have many applications: that high renor-
malizations of infinitely renormalizable maps belong to a compact family of
polynomial-like maps; local connectivity of the Julia sets; absence of measurable
invariant line fields; quasiconformal rigidity for real polynomial mappings with real
critical points; density of hyperbolicity in real one-dimensional dynamics, etc.

In addition to their use in proving quasiconformal rigidity, we use complex bounds
to study ergodic properties of complex box mappings. For example, we prove:

Number of ergodic components If F : U → V is a non-renormalizable dynamically
natural complex box mapping, then for each ergodic component E of F there exist one
or more critical points c of F so that c is a Lebesgue density point of E. In particular,
the number of ergodic components of F is bounded above by the number of critical
points of F.

The analogous result in the real case was proved in [96]. For rational maps, there is
the theorem of [60] which states that each forward invariant set of positive Lebesgue
measure accumulates to the ω-limit set of a recurrent critical point. The above result
strengthens this in the setting of non-renormalizable dynamically natural complex box
mappings.

The above result is proved in Corollary 12.2 of Theorem 12.1. In that theorem, we
prove some fundamental ergodic properties of non-renormalizable dynamically natural
complex box mappings. Our study of the ergodic properties of such box mappings
leads us to some necessary conditions for when such a box mapping supports an

3 Beau, from French beautiful, nice, is a mixed acronym “a priori bounds that are eventually universal”.
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The Dynamics of Complex Box Mappings 325

invariant line field on its filled Julia set, see Proposition 13.2. Complex box mappings
with a measurable invariant line field we call Lattès box mappings. Their properties
are analogous to those of Lattès rational maps. Lattès box mappings cannot arise for
complex box mappings induced by polynomials, real maps or Newton maps; however,
we give an example of a dynamically natural complex box mapping that is Lattès, see
Proposition 13.1.

The rigidity theorem stated above deals only with non-renormalizable complex
box mappings. In the setting of dynamically natural mappings, if a map is non-
renormalizable, then all its periodic points are repelling, see Sect. 5.3. However, it
is possible, and in fact quite useful to work with complex box mappings that do admit
attracting or neutral periodic points. Some results in this direction were obtained in
[DS, Section 3]. In this paper, we push it a bit further and establish in Sect. 14 a
Mañé-type theorem for complex box mappings. For non-renormalizable maps, this
result reads as follows:

Mañé-type theorem for box mappings Let F : U → V be a non-renormalizable
dynamically natural complex box mapping so that each component of U is either
‘δ-well-inside’ or equal to a component of V , see Eq. (14.1). For each neighborhood
B of Crit(F) and each κ > 0, there exist λ > 1 and C > 0 so that for all k � 0 and
each x so that x, . . . , Fk−1(x) ∈ U\B and d(Fk(x), ∂V) � κ , one has

|DFk(x)| � Cλk .

In fact, we prove a slightly more general version of this theorem that does not
depend on F being non-renormalizable, see Theorem 14.1. In addition, this version
of the theorem does not require that the orbits of points are bounded away from ω(c)
for c ∈ Crit(F) as in the classical Mañé Theorem for rational maps, see ([60]).

When a holomorphic mapping induces a complex box mapping, such expansivity
results are useful in the study of the measurable dynamics of the mapping and the
fractal geometry of their (filled) Julia sets. For example, this result can be applied to
rational maps for which there is an induced complex box mapping that contains the
orbits of all recurrent critical points intersecting the Julia set, see [Dr].

1.1 Some History of the Notion

The idea of considering successive first return maps to neighborhoods of a critical
point of an interval map is extremely natural, and was used extensively to show
absence of wandering intervals and to obtain various metric properties. The notion of
‘box mapping’ was implicitly used in papers such as ([8, 31, 37, 38, 62, 72])4 and
the terminology ‘nice interval’ (i.e. an interval V so that f n(∂V ) ∩ int(V ) = ∅ for
n ∈ N) was introduced in Martens’ PhD thesis ([61]). A natural way of obtaining
such intervals is by taking intervals in the complement of ∪n

j=0 f
− j (p), where p is a

periodic point and n � 1.

4 To the best of our knowledge, the term “boxmapping” was introduced in [31], but with a meaning slightly
different from ours.
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For complex mappings, box mappings are of course already implicit in Julia and
Fatou’s work, after all that is how you can show that the Julia set of a quadratic map
with the escaping critical point forms a Cantor set: in this case, one sees that the
filled Julia set of the polynomial is the filled Julia set of a complex box mapping
with no critical point and whose domain has exactly two components. More generally,
Douady and Hubbard went further by introducing the notion of a polynomial-like
mapping where U and V each consist of just one component. Using this notion, they
were able to explain some of the similarities that one sees between the Julia sets
of different mappings, similarities within the Mandelbrot set, and the appearance of
sets which look like the Mandelbrot set in various families of mappings ([24]). One
beautiful property of polynomial-likemappings is theDouady–Hubbard Straightening
Theorem: a polynomial-like mapping F on a neighborhood of its filled Julia set K (F)

is hybrid conjugate to a polynomial; that is, there exist a polynomial P , a neighborhood
U ′ of K (F) and a quasiconformal mapping H so that P ◦H(z) = H ◦F(z) for z ∈ U ′
and ∂̄H vanishes on K (F). When the Julia set of F is connected, P is unique. Thus,
from a topological point of view, the family of polynomial-like mappings is no richer
than the family of polynomials.

Suppose one has a unicritical map F with a critical point c so that some iterate Fs

maps some domainU 
 c as a branched covering ontoV � U . If Fis(c) ∈ U for all i �
0, then F is called renormalizable and Fs : U → V is a polynomial-like map. When
F : U → V is not renormalizable, then there exists an element in the forward orbit of
c that intersects the annulus V\U . To keep track of the full forward orbit of critical
points, one would need to include in the domain of F all components of the domain
of the return mapping which intersect the postcritical set. This is a typical use of a
complex boxmapping. If there are atmost a finite number of such components, then the
analogy between complex box mappings and polynomial-like mappings is strongest.
Such mappings appeared in, for example [10], Yoccoz’s work on puzzle maps ([33,
66]), in work showing that the Julia set of a hyperbolic polynomial map is conjugate
to a subshift of finite type ([36]), and was widely used in the case of real interval
maps. They are also called polynomial-like box mappings or generalized polynomial-
like mappings. This terminology was introduced by Lyubich in the early 90s, who
suggested to study maps that are non-renormalizable in the Douady–Hubbard sense
as instances of renormalizable maps in the sense of such generalized renormalizations.
This renormalization idea turned out to be extremely fruitful, see for example ([11,
43, 48, 49, 51, 52, 59, 94, 95, 103]). However, in general, one needs to consider
complex box mappings whose domains have infinitely many components, and even
allow for several components in V . This motivates Definition 1.1. By allowing U to
have infinitely many components, this notion becomes very flexible at the expense of
admitting pathological behavior, which we will discuss in Sect. 3. In the literature,
complex box mappings are sometimes called puzzle mappings, or R-mappings (where
‘R’ stands for return; see, for example, [6]).

Yoccoz gave a practical way of constructing complex box mappings induced by
polynomials. Using the property that periodic points have external rays landing on
them,Yoccoz introducedwhat are nowknown asYoccoz puzzles ([33, 66]). In this case,
V consists of disks whose boundary consists of pieces of external rays and pieces of
equipotentials. Yoccoz used these puzzles to prove local connectivity of the Julia sets
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The Dynamics of Complex Box Mappings 327

of non-renormalizable quadratic polynomials, Pc : z �→ z2 + c, and by transferring
the bounds that he used to prove local connectivity of J (Pc) to the parameter plane,
he proved local connectivity of the Mandelbrot set at parameters c for which Pc is
non-renormalizable ([33]).

One very important step in Yoccoz’ result is to obtain lower bounds for the moduli
of certain annuli which one encounters when taking successive first return maps to
puzzle pieces containing the critical point (the principal nest). Such a property is
usually called complex bounds or a priori bounds. Yoccoz was able to obtain these
bounds for non-renormalizable polynomial maps with a unique quadratic critical point
that is recurrent: here one uses that the first return map to a puzzle piece has at least
two components intersecting the critical orbit (this is related to the notion of children
that we will discuss later on).

It was clear from the early 1990s that complex methods would have wide appli-
cability in one-dimensional dynamics, even when considering interval maps. In the
1990s, complex bounds were established in the setting of real unimodal mappings,
for certain infinitely renormalizable mappings in [97], and for unimodal polynomials
in [48]. These results depended on additional properties of interval mappings. Soon
further results were established for the quadratic family z �→ z2 + c ([52]), and for
classes of real-analytic mappings with a single critical point ([49, 58, 63, 64]). Such
results led to fantastic progress for real quadratic and unicritical maps:

• local connectivity of Julia sets ([48, 49, 52, 58]);
• monotonicity of entropy ([23, 70, 98]);
• density of hyperbolicity in the real quadratic family ([30, 52]) (via quasiconformal
rigidity);

• hyperbolicity of renormalization and the Palis Conjecture for mappings with a
non-degenerate critical point ([6, 53–55]).

While some results held for unimodal maps with a higher degree critical point e.g.
([48, 63, 64, 97]), in general, it took some time for the theory for interval mappings
with several critical points (or a critical point with degree greater than two) and for non-
real polynomials, to catch up to that of quadratic mappings. In the setting of interval
mappings, building on the work of [97] (described in [65]) and applying results of
[64], complex bounds were obtained for certain infinitely renormalizable multicritical
mappings togetherwith a proof of exponential convergence of renormalization for such
mappings ([92, 93]). Towards the goal of proving density of hyperbolic mappings
for one-dimensional mappings, ([43]) proved density of hyperbolicity for smooth
unimodal maps and [89] proved C2 density of Axiom A interval mappings by first
proving complex bounds and certain local rigidity properties for certain multimodal
interval mappings.

To prove quasiconformal rigidity, the techniques from [30, 52] rely on themap to be
unimodal and the critical point to be quadratic, because that implies that the moduli of
certain annuli grow exponentially. To deal with general real multimodal maps, ([45])
introduced a sophisticated combinatorial construction (the EnhancedNest). Using this,
togetherwith additional results for intervalmaps, complex bounds and quasiconformal
rigidity for real polynomial mappings with real critical points were proved in [45].
This implies density of hyperbolicity for such polynomials. In [46], complex box
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mappings in the non-minimal case were constructed, and these were used to study
‘global perturbations’ of real analytic maps thus establishing density of hyperbolicity
for one-dimensional mappings in the Ck topology for k = 1, 2, . . . ,∞, ω. One can
also show that one has density of hyperbolicity for real transcendental maps andwithin
full families of real analytic maps [79], [CvS2]. One can apply the techniques of [45]
to prove complex bounds and qc rigidity for real analytic mappings and even in some
sense for smooth interval maps, see ([17]), [CvS]. The rigidity result from [45] can
also be used to extend the monotonicity of entropy for cubic interval maps ([71]) to
general multimodal interval maps (with only real critical points) ([13, 44]) and to show
that zero entropy maps are on the boundary of chaos ([18]).

The results mentioned above rely on complex bounds which were initially only
available for real maps. Complex mappings lack the order structure of the real line,
and some tools that are very useful for real mappings such as real bounds ([96]) and
Poincaré disks cannot be used to prove complex bounds for complex mappings. Thus,
new analytic tools were required, namely the Quasiadditivity Law and the Covering
Lemma of [41]. Using this new ingredient, the theory for non-renormalizable complex
polynomials was brought up to the same level as that of real quadratic polynomials in
the unicritical setting in [42], [2], [7] and in the general non-renormalizable polynomial
case in [47]. Going beyond mappings with non-degenerate critical point, for real
analytic unimodal maps with critical points of even degree, exponential convergence
of renormalization was proved in [4] and the Palis Conjecture in this setting was
proved in [14], see also ([12]). The Covering Lemma was also used in [47] to prove
local connectivity of Julia sets, absence of measurable invariant line fields and qc
rigidity of non-renormalizable polynomials.

1.2 The Julia Set and Filled Julia Set of a BoxMapping

Given a complex box mapping F : U → V , the filled Julia set of F is defined as

K (F) :=
⋂

n�0

F−n(V).

The set K (F) consists of non-escaping points: those whose orbits under F never
escape the domain of the map.

As for the Julia set of F , there are a few candidates which one could take as the
definition. No matter which definition one uses, the properties of the Julia set in the
context of complex boxmappings are often quite different from those of the Julia set of
a rational mapping, mainly due to the fact thatU can have infinitely many components.
We discuss this in Sect. 3.1, where we define two sets

JU (F) := ∂K (F) ∩ U and JK (F) := ∂K (F) ∩ K (F),

each of which could play the role of the Julia set.
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The Dynamics of Complex Box Mappings 329

1.3 Puzzle Pieces of BoxMappings

One of the most important properties of complex box mappings is that they provide a
kind of “Markov partition” for the dynamics of F on its filled Julia set: the components
of V and their iterative pullbacks are analogous to Yoccoz puzzle pieces for polyno-
mials. Having such a topological structure is a starting point for the study of many
questions in dynamics. Therefore, following ([45, 47]), for a given n � 0, a connected
component of F−n(V) is called a puzzle piece of depth n for F . For x ∈ V , the puzzle
piece of depth n containing x is the connected component of F−n(V) containing x
(when x escapes U in less than n steps, this set will be empty).

It is easy to see that F properly maps a puzzle piece of depth n + 1 onto a puzzle
piece of depth n, for every n � 0, and any two puzzle pieces are either nested, or
disjoint. In the former case, the puzzle piece at larger depth is contained in the puzzle
piece of smaller depth.

Remark In the literature, the puzzle pieces that are constructed for polynomials or
rational maps are usually assumed to be closed. In the context of polynomial-like
mappings, or generalized polynomial-like mappings, similar to ours, the puzzle pieces
are often defined as open sets.

1.4 Structure of the Paper

The paper is organized as follows.
In the last subsection of the introduction, Sect. 1.5, we introduce some notation

and terminology that will be used throughout the paper. We encourage the reader to
consult this terminological subsection if some notion was used in some section of the
paper but was not defined earlier in that section.

In Sect. 2, we give several examples of complex boxmappings that we have alluded
to above and which appear naturally in the study of real analytic mappings on the
interval and rational maps on the Riemann sphere. The purpose of this section is
to give additional motivation for Definition 1.1 and to convince the reader that in a
great variety of setups the study of a dynamical system can be almost reduced to the
study of an induced box mapping, and hence one can prove rigidity and ergodicity
properties of various dynamical systems simply by “importing” the general results on
box mappings discussed in this paper. We end Sect. 2 by posing some open questions
about box mappings.

In Sect. 3, we present some of the pathologies that can occur for a box mapping
due to the fairly general definition of this object. The discussion in that section will
lead to the definition of a dynamically natural box mapping in Sect. 4 for which such
undesirable behavior cannot happen. These box mappings arise naturally in the study
of both real and complex one-dimensional maps, hence the name.

In Sect. 5, we recall the definitions and properties of some objects of a combi-
natorial nature that can be associated to a given box mapping (fibers, recurrence of
critical orbits, etc.). We end that section with the definitions of renormalizable and
combinatorially equivalent box mappings.
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In Sect. 6, we state the main result on the rigidity and ergodic properties of non-
renormalizable dynamically natural box mappings, Theorem 6.1. This result includes
shrinking of puzzle pieces, a necessary condition for a complex boxmapping to support
an invariant line field on its Julia set, and quasiconformal rigidity of topologically
conjugate complex box mappings, with a compatible “external structure”. This result
was proven in [47] for boxmappings induced by non-renormalizable polynomials, and
the proof extends to our more general setting. We will elaborate on its proof with a
twofold goal: on one hand, to emphasize on several details and assumptions that were
not mentioned or were implicit in [47], and on the other hand, to make the underlying
ideas and proof techniques better accessible to a wider audience beyond the experts.

The rest of the paper, namely Sects. 7–12, is dedicated to reaching this goal. The
structure of the reminder of the paper, starting from Sect. 7, is outlined in Sect. 6.3,
and we urge the reader to consult that subsection for details.

In Sect. 12, we build on the description of the ergodic properties of complex box
mappings to give conditions for the absence of measurable invariant line fields for
box mappings. In Sect. 13, we give examples of box mappings which have invariant
line fields and which are the analogue of rational Lattès maps in this setting. We also
derive a Mañé Theorem showing that one has expansion for orbits of complex box
mappings which stay away from critical points, see Sect. 14. These results were not
explicit in the literature.

Finally,AppendixAcontains some “well-known to thosewhoknow itwell” facts, in
particular, about various return constructions that are routinely used to build complex
box mappings.

1.5 Notation and Terminology

We refer the reader to some standard reference background sources in one-dimensional
real ([65]) and complex ([67]), [Lyu7] dynamics, as well as to our Appendix A.

1.5.1 Generalities

We let C denote the complex plane, Ĉ be the Riemann sphere, we write D = D1
for the open unit disk and Dr for the open disk of radius r centered at the origin. A
topological disk is an open simply connected set in C. A Jordan disk is a topological
disk whose topological boundary is a Jordan curve.

An annulus is a doubly connected open set in C. The conformal modulus of an
annulus A is denoted by mod(A).

By a component we mean a connected component of a set. For a set B and a
connected subset C ⊂ B or a point C ∈ B, we write CompC B for the connected
component of B containing C .

We let A and cl A stand for the closure of a set A in C (we will use both notations
interchangeably, depending on typographical convenience); int A is the interior of the
set A; #A is the cardinality of A. An open set A is compactly contained in an open set
B, denoted by A � B, if A ⊂ B.
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We let diam(A) be the Euclidean diameter of a set A ⊂ C. A topological disk
P ⊂ C has η-bounded geometry at x ∈ P if P contains the open round disk of radius
η · diam(P) centered at x . We simply say that P has η-bounded geometry if it has
η-bounded geometry with respect to some point in it.

For a Lebesguemeasurable set X ⊂ C, wewritemeas(X) for the Lebesguemeasure
of X .

1.5.2 Notation and Terminology for General Mappings

In this paper, we will restrict our attention to the dynamics of holomorphic mappings.
For a given holomorphic map f , f n denotes the n-th iterate of the map.We let Crit( f )
denote the set of critical points of f , and PC( f ) stands for the union of forward orbits
of Crit( f ), i.e.,

PC( f ) = {
f n(c) : c ∈ Crit( f ), n � 0

}

as long as n is chosen so that f n(c) is well defined. For a point z in the domain of f ,
we write orb(z) for the forward orbit of z under f , i.e., orb(z) = { f n(z) : n � 0}. We
also write ω(z) for the ω-limit set of orb(z), i.e. ω(z) = ⋂

k�0 { f n(z) : n > k}.
For a holomorphic map f and a set B in the domain of f , a line field on B is the

assignment of a real line through each point z in a positive measure subset E ⊂ B so
that the slope is a measurable function of z. A line field is invariant if f −1(E) = E
and the differential Dz f transforms the line at z to the line at f (z).

A set A ⊂ U is minimal for a map f : U → V , U ⊂ V if the orbit of every point
z ∈ A is dense in A. Periodic orbits are examples of minimal sets.

1.5.3 Nice Sets and Return Mappings

For a map f , an open set B in the domain of f is called wandering if f k(B) 
= f �(B)

for every k 
= � and B is not in the basin of a periodic attractor. The set B is called
nice if f k(∂B) ∩ int B = ∅ for all k � 1; it is strictly nice if f k(∂B) ∩ B = ∅ for all
k � 1.

Given a holomorphic map f : U → V and a nice open set B ⊂ U , define

L(B) := {z ∈ U : ∃k � 1, f k(z) ∈ B}, R(B) := L(B) ∩ B, L̂(B) := L(B) ∪ B.

The components ofL(B),R(B) and L̂(B) are called called, respectively, entry, return
and landing domains (to B under f ).

For a point z ∈ U , we will use the following short notation:

Lz(B) := Compz L(B), L̂z(B) := Compz L̂(B).

The first entry map EB : L(B) → B is defined as z �→ f k(z)(z), where k(z) is
the minimal positive integer with f k(z)(z) ∈ B. The restriction of EB to B is the first
return map to B; it is defined on R(B) and is denoted by RB . The first landing map
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LB : L̂(B) → B is defined as follows: LB(z) = z for z ∈ B, and LB(z) = EB(z) for
z ∈ L(B)\B.

We will explain some basic properties of these maps in Appendix A.

1.5.4 Notation and Terminology for Complex Box Mappings

In this paper, our object of study is a complex box mapping F : U → V . Sometimes
will abbreviate this terminology and simply refer to a box mapping F , and unless
otherwise stated, by box mapping we mean a complex box mapping.

We define the puzzle pieces of depth n to be the components of F−n(V). If A ⊂ C,
we call a collection of puzzle pieces whose union contains A a puzzle neighborhood
of A.

The non-escaping (or filled Julia) set of F is defined as K (F) := ⋂
n�0 F

−n(V).

A box mapping F ′ : U ′ → V ′ is induced from F : U → V if U ′ and V ′ are unions
of puzzle pieces of F and the branches of F ′ are compositions of the branches of F .

Given a point z ∈ K (F), a nest of puzzle pieces about z or simply a nest is a
sequence of puzzle pieces that contain z. We say that puzzle pieces shrink to points
if for any infinite nest P1 ⊃ P2 ⊃ P3 ⊃ . . . of puzzle pieces, we have that diam(Pn)
tends to zero as n → ∞.

We will say that a complex box mapping F : U → V has moduli bounds if there
exists δ > 0 so that for every component U of U that is compactly contained in a
component V of V we have that mod(V \U ) > δ.

1.5.5 ı-Nice and ı-Free Puzzle Pieces

A puzzle piece P is called δ-nice if for any point z ∈ PC(F) ∩ P, whose orbit returns
to P , we have that mod(P\Lz(P)) > δ. Note that strictly nice puzzle pieces are
automatically 0-nice.

A puzzle piece P is called δ-free,5 if there exist puzzle pieces P− and P+ with
P− ⊂ P ⊂ P+, so that mod(P+\P) and mod(P\P−) are both at least δ and the
annulus P+\P− does not contain the points in PC(F).

2 Examples of BoxMappings Induced by Analytic Mappings

In this section, we give quite a few examples of complex box mappings that appear in
the study of complex rational and real-analytic mappings.

We end this section with an outlook of further perspectives and open questions.

2.1 Finitely Renormalizable Polynomials with Connected Julia Set, See Fig. 3

Suppose that P : C → C is a polynomialmapping of degree d with connected Julia set.
By Böttcher’s Theorem, P restricted to C\K (P) is conjugate to z �→ zd on C\D by a

5 In [47], the terminology δ-fat was used instead of δ-free. In the present paper, we prefer the latter, more
friendly and more transparent terminology.
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Fig. 3 The Yoccoz puzzle pieces of depths 0, 1 and 2 for the polynomial z �→ z2 + i are shown in color on
the left, middle and right picture, respectively. In this example, Y0 consists of three pieces shown in green,
blue and orange on the left. The pieces at lager depths are iterative preimages of pieces at smaller depths
and are shown in corresponding colors (colour figure online)

conformal mapping ϕ : C\D → C\K (P). There are two foliations that are invariant
under z �→ zd : the foliation by straight rays through the origin, and the foliation by
round circles centered at the origin. Pushing these foliations forward by ϕ, one obtains
two foliations of C\K (P), which are invariant under P . The images of the round
circles under ϕ are called equipotentials for P , and the images of the rays are called
rays for P . Quite often the terminology dynamic rays is used to distinguish these rays
from rays in parameter space, but we will not need to make that distinction in this
paper. When constructing the Yoccoz puzzle, an important consideration is whether
the rays land on the filled Julia set (that is, the limit set of the ray on the filled Julia set
consists of a single point). Fortunately, rays always land at repelling periodic points
and consequently, such rays form the basis for the construction of the Yoccoz puzzle.

To construct the Yoccoz puzzle, one needs to be able to make an initial choice
of an equipotential and rays which land at repelling periodic or preperiodic points
and separate the plane.6 The top level Y0 of the Yoccoz puzzle is then defined as the
union of bounded components of C in the complement of the chosen equipotential
and rays, see Fig. 3. For n � 0, a Yoccoz puzzle piece of depth n is then a component
of P−n(Y0). For unicritical mappings, z �→ zd + c, to define Y0, one typically takes
the rays landing at the dividing fixed points (fixed points α so that K (P)\{α} is not
connected), their preimages, and an arbitrary equipotential.

The main feature of Yoccoz puzzle pieces is that they are nice, i.e. Pn(∂V )∩V = ∅
for every piece V and n ∈ N. This property guarantees that puzzle pieces at larger
depths are contained in puzzle pieces at smaller depths (compare Fig. 3). Moreover,
if all the rays in the boundary of the puzzle piece V land at strictly preperiodic points,
then V is strictly nice: Pn(∂V ) ∩ V = ∅ for n ∈ N. In this case, all of the return
domains to V are compactly contained in V , and so the first return mapping to V has
the structure of a complex box mapping. This construction is the prototypical example
of a complex box mapping.

In general, if P is at most finitely renormalizable, that is P has at most finitely
many distinct polynomial-like restrictions, then as was shown in Kozlovski and van
Strien ([47], Section 2.2), for such polynomials with additional property of having

6 This can be done, for example, when all finite periodic points of the polynomial are repelling.
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Fig. 4 An example of a complex box mapping F : U → V associated to a real-analytic unimodal mapping
f with critical point c whose orbit is dense in the interval. V is a Poincaré lens domain such that V ∩ R is a
nice interval containing c, and U is the domain of the first return map to V under f . In this example, U ∩ R

is dense in V ∩ R, i.e. the real trace of U “tiles” the real trace of V

no neutral periodic points one can always find a strictly nice neighborhood V of the
critical points of P lying in the Julia set, with this neighborhood being a finite union
of puzzle pieces, so that the first return mapping to V under P has the structure of a
complex box mapping.

2.2 Real Analytic Mappings, See Fig. 4

For a real analytic mapping f of a compact interval, in general, one does not have
Yoccoz puzzle pieces. Recall that to construct the Yoccoz puzzle for a polynomial P
one makes use of the conjugacy between P and zd in a neighborhood of ∞, where d
is the degree of P . Nevertheless, one can construct by hand complex box mappings,
which extend the real first return mappings, in the following sense. There exists a nice
neighborhood I ⊂ R of the critical set of f with the property that each component of
I contains exactly one critical point of f , and a complex box mapping F : U → V ,
so that the real trace of V is I, and for any component U of U , the real trace of U
is a component of the (real) first return mapping to I. Suppose that f is an analytic
unimodal mapping with critical point c. If there exists a nice interval I 
 c, so that so-
called scaling factor |I |/|Lc(I )| is sufficiently big, then one can construct a complex
box mapping which extends the real first return mapping to Lc(I ) by taking V to be
a Poincaré lens domain with real trace Lc(I ), i.e. see Fig. 4. It turns out that for non-
renormalizable unimodal mappings with critical point of degree two or a reluctantly
recurrent critical point of any even degree (see Sect. 5.2 for the definition), one can
always find such a nice neighborhood I of c so that |I |/|Lc(I )| is arbitrarily large.
For infinitely renormalizable mappings, and for non-renormalizable mappings with
degree greater than 2, this need not be the case. If all the scaling factors are bounded,
then the construction is trickier, see for example ([49]). Such complex box mappings
were constructed for general real-analytic interval mappings in [17], [CvS], see also
([43]) for unicritical real analytic maps with a quadratic critical point.

2.3 NewtonMaps, See Fig. 5

Given a complex polynomial P : C → C, the Newton map of P is the rational map
NP : Ĉ → Ĉ on the Riemann sphere Ĉ defined as
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NP (z) := z − P(z)

P ′(z)
.

These maps are coming from Newton’s iterative root-finding method in numerical
analysis and hence provide examples of well-motivated dynamical systems. The roots
of P are attracting or super-attracting fixed points of NP , while the only remaining
fixed point of NP in Ĉ is ∞ and it is repelling. The set of points in Ĉ converging to
a root is called the basin of this root, and the component of the basin containing the
root is the immediate basin.

Newtonmaps are arguably the largest family of rational maps, beyond polynomials,
for which several satisfactory global results are known. This progress was possible due
to abundance of touching points between the boundaries of components of the root
basins: these touchings provide a rigid combinatorial structure. Similarly to the real-
analytic mappings, Newton maps do not have global Böttcher coordinates. However,
the local coordinates in each of the immediate basins of roots allow one to find local
equipotentials and local (internal) rays that nicely co-land from the global point of
view. In this way, Newton maps possess forward invariant graphs (called Newton
graphs) that provide a partition of the Riemann sphere into pieces similar to Yoccoz
puzzle pieces, see Fig. 5. Contrary to the Yoccoz construction, building the Newton
puzzle is not a straightforward task. For Newton maps of degree 3 it was carried out
in [83], while for arbitrary degrees in was done in a series of papers ([27, 28]), and
independently in [WYZ]. Once the Newton puzzles are constructed, one can induce a
complex box mapping as the first return map to a certain nice union of Newton puzzle
pieces containing the critical set; this was done in [DS], where the rigidity results for
box mappings that we discuss in the present paper were applied to conclude rigidity
of Newton dynamics.

2.4 Other Examples

Let us move to further examples of dynamical systems existing in the literature where
a complex box mapping with nice dynamical properties can be induced.

2.4.1 Box Mappings from Nice Couples

In [81], the concept of nice couples is defined. Given a rational map f : Ĉ → Ĉ, a nice
couple for f is a pair of nice sets (V̂ , V ) such that V � V̂ , each component of V̂ , V
is an open topological disk that contains precisely one element of Crit( f ) ∩ J ( f ),
and so that for every n � 1 one has f n(∂V ) ∩ V̂ = ∅. Note that if (V̂ , V ) is a nice
couple, then V is strictly nice. This implies that if V := V and F : U → V is the first
return map to V under f , then each component of U is compactly contained in V . It
then follows that F is a complex box mapping in the sense of Definition 1.1. We see
that if f has a nice couple, then f induces a complex box mapping F : U → V such
that U is the return domain to V under f and Crit( f ) ⊂ V .

In [75, 76], the authors study thermodynamic formalism for rational maps that have
arbitrarily small nice couples. They show that certain weakly expanding maps, like
topological Collet–Eckmann rational mappings (which include rational mappings that
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Fig. 5 An example of the Newton puzzle partition for the degree 4 Newton map. The dynamical plane of
the map is shown on the left, with the roots of the corresponding polynomial being marked with circles.
For each n � 0, the Newton puzzle partition of depth n is a tiling of a neighborhood of the Julia set on
the Riemann sphere with topological disks (Newton puzzle pieces). These partitions have nice mapping
properties (the Markov property), and as n grows, they become finer and finer: the number of pieces of
depth n grows and depth n + 1 pieces tile the pieces of depth n (modulo truncation in the basins of roots).
On the right, the Newton puzzle partition of depth 0 is shown (7 puzzle pieces are drawn in different colors)
(colour figure online)

are exponentially expanding along their critical orbits), have nice couples, and hence
induce complex box mappings (see also [82]).

2.4.2 Box Mappings Associated to Fatou Components

In several scenarios, one can construct a complex boxmapping associated to a periodic
Fatou component of a rational map.

One instance when it is particularity easy to do is when a rational map f possess a
fully invariant infinitely connected attracting Fatou component U . An example of such
a rational map is a complex polynomial with an escaping critical point. For such f , as
a starting set of puzzle pieces one can use, for instance, the disks bounded by the level
lines of a Green’s function associated to U for some sufficiently small potential (see
Fig. 6). The first return mapping under f to the union of those disks that contain the
non-escaping critical points would then induce a complex box mapping. The results
from the current paper, namely those described in Theorem 6.1, Sects. 6.1 and 12.1,
can be then used to deduce various rigidity and ergodicity results for such f ’s. Thus,
one can rephrase (and possibly shorten) the proofs in [99], [104] and [105], where the
authors deal with the above mentioned class of rational maps, using the language and
machinery of complex box mappings more explicitly.

In [84], it was shown that for a complex polynomial P every bounded Fatou com-
ponent U , which is not a Siegel disk, is a Jordan disk. For the proof, it is enough to
consider the situation when U is an immediate basin of a super-attracting fixed point
(in the parabolic case, the corresponding parabolic tools should be used instead, see
[73]). The authors then build puzzle pieces in a neighborhood of ∂U using pairs of
periodic internal (w.r.t. U ) and external rays that co-land on ∂U , as well as equipo-
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Fig. 6 The filled Julia set of the cubic polynomial P : z �→ c−(z3−3z−2)/(c2−c−2) for c = −0.2+0.1i .
In this example, Crit(P) = {−1, 1}with 1 an escaping critical point and−1 of period two. Since the critical
point escapes, the complex box mapping F : U1 � U2 → V can be induced using the equipotentials ∂V
and ∂U1 ∪ ∂U2 = P−1(∂V) in the basin of ∞. Puzzle pieces of larger depth are shown in deeper shades of
red. This example illustrates a standard way of inducing a box mapping for rational maps with an infinitely
connected fully invariant attracting Fatou component (colour figure online)

tentials in U and in the basin of ∞ for P . Using these puzzle pieces, it is possible to
construct a strictly nice puzzle neighborhood of Crit(P) ∩ ∂U . The first return map
to this neighborhood then defines a complex box mapping. Using this box mapping,
the main result of [84] follows from Theorem 6.1 and the discussion in Sect. 6.1. A
similar strategy was used in [DS] to prove local connectivity for the boundaries of root
basins for Newton maps.

2.4.3 Box Mappings in McMullen’s Family

In [100], puzzle pieces were constructed for certain McMullen maps fλ : z �→
zn + λ/zn , λ ∈ C\{0}, n � 3. This family includes maps with a Sierpiński car-
pet Julia set. In contrast to the previously discussed examples, where the puzzle pieces
where constructed using internal and external rays, the pieces constructed in [100] are
bounded by so-called periodic cut rays: these are forward invariant curves that inter-
sect the Julia set in uncountably many points and whose union separates the plane.
Properly truncated in neighborhoods of 0 and ∞ (the latter is a super-attracting fixed
point of fλ, and fλ(0) = ∞), these curves and their pullbacks provide an increasingly
fine subdivision of a neighborhood of J ( fλ) into puzzle pieces. Using these pieces,
a complex box mapping can be induced. Similarly to the examples above, the main
results of [100] can be then obtained by importing the corresponding results on box
mappings.
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2.5 Outlook and Questions

In this subsection, we want to mention some research questions related to the notion
of complex box mapping and to the techniques presented in this paper.

2.5.1 Combinatorial Classification of Analytic Mappings via Box Mappings

The classification of box mappings goes via a combinatorial construction involving
itineraries with respect to curve families discussed in Sect. 5.4. For polynomials and
rational maps one often uses trees and tableaux to obtain combinatorial information.
This is encoded in the pictograph introduced in [20] for the case where infinity is a
super attracting fixed point whose basin is infinitely connected. It would be interesting
to explore the relationship in more depth.

2.5.2 Metric Properties of Analytic Mappings via Box Mappings

Complex box mappings play a crucial role in the study of the measure theoretic
dynamics of rational mappings and the fractal geometry of their Julia sets. This has
been a very active area of research, and here we just provide a snapshot of some of
the results in these directions. Some of the natural questions in this setting concern
the following:

(1) The existence and properties of conformalmeasures supported on the Julia set, and
the existence and properties of invariant measures that are absolutely continuous
with respect to a conformal measure.

(2) Finding combinatorial or geometric conditions on a mapping that have conse-
quences for the measure or Hausdorff dimension of its Julia set, i.e. if the measure
is positive or zero, or whether the Hausdorff dimension is two or less than two.

(3) When is the Julia set holomorphically removable?7

(4) There are several different quantities which are related to the complexity of a
fractal or expansion properties of amapping on its Julia set, among them, theHaus-
dorff dimension, the hyperbolic dimension, and the Poincaré exponent. While it is
known that these quantities are not always all equal [AL3], in many circumstances
they are, and it would be very interesting to characterize thosemappings for which
equality holds.

Themost complete results are known for rational mappings that are weakly expand-
ing on their Julia sets, for example, see ([76, 82]). Both conformal measures and
absolutely continuous invariant measures as in (1) are well understood. It is known
that whenever the Julia set of such a mapping is not the whole sphere that it has Haus-
dorff dimension less than two, and for suchmappings all the aforementioned quantities
in (4) are equal. Moreover, when additionally such a mapping is polynomial, its Julia
set is removable.

For infinitely renormalizable mappings with bounded geometry and bounded com-
binatorics, ([3]) establishes existence of conformalmeasures; equality of the quantities

7 Let � ⊆ Ĉ be a domain, E ⊂ � be a compact set, and f : �\E → Ĉ be a holomorphic map. A set E is
called (holomorphically) removable if f extends to a holomorphic mapping on the whole �.
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mentioned in (4), when the Julia has measure zero; and that for such mappings if the
Hausdorff dimension is not equal to the hyperbolic dimension, then the Julia set has
positive area. The existence of mappings with positive area (and hence with Hausdorff
dimension two) Julia set, but with hyperbolic dimension less than two was proved in
[AL3].

A final class of mappings for which many such results are known are non-
renormalizable quadratic polynomials. It was proved in [51], [Shi] that their Julia sets
have measure zero, in [Ka] that they are removable, and in [74] that their Hausdorff
and hyperbolic dimensions coincide.

Further progress on these questions for rational maps (or polynomials) will most
likely involve complex box mappings, and moreover any such questions could also be
asked for complex box mappings. Indeed, this point of view is taken in, for example,
[PZ].

2.5.3 When Can Box Mappings Be Induced?

Once one has a box mapping for a given analytic map, one can use the tools discussed
in this paper. Therefore, it is very interesting to find more classes of maps for which
box mappings exist:

Question 1 Is it true that for every rational (or meromorphic) map with a non-empty
Fatou set one has an associated non-trivial box mapping?

We say that a box mapping F is associated to a rational (meromorphic) map f if
every branch of F is a certain restriction of an iterate of f , and the critical set of F
is a subset of the critical set of the starting map f . Furthermore, here we say that a
box mapping is non-trivial if the critical set of the box mapping is non-empty and it
satisfies the no permutation condition (see Definition 4.1).

In fact, the authors are not aware of any general procedure which associates a non-
trivial box mapping to a transcendental function. Examples of box mappings in the
complement of the postsingular set for transcendental maps were constructed in [21].

Question 2 Are there examples of rational maps whose Julia set is the entire sphere
and for which one cannot find an associated non-trivial box mapping?

For example, for topological Collet–Eckmann rational maps, ([76]) uses the strong
expansion properties to construct box mappings. The previous two questions ask
whether one can also do this when there is no such expansion. Similarly:

Question 3 Can one associate a box mapping to a rational map with Sierpiński carpet
Julia set beyond the examples discussed previously (where symmetries are used)?

Another class of maps for which the existence of box mappings is not clear is when
one has neutral periodic points:

Question 4 Let f be a complex polynomial with a Siegel disk S. Under which con-
ditions is it possible to construct a puzzle partition of a neighborhood of ∂S and use
this partition to associate a complex box mapping to f ?
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There is a recent result in this direction, namely in [Yan], a puzzle partition was
constructed for polynomial Siegel disks of bounded type rotation number. Using this
partition and the Kahn–Lyubich Covering Lemma (see Lemma 7.10), local connec-
tivity of the boundary of such Siegel disks was established. In that paper, the author
exploits the Douady–Ghys surgery and the Blaschke model for Siegel disks with
bounded type rotation number. This model allows one to construct “bubble rays”
growing out of the boundary of the disk. These rays, properly truncated, then define
the puzzle partition. However, the resulting puzzle pieces havemore complicatedmap-
ping properties than traditional Yoccoz puzzles (for example, they develop slits under
forward iteration). Hence, it is not clear at this point whether the tools presented in
this paper can be applied (see also Sect. 6.2).

2.6 Further Extensions

The notion of complex box mapping has been extended in two directions. The first
of these considers multivalued generalized polynomial-like maps F : U → V . This
means that we consider open sets Ui and a holomorphic map Fi : Ui → V on each
of these sets. If these sets Ui are not assumed to be disjoint, the map F(z) := Fi (z)
when z ∈ Ui becomes multivalued. Such maps are considered in [48], [49], [89] as
a first step to obtain a generalized polynomial-like map with moduli bounds (because
the Yoccoz puzzle construction may not apply). As is shown in those papers, one can
often work with such multivalued generalized polynomial-like maps almost as well
as with their single valued analogues.

The other extension of the notion of complex box mapping is to assume that F is
asymptotically holomorphic (along, for example, the real line) rather than holomor-
phic. Here we say that F is asymptotically holomorphic of order β > 0 along some
set K if ∂

∂ z̄ F(z) = O(dist(z, K )β−1). This point of view is considered in [17] and
[CdFvS]. For example, in the latter paper C3+α-interval maps with α > 0 are consid-
ered. Such maps have an asymptotically holomorphic extension to the complex plane
of order 3 + α. The analogue of the Fatou–Julia–Sullivan theorem and a topological
straightening theorem is shown in this setting. In particular, these maps do not have
wandering domains and their Julia sets are locally connected.

3 Examples of Possible Pathologies of General BoxMappings

The goal of this section is to point out some “pathological issues” that can occur if
we consider a general box mapping, without knowing that it comes from a (more)
globally defined holomorphic map. We start with the following result:

Theorem 3.1 (Possible pathologies of general box mappings) There are complex box
mappings Fi : Ui → Vi , i ∈ {1, 2, 3} with the following properties:

(1) We have that K (F1) = V1 and JU (F1) = ∅.
(2) The filled Julia set K (F2) has full Lebesgue measure in U2, empty interior, and

there exists a positive (indeed full) measure set of points in K (F2) that does
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not accumulate on any critical point. Moreover, both JK (F2) and K (F2) carry
invariant line fields.

(3) V3 is a disk and each connected component U of U3 is compactly contained in V3
and contains a wandering disk for F3.

These examples are constructed so that Ui ,Vi and Fi are symmetric with respect to
the real line.

Remark Assertion (3) shows that for general box mappings the diameter of an infinite
sequence of distinct puzzle pieces Pk does not need to shrink to zero as k → ∞, even
if their depths tend to infinity. Assertion (2) shows that, even though a complex box
mapping may be “expanding”, its Julia set can have positive measure.

Proof To prove (1), take U1 = V1 = D and F1 is the identity map. Then, K (F1) = V1
and JU (F1) = ∅ (in particular K (F1) is not closed).

The example of (2) is based on the Sierpiński carpet construction. Consider the
square V2 := (−1, 1) × (−1, 1) cut into 9 congruent sub-squares in a regular 3-by-3
grid, and let U1 be the central open sub-square. The same procedure is then applied
recursively to the remaining 8 sub-squares; this definesU2 as the union of the 8 central
open sub-sub-squares. Repeating this ad infinitum, we define an open set U2 to be the
union of all Ui . Note that U2 has full Lebesgue measure in V2 because the Lebesgue
measure of V2\

(∪i�nUi
)
is equal to 4(8/9)n .

Define F2 on each component U of U2 as the affine conformal surjection from U
onto V2. Since K (F2) = ⋂

n�1 Kn , where Kn := F−n
2 (V2), the set K (F2) also has

full Lebesgue measure in U2, and JK (F2) = K (F2) as K (F2) has no interior points.
Clearly, the horizontal line field in both K (F2) and JK (F2) is invariant under F2.

To prove (3), take a monotone sequence of numbers ai ∈ (0, 1) such that ai ↗ 1
and

∞∏

i=1

ai = 1/2. (3.1)

Construct real Möbius maps gi : D → D inductively as follows. Let g1 be the
identity map. Take g2 such that it maps D onto D and Da2 to some disk to the right
of g1(Da1) = Da1 . Then, assuming that g1, . . . , gk−1 are defined for some k � 2,
define gk to be so that it maps D onto D and so that gk(Dak ) is strictly to the right of
gk−1(Dak−1). It follows that gk(Dak ) is disjoint from gi (Dai ) for all i < k.

Next, define a box mapping F : U → V (which will play the role of F3 : U3 → V3)
by taking

V = D1, U =
⋃

k�1

gk(Dak ), F(x) = gk+1(g
−1
k (x)/ak) if x ∈ gk(Dak )

(see Fig. 7).
Let us show that W := D1/2 is a wandering disk. Observe that (3.1) implies a1 ·

· · · ·an > 1/2 for every n � 1, and thus a1 · · · · ·an > |x | for every x ∈ W . Therefore,
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Fig. 7 The wandering disk construction in Theorem 3.1 (3): the colored disks are components of the domain
of the boxmapping F , while the gray shaded disks are part of the trajectory of the wandering diskW (colour
figure online)

if x ∈ W , then x ∈ g1(W ) and so F(x) = g2(g
−1
1 (x)/a1) = g2(x/a1) ∈ g2(Da2).

Similarly,

F2(x) = g3(g
−1
2 (g2(x/a1))/a2) = g3(x/(a1a2)) ∈ g3(Da3).

Continuing in this way, for each x ∈ W and each n � 0we have Fn(x) = gn+1(x/(a1 ·
· · · ·an)). It follows that Fn(W ) ⊂ gn+1(Dan+1), and therefore,W is a wandering disk.

��

3.1 A Remark on the Definitions of K(F), JU (F) and JK(F)

There is no canonical definition of the Julia set of a complex box mapping, so we have
given two possible contenders: JU (F) = ∂K (F) ∩ U and JK (F) = ∂K (F) ∩ K (F).
In routine examples, neither JK (F) nor K (F) is closed, but JU (F) is relatively closed
in U . Moreover, JU (F) can strictly contain K (F).

While the definitions of K (F), JU (F) and JK (F) are similar to the definitions of the
filled Julia set and Julia set of a polynomial-like mapping, when a complex box map-
ping has infinitely many components in its domain, the properties of its K (F), JU (F)

and JK (F) can be quite different. For example, let F : U → V be a complex box
mapping associated to a unimodal, real-analytic mapping f : [0, 1] → [0, 1], with
critical point c and the property that its critical orbit is dense in [ f (c), f 2(c)] (see
Fig. 4 and the discussion about real-analytic maps in Sect. 2.2 on how to construct
such a box mapping). Then, V will be a small topological disk containing the critical
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point, and U , the domain of the return mapping to V will be a union of countably many
topological disks contained in V with the property that U ∩ R is dense in V ∩ R. In
this case, one can show that

K (F) ∩ R = (V ∩ R)\
⋃

n�0

F−n(E),

where E is the hyperbolic set of points in the interval whose forward orbits under f
avoid V . Thus, K (F) ∩ R is a dense set of points in the interval V ∩ R. Thus, JU (F)

is the union of open intervals U ∩ R, and it is neither forward invariant nor contained
in the filled Julia set. Nevertheless, it is desirable to consider JU (F), since it agrees
with the set of points in U at which the iterates of F do not form a normal family.

3.2 An Example of a BoxMapping forWhich a Full Measure Set of Points
Converges to the Boundary

In this section, we complement example (2) in Theorem 3.1 by showing that not only
we can have the non-escaping set of a general box mapping F : U → V to be of
full measure in U , but also almost all points in K (F) are “lost in the boundary” as
their orbits converges to the boundary under iteration of F ; an example with such a
pathological behavior is constructed in Proposition 3.2 below.

Note that the box mapping F2 : U2 → V2 constructed in Theorem 3.1 (2) had no
critical points. It is not hard to modify this example so that the modified map has a
non-escaping critical point. Indeed, let V̂2 := V � U for some topological disk U ,
Û2 := U2 � U , and define a map F̂2 : Û2 → V̂2 by setting F̂2|U2 = F2, F̂2(U ) = V2

and so that F̂2|U is a branched covering of degree at least two so that the image of
a critical point lands in K (F2). This critical point for F̂2 will then be non-escaping
and non-recurrent. Contrary to this straightforward modification, the box mapping
constructed in the proposition below has a recurrent critical point and the construction
is more intricate.

Proposition 3.2 (Full measure converge to a point in the boundary) There exists a
complex box mapping F : U → V with Crit(F) ∩ K (F) 
= ∅ and with the property
that the set of points z ∈ K (F) whose orbits converge to a boundary point of V has
full measure in U .
Proof Let V the square with corners at (3/2, 3/2), (−3/2, 3/2), (−3/2,−3/2) and
(3/2,−3/2). Wewill constructU so that it tilesV . Let S0 be the open square with side-
length one centered at the origin. It has corners at (1/2, 1/2), (−1/2, 1/2), (−1/2,
−1/2), and (1/2,−1/2). Let S1 be the union of twelve open squares, Qi, j , each with
side-length 1/2, surrounding S0, so that S1 togetherwith S0 tiles the squarewith corners
at (1, 1), (−1, 1), (−1, 1), and (1,−1). We call S1 the first shell. Inductively, we
construct the i-th shell as the union of open squares with side length 1/2i , surrounding
Si−1, so that S0 ∪ S1 ∪ · · · ∪ Si−1 ∪ Si tiles the square centered at the origin with side
length 2(3/2 − 1/2i ). Inside of each square Qi, j in shell i , we repeat the Sierpińksi
carpet construction of Theorem 3.1 (2). These open sets, which consist of small open
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squares, together with the central component S0, will be the domain of the complex
box mapping we are constructing.

Let us fix a uniformization ψ : D → Q̂, where Q̂ is the square with side length 3,
which we may identify with V by translation. Fix any i ∈ N, and let R be a square
given by the Sierpiński carpet construction in the i-th shell.

Let Ai be the linear mapping that rescales R so that Ai (R) has side length 3. We
will define F |R : R → V by

F |R = ψ ◦ Mi ◦ ψ−1 ◦ Ai ,

where Mi is a Möbius transformation that we pick inductively. To make the construc-
tion explicit, we take Mi (−1) = −1, Mi (1) = 1 and determine Mi by choosing a
point zi ∈ (−1, 0) so that Mi (0) = zi . Note that for any disks D, D′ centered at −1,
respectively, 1 one can choose zi so that Mi (D\D′) ⊂ D ∩ D. For later use, let K
be so that for any univalent map ϕ : U → V and for any square Qi, j from the initial
partition the following inequality holds:

|Dϕ(z)|
|Dϕ(z′)| � K ,

for all z, z′ ∈ U with ϕ(z), ϕ(z′) ∈ R.

For any j ∈ N ∪ {0}, we let Tj = ∪ j
k=0Sk . To construct M1, we choose z1 so close

to ∂D that the set of points in R which are mapped to T1 by F |R = ψ ◦M1 ◦ψ−1 ◦ A1
has area at most meas(R)/2. Up to different choices of rescaling, we define F in the
same way on each component R contained in S1. Assuming that Mi−1, i � 2, has
been chosen, let R be a square in Si and pick zi ∈ (−1, 0) close enough to −1 so that

meas({z ∈ R : F(z) ∈ Li })
meas(R)

> 1 − 1

K 2 · 2i , (3.2)

where

Li := (−3/2,−3/2 + 2−i ) × (−2−i , 2−i ).

Again, up to rescaling, we define F identically on each component of the domain in
Si . Continuing in this way, we extend F to each shell.

Let z0 ∈ Si0 , and for k ∈ N define ik so that Fk(z0) ∈ Sik . We say that the orbit of
z0 escapes monotonically to ∂V if ik is a strictly increasing sequence. Let W denote
the set of points in ∪∞

i=1Si whose orbits escape monotonically to (−3/2, 0) ∈ ∂V .

Claim There exists C0 > 0 so that for any i � 1 and any component of the domain R
in Si , meas(W ∩ R)/meas(R) is bounded from below by C0.

Proof of the claim Note that the square Li is disjoint from Ti and that Li is a union
of squares from the initial partition used to define the shells. Hence, W ∩ R contains
the set of points so that {z ∈ R; F(z) ∈ Li , F2(z) ∈ Li+1, . . . , }. To obtain a lower
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bound for the Lebesgue measure of this set, let R(Fk(z)) be the rectangle containing
Fk(z) and notice that by (3.2) and the Koebe Distortion Theorem (see Appendix A),

meas({z ∈ R; F(z) ∈ Li , F2(z) ∈ Li+1, . . . , Fk(z) ∈ Lk, Fk+1(z) ∈ Lk+1})
meas({z ∈ R; F(z) ∈ Li , F2(z) ∈ Li+1, . . . , Fk(z) ∈ Lk)}

� 1 − 2−i .

The claim follows. �

Let us now define F on S0. Let f : z �→ z2, Y be the disk of radius 16 centered at the
origin and X = f −1(Y ). Choose real symmetric conformal mappings H0 : S0 → X
and H1 : V → Y which sends the origin to itself. Let ma = z−a

1−āz be the family of real
symmetric Möbius transformations of Y . Consider the family of mappings

Fa = H−1
1 ◦ ma ◦ f ◦ H0 : S0 → V.

For a = 0, Fa is a real-symmetric, polynomial-like mapping with a super-attracting
critical point at 0 of degree 2, which is a minimum for the mapping restricted to its
real trace. As a varies along the positive real axis from 0, the critical value of the
mapping Fa varies along the negative real axis from 0 until it escapes V\S0. Thus,
the family of mappings Fa |S0 is a full real family of mappings ([65]), and hence it
contains a mapping conjugate to the real Fibonacci mapping. Let F : S0 → V denote
this mapping. Now, we have defined F : U → V , where U tiles V .

Let us now show that under F a full measure set of points in U converge to
(−3/2, 0) ∈ ∂V . First, recall that the filled Julia set K ( f ) of the quadratic Fibonacci
mapping has measure zero ([51]). Since F : S0 → V is a polynomial-like mapping
that is quasiconformally conjugate to the quadratic Fibonacci mapping, and quasi-
conformal mappings are absolutely continuous, we have that the filled Julia set of
F : S0 → V has measure zero. We will denote this set by K0. Since the set of points
whose orbits eventually enter K0 is contained in the union of the countably many
preimages of S0, we have that the set of points that eventually enter K0 has measure
zero too. From the construction of F , we have that every puzzle piece contains points
that map to S0, so we have that almost every point in K (F) either accumulates on the
critical point of F or converges to ∂V . By the comment above, we may assume that
this set of points is disjoint from the preimages of K0.

Let us show that a.e. point in X1 = {z; Fi (z) /∈ S0, i � 0} converges to (−3/2, 0).
Suppose not. Then, there exists a set X ′

1 ⊂ X1 for which this is not the case. Let z0
be a Lebesgue density point of X ′

1. Let Qk be the puzzle piece containing z0 of level
k. Then, Fk−1(Qk) = R for some rectangle R with R ∩ S0 = ∅. By the above claim
and the Koebe Distortion Theorem a definite proportion of Qk is mapped into the set
W of points which converge monotonically to (−3/2, 0), thus contradicting that z0 is
a Lebesgue density point of X ′

1.
Let X0 be the set of points which enter S0 and which are not eventually mapped

into the zero Lebesgue measure set K0. Let X ′
0 be the set of points in X0 which

do not converge to (−3/2, 0) and let z0 be a Lebesgue density point of X ′
0. Note

that by the previous paragraph a.e. point in X ′
0 enters S0 infinitely many times. Let
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r0 � 0 be minimal so that Fr0(z0) is contained in S0. Let k0 > r0 be minimal so that
Fk0(z0) ∈ Si for some i > 0, and let Rk0 denote the square of Si that contains F

k0(z0).
Inductively, define r� > r�−1 minimal so that Fr� (z0) ∈ S0, and k� > r�, minimal
so that Fk� (z0) ∈ Si , i > 0, and let Rk�

be the square so that Fk� (z0) ∈ Rk�
. By the

choice of K at the start of the proof, the distortion of the mapping Fk� |Q�
: Q� → Rk�

where Q� = Compz0 F
−k� (Rk�

) is bounded by K . We have already proved that in
each rectangle R ⊂ Si , i � 1 a definite proportion of points converge monotonically
to the boundary point (−3/2, 0); hence, at arbitrarily small scales around z0, a definite
mass of points escapes is mapped into the setW (which converge to (−3/2, 0) ∈ ∂V),
which implies that z0 cannot be a Lebesgue density point of X ′

0. ��

4 Dynamically Natural BoxMappings

In this section, we introduce the concept of a dynamically natural complex box map-
ping. These are the maps for which various pathologies from Sect. 3 disappear, and
which arise naturally in the study of rational maps on Ĉ.

To define the concept, let us start by introducing two dynamically defined subsets
of the non-escaping set.

4.1 Orbits that Avoid Critical Neighborhoods

The first subset consists of points whose orbits avoid a neighborhood of Crit(F). Let
A ⊂ K (F) be a finite set and W be a union of finitely many puzzle pieces. We say
that W is a puzzle neighborhood of A if A ⊂ W and each component of W intersects
the set A.

If Crit(F) 
= ∅, define

Koff-crit(F) := {x ∈ K (F) : ∃W puzzle neighborhood of Crit(F) : orb(x) ∩ W = ∅} ;

otherwise, i.e. when F has no critical points, we set Koff-crit(F) ≡ K (F).
It is easy to see that the set Koff-crit(F) is forward invariant with respect to F .

4.2 Orbits that AreWell Inside

The second subset consists of any point in K (F) whose orbit from time to time visits
components of U that are well inside of the corresponding components of V . More
precisely, let

mF (x) := mod
(
Compx V\Compx U

)
,

and for a given δ > 0, set

Kδ(F) :=
{
y ∈ K (F) : lim sup

k�0
mF (Fk(y)) > δ

}
.
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Define

Kwell-inside(F) :=
⋃

δ>0

Kδ(F).

AcomponentU ofU is said to be δ-well-insideV ifmF (x) > δ for some (and hence for
all) x ∈ U . Thus, the set Kwell-inside(F) consists of the points x ∈ K (F) whose orbit
visits infinitely often components of U that are δ-well inside for some δ = δ(x) > 0.
By definition, the set Kwell-inside(F) is forward invariant with respect to F .

4.3 Dynamically Natural BoxMappings

Definition 4.1 (No permutation condition and dynamical naturality) A complex box
mapping F : U → V satisfies the no permutation condition if

(1) for each componentU ofU there exists n � 0 so that Fn(U )\U 
= ∅. Themapping
F : U → V is called dynamically natural if it additionally satisfies the following
assumptions:

(2) the Lebesgue measure of the set Koff-crit(F) is zero;
(3) K (F) = Kwell-inside(F).

If F does not satisfy the no permutation condition, then there exists a compo-
nent U of U and an integer k > 0 so that Fk(U ) = U . Notice that this implies
that U , . . . , Fk−1(U ) are all components of V and that F cyclically permutes these
components.

Let us return to the pathologies described in Theorem 3.1. Each of the boxmappings
Fi , i ∈ {1, 2, 3}, is not dynamically natural in the sense of Definition 4.1: for the map
Fi the respective condition (i) in that definition is violated. We see that

• the box mapping F1 has no escaping points in U1;
• the non-escaping set of F2 is equal to Koff-crit(F2), and hence, F2 provides an
example of a box mapping with Koff-crit(F2) of non-zero Lebesgue measure;

• the wandering disk constructed for F3 does not belong to Kwell-inside(F3), and
hence, K (F3)\Kwell-inside(F3) is non-empty.

Moreover, the example constructed in Proposition 3.2 is also not a dynamically
natural box mapping as it violates condition (2) of the definition of naturality.

The following lemma implies that no dynamically natural box mapping has the
pathology described in Theorem 3.1 (1).

Lemma 4.2 (Absence of components with no escaping points) If F : U → V is a
complex box mapping that satisfies the no permutation condition (Definition 4.1 (1)),
then

• JK (F) 
= ∅;
• each component of K (F) is compact;
• if U has finitely many components, then K (F) and JU (F) = JK (F) are compact.
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Proof Take a nested sequence P1 ⊃ P2 ⊃ . . . of puzzle pieces. Then, for each i � 0,
either Pi+1 = Pi or Pi+1 is compactly contained in Pi . If F satisfies the no permutation
condition, then necessarily

⋂
Pi is compactly contained in V and so JK (F) 
= ∅. The

second and third assertions also follow. ��

4.4 Motivating the Notion of ‘Dynamically Natural’ from Definition 4.1

First, condition (1) prohibits F to simply permute components of U . Equivalently, it
guarantees that each component of U has escaping points under iteration of F . This
is clearly something one should expect from a mapping induced by rational maps: for
example, under this simple condition, as we saw in Lemma 4.2, each component of
K (F) is a compact set.

Furthermore, under this condition, we can further motivate assumption (2), see the
remark after Corollary 4.4: for such complex box mappings a.e. point either converges
to the boundary ofV or accumulates to the set of critical fibers. For any known complex
box mapping which is induced by a rational map, the boundary of V does not attract
a set of positive Lebesgue measure, and therefore, automatically (2) holds. Thus, it
makes sense to assume (2).

Assumption (3) is imposed because one is usually only interested in points that
visit the ‘bounded part of the dynamics’ infinitely often.

In fact, as we will show in Proposition 4.5, under the no permutation condition it
is always possible to improve any box mapping to be dynamically natural by taking
some further first return maps; this way of “fixing” general box mappings is enough
in many applications.

Remark In [6], a different condition was used to rule out the pathologies we discussed
in Sect. 3. That paper is concernedwith unicritical complex boxmappings F : U → V ,
where V consists of a single domain. In [6] it is assumed that U is thin in V where
U is called thin in V if there exist L, ε > 0, such that for any point z ∈ U there
is a open topological disk D ⊂ V of z with L-bounded geometry at z such that
mod(V\D) > ε, and meas(D\U)/meas(D) > ε. See Section 5 and Appendix A of
[6] for results concerning this class of mappings. In particular, when U is thin in V , we
have that Koff-crit(F) has measure zero. On the other hand, the requirement that U is
thin is V is a stronger geometric requirement than K (F) = Kwell-inside(F) (compare
Fig. 15).

4.5 An Ergodicity Property of BoxMappings

In this subsection, we study an ergodicity property in the sense of typical behavior
of orbits of complex box mappings that are not necessarily dynamically natural, but
satisfy condition the no permutation condition from Definition 4.1. The results of
this subsection will be used later in Sect. 4.6, where we will show how to induce
a dynamically natural box mapping starting from an arbitrary one, and in Sect. 12,
we will strengthen the results in this subsection and study invariant line fields of box
mappings.
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Let us say that F is a critical fiber of F if it is the intersection of all the puzzle
pieces containing a critical point. We say that this set is a recurrent critical fiber if
there exist iterates ni → ∞ so that some (and, therefore, all) limit points of Fni (F)

are contained in F (we refer the reader to Sect. 5 for a detailed discussion on fibers
and types of recurrence).

Lemma 4.3 (Ergodic property of general box mappings) Let F : U → V be a complex
boxmapping that satisfies the no permutation condition. Let C be the union of recurrent
critical fibers of F. Define

X1 = {z ∈ K (F) : Fi (z) → ∂V as i → ∞},
X2 = {z ∈ K (F) : Fi j (z) → C for some sequence i j → ∞}

and

X = K (F)\(X1 ∪ X2).

Then, X is forward invariant.Moreover, if X ′ ⊆ X is a forward invariant set of positive
Lebesgue measure, then there exists a puzzle piece J of F so that meas(J ∩ X ′) =
meas(J ).

Proof That X is forward invariant is obvious. For any integer n � 0, let Yn be the
union of all critical puzzle pieces of depth n for F containing a recurrent critical
fiber. Define En ⊂ K (F) to be the set of points whose forward orbits are disjoint
from Yn . By construction, (En) is a growing sequence of forward invariant sets and
X ′ ⊂ ⋃

n�0 En . If X ′ has positive Lebesgue measure, then there exists n0 so that
En0 ∩ X ′ has positive Lebesgue measure. Let z0 ∈ En0 ∩ X ′ be a Lebesgue density
point of this set.

Starting with V0 := V , U0 := U and F0 := F , for each n � 1 inductively define
Fn : Un → Vn to be the first return map under Fn−1 to the union Vn of all critical
components of Un−1. Note that Crit(Fn) ⊂ Crit(F) and K (Fn) contains all recurrent
critical fibers of F (it is straightforward to see that fibers of Fn are also fibers of F for
each n � 0).

We may assume that there exists k � 0 so that the Fk-orbit of z0 visits non-
critical components of Uk infinitely many times. Indeed, otherwise the F-orbit of
z0 accumulates at a recurrent critical fiber contrary to the definition of En0 . Fix this
mapping Fk .

Case 1: the orbit zn := Fn
k (z0), n = 0, 1, . . . visits non-critical components of Uk

infinitely many times, but only finitely many different ones. Write U ′ for the union of
these finitely many components and consider K ′ := {z ∈ En0 : Fn

k (z) ∈ U ′ ∀n � 0}.
By Lemma 4.2, the closure of K ′ is a subset of En0 , and hence of K (F). Therefore,
there exists a point y ∈ ω(z0)∩ En0 . Let J0 
 y be a puzzle piece of depth n0, and let
D � J0 be another puzzle piece containing y of depth larger than n0; such a compactly
contained puzzle piece exists again because of Lemma 4.2. Take the moments ni so
that Fni

k (z0) ∈ J0 and let Ai := Compz0 F
−ni
k (J0). Then, F

ni
k : Ai → J0 is a
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sequence of univalent maps with uniformly bounded distortion when restricted to
Bi := Compz0 F

−ni
k (D). Therefore, mod(Ai\Bi ) is uniformly bounded from below.

We also have that Ai ′ is contained in Bi for i ′ > i sufficiently large. It follows that
diam Bi → 0 as i → ∞. Thus, by the Lebesgue Density Theorem, meas(D∩ En0) =
meas(D), and hence, meas(D∩ X ′) = meas(D) as X ′ is forward invariant. The claim
of the lemma follows with J = D.

Case 2: the orbit zn visits infinitelymany different non-critical components of Fk . If ns
is the first moment the orbit zn visits a new non-critical componentUs of Uk , then the
pullbacks ofUs under Fk back to z0 along the orbit hit each critical fiber at most once.
Let n′

s > ns be the first subsequent time that the orbit zn enters a critical component

of Uk . If such an integer n′
s exists, then we have that F

n′
s

k : Compz0 F
−n′

s
k (Vk) → Vk

has degree bounded independently of s. We can proceed again as in Case 1 (there are
only finitely many critical components of Uk). If n′

s does not exist, then we have that
Fn
k : Compz0 F

−n
k (Vk) → Vk has uniformly bounded degree for all n � ns . Since we

assumed that z0 does not converge to the boundary, there exists an accumulation point
y ∈ Vk∩ω(z0)with the property thatJ0 := Compy Vk is not a component ofUk . Note

that y ∈ Uk , but y may or may not lie in Uk . Each component of Uk ∩J0 is compactly
contained in J0. This allows us to choose an open topological disk D � J0 so that
y ∈ D and such that D contains at least one puzzle piece J . We conclude similarly to
the previous case that meas(D ∩ X ′) = meas(D). Thus, meas(J ∩ X ′) = meas(J )

as J ⊂ D. ��
Corollary 4.4 (Typical behavior of orbits) Let F : U → V be a complex box mapping
that satisfies the no permutation condition and such that each puzzle piece of F either
contains a point w so that Fn(w) is a critical point for some n � 0, or it contains an
open set disjoint from K (F) (a gap). Then, for a.e. z ∈ K (F) either

1. Fi (z) → ∂V as i → ∞, or
2. the forward orbit of z accumulates to the fiber of a critical point.

Proof Let X ⊂ K (F) be as in the previous lemma. For each n � 1, let X ′
n ⊂ X be the

set of points z ∈ X so that the orbit of z remains outside critical puzzle pieces of depthn.
By the previous lemma if X ′

n has positive Lebesgue measure, then there exists a puzzle
pieceJ so that meas(J ∩X ′

n) = meas(J ). But, under the assumption of the corollary,
eitherJ contains a gap, which is clearly impossible since meas(J ∩ X ′

n) = meas(J ),
or there exists a puzzle piece J ′

n ⊂ J which is mapped under some iterate of F to
a critical piece of depth n, which contradicts the definition of the set X ′

n since also
meas(J ′

n ∩X ′
n) = meas(J ′

n). Hence, the set X
′
n has zero Lebesgue measure. It follows

that the set X ′ = ∪X ′
n of points in X whose forward orbits stay outside some critical

puzzle piece also has measure zero. The corollary follows. ��
Remark For a polynomial or rational map, preimages of critical points are dense in
the Julia set (except if the map is of the form z �→ zn or z �→ z−n). This means that if
a box mapping is associated to a polynomial or rational map, then the assumption of
Corollary 4.4 is satisfied. The conclusion of that corollary motivates the assumption
meas(Koff-crit(F)) = 0 in the definition of dynamical naturality (Definition 4.1).
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4.6 Improving Complex BoxMappings by Inducing

We end this section by showing how to “fix” a general complex box mapping for it to
become dynamically natural. In fact, every boxmapping satisfying the no permutation
condition from the definition of naturality, subject to some mild assumptions, induces
a dynamically natural box mapping that captures all the interesting critical dynamics;
working with such induced mappings is enough in many applications. The following
lemma illustrates how it can be done in detail.

Proposition 4.5 (Inducing dynamically natural box mapping) Let F : U → V be a
box mapping that satisfies the no permutation condition. Assume that each component
of V contains a critical point, or contains an open set which is not in U . Then, we can
induce a dynamically natural box mapping from F in the following sense.

Take Û to be a finite union of puzzle pieces of F so that Û is a nice set compactly
contained in V , and letCritÛ (F) ⊂ Crit(F) be a subset of critical points whose orbits

visit Û infinitely many times. Then, there exists an induced, dynamically natural box
mapping F1 : U1 → V1 such that CritÛ (F) ⊂ Crit(F1) ⊂ Crit(F).

Remark A typical choice for Û would be puzzle pieces of U that contain critical points
and critical values of F .

Proof of Proposition 4.5 Let us define two disjoint nice sets V ′
1,V ′′

1 ⊂ V as follows.
For the first set, we let

V ′
1 :=

⋃

c∈Crit(F)

L̂cÛ ,

where the union is taken over all points in Crit(F) whose orbits intersect Û . For the
second set, we define V ′′

1 to be the union of puzzle pieces of depth n � 0 containing all
critical points in Crit(F)\V ′

1 (if this set is empty, we put V ′′
1 = ∅). Moreover, we can

choose n sufficiently large so that V ′′
1 ∩V1 = ∅ and so that V ′′

1 is compactly contained
in V; the latter can be achieved due to Lemma 4.2.

Now, let V1 := V ′
1 ∪ V ′′

1 , and let F1 : U1 → V1 be the first return map to V1 under
F . It easy to see that F1 is a complex box mapping in the sense of Definition 1.1; it
also satisfies property (1) of Definition 4.1 (notice that K (F1) ⊂ K (F)). Moreover,
from the first return construction it follows that CritÛ (F) ⊂ Crit(F1) ⊂ Crit(F).

Let us now show that F1 is dynamically natural. For this we need to check properties
(2) and (3) of Definition 4.1.

Property (2) of Definition 4.1: Let XO ⊂ Koff-crit(F1) be the set of points in K (F1)
whose forward iterates under F1 avoid a puzzle neighborhood O of Crit(F1); this is a
forward invariant set. Hence, if XO has positive Lebesguemeasure, then byLemma4.3
either a set of positive Lebesgue measure of points in XO converge to the boundary of
V1, or there exists a puzzle pieceJ of F1 so that meas(J ∩ XO) = meas(J ). The first
situation cannot arise due to the choice of Û and V ′′

1 (both are compactly contained in
V), and the second situation would imply that some forward iterate of J will cover
a component of V1, and therefore, a component V of V , and thus, we would obtain
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meas(XO ∩ V ) = meas(V ), contradicting the assumption we made on F : the puzzle
piece V must contain either a critical point, or an open set in the complement of U .
Property (3) of Definition 4.1: If there are only finitely many components in U1,
this property is obviously satisfied. Therefore, we can assume that U1 has infinitely
many components. Let U be a component of U1 such that U � CompU V1, and let
Fs : U → V be the corresponding branch of F1; here V is a component of V1. By
the first return construction, the degree of this branch is bounded independently of
the choice of U . By construction of V1, there exists t � 0 and a component W of V1
such that W � V and Fs+t (U ) = W . Put s′ := s + t . Again, the degree of the map
Fs′ : U → W is bounded independently of U . Let W ′ � W be a puzzle piece of F ;
it exists since W � V . We claim that the degree of the map Fs′ : U ′ → W ′, where
U ′ = CompU F−s′(W ′), is independent of the choice of U .

Indeed, this is equivalent to saying that in the sequence F(U ′), . . . , Fs′−1(U ′)
the number of critical puzzle pieces is independent of the choice of U . Let P be
a critical puzzle piece in this sequence, and c ∈ Crit(F) ∩ P be a critical point.
Then, P � Compc V1, because otherwise the F-orbit ofU would intersects V1 before
reaching V , which is a contradiction to the fact that Fs : U → V is the branch of
the first return map to V1. But there are only finitely many critical puzzle pieces of F
of depths larger than the depths of the components of V1, and this number does not
depend on U . This yields the claim.

Pulling back the annulus W ′\W by the map Fs′ : U ′ → W ′, we conclude that
there exists δ > 0, independent of U , such that mod(U ′\U ) � δ. Finally, U ′ ⊂ V1
because the depths of U and U ′, viewed as puzzle piece of F , differ by one. Hence,
(CompU V1)\U ⊃ U ′\U . This and the moduli bound imply K (F1) = Kδ(F1). ��

5 Combinatorics and Renormalization of BoxMappings

The combinatorics of critical points of complex box mappings are similar to those of
complex polynomials. As is often the case in holomorphic dynamics, the tools used to
study the orbit of a critical point depend on the combinatorial type of the critical point.
In this section, we start by recalling the definitions of a fiber, of recurrent, persistently,
and reluctantly recurrent critical points, and of a combinatorial equivalence of box
mappings. We end this section by defining the notion of renormalization for complex
box mappings.

In this section, F : U → V is a complex box mapping, not necessarily dynamically
natural, but that satisfies the no permutation condition from Definition 4.1.

5.1 Fibers

While working with dynamically defined partitions, for example given by puzzles, it
is convenient to use the language of fibers, introduced by Schleicher in [Sch1], [86].
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In our setting, for x ∈ K (F), let Pn(x) be the puzzle piece of depth n containing
x . The fiber8 of x is the set

fib(x) :=
⋂

n�0

Pn(x).

By Lemma 4.2, fib(x) is a compact connected set. From the dynamical point of
view, fib(x) consists of points that are “indistinguishable” by the puzzle partition and
hence constitute a single combinatorial class. A fiber containing a critical point is
called critical.

5.2 Persistently and Reluctantly Recurrent Critical Points

A critical point c ∈ Crit(F) is said to be (combinatorially) non-recurrent if the orbit
of F(c) is disjoint from some puzzle piece around c. If this is not the case, then c is
called (combinatorially) recurrent. For such points, orb(F(c)) intersects every puzzle
neighborhood of c.9 In the language of fibers, a critical point c is combinatorially
recurrent if and only if the orbit of F(c) accumulates at fib(c), i.e. orb(F(c))∩fib(c) 
=
∅.

It will be useful to define

Back(c) := {c′ ∈ Crit(F) : orb(c′) ∩ fib(c) 
= ∅},
Forw(c) := {c′ ∈ Crit(F) : orb(c) ∩ fib(c′) 
= ∅},

to be the sets of critical points “on the backward, resp. forward orbit of the critical
point c”, and

[c] := Back(c) ∩ Forw(c)

to be the set of critical points that “accumulate at each other’s fibers”. With this
definition, c ∈ [c]. Note that Back(c) = Back(c′), Forw(c) = Forw(c′), and [c] = [c′]
for every c′ ∈ fib(c).

A critical puzzle piece P is a child of a critical puzzle piece Q if there exists n � 1
such that Fn(P) = Q and Fn−1 : F(P) → Q is a univalent map.

Now, we want to distinguish different types of recurrence as follows. Let c be a
combinatorially recurrent critical point of F . We say that c is persistently recurrent
if for every critical point c′ ∈ [c], every puzzle piece Pn(c′) has only finitely many
children containing critical points in [c]. Otherwise, c is called reluctantly recurrent.

8 The term “fiber” was adopted from the theory of Douady’s pinched disk models for quadratic Julia sets
and theMandelbrot set: in this context, there is a natural continuous surjection from a Julia set to its pinched
disk model, and the preimage of a point under this surjection—i.e. the fiber in the classical sense—is exactly
a single combinatorial fiber in the sense of [Sch1], [86]. For details, see ([22, 87]).
9 In [45], the notion of Z -recurrent points appears. There, Z refers an initial choice of puzzle partition and
recurrence is defined with respect to that initial choice. In the setting of a given complex box mapping, one
works with a single puzzle partition that is predefined by the map.
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One should observe that all critical points in a critical fiber are either simultaneously
non-recurrent, or all persistently recurrent, or all reluctantly recurrent, and hence, we
can speak about non-, reluctantly, or persistently recurrent critical fibers.10

5.3 Renormalization

Following Kozlovski and van Strien ([47] ,Definition 1.3), a complex box mapping
F : U → V is called (box) renormalizable if there exists s � 111 and a puzzle piece
W of some depth containing a critical point c ∈ Crit(F) such that Fks(c) ∈ W for all
k � 0. If this is not the case, then F is called non-renormalizable.

Lemma 5.1 (Douady–Hubbard equivalent to box renormalization) If F : U → V is
a complex box mapping that satisfies the no permutation condition, then F is box
renormalizable if and only if it is renormalizable in the classical Douady–Hubbard
sense ([24]).

Recall that one says that a boxmapping F : U → V isDouady–Hubbard renormal-
izable if there exist s ∈ N, c ∈ Crit(F) and open topological disks c ∈ U � V ⊂ U
so that Fs : U → V is a polynomial-like map with connected Julia set.

Proof of Lemma 5.1 First suppose that F is box renormalizable, and let c ∈ Crit(F),
W 
 c and s be as in the definition of box renormalizable. By Lemma 4.2, the fiber
of c is a compact connected set. The condition Fks(c) ∈ W for all k � 0 can be
now re-interpreted as Fks(c′) ∈ fib(c) ⊂ W for all k � 0 and all critical points
c′ ∈ fib(c). Now, let n be large enough so that the only critical points of F in the set
V := Compc F

−ns(W ) are the one contained in the fiber of c. IfU := Compc F
−s(V ),

then U � V because F satisfies the no permutation condition (see assumption (1) in
Definition 4.1), and hence, Fs : U → V is a polynomial-like map. This mapping
has connected Julia set equal to fib(c) by our choice of n. We conclude that F is
renormalizable in the Douady–Hubbard sense.

Conversely, suppose that F : U → V is Douady–Hubbard renormalizable. Then,
there exist c ∈ Crit(F), s ∈ N and a pair of open topological disks U � V so
that � := Fs : U → V is a polynomial-like map with connected Julia set K (�)

with c ∈ K (�). Note that U and V are not necessarily puzzle pieces of F , however,
K (�) ⊂ fib(c). The last inclusion implies that for every puzzle piece W of F with
W 
 c it is also true that W ⊃ K (�). Since K (�) is forward invariant under Fs , we
have that for all k ∈ N, Fks(c) ∈ W . Picking a smallerW to assure minimality of s in
the definition of box renormalization, we conclude the claim. ��

We now want to relate the existence of non-repelling periodic points for a complex
box mapping to its renormalization.

10 This observation demonstrates the idea that a given puzzle partition cannot distinguish points from their
fibers. In this vein, following Douady (with an interpretation by Schleicher), various rigidity results can be
phrased as “fibers are points”, i.e. each fiber is trivial and hence equal to a point.
11 Usually, we assume that s is minimal with this property. Such minimal s is called the period of renor-
malization.
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Lemma 5.2 (Non-repelling cycles imply renormalization) If F : U → V is a complex
box mapping that satisfies the no permutation condition, then the orbit of the fiber of
any attracting or neutral periodic point contains a critical point of F. Moreover, if F
is non-renormalizable, then all the periodic points of F are repelling.

Proof Suppose that z0 is a periodic point with period p for F . Let U ′
0 denote the

component of U that contains z0, and let U0 = Compz0 F
−p(U ′

0). Since F satisfies
the no permutation condition (see assumption (1) in Definition 4.1), we have that
U0 � U ′

0. We claim that the mapping F p : U0 → U ′
0 has a critical point. If not, then

consider the inverse of this map. By the Schwarz Lemma, this inverse map will be
strictly contracting at its fixed point. ��

5.4 Itineraries of Puzzle Pieces and Combinatorial Equivalence of BoxMappings

By Definition 1.1, each component in the sets U and V for a box mapping F : U → V
is a Jordan disk. Therefore, by the Carathéodory theorem for every branch F : U →
V of this mapping there exists a well-defined continuous homeomorphic extension
F̂ : U → V , and by continuity this extension is unique. Let us denote by F̂ : cl U →
cl V the total extended map.

Definition 5.3 (Itinerary of puzzle pieces relative to curve family) Let F : U → V be
a box mapping satisfying the no permutation condition, and let X ⊂ ∂V be a finite set
with one point on each component of ∂V . Let � be a collection of simple curves in
(cl V)\(U ∪ PC(F)), one for each y ∈ F̂−1(X), that connects y to a point in X (see
Fig. 8). Then, for every n � 0 and for each component U of F−n(U), there exists a
simple curve connecting X to ∂U of the form γ0 . . . γn where F̂k(γk) ∈ �. The word
(γ0, F̂(γ1), . . . , F̂n(γn)) is called the �-itinerary of U .

If a component V of V is also a component of U , then the corresponding curve will
be contained in the Jordan curve (cl V )\(U ∪ PC(F)) = ∂V , because by definition
PC(F) ⊂ V and so no point in the boundary of V lies in PC(F).

Note the�-itinerary ofU is not uniquely defined even though there is a unique finite
word for every y′ ∈ F̂−n(x) ∩ ∂U . For example, in Fig. 8, the critical component of
F−1(U) has four �-itineraries: (a, a), (a, b), (b, a), and (b, b). However, different
components of F−n(U) have different �-itineraries.

Definition 5.3 might look a bit unnatural at first. A simpler approachmight to define
an itinerary of a component U of F−n(U) as a sequence of components of U through
which the F-orbit of U travels. However, such an itinerary would not distinguish
components properly, an example is again shown in Fig. 8: both A1 and A2 have the
same “itineraries through the components of U”, but clearly A1 
= A2. This motivates
using curves to properly distinguish components.

Remark (On the existence of �) We observe that a collection � in Definition 5.3
always exists. Indeed, let U , V be a pair of components of U resp. V with U ⊂ V ,
and x ∈ ∂V , y ∈ ∂U be a pair of points we want to connect with a curve within
(cl V)\(U ∪PC(F)). Clearly, the set A := PC(F)∩ (V\U) is finite (the box mapping
F is not defined inV\U). Choose any simple curve γ : [0, 1] → V \U so that γ (0) = x
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Fig. 8 An example of a complex box mapping F : U → V with U = U1 ∪ U2 (shaded in light grey), V
having one component and a unique simple critical point (marked with the red cross) which mapped by F
to U1. An example of a curve family � = {a, b, c} is shown. The set F−1(U) has 5 components (shown
in dark grey). Two of these, marked A1 and A2, are mapped over U2 and hence have the same itineraries
with respect to the components of U . However, their �-itineraries are different: A1 has �-itinerary (b, c),
while the �-itinerary of A2 is (a, c) (colour figure online)

and γ (1) = y. Such a curve exists because V \U is a closed non-degenerate annulus
bounded by two Jordan curves. We can choose γ so to avoid A as well as the closures
of the components W of U in V with ∂W ∩ PC(F) 
= ∅. The set A is finite, and there
are only finitely many such W ’s. Hence, a curve γ with such an additional property
exists. This curve might intersect a component U ′ 
= U of U within V . Let t1 be the
infimum over all t ∈ [0, 1] so that γ (t) ∈ ∂U ′; similarly, let t2 be the supremum over
all such t’s (it follows that 0 < t1 � t2 < 1 as ∂U ′ ∩ ∂U = ∅ and ∂U ′ ∩ ∂V = ∅).
Modify the curve γ on [t1, t2] by substituting it with the part of ∂U ′ going from γ (t1)
to γ (t2). Since ∂U ′ is a Jordan curve, the new curve (we keep calling it γ ) will be a
Jordan curve. Moreover, γ will avoid U ′, will join x to y and will be disjoint from A.
The desired curve in � is obtained after resolving all intersections with all such U ′.

Finally, let us give a definition of combinatorially equivalent box mappings (see
Kozlovski and Strien ([47], Definition 1.5)).

Definition 5.4 (Combinatorial equivalence of box mappings) Let F : U → V and
F̃ : Ũ → Ṽ be two complex box mappings, both satisfying the no permutation
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condition. Let H : V → Ṽ be a homeomorphism with the property that H(U) =
Ũ , H(PC(F)\U) = PC(F̃)\Ũ and such that it has a homeomorphic extension
Ĥ : cl V → cl Ṽ to the closures of V and Ṽ .

The maps F and F̃ are called combinatorially equivalent w.r.t. H if:

• H is a bijection between Crit(F) and Crit(F̃); for c ∈ Crit(F), c̃ := H(c) is the
corresponding critical point;

• there exists a curve family � as in Definition 5.3 so that for every n � 0, and for
each k � 0 such that both Fk(c) and F̃k (̃c) are well defined, the �-itineraries of
CompFk(c) F

−n(V) coincide with the Ĥ(�)-itineraries of CompF̃k (̃c) F̃
−n(Ṽ).

Using Definition 5.4, we call a pair of puzzle pieces P , P̃ for F , F̃ corresponding
if all �-itineraries of P coincide with the Ĥ(�)-itineraries of P̃ . The definition then
requires that the orbits of the corresponding critical points c, c̃ travel through the corre-
sponding puzzle pieces at all depths. This also gives rise to the notion of corresponding
critical fibers fib(c) and fib(̃c). Observe that the degrees of the corresponding critical
fibers for combinatorially equivalent box mappings must be equal (here, the degree
of a fiber is the degree of F , respectively, F̃ , restricted to a sufficiently deep puzzle
piece around the fiber).

6 Statement of the QC-Rigidity Theorem and Outline of the Rest of
the Paper

We are now ready to state the main result from [47], namely the rigidity theorem for
complex box mappings, stated there as Theorem 1.4, but with the explicit assumption
that the complex box mappings are dynamically natural.

Theorem 6.1 (Rigidity for complex box mappings) Let F : U → V be a dynamically
natural complex box mapping that is non-renormalizable. Then,

(1) each point x ∈ K (F) is contained in arbitrarily small puzzle pieces.
(2) If F carries a measurable invariant line field supported on a forward invariant

set X ⊆ K (F) of positive Lebesgue measure, then

(a) there exists a puzzle piece J and a smooth foliation on J with the property
that meas(X ∩ J ) = meas(J ) and the foliation is tangent to the invariant
line field a.e. on J ;

(b) the set Y = ⋃
i�0 F

i (J ) intersects the critical set of F and each such critical
point is strictly preperiodic.

(3) Suppose F̃ : Ũ → Ṽ is another dynamically natural complex box mapping for
which there exists a quasiconformal homeomorphism H : V → Ṽ so that

(a) F̃ is combinatorially equivalent to F w.r.t. H, and so in particular H(U) = Ũ ,
(b) F̃ ◦ H = H ◦ F on ∂U , i.e. H is a conjugacy on ∂U,

Then, F and F̃ are quasiconformally conjugate, and this conjugation agrees with
H on V\U .
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In the following sections, we sketch the proof of Theorem 6.1. Our aim is to make
it more accessible to a wider audience.

Remark Let us make several remarks regarding the statement of Theorem 6.1:

1. In [47], it was assumed that the box mapping in the statement of Theorem 6.1 is
non-renormalizable and that all its periodic points are repelling. However, due to
Lemma 5.2, it is enough to assume that the box mappings in question are non-
renormalizable as the property that all periodic points are repelling then follows
from that lemma.

2. In the language of fibers, shrinking of puzzle pieces stated in Theorem 6.1 (1) is
equivalent to triviality of fibers for points in the non-escaping set, i.e. fib(x) = {x}
for every x ∈ K (F). Note that if all the fibers are trivial, then c is combinatorially
recurrent if and only if c ∈ ω(c).

3. There exist dynamically natural box mappings which have invariant line fields,
see Proposition 13.1. These box mappings are rather special (and are the ana-
logues of Lattès rational maps in this setting), see Proposition 13.2. However, if
a dynamically natural box mapping F is coming from a Yoccoz-type construc-
tion, namely when the puzzles are constructed using rays and equipotentials (see
Sect. 2.1), then each puzzle piece of F contains an open set which is not in K (F)

(these sets are in the Fatou set of the corresponding rational map). In this situation,
conclusion (2a) of Theorem 6.1 cannot be satisfied, and thus such F carries no
invariant line field provided F is non-renormalizable.

4. Conditions (3a) and (3b) should be understood in the following sense. Since, by
assumption, H : V → Ṽ is a quasiconformal homeomorphism, it has a continuous
homeomorphic extension Ĥ : cl V → cl Ṽ to the closures (see Astala et al.
([1], Corollary 5.9.2)). This allows to use H in the definition of combinatorial
equivalence (Definition 5.4), and condition (3b) should be understood as

ˆ̃F ◦ Ĥ = Ĥ ◦ F̂ on ∂U ,

where F̂ , ˆ̃F are the continuous extensions of F , F̃ to the boundary.
5. IfU only has a finite number of components, and each component ofU ,V, Ũ , Ṽ is

a quasi-disk and a combinatorial equivalence H : V → Ṽ as inDefinition 5.4, then
one can construct a newquasiconformalmap H (by hand)which is a combinatorial
equivalence and is a conjugacy on the boundary of U . Even if components of
U ,V, Ũ , Ṽ are not quasi-disks, then one can slightly shrink the domains and
still obtain a qc conjugacy between F, F̃ on a neighborhood of their filled Julia
sets. One also can often find a qc homeomorphism which is a conjugacy on the
boundary using Böttcher coordinates when they exist. Therefore, in that case, one
essentially has that combinatorially equivalent boxmappings F, F̃ are necessarily
qc conjugate.
On the other hand, ifU has infinitely many components, then it is easy to construct
examples so that F,G are topologically conjugate while they are not qc conjugate.
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6.1 Applications to BoxMappingsWhich Are Not Dynamically Natural orWhich
Are Renormalizable

In this subsection, we discuss what can be said about rigidity of box mappings when
we relax some of the assumptions in Theorem 6.1, that is if we do not assume that the
box mapping is dynamically natural and/or non-renormalizable.

First, the proof of Theorem 6.1 (1) (given in Sect. 11) yields the following, slightly
more general result: if F : U → V is a non-renormalizable complex box mapping
satisfying the no permutation condition, then each point in Kwell-inside(F) has trivial
fiber.

Furthermore, in [DS], it was shown that Theorem 6.1 (1) can be extended to the
following result [DS, Theorem C]: for a complex box mapping F : U → V and for
every x ∈ K (F) at least one of the following possibilities is true: (a) the fiber of x is
trivial; (b) the orbit of x lands into a filled Julia set of some polynomial-like restriction
of F ; (c) the orbit of x lands into a permutation component of V (i.e. there exists
k � 1 and a component V of V which is also a component of U so that Fk(V ) = V );
(d) the orbit of x converges to the boundary of V .

It is easy to see that for dynamically natural complex box mappings the possibility
(c) cannot occur, while points satisfying (d) have trivial fibers, and hence, for dynam-
ically natural mappings every point in its non-escaping set has either trivial fiber,
or the orbit of this point lands in the filled Julia set of a polynomial-like restriction.
These polynomial-like restrictions can be then further analyzed using the results on
polynomial rigidity. For example, if the corresponding polynomials are at most finitely
many times renormalizable and have no neutral periodic cycles, then the result in [47]
tells that each point in the filled Julia set has trivial fiber, and hence, the points in the
whole non-escaping set of the original box mapping have trivial fibers.

The discussion in the previous two paragraphs indicates the way how to extend
Theorem 6.1 (2), (3) for more general box mappings.

For example, using Theorem 6.1 (2), one can show that for every dynamically
natural complex box mapping F , the support of any measurable invariant line field
on K (F) is contained in puzzle pieces with the properties described in (2a) and (2b)
union the cycles of little filled Julia sets of possible polynomial-like renormalizations
of F (compare [Dr]).

Similarly, if for a pair of dynamically natural complex box mappings F and F̃
that satisfy assumptions of Theorem 6.1 (3) all polynomial-like renormalizations can
be arranged in pairs Fs : U → V , F̃ s : Ũ → Ṽ so that U , Ũ and V , Ṽ are the
corresponding puzzle pieces and Fs |U , F̃ s |Ũ are quasiconformally conjugate, then
Theorem 6.1 (3) can be used to conclude that F and F̃ are quasiconformally conjugate
[DS]. Some conditions, for example in terms of rays for polynomial-like mappings,
can be imposed to conclude rather than assume quasiconformal conjugation of the
corresponding polynomial-like restrictions.

The circle of ideas on how to “embed” results on polynomial dynamics into some
ambient dynamics using complex box mappings, similar to the ones described in this
subsection, is discussed in [DS] under the name rational rigidity principle.
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6.2 BoxMappings forWhich the Domains Are Not Jordan Disks

Let us now discuss Theorem 6.1 in the setting where we no longer assume that the
components of U , V are Jordan disks, but instead assume that each component U of
U and V of V
(i) is simply connected;
(ii) when U � V then V \U is a topological annulus;
(iii) has a locally connected boundary.

Thismeans thatU , V could for example be sets of the formD\[0, 1). Such domains are
often used for boxmappings associated to real polynomial maps or to maps preserving
the circle. In this setting

• Parts (1) and (2) of Theorem 6.1 hold, provided Assumptions (i), (ii) are satisfied.
The proof is identical as in the Jordan case, because these assumptions ensure that
one still has annuli, V \U , as before.

• Part (3) of Theorem 6.1 holds, provided Assumptions (i), (ii), (iii) are satisfied and,
moreover, the map H : V → Ṽ extends to a homeomorphism Ĥ : cl V → cl Ṽ .
To see this, observe that the QC-Criterion, Theorem 8.6, also holds for simply
connected domains �, �̃ provided that we now also assume that the homeomor-
phism ϕ : � → �̃ extends to a homeomorphism ϕ̂ : cl � → cl �̃. (The proof
of this version of the QC-criterion is the same as in [45], since Assumption (iii)
implies that we can apply the Carathéodory Theorem to get that the Riemann
mapping π : D → � extends to a continuous map π̂ : cl D → cl � and thus the
map ϕ : � → �̃ induces a homeomorphism ϕ : cl D → cl D. Since ϕ extends
continuously to ∂�, the map ϕ has the additional property that if x, y ∈ ∂D and
π̂(x) = π̂(y), then ϕ(x) = ϕ(y). The K -qc map ψ̂ : D → D so that ψ̂ = ϕ on
∂D which is produced in the proof the QC-criterion will now again have the same
property that if x, y ∈ ∂D and π̂(x) = π̂(y), then ψ̂(x) = ψ̂(y). Therefore, ψ̂

produces a K -qcmapψ : � → �̃which agrees with ϕ on ∂�.) Moreover, since H
now is assumed to extend to a homeomorphism on the closure of the domains, the
assumption that H is a conjugacy on ∂U makes sense. Finally, the gluing theorems
from Sect. 8.1 and the Spreading Principle go through without any further change.

6.3 Outline of the Remainder of the Paper

Let us briefly describe the structure of the upcoming sections. Theorem 6.1 contains
three assertions about dynamically natural complex box mappings with all periodic
points repelling:

1. on shrinking of puzzle pieces;
2. properties of box mappings with measurable invariant line fields; and
3. on quasiconformal rigidity (qc rigidity for short) of combinatorially equivalent,

dynamically natural box mappings, F : U → V and F̃ : Ũ → Ṽ .
We outline the main ingredients that go into the proof of these assertions in Sects. 7

and 8. For clarity and better referencing, these ingredients are shown in the diagram
in Fig. 9, with arrows indicating dependencies between them.
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The main ingredients can be roughly divided into two groups: complex a priori
bounds (discussed in Sect. 7), and analytic tools (the Spreading Principle and the
QC-Criterion, discussed in Sect. 8). Complex bounds, see Theorem 7.1, gives us
uniform control of the geometry of arbitrarily deep, combinatorially defined puzzle
pieces. Complex bounds is the chief technical result needed to prove both shrinking
of puzzle pieces (assertion (1)) and ergodic properties of box mappings and properties
of mappings with measurable invariant line fields (assertion (2)). The shrinking of
puzzle pieces is proved, assuming complex bounds, in Sect. 11. That the existence
of an invariant line field implies the existence of a smooth foliation on some puzzle
piece J is shown in Sect. 12 (again assuming complex bounds). In Sect. 13, we give
an example of a dynamically natural box mapping with an invariant line field and
show that such mappings have a very particular structure. We call these Lattès box
mappings. We outline the proof of complex bounds in Sect. 10.

It is important that the complex bounds are obtained for combinatorially defined
puzzle pieces, since this ensures that corresponding puzzle pieces for combinatorially
equivalent complex box mappings have good geometric properties simultaneously.
This is a starting point of the proof of qc rigidity (assertion (3)) and it allows us to use
the QC-Criterion (Theorem 8.6).

In Sect. 8, we continue the buildup to the explanation of the proof of qc rigidity. In
that section, we explain the Spreading Principle and the QC-Criterion. The Spread-
ing Principle, Theorem 8.5, allows one to obtain a partial quasiconformal conjugacy
between a pair of combinatorially equivalent complex box mappings F and F̃ outside
of some puzzle neighborhood Y of Crit(F), provided that one has a quasiconformal
mapping fromY to the corresponding puzzle neighborhood Ỹ for F̃ which respects the
boundary marking, see Definition 8.3. Using both the QC-Criterion and the Spreading
Principle, one can construct quasiconformal mappings that respect boundary marking
between arbitrarily deep puzzle neighborhoods Y and Ỹ .

In Sect. 9, we combine all the ingredients and explain the proof of qc rigidity.
While we will assume that complex box mappings are dynamically natural, quite

often wewill only use part of the definition: to prove complex bounds around recurrent
critical points, we will only need Definition 4.1(1); we will use Definition 4.1(2) to
prove the Spreading Principle; and we will use Definition 4.1(3) to obtain complex
bounds around non-recurrent critical points.

In Sect. 14, we prove a Mañé-type result for dynamically natural complex box
mappings that was mentioned earlier in the introduction.

7 Complex Bounds, the Enhanced Nest and the Covering Lemma

Complex bounds, also known as a priori bounds for a complex box mapping F : U →
V concern uniform geometric bounds on arbitrarily small, combinatorially defined
puzzle pieces. We will focus on two types of geometric control: moduli bounds and
bounded geometry. This is the geometric control needed to apply the QC-Criterion in
the proof of quasiconformal rigidity.

It is not possible to control the geometry of every puzzle piece, and to obtain complex
bounds, one must restrict ones attention to a chosen, combinatorially defined, nest of
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Fig. 9 The connection between themain ingredients that go into the proof of rigidity for non-renormalizable
dynamically natural complex box mappings. The input ingredients are marked according to the following
color scheme: the red boxes contain the ingredients coming from [45], the green box contains the ingredient
coming from [47], and finally, the blue box contains the ingredient proven in [41] (and used in [47]) (colour
figure online)

critical puzzle pieces, and show that one has complex bounds for the puzzle pieces in
this nest. One example of a nest of puzzle pieces is the principal nest. In this section,
we will discuss some of the geometric properties of the principal nest. We will also
describe the Enhanced Nest, which was introduced in [45]. It is combinatorially more
difficult to define than the principal nest and it is only defined around persistently
recurrent critical points, but it also provides much better geometric control on the
puzzle pieces than the principal nest, and it is especially useful for mappings with
more than one critical point.

7.1 Complex Bounds for Critical Neighborhoods

Define Critac(F) ⊂ Crit(F) to be the set of critical points whose orbits accumulate
on at least one critical fiber. Since it is a combinatorially defined set, it follows that for
a combinatorially equivalent box mapping F̃ the set Critac(F̃) consists of the corre-
sponding critical points. Note that in real one-dimensional dynamics if Critac(F) = ∅,
then F is usually called aMisiurewicz map.

The following theorem proven in Kozlovski et al. ([45], Proposition 6.2) in the real
case and extended to non-renormalizable complex maps in [47].

123



The Dynamics of Complex Box Mappings 363

Theorem 7.1 (Shrinking neighborhoods with uniform control) If F : U → V is a non-
renormalizable dynamically natural complex boxmapping, then there exist a δ > 0 and
an integer N such that the following holds. For every ε > 0, there is a combinatorially
defined nice puzzle neighborhood W of Crit(F) with the following properties:

(1) Every component of W has diameter < ε;
(2) Every component of W intersecting Critac(F) has δ-bounded geometry;
(3) The first landing map under F to W is (δ, N )-extendible with respect to Crit(F).

Moreover, if F̃ is another non-renormalizable dynamically natural box mapping com-
binatorially equivalent to F, then the same claims as above hold for F̃ and the
corresponding objects with tilde.

Remark In fact, for persistently recurrent critical points, we have better control. There
exists a beau constant δ′ > 0 such that if a component Wc of W is a neighborhood of
a persistently recurrent critical point, then Wc has δ′-bounded geometry and the first
landing map to Wc is (δ′, N )-extendible with respect to Crit(F). The constant N is
bounded by some universal function depending only on the number and degrees of
the critical points of F .

Let us recall a notion of (δ, N )-extendibility defined in Kozlovski et al. ([45], page
775). Let δ > 0 and N ∈ N. Let V ′ ⊃ V be a pair of nice open puzzle neighborhoods
of some set A ⊂ Crit(F), and B be any subset of Crit(F). For a ∈ A, denote
Va = Compa V ; similarly for V ′

a . We say that the first landing map LV to V is N -
extendible to V ′ w.r.t. B if the following hold (see Fig. 10): if Fs : U → Va is a branch
of LV , and if U ′ = CompU (F−s(V ′

a)), then

#
{
0 � j � s − 1 : (F j (U ′)\F j (U )) ∩ B 
= ∅

}
� N .

Moreover, LV is (δ, N )-extendible w.r.t. B if there exists a puzzle piece V ′
a ⊃ Va for

every a ∈ A such that mod(V ′
a\V a) � δ and LV is N -extendible to

⋃
a∈A V ′

a w.r.t. B.

Remark Note that this definition is slightly more demanding than the one from [45]
because here we require that the set V ′

a to be a puzzle piece rather than a topological
disk. The reason this can be done is because we are able to prove this sharper statement
in Lemma 10.3 as now we can rely on the estimate provided in Proposition 10.5 from
[47]. In [45], such an estimate is not available.

Wewill sketch the proof of Theorem 7.1 in Sect. 10. There are twomain ingredients
to this proof. The first one is the construction from [45] of the Enhanced Nest around
persistently recurrent critical points. The second one is the Covering Lemma of [41],
see ([47]). In [45], other methods were used in the real case because ([41]) was not
available, and also to deal with the infinitely renormalizable case. Before going on
to discuss these ingredients in greater detail, we will describe the geometry of the
principal nest.
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Fig. 10 Aschematic drawingof relevant annuli in the definitionof (δ, N )-extendibility: δ controls themoduli
of green annuli, N controls the number of critical points in the blue annuli for each branch Fs : U → Va
of the first landing map LV . The set V is the union of solid orange disks; the set A is indicated with black
dots, the set B is indicated with blue crosses (colour figure online)

7.2 The Principal Nest

Let c ∈ Crit(F) be a critical point. The principal nest (around c) is a nested collection
of puzzle pieces V 0 ⊃ V 1 ⊃ V 2 ⊃ . . . such that

c ∈ V 0, and V i+1 = LcV
i for every integer i � 0.

Note that we can start the principal nest from an arbitrary strictly nice puzzle piece
V 0 containing c. Clearly, if c is combinatorially non-recurrent, then the principal nest
is finite. Otherwise, the nest consists of infinitely many puzzle pieces. Moreover, each
V n contains fib(c), and hence all the critical points in fib(c).

Associated to such the principal nest we have a sequence of return times (pn)
defined as V n+1 = Compc F

−pn (V n); pn is the first time the orbit of c returns back to
V n . Since themapping from V n+1 to V n is a first returnmapping, and puzzle pieces are
nice sets, the sets F j (V n+1), F j ′(V n+1) are pairwise disjoint for 0 < j < j ′ � pn .
Thus, all the maps F pn : V n+1 → V n have uniformly bounded degrees.

7.2.1 Geometry of the Principal Nest

Let us describe some of the results concerning the geometry of the principal nest for
unicritical mappings. Suppose that F : U → V is a dynamically natural complex box
mapping with the properties that

• V consists of exactly one component,
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• there exists exactly one componentU0 of U that is mapped as a degree d branched
covering onto V which is ramified at exactly one point, and

• every component U of U , U 
= U0 is mapped diffeomorphically onto V .
Let V 0 = V and

V 0 ⊃ V 1 ⊃ V 2 ⊃ · · ·

be the principal nest about the critical point c of F .
There are two combinatorially distinct types of returns F pn : V n+1 → V n : central

andnon-central.We say that the returnmapping fromV n+1 toV n is central if F pn (c) ∈
V n+1. Otherwise the return is called non-central.

For quadratic mappings, the following result is fundamental.

Theorem 7.2 ([30, 52], Decay of Geometry) Let nk denote the subsequence of levels
in the principal nest so that F pnk−1 : V nk → V nk−1 is a non-central return. There
exists a constant C > 0 so that

mod
(
V nk\V nk+1

)
> Ck.

��
For example, by the Koebe Distortion Theorem, this result implies that the landing
maps to V nk+1 become almost linear as k → ∞. This result played a crucial role
in the proofs of quasiconformal rigidity and density of hyperbolicity in the quadratic
family.

For higher degree maps, even cubic mappings with two non-degenerate critical
points and unicritical cubic mappings, Decay of Geometry does not hold; however,
the geometry is bounded from below. The following result required new analytic
tools—the Quasiadditivity Law and Covering Lemma—of [41].

Theorem 7.3 ([2, 7]) Let nk denote the subsequence of levels in the principal nest so
that F pnk−1 : V nk → V nk−1 is a non-central return. There exists a constant δ > 0 so
that

mod
(
V nk\V nk+1

)
> δ.

��
Even for unicritical mappings, this difference makes the study of higher degree map-
pings quite a bit different from the study of unicritical mappings with a critical point
of degree 2.

In general, there is no control of themoduli of the annuli V n\V n+1
when the returns

are central. Observe that when the returnmapping from V n+1 to V n is central, we have
that the return time of c to V n+1 agrees with the return time of c to V n , and hence,
the annulus V n+1\V n+2 is mapped by a degree d covering map onto the annulus
V n\V n+1. Hence,

mod
(
V n+1\V n+2

)
= 1

d
mod

(
V n\V n+1

)
.
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Consequently, when there is a long cascade of central returns, that is, when F pn (c) ∈
V n+k for k large, we have that mod(V n+k\V n+1+k

) = 1
dk

mod(V n\V n+1
) may be

arbitrarily small. In general, it is impossible to bound the length of long central cas-
cades, so these moduli can degenerate.

For unicritical mappings, the complex a priori bounds imply that if {nk}∞k=0 is the
sequence of levels in the principal nest so that F pnk−1 : V nk → V nk−1 is non-central,
then the mapping F pnk : V nk+1 → V nk is (δ(k), 1)-extendible, where δ(k) → ∞ at
least linearly as k → ∞ when the critical point has degree 2, and δ(k) is bounded
from below for higher degree mappings.

Example: Puzzle Pieces in the Principal Nest Do Not Have Bounded Geometry in
General

Despite having moduli bounds, one cannot expect to have bounded geometry for the
principal nest, even at levels following non-central returns. For example, suppose that
F : U → V is real-symmetric box mapping, and that F pn : V n+1 → V n has a long
central cascade, so that F pn (0) ∈ V n+k , and that F pn (V n+1) ∩ R 
 0.12 Then, for
any ε > 0, as the length of the cascade tends to infinity the puzzle piece, V n+k is
contained in an ε · diam(V n+k)-neighborhood of its real trace. The reason for this
is that as k → ∞, the puzzle pieces in the principal nest converge to the Julia set
of the return mapping, which in this case, is close to the real trace of V n+k as the
return mapping, up to rescaling, is close to z �→ z2 − 2. Hence, in general, one cannot
recover δ-bounded geometry for subsequent puzzle pieces, even if the returnmappings
are non-central.

Example: The Fibonacci Map

Let us assume that F : U → V is a real-symmetric, unicritical complex box mapping
with quadratic critical point at 0 and Fibonacci combinatorics (see Fig. 11, left); that
is, for each V n we have that there are exactly two components V n+1 and V n

1 of the
domain of the first return map to V n that intersect the postcritical set of F . Moreover,
we assume that for all n, F pn (0) ∈ V n

1 , so that all of the first return mappings to
the principal nest are non-central, that the return mapping from V n

1 to V n is given by
F pn−1 |V n

1
, and that restricted to the real trace F pn (V n+1 ∩R) 
 0; that is, these return

mappings are all high.
For (quadratic) Fibonacci mappings, Decay of Geometry together with the precise

description of the combinatorics implies that the puzzle pieces V n converge to the
shape of the filled Julia set of z �→ z2−1, the basilica ([56]). In particular, these puzzle
pieces become badly pinched and the hyperbolic distance between 0 and F pn (0) in V n

tends to infinity, see Fig. 11, right. Consequently, these puzzle pieces are not δ-free (see
Sect. 1.5 to recall the definition). However, the return mappings are (K , 1)-extendible
for K -arbitrarily large at sufficiently deep levels, and there exists δ > 0, independent
of n, so that the puzzle pieces have δ-bounded geometry.

12 Such a return is called high.
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Fig. 11 (Left) the Fibonacci combinatorics. (Right) the actual shape of the n-th puzzle piece Vn in the
principal nest of the Fibonacci mapping of degree two

7.3 Inducing Persistently Recurrent BoxMappings

Recall that a box mapping F ′ : U ′ → V ′ is induced from F : U → V if U ′ and V ′
consist of puzzle pieces of F and the branches of F ′ are the iterates of some branches
of F .

Definition 7.4 (Persistently recurrent box mapping)We say that a non-renormalizable
dynamically natural box mapping F is persistently recurrent if every critical point of
F is persistently recurrent and its orbit accumulates at every critical fiber of F . The
latter is equivalent to the property that Crit(F) = [c] for some, and hence for every
c ∈ Crit(F) (see notation in Sect. 5.2).

The next lemma shows that starting from an arbitrary box mapping F (non-
renormalizable and dynamically natural) and a persistently recurrent critical point
c ∈ Crit(F) we can extract an induced box mapping F ′ that is persistently recurrent
and contains c, and hence fib(c), in its non-escaping set. More precisely,

Lemma 7.5 (Inducing persistently recurrent box mappings) Let F be a dynamically
natural box mapping that is non-renormalizable, and c ∈ Crit(F) be a persistently
recurrent critical point of F. Then, there exists an induced persistently recurrent box
mapping F ′ such that c ∈ Crit(F ′) ⊂ Crit(F).

Proof By definition of persistent recurrence, the set [c] consists only of persistently
recurrent critical points. Choose an integerm large enough so that each critical puzzle
piece of depth at least m contains a single critical fiber. Let V ′

n be the union of all
puzzle pieces of F of depth n � m intersecting [c]; this is a finite union of critical
puzzle pieces containing only persistently recurrent critical fibers. Let U ′

n be the union
of the components ofR(V ′

n) intersecting [c], and define a box mapping F ′
n : U ′

n → V ′
n

to be the restriction to U ′
n of the first return map to V ′

n under F .
Let us show that there exists an n(� m) such that the only critical points of F ′

n are
the ones in [c]. This will be our desired box mapping F ′.

Assume the contrary, and let Un ⊂ U ′
n and Vn ⊂ V ′

n be a pair of components
containing, respectively, c′ ∈ [c] and c′′ ∈ [c], and such that Crit(F ′)∩Un 
⊂ [c]. This
means that if Fs : Un → Vn , s = s(n) is the corresponding branch of the first return
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map, then one of the puzzle pieces in the sequence F(Un), F2(Un), . . . , Fs−1(Un)

contains c′′′ ∈ Crit(F) which is either a non-persistently recurrent critical point or a
persistently recurrent critical point with [c] ∩ [c′′′] = ∅. If this is true for every n, then
the orbits of c′, c′′ and c′′′ must all visit arbitrarily deep puzzle pieces around each
other. In particular, c′′′ must be combinatorially recurrent and [c′′′] must intersect [c′].
On the other hand, c′′′ cannot be reluctantly recurrent: the critical point c′ will then
have only finitely many children, contrary to the definition of reluctant recurrence. We
arrived at a contradiction. ��

7.4 The Enhanced Nest

In this subsection, we review the construction and properties of the Enhanced Nest of
puzzle pieces defined around a chosen persistently recurrent critical point.

Throughout Sect. 7.4, unless otherwise stated we will assume that all complex box
mappings are dynamically natural, non-renormalizable, and persistently recurrent.
By Lemma 7.5 we know that we can always induce such a mapping starting from a
given (dynamically natural non-renormalizable) box mapping.

The construction of the Enhanced Nest is based on the following lemma Kozlovski
et al. ([45], Lemma 8.2) (see Fig. 12, left):

Lemma 7.6 Let F be a persistently recurrent box mapping, c ∈ Crit(F) be a (per-
sistently recurrent) critical point, and I 
 c be a puzzle piece. Then, there exists a
combinatorially defined positive integer ν with Fν(c) ∈ I such that the following
holds. If U0 := Compc

(
F−ν(I )

)
, and U j := F j (U0) for 0 < j � ν, then

(1) #
{
0 � j � ν − 1 : Uj ∩ Crit(F) 
= ∅}

� b2, where b is the number of critical
fibers of F (which all intersect orb(c));

(2) U0 ∩ PC(F) ⊂ Compc
(
F−ν

(LFν (c)(I )
))
.

��
This lemma allows us to define the following pullback operators A and B. Let

c ∈ Crit(F) be a persistently recurrent critical point, and for a critical puzzle piece
I 
 c, let ν = ν(I ) be the smallest possible integer with the properties specified by
Lemma 7.6. Define

A(I ) := Compc
(
F−ν

(LFν (c)(I )
))

,

B(I ) := Compc
(
F−ν(I )

)
.

Let us comment on the meaning of these operators. First, these operators depend
on persistently recurrent critical point (or to be more precise, on the corresponding
fiber, see Sect. 5.1). Once the critical point is fixed, say c, the operatorsA : I �→ A(I )
and B : I �→ B(I ) produce for any given puzzle piece I 
 c its pullbacks A(I ) 
 c,
respectively, B(I ) 
 c so that:

• the degrees of the corresponding maps Fν : A(I ) → I and Fν : B(I ) → I are
bounded only in terms of the local degrees of the critical points of F , and hence
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Fig. 12 The role of the pullback operators A and B: the operator A creates some “external” space free of
PC(F), while B creates some “internal” space free of PC(F). The annuli disjoint from PC(F) are shaded
in yellow. The figure on the left illustrates the construction in Lemma 7.6; here, elements of the set PC(F)

are marked with crosses and dots. The figure on the right illustrates the result of successive applications of
A and B: the puzzle piece BA(I ) has an annular “buffer” free of PC(F) around its boundary (colour figure
online)

are independent of I (we can thus speak of the bounds on degrees assigned to the
operators); this property follows by Lemma 7.6 (1) (note that U0 = B(I ) in that
lemma);

• the puzzle pieceA(I ) has some “external space” free of the critical and postcritical
set of F (denoted earlier as PC(F)), while the puzzle pieceB(I ) has some “internal
space” disjoint from PC(F),13 see Fig. 12, left. This property is Lemma 7.6 (2).

It is immediate from the last property that if we apply B after A, then for every
c ∈ I the puzzle piece BA(I ) will be the pullback of I of uniformly bounded degree
and will have an annular “buffer” around its boundary free of PC(F), see Fig. 12 right.
This is a key step in the construction of the Enhanced Nest below. In fact, these buffers
can be written explicitly in terms of A and B. If we set

P = BA(I ), P+ = BB(I ) and P− = AA(I ),

then the annuli P+\ cl (P) and P\ cl (P−) are disjoint from PC(F). In Lemma 10.4,
we will show that there is a uniform bound on the moduli of such “buffers” for the
elements in the Enhanced Nest.

For technical reasons that are apparent in the proof of Lemma 7.8, it is not enough
to produce a nest only by applying A and B starting with some puzzle piece I . To
construct an effective nest that goes fast enough in depth, we have to use several times
the following smallest successor construction.

Given a puzzle piece P 
 c, by a successor of P wemean a puzzle piece containing
c of the form Compc L̂(Q), where Q is a child of Compc′ L̂(P) for some c′ ∈ Crit(F).
If c is persistently recurrent, then by definition each critical puzzle piece I 
 c has

13 One might interpret the notation as follows: the operatorA gives puzzle pieces with some space free of
PC(F) Above the boundary of the piece, while the operator B gives pieces with some space free of PC(F)

Below the boundary of the piece.
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the smallest (i.e. the deepest) successor, which we denote by �(I ). By construction,
the corresponding return map Fs : �(I ) → I has degree bounded only in terms of the
local degrees of the critical points of F , and hence independent of I .

Definition 7.7 (The Enhanced Nest) The Enhanced Nest (around a persistently recur-
rent critical point c, or, equivalently, around a persistently recurrent critical fiber fib(c)
of a persistently recurrent box mapping F) is a nested sequence I0 ⊃ I1 ⊃ I2 . . . of
puzzle pieces such that

c ∈ I0, and Ii+1 = �5bBA(Ii ) for every integer i � 0,

where b is the number of critical fibers intersecting orb(c).

By the discussion above, In+1 is a pullback of In and the return map

F pn : In+1 → In

has degree bounded independently of n. Moreover, each element In in the Enhanced
Nest comes with a pair of puzzle pieces I+

n , I−
n nested as I−

n ⊂ In ⊂ I+
n so that the

annuli I+
n \ cl (In) and In\ cl (I−

n ) are disjoint from PC(F).
This particular construction of theEnhancedNest is chosen because of the following

lemma Kozlovski et al. ([45], Lemma 8.3):

Lemma 7.8 (Transition and return times for the Enhanced Nest) Let c ∈ Crit(F) be a
persistently recurrent critical point, and (In)n�0 is the Enhanced Nest around c. If pn
is the transition time from In+1 to In, and r(In+1) is the return time of In+1 to itself,
i.e. r(In+1) is the minimal positive integer r such that there exists a point x ∈ In+1
with Fr (x) ∈ In+1, then

(1) 3r(In+1) � pn;
(2) pn+1 � 2pn. ��

This lemma is one of the main ingredients in the proof of the Key Lemma
(Lemma10.4). Let us comment on themeaning of conditions (1) and (2) in Lemma7.8.

Condition (1) implies the following: if Fs : A → In+1 is an arbitrary branch of the
first return map to In+1 under F , then s � r(In+1) � pn/3.

As for condition (2), first observe that (pn)n�0 is a monotonically increasing
sequence of integers. Hence, by (2), pn+1 � 2pn � pn + pn−1. This means that this
sequence grows faster than the sequence of Fibonacci numbers (with the same starting
pair of values). For the classical Fibonacci numbers fn , that is when fn+1 = fn+ fn−1,
f0 = f1 = 1, the following property is well known:

fn+2 = f1 +
n∑

i=0

fi = 1 +
n∑

i=0

fi .

123



The Dynamics of Complex Box Mappings 371

Fig. 13 The inequality for the transition times in the Enhanced Nest implies that for every n � m � 0,
the puzzle piece Ft (In+3), t = ∑n

i=m pi is contained in some entry domain Lx (In+2) to In+2 under
F , and the degree of the restriction Ft |In+3 is bounded independently of n and m, while the degree of

Ft : In+1 → Im does not

Along the same lines, one can show that for our sequence (pi )i�0 for every n � 0,
we have

pn+2 � p1 +
n∑

i=0

pi ,

or more generally, for every n � m � 0,

pn+2 � pm+1 +
n∑

i=m

pi >

n∑

i=m

pi . (7.1)

If we write t := ∑n
i=m pi , then Ft (In+1) = Im and the degree of the map

Ft : In+1 → Im can be arbitrarily big. However, restricted to In+3 this map has
degree bounded independently of n andm. This follows from (7.1): it takes additional
pn+2 − t > 0 iterates of F to map Ft (In+3) over In+2, and hence, the degree of
Ft |In+3 is bounded above by the degree of F pn+2 : In+3 → In+2, which is uniformly
bounded (see Fig. 13). This mechanism is in the core in the proof of Proposition 10.5,
as it allows to apply the Covering Lemma, which we discuss next.

7.5 The Covering Lemma

The second main ingredient that go into the proof of the Key Lemma (Lemma 10.4)
is the Kahn–Lyubich Covering Lemma, which we discuss is this subsection.

Let A ⊂ A′ ⊂ U , B ⊂ B ′ ⊂ V be open topological disks in C. Denote by
f : (A, A′,U ) → (B, B ′, V ) a holomorphic branched covering map f : U → V that
maps A′ onto B ′ and A onto B.

One of the standard results on distortion of annuli under branched coverings is the
following lemma; its proof is based on the Koebe Distortion Theorem.
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Lemma 7.9 (Standard distortion of annuli)Let A ⊂ U and B ⊂ V be open topological
disks, and f : (A,U ) → (B, V ) be a holomorphic branched covering map. Suppose
that the degree of f is bounded by D > 0. Then

mod(U\A) � D−1 · mod(V \B). ��
In this lemma, once the degree D starts to grow, we lose control on the modulus

of the pullback annulus. However, in the situation when the annulus U\A is nearly
degenerate someportion of themodulus under pullback can still be recovered, provided
that the restriction of f to some smaller disk inside U is of much smaller degree
compared to D. This situation is often the case in complex dynamics, for example,
when one considers a pair P ⊂ Q of critical puzzle pieces such that Fs(P) = Q for
some large s: the degree of Fs |P can be arbitrary high, but restricted to some small
neighborhood of the critical point in P the degree is much smaller. This was made
precise by [41] in the following lemma:

Lemma 7.10 (Covering Lemma) For any η � 0 and D > 0, there is ε = ε(η, D) > 0
such that the following holds:

Let A ⊂ A′ ⊂ U and B ⊂ B ′ ⊂ V be a triple of nested and open topological
disks, and let f : (A, A′,U ) → (B, B ′, V ) be a holomorphic branched covering map.
Suppose the degree of f is bounded by D, and the degree of f |A′ is bounded by d.
Then

mod(U\A) � min(ε, η−1 · mod(B ′\B),Cηd−2 · mod(V \B)),

where C > 0 is some universal constant. ��
Let us make some comments on the statement of the Covering Lemma. The param-

eter ε in this lemma controls the degeneration of the annulus U\A: either U\A has
modulus at least ε, or mod(U\A) < ε and we are in a nearly degenerate regime.
Note that the extend to which we have to degenerate to “enter” this regime depends
on η and the large degree D. Once we are in the nearly degenerate regime, then the
Covering Lemma says that under the pullback we either recover at least η−1-portion
of the modulus of B ′\B (called the collar in the terminology of [41]), or mod(U\A)

is even smaller than η−1 · mod(B ′\B) and in this even more degenerate regime we
recover at least Cηd−2-portion of mod(V \B).

In the real-symmetric case, the Covering Lemma was proven in a sharper form in
Kozlovski and van Strien ([47], Lemma 9.1).

8 The Spreading Principle and the QC-Criterion

In this section, we discuss two quite general tools that are used to prove qc rigidity:
the Spreading Principle and the QC-Criterion. We start with some auxiliary results on
quasiconformal mappings and their gluing properties.

123



The Dynamics of Complex Box Mappings 373

Fig. 14 The annuli in the Covering Lemma

8.1 Quasiconformal Gluing

The following lemma is well known (see for example ([24], Lemma 2)), and is due to
[80] (sometimes it is also called Bers’ Sewing Lemma and attributed to Bers).

Lemma 8.1 (Sewing Lemma) Let U ⊂ C be an open topological disk and E ⊂ U be
a relatively compact set. Let ϕi : U → ϕi (U ), i ∈ {1, 2} be a pair of homeomorphisms
such that

1. ϕ1 is K1-quasiconformal,
2. ϕ2|U\E is K2-quasiconformal,
3. ϕ1|∂E = ϕ2|∂E .
Then, the map � : U → �(U ) defined as

�(z) =
{

ϕ1(z) if z ∈ E

ϕ2(z) if z ∈ U\E

is a K -quasiconformal homeomorphism with K = max(K1, K2). Moreover, ∂� =
∂ϕ1 almost everywhere on E. ��

We will need the following corollary to the Sewing Lemma, which is immediate if
in the statement below the number of disks is finite; if this number is not finite, then
the argument is slightly more delicate (see also the remark below).

Lemma 8.2 (Countable gluing lemma) Let V ⊂ C be an open topological disk and
ψ : V → ψ(V ) be a K -quasiconformal homeomorphism. Let Bi ⊂ V , i ∈ I be
an at most countable collection of closed Jordan disks with pairwise disjoint inte-
riors. Suppose there exist homeomorphisms ϕi : Bi → ϕi (Bi ) that are uniformly
K ′-quasiconformal in the interior of Bi and match on the boundary with ψ , i.e. for
each i ∈ I ,

ψ |∂Bi = ϕi |∂Bi .
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Then, the map � : V → �(V ) defined as

�(z) =
{

ϕi (z) if z ∈ Bi
ψ(z) if z ∈ V \ ∪i∈I Bi

is a max(K , K ′)-quasiconformal homeomorphism.

Remark In general, if I is infinite and one assumes that ψ and all ϕi are just homeo-
morphisms, then the map � need not be even a homeomorphism. Lemma 8.2 allows
us in the statement of qc rigidity for box mappings to avoid the assumption that the
domains of U shrink to points, which was imposed in [6], [52]. Under that assumption
in those papers, Lyubich ([52], Lemma 11.1) was used instead of the Gluing Lemma
above.

Proof of Lemma 8.2 Exhaust I by finite sets In . For each n, define

�n(z) :=
{

ϕi (z) if z ∈ Bi for some i ∈ In
ψ(z) if z ∈ V \ ∪i∈In Bi

Since In is finite and each ϕi , i ∈ In matches withψ on the boundary of Bi , the map
�n is a homeomorphism of V onto its image. By the Sewing Lemma (Lemma 8.1)
applied to E = ∪i∈In∂Bi , ϕ1 = ψ , and ϕ2 = �n , it follows that

z �→
{

ψ(z) if z ∈ ∪i∈In∂Bi
�n(z) if z ∈ V \ ∪i∈In ∂Bi

is a max(K , K ′)-quasiconformal homeomorphism. The latter map is clearly equal to
�n .

In this way, we obtained a sequence (�n)n�0 of max(K , K ′)-quasiconformal maps
on V . By compactness of quasiconformal maps of uniformly bounded dilatation, this
sequence has a sub-sequential limit. Moreover, since the maps in the sequence agree
on more and more disks Bi , all sub-sequential limits are the same and equal to the
map �. The conclusion of the lemma follows. ��

8.2 Lifts of Combinatorial Equivalence and the Boundary Marking

Let F : U → V and F̃ : Ũ → Ṽ be a pair of complex box mappings that are combi-
natorially equivalent in the sense of Definition 5.4 w.r.t. to some K -quasiconformal
homeomorphism H : V → Ṽ such that H(U) = Ũ and F̃ ◦H = H ◦F on ∂U for each
componentU of U . By Remark 4 after Theorem 6.1, the latter condition means that if
Ĥ : cl V → cl Ṽ is a continuous homeomorphic extension of H to the closures, then

ˆ̃F ◦ Ĥ |∂U = Ĥ ◦ F̂ |∂U
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for each component U of U ; here F̂ and ˆ̃F are the corresponding homeomorphic
extensions of F and F̃ to the closures. Let P and P̃ be a pair of corresponding puzzle
pieces for F and F̃ in the sense of Sect. 5.4.

Definition 8.3 (Boundary marking) We say that a homeomorphism h : P → P̃
respects the boundary marking (induced by H ) if h extends to a homeomorphism
ĥ between cl P and cl P̃ and ĥ|∂P agrees with the corresponding lift of Ĥ ; that is, if
k � 0 is the depth of P , then

ˆ̃Fk ◦ ĥ|∂P = Ĥ ◦ F̂k |∂P .

Let K be the quasiconformal dilatation of H . The definition of combinatorial equiv-
alence then gives us a K -qc homeomorphism that respects the boundary marking
between any two corresponding puzzle pieces of depths 0 and 1. The next lemma is
a simple observation that shows that such H gives rise to a K ′-qc homeomorphism
that respects the boundary marking for a pair of corresponding arbitrary deep puzzle
pieces; of course, K ′ � K can be arbitrarily large.

Lemma 8.4 (Starting qc maps respecting boundary) Let P, P̃ be a pair of correspond-
ing puzzle pieces of depth k � 0 for F, F̃ . Then, there exists a K ′-quasiconformal
homeomorphism h : P → P̃ that respects the boundary marking induced by H.

Proof Let V be the component ofV so that Fk(P) = V . If Fk : P → V is a conformal
isomorphism, then, by combinatorial equivalence (Definition 5.4), F̃k : P̃ → Ṽ is also
a conformal isomorphism. In this situation, we can define h := F̃−k ◦ H ◦ Fk for the
branch F̃−k that maps Ṽ over P̃ . Clearly, h is a K -qc map that respects the boundary
marking.

Suppose v1, . . . , v� ∈ V are the critical values of the map Fk : P → V . By
combinatorial equivalence, the map F̃k : P̃ → Ṽ must have the same number of
critical values with the same branching properties (i.e. if c ∈ P is a critical point of
local degree s � 2 and so that Fk(c) = vi , then the corresponding critical point c̃
must have local degree s and is mapped by F̃k to the corresponding critical value ṽi ).

Choose an arbitrary smooth diffeomorphism L : V → V so that L(vi ) = H−1(̃vi )

and so that L = id in some small neighborhood of ∂V . Then, H ◦ L : V → Ṽ is a
K ′-qc homeomorphism that maps the critical values of Fk |P to the critical values of
F̃k |P̃ and respects the boundary marking. Such homeomorphism can be now lifted as
above: define h = F̃−k ◦ H ◦ L ◦ Fk (for appropriate choices of inverse branches). By
construction, h is K ′-qc homeomorphism between P and P̃ that respects the boundary
marking, as required. ��

8.3 The Spreading Principle

The Spreading Principle is a dynamical tool which makes it possible to construct qua-
siconformal conjugacies outside of some puzzle neighborhood Y of Crit(F) between
two mappings F : U → V and F̃ : Ũ → Ṽ provided that one has an initial quasicon-
formal mapping H : V → Ṽ which is a combinatorial equivalence and a conjugacy
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on ∂U between F and F̃ , and a quasiconformal mapping on each component P of Y
to the corresponding component P̃ of Ỹ that respects the boundary marking (in the
sense of Definition 8.3).

In the context of polynomials, the Spreading Principle was proven in Kozlovski et
al. ([45], Section 5.3, page 769) and [47]. Below we state and prove the corresponding
version for dynamically natural box mappings. Our statement is slightly more general
than the one in [45, 47] as it allows to take into account some pre-existing conjugacy
on some part of the postcritical set.

Theorem 8.5 (Spreading Principle) Let F : U → V and F̃ : Ũ → Ṽ be a pair of
dynamically natural complex box mappings and H : V → Ṽ be a K -quasiconformal
homeomorphism that

• provides a combinatorial equivalence between F and F̃, is a conjugacy on the
boundary of U , and moreover, it

• conjugates F to F̃ on XS := {Fi (fib(c)) : c ∈ S, i � 0} for some subset S ⊂
Crit(F) (possibly empty).

LetY beanice puzzle neighborhoodofCrit(F)\S such that XS∩Y = ∅, and let Ỹ be
the corresponding neighborhood ofCrit(F̃)\S̃ for F̃ . Further suppose that there exists
a K ′-quasiconformal homeomorphismϕ : Y → Ỹ that respects the boundarymarking
induced by H. Then, ϕ extends to a max(K , K ′)-quasiconformal homeomorphism
� : V → Ṽ such that:

(1) � = ϕ on Y;
(2) for each z ∈ U\Y ,

F̃ ◦ �(z) = � ◦ F(z);

(3) �|V\L̂(Y)
is K -quasiconformal;

(4) �(P) = P̃ for every puzzle piece P that is not contained in L̂(Y), and� : P → P̃
respects the boundary marking induced by H.

Proof Denote by Pn the collection of puzzle pieces of depth n � 0 for F .
Since XS∩Y = ∅ and XS is forward invariant under F , it follows that XS∩L̂(Y) =

∅; the same is true for the corresponding sets X̃ S̃ and Ỹ . Moreover, there exists a puzzle
neighborhood X of S consisting of puzzle pieces of the same depth, say m, with the
property thatm is larger than the depths of the components of Y andX ∩Y = ∅. Note
that Y ∪ X is a nice set by construction.

Let C be a collection of all critical puzzle pieces that are not contained in Y but do
intersect Crit(F)\S. This is a finite set. Using Lemma 8.4, for each C ∈ C, let us pick
a quasiconformal map hC : C → C̃ that respects the boundary marking induced by
H ; suppose K0 is the maximum over the quasiconformal dilatations of hC for C ∈ C.

We now want to construct a quasiconformal homeomorphism ψ : X → X̃ that
respects the boundary marking. Let Q be a component of X , and k � 0 be minimal
so that Fk(Q) either is a component of V , or is in C. Now, define a map ψQ : Q → Q̃
by the formula F̃k ◦ ψQ = f ◦ Fk , where
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f =
{
H if Fk(Q) is a component of V,

hFk(Q) if Fk(Q) ∈ C.
(8.1)

Since none of the puzzle pieces in the sequence Q, F(Q), . . . , Fk(Q) intersects
Y (as XS ∩ Y = ∅), and F is conjugate to F̃ on XS , we conclude that the map ψQ

is a well-defined quasiconformal homeomorphism with dilatation max(K , K0). By
construction,ψQ respects the boundarymarking induced by H .We defineψ : X → X̃
component-wise using the maps ψQ . Note that the dilatation of ψ does not depend
on the choice of the puzzle neighborhood X , and as the depth of the neighborhood
X tends to ∞, the set where the dilatation of ψ is equal to K0 shrinks to zero (in
measure).

Finally, let us adjust ϕ, Y and Y ′ as follows. Set Y ′ := Y ∪ X and Ỹ ′ := Ỹ ∪ X̃ ,
and define

ϕ′(z) =
{

ϕ(z) if z ∈ Y,

ψ(z) if z ∈ X .

Defined this way, ϕ′ : Y ′ → Ỹ ′ is a K ′′-quasiconformal homeomorphism between
nice puzzle neighborhoods of Crit(F) and Crit(F̃), with K ′′ := max(K , K ′, K0), and
this homeomorphism respects the boundary marking.

Let Q be a component of L̂(Y ′), and k � 0 be the landing time of the orbit of Q
to Y ′. Since Crit(F) ⊂ Y ′, the map Fk : Q → Fk(Q) is a conformal isomorphism.
Therefore, we can pull back ϕ′ and define a K ′′-quasiconformal homeomorphism
ϕ′
Q : Q → Q̃ by the formula F̃k ◦ ϕ′

Q = ϕ′ ◦ Fk . Since ϕ′ respects the boundary
marking induced by H , so does ϕ′

Q .
Let us now inductively define a nested sequence of sets Y0 ⊃ Y1 ⊃ Y2 . . . so that:

• Y0 is the union of all puzzle pieces in P0;
• Yn+1 is the subset of Yn consisting of puzzle pieces of depth n + 1 that are not
components of L̂(Y ′).

For each puzzle piece Q ∈ Pn that is contained in Yn , it follows that none of
the pieces in the orbit Q, F(Q), . . . can lie in Y ′ (because otherwise Q would lie in
Y�−1\Y� for some � � n). Therefore, there exists the minimal k = k(Q) � 0 so that
Fk(Q) either is in C, or is a component of V . By a similar reasoning as above, in both
cases the map Fk : Q → Fk(Q) allows to pull back homeomorphisms consistently
and to define a homeomorphism HQ : Q → Q̃ by the formula F̃k ◦ HQ = f ◦ Fk ,
where f is as in (8.1). Defined this way, the map HQ is max(K , K0)-quasiconformal
map that respects the boundary marking induced by H .

We proceed by inductively defining a sequence of homeomorphisms (�X
n )n�0,

�X
n : V → Ṽ as follows. Set �X

0 = H , and for each n � 0 define

�X
n+1(z) =

⎧
⎪⎨

⎪⎩

�X
n (z) if z ∈ V\Pn+1,

HQ(z) if z ∈ Q ∈ Pn+1 and Q ⊂ Yn+1,

ϕ′
Q(z) if z ∈ Q ∈ Pn+1 and Q 
⊂ Yn+1.
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By the Gluing Lemma (Lemma 8.2), the map�X
n : V → Ṽ is a K ′′-quasiconformal

homeomorphism for each n � 0. Note that the sequence (�X
n ) eventually stabilizes

onV\ ⋂
n Yn . The set E(Y ′) := ⋂

n Yn consists of points inV which are never mapped
into Y ′, and hence E(Y ′) ⊂ Koff-crit(F). Since F is dynamically natural, E(Y ′) has
zero Lebesguemeasure. Hence,V\E(Y ′) is a dense set.We conclude that the sequence
(�X

n ) converges the limiting K ′′-quasiconformal homeomorphism�X : V → Ṽ . This
map depends on the depth of X . Letting this depth go to ∞, in the limit we obtain
the required quasiconformal map � : V → Ṽ with quasiconformal dilatation equal to
max(K , K ′). For this homeomorphism the properties (1), (2) and (4) follow directly
from the construction, while property (3) follows from the facts that meas(E(Y ′)) = 0
and that H conjugates F and F̃ on

⋃
c∈S fib(c). ��

8.4 The QC-Criterion

The following criterion for the existence of quasiconformal extensions was proven in
Kozlovski et al. ([45], Appendix 1). This result is inspired by the works of [32] and
[94].

Recall that a topological disk P ⊂ C has η-bounded geometry if there is a point
x ∈ P such that P contains an open round disk of radius η · diam(P) centered at x .

Theorem 8.6 (QC-Criterion) For any constants 0 � k < 1 and η > 0 there exists a
constant K with the following property. Let ϕ : � → �̃ be a quasiconformal homeo-
morphism between two Jordan domains. Let X be a subset of� consisting of pairwise
disjoint open topological disks. Assume that the following hold:

1. If P is a component of X, then both of P and ϕ(P) have η-bounded geometry, and
moreover

mod(�\ cl (P)) � η, mod(�̃\ cl (ϕ(P))) � η;

2. |∂̄ϕ| � k|∂ϕ| holds almost everywhere on �\X.
Then, there exists a K -quasiconformal map ψ : � → �̃ such that ψ = ϕ on ∂�. ��

The QC-Criterion will be applied in situations where � is a puzzle piece and X is
a union of first return domains to �. Note that a priori the set X can be pretty “wild”,
see Fig. 15.

9 Sketch of the Proof of the QC-Rigidity Theorem

In this section, we will explain how to combine shrinking of puzzle pieces (Theo-
rem 6.1 (1)), complex bounds (Theorem 7.1), the QC-Criterion (Theorem 8.6) and
the Spreading Principle (Theorem 8.5) to prove qc rigidity for non-renormalizable
dynamically natural complex box mappings. The argument follows that of Kozlovski
et al. ([45], Section 6).
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Fig. 15 The set X in the
statement of the QC-Criterion
can have a complicated shape. In
particular, it is possible that X
tiles �, as shown on the picture
(components of X are shown in
yellow). In this example, the
second condition in the
QC-Criterion is automatically
satisfied: the set �\X , shown in
green, has zero area (colour
figure online)

Complex bounds from Theorem 7.1 imply the following lemma, which gives us
that for any point z, the orbit of which accumulates on a critical fiber, there are arbi-
trarily deep puzzle pieces containing z that satisfy the geometric hypotheses of the
QC-Criterion. The details are verbatim as inKozlovski et al. ([45], Corollary 6.3) (sim-
plified in several places as we do not have to deal with (eventually) renormalizable
critical points).

Lemma 9.1 Kozlovski et al. ([45], Corollary 6.3 (Geometric control for landing
domains)) Let F be a non-renormalizable dynamically natural complex box map-
ping. Then, for every integer n � 0, there exists a nice puzzle neighborhood W of
Critac(F) such that for every component U of L(W ) the following hold:

• U has η-bounded geometry;
• the depth of U is larger than n, and if P is the puzzle piece of depth n containing
U, then mod(P\U ) � η,

where η > 0 is a constant independent of n.
Furthermore, if F̃ is another non-renormalizable dynamically natural boxmapping

combinatorially equivalent to F, then taking η smaller if necessary, the same claims
as above hold for F̃ and the corresponding objects with tilde. ��

The following lemma implies that we can modify a combinatorial equivalence H
from Theorem 6.1 (3) so that it becomes a conjugacy on the orbits of critical points in
Crit(F)\Critac(F) (if this set is not empty).

Lemma 9.2 (Making H partial conjugacy) Let F : U → V and F̃ : Ũ → Ṽ be non-
renormalizable dynamically natural boxmappings that are combinatorially equivalent
with respect to some K-quasiconformal homeomorphism H : V → Ṽ that satisfies the
assumptions of Theorem 6.1 (3). Suppose Crit(F)\Critac(F) 
= ∅. Then, there exists
a K ′-quasiconformal homeomorphism H ′ : V → Ṽ so that
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• H ′|∂U = H |∂U ;
• H ′ is a combinatorial equivalence between F and F̃;
• F̃ ◦ H ′ = H ′ ◦ F on ∂U;
• H ′ conjugates F to F̃ on

{
Fi (c) : c ∈ Crit(F)\Critac(F), i � 0

}
.

Proof Recall that S := Crit(F)\Critac(F) consists of non-recurrent critical points
whose orbits do not accumulate on other critical points (we can talk about points
rather than fibers since by Theorem 7.1 (1) all critical fibers are trivial). Therefore, we
can find a sufficiently deep puzzle neighborhood U0 of Crit(F) consisting of puzzle
pieces of the same depth, say n0 � 0, so that the orbit of F(S) is disjoint from U0, and
hence from L̂(U0). For simplicity, we assume that F(S) contains no critical points;
otherwise, the modification of the argument below is straightforward. By increasing
n0 we can also assume that each component of U0 contains only one critical point.

Let ϕ : U0 → Ũ0 be a K ′-quasiconformal map that respects the boundary marking
induced by H constructed by Lemma 8.4. Clearly, K ′ � K and can be arbitrarily large.
Let H0 : V → Ṽ be the K ′-qc extension ofϕ by the Spreading Principle (Theorem8.5).
If P is a sufficiently small puzzle piece around a point x ∈ orb(F(S)), then P is not
contained in L̂(U0) by our choices, and thus by property (4) of the Spreading Principle,
H0(P) = P̃ . Since puzzle pieces shrink to points (Theorem 6.1 (1)), by letting the
depth of such P’s go to zero we conclude that H0(Fk(c)) = F̃k (̃c) for every c ∈ S
and k � 1.

Now, define H ′ : V → Ṽ by H ′ = F̃−1◦H0◦F on the components ofU0 containing
the points of S and H ′ = H0 elsewhere. As H0(Fk(c)) = F̃k (̃c) for all k � 1 and
c ∈ S, the map H ′ is well defined and it is continuous because F̃ ◦ H0 = H0 ◦ F on
∂U0. It follows that H ′ is the required K ′-qc map. ��

Lemmas 9.1, 9.2 and the QC-Criterion (Theorem 8.6) imply the following propo-
sition (which is similar to the claim in Kozlovski et al. ([45], Section 6.4)). The
conclusion of this proposition will then be an input into the Spreading Principle later
in the proof of qc rigidity of complex box mappings.

Proposition 9.3 (Uniform control of dilatation) Let F and F̃ be non-renormalizable
dynamically natural box mappings that are combinatorially equivalent with respect
to some homeomorphism H that satisfies the assumptions of Theorem 6.1 (3).

Then, there exists K > 0 such that for every critical point c ∈ Crit(F) and the corre-
sponding critical point c̃ ∈ Crit(F̃), and every n � 0 there exists a K -quasiconformal
homeomorphism respecting the boundary marking between the corresponding critical
puzzle pieces of depth n containing c and c̃.

Proof Suppose F and F̃ are combinatorially equivalent with respect to a k-
quasiconformal homeomorphism H . By Lemma 9.2, we can assume that H is a
conjugacy between F and F̃ on the orbits of points in Crit(F)\Critac(F).

Let Q, Q̃ be the pair of corresponding puzzle pieces of depth n containing c,
respectively, c̃. If c ∈ Crit(F)\Critac(F), then the required homeomorphism between
Q and Q̃ is obtained just by pulling back H . Therefore, assume that c ∈ Critac(F).

For the chosen n, let W and W̃ be a pair of neighborhoods of Critac(F) and
Critac(F̃) given by Lemma 9.1, and let ϕ0 : W → W̃ be a K0-quasiconformal map that
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respects the boundary marking given by Lemma 8.4. Note that K0 can be arbitrarily
large. We can spread this map around using the Spreading Principle (Theorem 8.5).
Restricting the resulting map to the depth n puzzle piece Q we obtain a max(k, K0)-
quasiconformal map ϕ : Q → Q̃ that respects the boundary marking.

Let X be the union of the landing domains to W that are contained in Q. By
Theorem 8.5, the map ϕ has the property that its dilatation is bounded by k on Q\X .
On the other hand, each component P of X satisfies the conclusion of Lemma 9.1, that
is, P has η-bounded geometry and mod(Q\P) � η for some constant η independent
of n. The same is true for Q̃ and P̃ (with the same constants). Therefore, we can apply
the QC-Criterion to � := P ⊃ X , �̃ := P̃ ⊃ X̃ and the map ϕ. This criterion will
give us a desired K -quasiconformal homeomorphism between Q and Q̃ that agrees
with ϕ̂ on ∂Q, and hence respects the boundary marking. The proof is complete once
we note that by the QC-Criterion, the dilatation K depends only on k and η, but not
on n, or on K0.

Further details of the proof can be found in Kozlovski et al. ([45], Page 787). ��
Finally, we are ready to present the proof of qc rigidity for non-renormalizable box

mappings.

Proof of Theorem 6.1 (3) Suppose that the homeomorphism H that provides the com-
binatorial equivalence between F and F̃ is k-quasiconformal. For every n � 0, define
Wn := ⋃

c∈Crit(F) Pn(c), where Pn(c) is the puzzle piece of depth n containing c,
and similarly define W̃n for F̃ . By Proposition 9.3, we can construct a sequence of
K -quasiconformal maps hn : Wn → W̃n so that each of them respects the boundary
marking induced by H . Since Crit(F) ⊂ Wn and hn respects the boundary marking,
we can spread hn around using Theorem 8.5. In this way we obtain a sequence of
max(k, K )-quasiconformal maps Hn : V → Ṽ each conjugating F and F̃ outside of
Wn . Finally, by Theorem 7.1 (1), the setsWn shrink to Crit(F) as n → ∞. Therefore,
by passing to a subsequence, Hn converges to a quasiconformal map H∞ : V → Ṽ
that conjugates F and F̃ . Using the properties of Hn from Theorem 8.5, it is not hard
to see that H∞ does not depend on the subsequence. This concludes the proof. ��

10 Sketch of the Proof of Complex Bounds

As was discussed in Sect. 5.2, there are three combinatorially distinct types of critical
points: non-combinatorially recurrent, reluctantly recurrent and persistently recurrent.
The proofs of complex bounds around each of these types of critical points are different
from one another. For reluctantly recurrent and non-recurrent critical points the claim
of Theorem 7.1 follows from the fact that around each of these points one can find
arbitrarily deep puzzle pieceswhichmapwith uniformly bounded degree to somepiece
with bounded depth. For persistently recurrent critical points the proof will employ the
Enhanced Nest construction of Sect. 7.4. These arguments will be made more precise
in Lemmas 10.1, 10.2, and 10.3 below, dealing with reluctantly, non-, and persistently
recurrent cases, respectively.

To obtain Theorem 7.1 from these lemmas, which give, in particular, complex
bounds for induced complex box mappings around recurrent critical points, a little
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care is needed, since critical fibers can accumulate on other critical fibers. However,
this step is straightforward and is done verbatim as in the proof of Kozlovski et al.
([45], Proposition 6.2), and hence will be omitted in our exposition. Our focus will be
only on those lemmas.

10.1 Puzzle Control Around Non- and Reluctantly Recurrent Critical Points

First we discuss puzzle pieces around a reluctantly recurrent point c.

Lemma 10.1 (Reluctantly recurrent case)Let c be a reluctantly recurrent critical point.
Then, there exists a positive constant η > 0 so that for any ε > 0 there are nice puzzle
neighborhoods W ′ ⊃ W of Back(c) such that:

1. Each component of W has η-bounded geometry.
2. For each c′ ∈ Back(c), we have diam(W ′

c′) � ε and mod(W ′
c′ \Wc′) � η; here

Wc′ = Compc′ W and W ′
c′ = Compc′ W ′.

(3) Fk(∂Wc′) ∩ W ′
c = ∅ for each c′ ∈ Back(c) and each k � 1.

Proof Lemma 6.5 in [45] uses the definition of reluctant recurrence to show that one
can map deep critical pieces around a reluctantly recurrent critical point to one of
arbitrary fixed depth with uniformly bounded degree. Then, Lemma 6.6 in that paper
shows that one obtains puzzle pieces with bounded geometry and moduli bounds
around c′ ∈ Back(c). The proofs use only condition (1) of Definition 4.1 (in the form
of Lemma 4.2) and goes verbatim as in the proof of Kozlovski et al. ([45], Lemma
6.6). ��

Moving on to non-recurrent critical points, we have the following statement.

Lemma 10.2 (Non-recurrent case) Let c be a non-recurrent critical point. Then there
is a constant η > 0 and for every ε > 0 there exists a puzzle piece W 
 c such that
diam(W ) � ε and, if c ∈ Critac(F), such that W has η-bounded geometry.

Proof As in Kozlovski et al. [45], page 782), we only need to consider the case when
the orbit of c does not intersect or accumulate on a reluctantly recurrent critical point.
We then distinguish three cases, depending whether Forw(c) is 1) empty; 2) not empty,
and contains only combinatorially non-recurrent critical points; and 3) not empty and
contains a persistently recurrent critical point. (Case 4 in [45] concerns renormalizable
critical points which we do not have in our setting by hypothesis.) Note that case 1)
corresponds to the situation when c /∈ Critac(F).

In Case 1, choose n0 to be the depth of puzzle pieces such that Pn0(F
k(c)) contains

no critical points for every k � 1 (here Pk(x) stands for the puzzle piece of depth
k containing the point x). Since F is dynamically natural, condition (3) of Defini-
tion 4.1 guarantees K (F) = Kwell-inside(F). Therefore, there exists δ > 0 such that
the orbit of c visits infinitely many times the components of U that are δ-well inside
the respective components of V . Hence, there exist infinitely many n � 1 such that
Fn−1 : Pn0+n−1(F(c)) → Pn0(F

n(c)) is a conformal map of uniformly bounded dis-
tortion; this distortion depends on δ. The conclusion in case 1) follows. (Note that in
this case we do not claim that W has bounded geometry.)
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Case 2: Since Forw(c) does not contain combinatorially recurrent critical points, we
can fix n0 so that for each c′ ∈ Forw(c) the forward orbit of c′ is disjoint from Pn0(c

′)
and so that if Fk(c) ∈ Pn0(c

′′) for some c′′ ∈ Crit(F) and k � 0, then c′′ ∈ Forw(c).
Choose c′ ∈ Forw(c). Fix n′ > n � n0 so that Pn′(c′) � Pn(c′). Let ni be a sequence
of times so that Fni (c) ∈ Pn′(c′) and let Pni+n(c) be the pullback of Pn(c′) under
the map Fni . We claim that Fni : Pni+n(c) → Pn(c′) has bounded degree. Indeed,
if c1 ∈ Fk(Pni+n(c)) for some 0 � k < ni and for some c1 ∈ Crit(F), then c1 ∈
Forw(c) and, moreover, since Fk(Pni+n(c)) ⊂ Pn0(c1) no further iterate of Pni+n(c)
can contain c1. It follows that each critical point in Crit(F) can be visited at most once
by Pni+n(c), F(Pni+n(c)), . . . , Fni (Pni+n(c)) = Pn(c′). Note that Pn′(c′) has some
η′-bounded geometry (where η′ depends of course on the integer n′ which we fixed
once and for all). Since Pn′(c′) � Pn(c′) and the degree of Fni : Pni+n(c) → Pn(c′)
is bounded in terms of the number and degrees of the critical points of F , it follows
that Pni+n(c) has η-bounded geometry, where η does not depend on i . By Montel (or
Grötzsch) it then also follows that the diameters of Pni+n(c) must shrink to zero.

The proof in Case 3 goes verbatim as in the proof of Kozlovski et al. ([45], Lemma
6.8), where in fact the set �i in that paper can be replaced by a puzzle piece in our
setting. (In fact, this would allow us to simplify the argument in [45] for this case,
because there the set �i is obtained via the upper and lower bounds in [45] which are
proved by hand, whereas here we can use the Enhanced Nest construction combined
with the Covering Lemma.) ��

10.2 Puzzle Control Around Persistently Recurrent Critical Points

Lemma 10.3 (Persistently recurrent case) Let c be a persistently recurrent critical
point. Then, there exists δ > 0 so that for each ε > 0, there exists a nice puzzle
neighborhood W of [c] with the following properties:

1. Each component of W has δ-bounded geometry.
2. For each c′ ∈ Back(c), we have diam(Wc′) � ε, where Wc′ = L̂c′(W ).
3. The first landing map to W is (δ, N )-extendible w.r.t. [c].
Proof The proof of this result the same as the proof of Kozlovski et al. ([45], Lemma
6.7). It follows by inducing a persistently recurrent complex box mapping from F , see
Lemma 7.5, and the Key Lemma (Lemma 10.4) below. ��

Finally, let us state and outline the proof of the Key Lemma. Because of Lemma 7.5,
we can assume that our boxmapping is persistently recurrent by considering an induced
map.

Lemma 10.4 (Key Lemma) Let F : U → V be a persistently recurrent non-
renormalizable dynamically natural box mapping. Then, there exists η > 0 so that for
every c ∈ Crit(F) and every ε > 0, there is a pair of puzzle pieces Y ′ ⊃ Y 
 c such
that

1. diam Y < ε;
2. Y has η-bounded geometry at c;
3. (Y ′\Y ) ∩ PC(F) = ∅, and mod(Y ′\Y ) � η.
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Proof This lemma was proven in Sections 10 and 11 of [47] using the Enhanced Nest
construction presented in Sect. 7.4 and the Covering Lemma of Kahn and Lyubich
(Lemma 7.10). Let us sketch the argument.

Let c0 ∈ Crit(F) be a critical point, necessarily persistently recurrent, and let
(In)n�0 be the Enhanced Nest around c0. Recall that a puzzle piece P around c0 is
called δ-nice if mod(P\Compx R(P)) � δ for every x ∈ P ∩ PC(F). Note that
since F is persistently recurrent, there are only finitely many components in R(P)

intersecting PC(F).

The key step in [47] was to prove:

Proposition 10.5 Kozlovski and Strien ([47], Proposition 10.1) There exists a beau14

δ′ > 0 and N ∈ N, (depending on F), so that for all n � N, In is δ′-nice.
In particular, for every ε > 0, there exists δ > 0, so that if I0 is ε-nice, then In is

δ-nice for every n � 1.

Wewill prove this proposition after we show how it implies Lemma 10.4. This propo-
sition uses for its proof, in a non-trivial way, the results of Lemma 7.8 on transition
and return times for the Enhanced Nest and the Covering Lemma (Lemma 7.10). We
will sketch its proof below; for now, let us use this proposition and complete the proof
of the Key Lemma.

Since each In+1 is a pullback of In containing c0, Proposition 10.5 implies that
mod(In\In+1) � δ. Hence, by the Grötzsch inequality, the puzzle pieces In , and thus
all puzzle pieces around c0 shrink to zero in diameter.

By the discussion after Lemma 7.6, the degree of the map Fν |B(In) does not depend
onn, and soProposition 10.5 gives us that themodulimod(B(In)\A(In)) are uniformly
bounded from below (see also Fig. 12, left). Since the mapping from In+1 to In
has uniformly bounded degree, one can construct puzzle pieces I−

n+1 ⊂ In+1 ⊂
I+
n+1 so that mod(I+

n+1\In+1) and mod(In+1\I−
n+1) are both uniformly bounded from

below, and disjoint from PC(F). In other words, the puzzle pieces In are all δ-free
(see Sect. 1.5.5 for the definition). This property together with the Koebe Distortion
Theorem implies that if In has δ-bounded geometry at the critical point, then F(In+1)

has δ′ = δ′(δ) bounded geometry at the critical value, and pulling back F(In+1) by
one iterate of F to In+1 improves the bounded geometry constant. See Kozlovski and
van Strien ([47], Proposition 11.1) for details.

Now, the Key Lemma for arbitrary c ∈ Crit(F) follows by picking Y to be L̂c(In)
and Y ′ to be L̂c(I+

n ) for n sufficiently large. ��
Let us finally sketch the proof of Proposition 10.5.

Proof of Proposition 10.5 Wewill use the results and notation fromSect. 7.4. Pick some
big integer M and assume that n > M is sufficiently large. Let A be a component of
R(In) intersecting PC(F). Our goal is to estimate mod(In\A) and show that for all
sufficiently large n such moduli are uniformly bounded from below.

Define tn,M := pn−1 + pn−2 + · · · + pn−M and notice that Ftn,M (In) = In−M . It
follows from Lemma 7.8 (see also the discussion at the end of Sect. 7.4) that Ftn,M (A)

is contained in some landing domain to In−4.

14 That is, a constant depending only on the number and degrees of the critical points of F .
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Choose any z ∈ Ftn,M (A) ⊂ Lz(In−4), and any integer k satisfying n − 4 � k �
n − M . Let νk � 0 be the entry time of z into Ik , and set Ak be the component of
F−νk (I+

k \I k) that surrounds z (where the outer puzzle piece I+
n was defined before

Lemma 7.8). Thus, we obtain M − 6 annuli Ak that are contained in In−M , and all of
them surround Ftn,M (A) (see Fig. 16). The components of F−tn,M (Ak)which surround
A give usM−6 annuli contained in In which surround A. Using the Covering Lemma,
we can show that by taking M sufficiently large, the sum of their moduli is bounded.
This yields a lower bound on mod(In\A). Let us explain how this is done.

Letμn > 0 be so that In isμn-nice.When F is persistently recurrent, the set PC(F)

is compact, so μn is not zero. The construction of the Enhanced Nest gives us annuli
I+
k \I k that are disjoint from PC(F) and with moduli bounded from below by K1μk−1,
where K1 depends only on the degrees of the critical points of F . Since Fνk |Lz(I

+
k ) is

a landing map, its degree is bounded in terms of the degrees of the critical points of F ,
and so there is a constant K2 with the property that mod(Ak) � K1

K2
μk−1. This gives

us a lower bound on the moduli of the annuli Ak surrounding Ftn,M (A). Now, we are
going to use the Covering Lemma (Lemma 7.10) to transfer this bound to the annuli
surrounding A. To do this, we need to bound the degree of Ftn,M |A independently of
n and M , but this is not too hard, and is done in Step 5 of the proof in Kozlovski and
van Strien ([47], Proposition 10.1), with the key idea essentially presented at the end
of Sect. 7.4. Let d denote the bound on the degree of this mapping. Finally we will
explain how the Covering Lemma is applied.

Let μn−5,M−5 = min(μn−5, μn−6, . . . , μn−M ). Taking K1 smaller if necessary,
we may assume that K1/K2 < 1. We let C > 0 be the universal constant from the
Covering Lemma. Fix η = K1/2K2 and D to be degree of Ftn,M |In . Let ε > 0 be the
constant associated to η and D by the Covering Lemma. For each annulus Ak , let B,
respectively B ′, be the regions bounded by the inner, respectively outer, boundaries

of Ak . Fix M =
⌈
4d2K2
CK1η

+ 6
⌉
, and let V = In−M . Then, we have that

mod(V \B) >
K1

K2
(μn−M−1 + · · · + μn−5) � 4d2

Cη
μn−5,M−5.

Thus, the Covering Lemma implies that

mod(In\A) > min(ε, η−1 mod(Ak),Cηd−2 mod(V \B)) � min(ε, 2μn−5,M−5). (10.1)

We always have that there exists a constant K so that μn > Kμn−1. Combining these
estimates it is easy to argue that the μn’s stay away from 0.

Finally, to see that there exists δ′ > 0, beau, as in the statement of the proposi-
tion, observe that by (10.1) (because of the multiplication by 2 of μn−5,M−5) this
bound is beau provided that ε does not depend on F . The constant ε = ε(η, D) is
given by the Covering Lemma, and we have that η = η(K1, K2) and D = D(M) =
D(d, K1, K2,C). Notice that the constants d, K1, K2 are universal constants depend-
ing only on the number and degrees of the critical points of F and C is a universal
constant given by the Covering Lemma. ��
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Fig. 16 The construction of pullback annuli in the proof of Proposition 10.5

11 All Puzzle Pieces Shrink in Diameter

In this section, we show how to conclude Theorem 6.1 (1) using Theorem 7.1. For
critical points the claim is established in Theorem 7.1 (1). Our goal here is to show
shrinking of puzzle pieces around all other points in the non-escaping set K (F) of F .

Let x ∈ K (F)\Crit(F) be a point. We consider two cases:

1. the orbit of x accumulates at some critical point c;
2. the orbit of x is disjoint from some puzzle neighborhood of Crit(F).

We start with the first case. Let ε > 0, and letW be the nice puzzle neighborhood
of Crit(F) given by Theorem 7.1 with the property that each of its components has
Euclidean diameter at most ε. Since orb(x) accumulates at c, there exists s ∈ N

minimal so that Fs(x) ∈ W .We letW denote the component ofW that contains Fs(x),
and we let U = Lx (W ) = Compx F

−s(W ). By Theorem 7.1 (3), the corresponding
branch of the first landing map is (δ, N )-extendible with respect to Crit(F), where
neither δ, nor N depends on ε. Therefore, there exists an arbitrarily small puzzle piece
W̃ � W , such that mod(W̃\W ) > δ, and if Ũ = Compx F

−s(W̃ ), we have that
mod(Ũ\U ) > δ′, where δ′ = δ′(δ, N ). Thus, by the Grötzsch inequality we have that
the puzzle pieces around x shrink to points.

Let us treat the second case. Since F is dynamically natural, K (F) = Kwell-inside(F)

(condition (3) of Definition 4.1). Therefore, there exist an infinite sequence of compo-

nentsU j ofU and V j ofV and a δ = δ(x) > 0 such thatU
j ⊂ V j , mod(V j\U j

) � δ,
and the orbit of x visits X := ⋃

j U
j infinitely often. Choose m sufficiently large so

that orb(x) does not intersect the puzzle neighborhood of Crit(F) of depth m, and
suppose m < m1 < m2 < . . . is a sequence of iterates such that Fmi (x) ∈ X , and
let Umi = CompFmi (x) X . Let Ui , Vi be the pair of puzzle piece, both containing
x , obtained by pulling back Umi and Vmi under Fmi . By construction, each Vi\Ui

is a non-degenerate annulus. Moreover, the degree of the map Fmi : Vi → Vmi is
bounded above by some constant C � 1 that depends only on m and the local degrees
of F at the critical points, but not on mi . Hence, by the Koebe Distortion Theorem,
there exists δ′ = δ′(δ,C) > 0 such that mod(Vi\Ui ) � δ′ for every i � 0. Now, the
conclusion follows by the Grötzsch inequality once we arrange the sequence (mi ) so
that Vi+1 ⊂ Ui for every i � 0. ��
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12 Ergodicity Properties and Invariant Line Fields

In this section, we present the proof of Theorem 6.1 (2a). Since this theorem is auto-
matically true if Crit(F) = ∅ (in this casemeas(K (F)) = 0 by definition of dynamical
naturality), in this section, we assume that F has at least one critical point.

By Theorem 6.1 (1), the puzzle pieces of a non-renormalizable dynamically natural
box mapping F shrink to points. Therefore, the orbit of a point z ∈ K (F) accumulates
on the fiber of a point z′ ∈ K (F) (i.e. orb(z) enters every small puzzle neighborhood
of z′) if and only if z′ ∈ ω(z). Furthermore, for a pair of distinct points z, z′ ∈ K (F),
every two nests of puzzle pieces around them are eventually disjoint (starting from
some large depth).Wewill frequently use these two observations belowwithout further
notice.

12.1 Ergodicity Properties

In this subsection, we study ergodic properties of non-renormalizable dynamically
natural box mappings. In particular, in the next theorem we draw consequences for
the map in presence of a forward invariant set of positive Lebesgue measure. The real
analogue of this result was proved in [96], see also McMullen ([63], Theorem 3.9)
and [60]. Even though this result is interesting in its own right, our purpose is to use
it in Sect. 12.2 in the situation when this forward invariant set contains the support of
a measurable invariant line field.

Theorem 12.1 (Ergodic properties of non-renormalizable boxmappings)Let F : U →
V be a non-renormalizable dynamically natural box mapping with Crit(F) 
= ∅, and
let X ⊆ K (F) be a forward invariant set of positive Lebesgue measure. Let z be a
Lebesgue density point of X. Then, the orbit of z accumulates on a critical point c,
and any such critical point c is a point of Lebesgue density of X.

Moreover, if c is not persistently recurrent, then there exist puzzle pieces V ⊃ K �
J 
 c of F with meas(J ∩ X) = meas(J ) and an infinite sequence (kn) such that
Fkn (z) ∈ J and the maps Fkn : Compz F

−kn (K) → K have uniformly bounded
degrees (independent of n).

Proof Since F is dynamically natural, meas(Koff-crit(F)) = 0, and hence the orbit of
Lebesgue almost every point in X accumulates on a critical point. Pick z ∈ X to be
a Lebesgue density point of X . We can assume that z is not a backward iterate of a
critical point, and hence focus only on critical points in ω(z).

Define a partial ordering on the set of critical points of F as follows. Given two
critical points c, c′ ∈ Crit(F), we say that c � c′ if Fk(c) = c′ for some k � 0, or
ω(c) 
 c′. Note that c � c′ implies ω(c) ⊇ ω(c′). Among all critical points in ω(z),
let c0 ∈ ω(z) be a maximal critical point with respect to this partial ordering. Note
that there might be several such points, we pick one of them.

Recall from Sect. 5.2, [c0] stands for the equivalence class of critical points c such
that c ∈ ω(c0) and c0 ∈ ω(c) (as usual, the discussion from Sect. 5.2 simplifies since
we know that the fibers of F are all trivial). Let c0 � c1 � c2 � . . . � ck be a chain in
the partial ordering starting from c0 and consisting of pairwise non-equivalent critical
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points (we pick a representative in each equivalence class,15 and the proof below
repeats for each such choice).

It follows from the definition of persistent recurrence that the omega-limit set of a
persistently recurrent critical point c is minimal (see Sect. 1.5), provided that puzzle
pieces shrink to points. In particular, if z ∈ ω(c) and c is persistently recurrent, then
ω(z) = ω(c). Therefore, ck is the only critical point that can be persistently recurrent
in the chain above.16

Case 1: c0 is persistently recurrent. In this case, k = 0 and the chain consists of one
element (the equivalence class [c0]). It follows that there exists an integer n0 so that
if some iterate of z, say Fk(z), is contained in a puzzle piece P 
 c0 of depth at least
n0, then

any critical point c ∈ Crit(F) which is contained in a pullback of P along
{z, . . . , Fk(z)} satisfies c ∈ [c0]. (12.1)

Since c0 is persistently recurrent, one can construct an Enhanced Nest (In) around
c0, see Sect. 7.4 This nest has the property that diam In → 0 as n → ∞ and that
there exists δ > 0 so that for every n � 0 there exists a puzzle piece I−

n ⊂ In such

that In ∩ ω(c0) ⊂ I−
n and mod(In\I−

n ) � δ. The latter bound is Proposition 10.5.
Let us further assume that this nest is built sufficiently deep so that (12.1) holds for
each of its elements. Note here that a priori some critical orbits for critical points
not in [c0] might intersect the annulus In\I−

n . However, due to (12.1), the inclusion
In ∩ ω(c0) ⊂ I−

n implies that if Fk(z) ∈ I−
n for some k � 1, then the map � :=

Fk : Compz F
−k(I−

n ) → I−
n has an extension to a branched covering onto In of the

same degree as �. Taking k minimal and using this extension, by a standard argument
we conclude that c0 is a Lebesgue density point of X .

Case 2: c0 is reluctantly recurrent. From the definition of reluctant recurrence it fol-
lows that there exists a shrinking nest of puzzle pieces (Qi )i�0 around c0 and an
increasing sequence of integers si → ∞ so that Fsi (Qi ) = Q0 and so that all the
maps Fsi : Qi → Q0 have uniformly bounded degrees (see Kozlovski et al. ([45],
Lemma 6.5)17). Let K = Q0 and J = Qi ′ with the smallest i ′ > 0 so that Qi ′ � Q0
(which exists as the nest is shrinking).

Finally, for i > i ′, let �i be the first entry time of the orbit of z to Qi . Then,
F�i (z) ∈ Qi ⊂ J and the degree of themap F�i : Compz F

−�i (Qi ) → Qi is bounded
independently of i . Hence, the maps F�i+si : Compz F

−(�i+si )(Q0) → Q0 = K have
uniformly bounded degrees for all i > i ′. Using a standard argument we conclude that
c0 is a Lebesgue density point of X and moreover meas(J ∩ X) = meas(J ).

Now, for j ∈ {1, . . . , k}, let J ′ be an arbitrary small puzzle piece around c j
of depth larger than the depth of J . Suppose s � 0 is the smallest iterate so that
Fs(c0) ∈ J ′. Then, meas(X ∩ Compc0 F

−s(J ′)) = meas(Compc0 F
−s(J ′)). Since

15 A more precise way would be to write [c0] � [c1] � . . . � [ck ].
16 This justifies the term “minimality” for the omega-limit set of persistently recurrent critical points: such
points can be only at the end of any chain, i.e. persistently recurrent points are always minimal with respect
to our order.
17 The proof of this lemma goes through verbatim in our setting.
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F is a non-singular map and X is forward invariant, we can iterate X forward to obtain
meas(J ′ ∩ X) = meas(J ′). As this is true for arbitrary small puzzle pieces J ′ 
 c j ,
we conclude that c j is a point of Lebesgue density for X .

Case 3: c0 is non-recurrent. The proof in this case is similar to the proof in Case 2.
First observe that [c0] = c0 and no other critical point in ω(z) can accumulate on c0.
Therefore, there exists a puzzle piece K 
 c0 of sufficiently large depth so that the
orbits of points in ω(z) ∩ Crit(F) are disjoint from K. Hence, if J 
 c0 is another
puzzle piece so that J � K (again, such exists since fib(c0) = {c0}) and k is such
that Fk(z) ∈ J , then the map Fk : Comp F−k(J ) → J is univalent and extends to
a univalent map over K. The proof now goes exactly as in Case 2. ��

As usual, an ergodic component of F is a set E ⊂ K (F) of positive Lebesgue
measure so that F−1(E) = E up to a Lebesgue measure zero set. The corollary below
shows that there are only finitely many of such sets that are disjoint up to a set of zero
Lebesgue measure.

Corollary 12.2 (Number of ergodic components) If F : U → V be a non-renormaliz-
able dynamically natural complex box mapping, then for each ergodic component E
of F there exist one or more critical points c of F so that c is a Lebesgue density point
of E.

12.2 Line Fields

Recall that for a holomorphic map f and a set B in the domain of f , a line field on B
is the assignmentμ(z) of a real line through each point z in a subset E ⊂ B of positive
Lebesgue measure so that the slope of μ(z) is a measurable function of z. A line field
is invariant if f −1(E) = E and the differential Dz f transforms the line μ(z) at z to
the lineμ( f (z)) at f (z). The assumption that the line field is measurable, implies that
Lebesgue almost every x ∈ B is a point of almost continuity: for any ε > 0

meas({z ∈ D(x, r) : |μ(z) − μ(x)| � ε})
meas(D(x, r))

→ 0

as r → 0 (here D(x, r) stands for the disk of radius r centered at x). Alternatively
one can define μ as a measurable Beltrami coefficient μ(z)dz̄/dz with |μ| = 1. We
say that the line field μ is holomorphic on an open set U if μ = ϕ̄/|ϕ| a.e. on U ,
where ϕ = ϕ(z)dz2 is a holomorphic quadratic differential onU . We say that the line
field is univalent if ϕ has no zeroes. In that case, μ induces a foliation on U given by
trajectories of ϕ.

The absence of measurable line fields was proved byMcMullen for infinitely renor-
malizable quadratic polynomials with complex bounds McMullen ([63], Theorem
10.2), in [50] for covering maps of the circle and for real rational maps with all
critical points real in [88]. Since then, for a number of other cases, including for non-
renormalizable polynomials ([47]) and for certain real transcendental maps ([78]).

In our exposition, here, we will use the following result due to Shen, Shen ([88],
Corollary 3.3) the proof of which in our setting goes through without any changes.
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Proposition 12.3 ([88], Corollary 3.3) Let F be a dynamically natural complex box
mapping. Let z be a point in the filled Julia set K (F). Assume there exist a positive
constant δ > 0, a positive integer N � 2, sequences {sn}, {pn}, {qn} of positive inte-
gers tending to infinity, sequences {An}, {Bn} of topological disks with the following
properties (see Fig. 17):

(i) Fsn : An → Bn is a proper map whose degree is between 2 and N;
(ii) diam(Bn) → 0 as n → ∞;
(iii) F pn (z) ∈ An, Fqn (z) ∈ Bn and there exists a topological disk B−

n ⊂ Bn so
that18

{
Fsn (u) : u ∈ An, (F

sn )′(u) = 0
} ∪ {

Fqn (z), F pn+sn (z)
} ⊂ B−

n

and

mod(Bn\ cl B−
n ) � δ.

(iv) for any n the following maps are univalent:

F pn : Compz F
−pn (An) → An and Fqn : Compz F

−qn (Bn) → Bn .

Then, for any F-invariant line field μ, either z is not in the support of μ, or μ is not
almost continuous at z. ��

The proof of the above proposition follows the same idea as the original idea by
McMullen: the maps F pn , Fqn send a neighborhood of z diffeomorphically to An ,
Bn and so since μ is increasingly constant near a point of almost continuity z, by
property (iv) we obtain in An, Bn what increasingly looks like continuous foliations of
trajectories of the corresponding quadratic differentials.However, themap Fsn : An →
Bn has critical points, so this impossible. To make this argument precise, one needs
in particular assumption (iii).

We are now in position to prove Theorem 6.1 (2a) in the form of the following
theorem.

Theorem 12.4 (Invariant line fields) Let F : U → V be a non-renomalizable dynami-
cally natural box mapping with Crit(F) 
= ∅. Assume that F supports a measurable
invariant line field on a forward invariant subset X ⊆ K (F) of positive Lebesgue
measure. Then, there exists a puzzle piece J of F so that meas(X ∩ J ) = meas(J )

and so that the invariant line field extends to an invariant univalent line field on J .

Proof The proof uses the result of Theorem 12.1. Let z ∈ X be a Lebesgue den-
sity point which is a point of almost continuity for μ. Assume that ω(z) contains a
reluctantly recurrent or non-recurrent critical point, say, c′. By Theorem 12.1, there
exist puzzle pieces K � J 
 c′ of F with meas(J ∩ X) = meas(J ) and an infi-
nite sequence (kn) such that Fkn (z) ∈ J and the maps Fkn : Compz F

−kn (K) → K
have uniformly bounded degrees, say, bounded by some N independent of n. Write

18 A small typo in [88] is corrected in here.
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Fig. 17 An illustration to the statement of Proposition 12.3. The critical values of the map Fsn are marked
with crosses. The green annulus has modulus at least δ > 0, with δ independent of n. The branches F pn

and Fqn are univalent. If z is in the support ofμ andμ is almost continuous at z, then by going to limits, one
can extract univalent line fields on An and also Bn , which is impossible because the map Fsn : An → Bn
has critical points (colour figure online)

Un := Compz F
−kn (J ). Since z is a Lebesgue density point of X , it follows that

meas(Un ∩ X)/meas(Un) → 1 as n → ∞ (note that (Un) form a shrinking nest
of puzzle pieces with uniformly bounded geometry). As Fkn |Un is a composition of
univalent maps with bounded distortion and at most N unicritical covering maps with
a unique critical point of the form w �→ wdi , we obtain that μ is a holomorphic line
field on J . Since μ can have only finitely many singularities on J , by, if necessary,
shrinking J slightly we can obtain that the line field μ is univalent on J .

Therefore, assume now thatω(z) contains only persistently recurrent critical points,
and let c0 ∈ ω(z) be one of them. For c0, we start by repeating the same argument
as in the proof of Case 1 of Theorem 12.1. Based on that argument, let show how
to construct the topological disks An, Bn and the sequences {sn}, {pn}, {qn} with the
properties required by Proposition 12.3.

For each c ∈ [c0], define W−
n,c := L̂c(I−

n ) and let Ftn,c : W−
n,c → I−

n be the
corresponding branchof thefirst landingmap to I−

n . If nowWn,c := Compc F
−tn,c(In),

then Wn,c ∩ ω(c0) ⊂ W−
n,c. Define W

−
n := ⋃

c∈[c0] W
−
n,c.

Let qn be the first entry time of orb(z) toW−
n , and let B−

n := W−
n,c1 be the component

of W−
n containing Fqn (z). Put Bn := Wn,c1 . The map Fqn : Compz F

−qn (B−
n ) →

B−
n is univalent (because of (12.1) and since W−

n ⊃ [c0]). Moreover, the inclu-
sion Wn,c1 ∩ ω(c0) ⊂ W−

n,c1 implies that this map has a univalent extension
Fqn : Compz F

−qn (Bn) → Bn with mod(Bn\ cl B−
n ) � δ′ > 0, where δ′ depends

only on δ and the number and local degrees of the critical points in [c0], in par-
ticular, δ′ is independent of n. The latter moduli bound holds because the branch
Ftn,c1 : B−

n → I−
n has degree bounded independently of n, and same is true for its

extension Ftn,c1 : Bn → In , again due to (12.1).
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Now, let V−
n := ⋃

c∈[c0] L̂c(B−
n ), and let pn be the entry time of orb(z) to V−

n .
Let A−

n be the component of V−
n containing F pn (z) and Fsn : A−

n → B−
n be the

corresponding branch of the first landing map to B−
n ; as such, the degree of this

branch is bounded independently of n. Let An := CompA−
n
F−sn (Bn). By construc-

tion, An ∩ ω(c0) ⊂ A−
n , and hence by (12.1) the map Fsn : An → Bn has the

same degree as Fsn |A−
n
, and thus, it is bounded independently of n, while the map

F pn : Compz F
−pn (An) → An is univalent.

Using the disks and sequences of iterates constructed above, we are in position to
apply Proposition 12.3; this gives us the desired contradiction to our choice of z to be
a point of almost continuity for μ. ��

13 Lattès BoxMappings

In this section, we construct and describe non-renormalizable dynamically natural
box mappings F : U → V with non-escaping set of positive area and which support
a measurable invariant line field. We will call these Lattès box mappings. Such a map
is quite special, and should be thought of as an analogue of a Lattès mapping on the
Riemann sphere, see ([68]).

13.1 An Example of a Dynamically Natural Lattès BoxMapping

Proposition 13.1 (Lattès box mappings exist) There exists a non-renormalizable
dynamically natural box mapping F : U → V with meas(K (F)) > 0 and a mea-
surable invariant line field supported on K (F). For the example, we give here

1. Crit(F) = {c} and F2(c) = F(c), i.e. the unique critical point of F is strictly
pre-fixed;

2. V consists of two components V and V ′ such that U := U ∩ V = V contains c
and such that F(c) is contained in a component U ′ of U ∩ V ′;

3. U ∩ V ′ contains infinitely many components and they tile V ′;
4. F(U ′) = V ′ and for each component U ′′ of U ∩ V ′ distinct from U ′ one has

F(U ′′) = V .

Proof This example starts with the box mapping F2 : U2 → V2 := (−1, 1) × (−1, 1)
from Theorem 3.1 (2) which was based on the Sierpiński carpet construction. This
box mapping leaves invariant the horizontal line field on (−1, 1) × (−1, 1). Denote
the component of U2 containing 0 byU 0

2 . We can make sure that U2 is invariant under
z �→ −z, i.e. ifU is a component ofU2, then−U is also a component ofU2. Moreover,
it is straightforward to modify this map so that F2(−z) = −F2(z) for z ∈ U 0

2 and
F2(−z) = F2(z) for z ∈ U2\U 0

2 , and so that F2 still preserves horizontal lines.
By Theorem 3.1 (2), the set K (F2) has full Lebesgue measure in V2. Moreover,

we have that each puzzle piece of F2 maps linearly over V2. It follows that the orbits
of Lebesgue almost all points z ∈ K (F2) will enter an arbitrarily deep puzzle piece
around 0. Indeed, assume by contradiction that there exists a puzzle piece P 
 0 so
that the set of points the orbits of which avoid P has positive Lebesgue measure; call
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this set Y . Take a Lebesgue density point y of Y and a puzzle Pn 
 y of depth n � 0;
note that diam Pn → 0 as n → ∞. Since Fn

2 : Pn → V2 is a linear map, we have
meas(Pn ∩ Y )/meas(Pn) � (meas(V2) − meas(P))/meas(V2) < 1, which gives a
contradiction.

Let ϕ : (−1, 1) × (−1, 1) → D be the Riemann mapping. For simplicity choose ϕ

so that it preserves the real line and so that ϕ(0) = 0. By symmetry, it follows that
ϕ(−z) = −ϕ(z) for all z ∈ V2. Set V̂2 := D, Û2 := ϕ(U2) and define F̂2 : Û2 → V̂2
by F̂2 = ϕ ◦ F2 ◦ ϕ−1. Then, F̂2 also has a holomorphic invariant line field on D.
Moreover, F̂2 preserves 0, maps real points to real points, and is univalent on each
component of Û2. Let 0 ∈ Û 0

2 := ϕ(U 0
2 ) be the ‘central’ component of F̂2. It follows

that F̂2(−z) = −F̂2(z) for z ∈ Û 0
2 and F̂2(−z) = F̂2(z) for z ∈ Û2\Û 0

2
Finally, using F̂2, we will now define a box mapping F : U → V , as described in

the statement of Proposition 13.1, by taking V to be a formal union of two copies ofD,
and U to be a formal union of D and countably many open topological disks that tile
some other copy of D. The details are as follows (note that this construction is taken
for simplicity, and can be easily modified so that V would embed into C).

Let Q : D → D be the quadratic map Q(z) = z2. Let U = V = V ′ = D and
define F : U → V ′ by F(z) = Q(z) for z ∈ U . Moreover, define U ∩ V ′ := Q(Û2),
U ′ := Q(Û 0

2 ) and F : U ′ → V ′ by

F(z) = Q ◦ F̂2 ◦ Q−1(z).

This map is well defined because F̂2(−z) = −F̂2(z) for all z ∈ Û 0
2 and so different

choices of Q−1(z) give the same result. Since F̂2(0) = 0, this map is also univalent.
Finally, define F : (U ∩ V ′)\U ′ → V by

F(z) = F̂2 ◦ Q−1(z).

Again this map is univalent and well defined because F̂2(−z) = F̂2(z) for each z in a
non-central component of Û2.

The fact that F preserves an invariant line field follows from the commuting diagram
in Fig. 18.19 Indeed, there is a holomorphic line field μ on V = ϕ(V2), which is the
image under ϕ of the horizontal line field on V2 = (−1, 1) × (−1, 1) and which is
invariant under F̂2. The pushforward Q∗μ of this line field μ on V ′ = Q(V ) by Q is
again a holomorphic line field which, by definition, is invariant under F : U ′ → V ′.
The map F sends each component of (U ∩ V ′)\U ′ univalently onto V and again the
line field of Q∗μ is mapped by F to the line field μ by definition.

By construction, K (F) = Kwell-inside(F), and by the 2nd paragraph in the proof,
almost every point in K (F) accumulates onto the critical point, and hence, F is
dynamically natural. Finally, F is non-renormalizable since c and F(c) lie in different
components of U and the only critical orbit is non-recurrent. ��

19 The figure was drawn using T.A.Driscoll’s Schwarz–Christoffel Toolbox for MATLAB, see https://
tobydriscoll.net/project/sc-toolbox/.
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Fig. 18 The construction of a Lattès boxmapping F . The red, respectively blue, domains are mapped by the
correspondingly colored branches of the map F over V , resp. V ′. Only the first two steps in the Sierpiński
carpet construction for F2 are shown. Some leaves of invariant foliations are shown with thin black lines
(colour figure online)

13.2 Properties of Lattès BoxMappings

Lattès box mappings are rather special. Some of their necessary features are described
in the following result, which, in particular, provides a proof of Theorem 6.1 (2b).
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Proposition 13.2 (Properties of Lattès box mappings) Assume F : U → V is a Lattès
boxmapping, i.e. F is a non-renormalizable dynamically natural boxmapping that has
an invariant line field supported on a forward invariant measurable set X ⊆ K (F)

of positive Lebesgue measure. Let J ⊂ U be the puzzle piece from Theorem 12.4.
Define Y := ⋃

i�0 F
i (J ) to be the union of forward orbits for all points in J and

Crit′ = {c0, . . . , ck} to be the set of critical points of F which are contained in Y .
Moreover, let PC′ := {

Fi (c j ) : i > 0, j = 0, . . . , k
}
. Then,

1. PC′ is a finite set, i.e. each critical point in Crit′ is eventually periodic;
2. no forward iterate of a critical point in Crit′ is eventually mapped into another

point in Crit′;
3. each critical point in Crit′ is quadratic;
4. each critical point in Crit′ has real multiplier;
5. F−1

(
PC′) ∩ Y = PC′ ∪Crit′.

In the proof of this proposition, we will use the following several times:

Observation Suppose that Ft has a critical point at c of order d � 2. Then, there
exists a neighborhood U of c and a conformal function S : U → C with S(c) = c,
DS(c) = e2π i/d and so that Ft ◦ S = Ft on U . Hence, if there exists an F-invariant
line field which is holomorphic on U , then the line field (and the foliation defined by
this line field) is also invariant under the symmetry S. This implies that the invariant
line field can only be univalent on U if d = 2. Moreover, the line field cannot be
univalent both in U and Ft (U ).

Proof of Proposition 13.2 By Theorem 12.4, meas(X ∩J ) = meas(J ) and the invari-
ant line field in J is univalent and so describes a smooth invariant foliation on J .

Claim 1: Let t0 > 0 be minimal so that Ft0(J ) contains a critical point c0. Then, c0
is eventually periodic.

Proof of Claim 1: Assume by contradiction that Fi (c0), i � 0, consists of infinitely
many distinct points. Let t > 0 be minimal so that Ft (J ) is a connected component
V of V . By choosing J smaller if necessary, we can assume that t � t0. Let V̂ be the
union of components of V visited by Fi (c0), with i > t − t0. Since there are only
finitely many components of V and the forward orbit of c0 is infinite, at least one of
these components, say V̂ , is visited infinitely many times and we can assume that this
component is tiled by infinitely many components of U . Let t ′ be so that Ft ′(J ) = V̂ .
Let v1, . . . , vn be the critical values of Ft ′ |J . Then, there exists a puzzle piece Q ⊂ V̂
containing some iterate of c0 which is disjoint from {v1, . . . , vn} (here we use that
puzzle pieces shrink in diameter to zero). Then, there exists a puzzle piece P ⊂ J so
that Ft ′(P) = Q 
 Fi (c0) and Ft ′ |P is univalent. Hence, the line field is univalent
in a neighborhood of Fi (c0). However, by the assumption in the claim and since
Fi (c0) ∈ Q, there exists a puzzle piece P ′ ⊂ J so that Ft ′′(P ′) = Q for some t ′′ > 0
and so that the orbit F(P ′), . . . , Ft ′′(P ′) passes through c0. It follows that there exists
a point z ∈ P ′ so that DFt ′′(z) = 0. Since the line field is univalent on J ⊃ P ′ and
on Q this gives a contradiction to the above observation.

In fact, this argument is easy to see: if ϕ is the quadratic differential on J corre-
sponding to the univalent line fieldμ, then the trajectories of the quadratic differentials
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(Ft ′ |P )∗ϕ and (Ft ′′ |P ′)∗ϕ on Q will not match because the former will have no sin-
gularity, while the latter will have at least one singularity corresponding to an iterate
of a critical value; this is a contradiction to invariance of μ. Thus, we can conclude
that c0 is eventually periodic, proving the claim.

Claim 2: The degree of the critical point c0 is two, and no iterate of c0 meets another
critical point. Moreover, it is impossible that there exists a univalent line field in a
neighborhood of any forward iterate of c0.

Proof of Claim 2: This immediately follows from the above Observation. Alterna-
tively, let q be the quadratic differential whose horizontal trajectories give a foliation
on J and its forward iterates. We say that q has zero of order k � 0 at some point
z0 if in some local coordinate system with the origin at z0 the differential q has the
form wkdw2. Therefore, if the foliation given by q is invariant under F , then the local
degree of z0 w.r.t. F must divide k + 2 Hubbard ([34], Section 5.3).

From the discussion, in the previous paragraph, it follows that since there exists
a univalent line field near c0, i.e. the quadratic differential has zero of order 0 at c0,
the degree of c0 must be two. Therefore, q has a simple pole at F(c0), and thus, the
foliation has a 1-prong singularity at F(c0) (see Fig. 18, top left, for an example of
a 1-prong singularity). Assume by contradiction that Fi (c0) = c1 and that none of
the points F(c0), . . . , Fi−1(c0) are critical. This way we have an invariant foliation
near c1 with 1-prong singularity at c1. But then it is impossible to map this foliation
to a foliation near F(c1) so as to preserve the foliation: a 1-prong singularity has no
local symmetries that are required if one wants to preserve the trajectories. The claim
follows.

Claim 3: Each critical point in Y is eventually periodic.

Proof of Claim 3:Assume that some iterate of J intersects a critical point 
= c0, then
take t1 > t0 minimal so that Ft1(J ) contains a critical point c1 
= c0. Then, since
c0 is eventually periodic and Fi (c0) 
= c1 (by Claim 2), there exists a puzzle piece
J1 ⊂ J so that Ft1 |J1 is univalent, and so that F

t1(J1) 
 c1. Using exactly the same
argument as in Claim 1, it then follows that c1 is also eventually periodic.

Claim 4: The degree of each critical point in Crit′ = {c0, . . . , ck} is equal to two.
Moreover, there exists no univalent line field on a neighborhood of any point in PC′.

Proof of Claim 4: As we saw in Claims 1 and 2, there exists a univalent line field on
a neighborhood Ui of ci , i = 0, . . . , k. The proof now follows similarly as in Claim
2.

Claim 5: Let p0, p1, . . . , pk be the periodic points on which the critical points
c0, . . . , ck eventually land (some of these periodic points might coincide). Then, the
multipliers at these periodic points are real. Moreover, the line field is holomorphic
on the components Vi of V containing pi .

Proof of Claim 5: There exists a holomorphic line field (with a unique 1-prong singu-
larity) in a neighborhood of pi . This line field can only be invariant near the periodic
point pi if the multiplier is real. Moreover, by iterating F , one obtains that the line
field near the periodic point pi extends to a holomorphic line field on Vi . Let Ui 
 pi
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be the component of U containing pi . Then, the only singularities of this line field on
Vi are at iterates of a critical point c j ∈ Uj (assuming such a critical point c j exists).

Claim 6: The only singularities of the holomorphic line field on Y are in PC′. In
particular, if z ∈ Y and F(z) ∈ PC′, then either z ∈ Crit′, or z ∈ PC′.
Proof of Claim 6: The first statement follows from the fact that the line field on J is
assumed to be univalent, and so the only way singularities of the line field on Y can
be created is by passing through some critical point. The 2nd statement follows: the
line field has a singularity at z if and only if it has a singularity at F(z). ��
Remark This proposition does not imply that such a box mapping F is postcritically
finite. Indeed, it is possible to take two box mappings Fi : Ui → Vi where F1 has an
invariant line field (as described in Sect. 13.1) and F2 is one without an invariant line
field and with an infinite postcritical set. Then, taking the disjoint union of Ui and Vi

we obtain a new map F : U → V with an invariant line field.
However, if F : U → V is a Lattès complex box mapping, then there exist U ′ ⊂ U

and V ′ ⊂ V so that F |U ′ : U ′ → V ′ is a postcritically finite complex box mapping.

13.3 Further Remarks on Lattès BoxMappings

We end this section with some discussion regarding Lattès box mappings, e.g. as
constructed in Proposition 13.1, and their properties established in Proposition 13.2.

13.3.1 Möbius vs. Quasiconformal Conjugacy in Presence of Lattès Parts

The boxmapping F we constructed in Proposition 13.1 is flexible: there exists a family
of maps Ft depending holomorphically on t ∈ D so that F0 = F and so that Ft is
qc-conjugate but not conformally conjugate to F . An explicit way to construct such
maps for t ∈ (−1, 1) is to consider a family of maps exactly as before, but replacing
the map F2 by the map F2,t := h−1

t ◦ F2 ◦ ht , where

ht (x, y) =
(

t

1 − t
x, y

)

(so replacing squares by rectangles). As |t | → 1, the modulus of the central rectangle
inside U2 tends monotonically to ∞, and thus, one can see that Ft is not conformally
conjugate to F0 for t > 0.

From Theorem 6.1(3), it follows that if F,G are combinatorially equivalent
non-renormalizable dynamically natural box mappings so that there exists a qc home-
omorphism H which is a conjugacy on the boundary (condition (3a) of that theorem),
then F and G are qc-conjugate. Suppose that, in addition, F : U → V is not a Lattès
box mapping, and so does not have an invariant line field. Then, F,G are hybrid
conjugate, i.e. the qc-dilatation of the qc-conjugacy between F and G vanishes in the
filled Julia set of F . (In particular, if the filled Julia set has full measure in the V , then
the qc-conjugacy is conformal.) This is in some sense an analogue of the Thurston
Rigidity Theorem which states that two postcritically finite topologically conjugate
maps are Möbius conjugate.
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13.3.2 Lattès Rational Maps vs. Lattès Box Mappings

Recall, that a rational map on the sphere is called Lattès if it is a degree two quotient of
an affine torus endomorphism. In [68],Milnor gave a complete description of all Lattès
rational maps. For Lattès box mappings, a similar description may be impossible, but
nevertheless, it seems feasible to give a complete list of all Lattès box mappings.

Since Lattès rational maps are examples of Collet–Eckmann maps, by the result in
[75], [76], it follows that one can induce a Lattès box mapping from a Lattès rational
map (see also the discussion in Sect. 2.4.1).

Finally, property (5) in Proposition 13.2 is the analogue of the property of Lattès
rational maps f : Ĉ → Ĉ that f −1(PC( f )) = PC( f ) ∪ Crit( f ), where PC( f ) is the
set of forward iterates of Crit( f ) (the postcritical set). Lattès rational maps play a
special role in the study of postcritically finite20 branched coverings of the sphere. A
celebrated result byW. Thurston gives a criterion when a postcritically finite branched
covering of the sphere is equivalent (in some precise sense) to a rational map, see
([25]). For this criterion to work, it is necessary to assume that the branched cov-
ering has so-called hyperbolic orbifold, which roughly translates to the fact that the
corresponding Thurston σ -map is contracting on the Teichmüller space of possible
conformal structures of the sphere marked with the postcritical set. The orbifold is
non-hyperbolic if and only if f −1(PC( f )) = PC( f ) ∪Crit( f ) and # PC( f ) � 4 (see
Douady and Hubbard ([25], Lemma 2), and also Hubbard ([35], Appendix C8)); such
orbifolds are called parabolic. The maps with parabolic orbifold and # PC( f ) � 3 are
always equivalent to a rational map and can be completely classified. The case when
# PC( f ) = 4 is more interesting. The only rational maps with this property are exactly
flexible Lattès rational maps. In general, a Thurston map f with 4 postcritical points
(with hyperbolic or parabolic orbifold) admits a flat structure with 4 cone singularities
and can be studied using so-called subdivision rules, see ([9]).

14 AMañé Theorem for Complex BoxMappings

A classical theorem of [60], [91] states that for a rational map, a forward invariant
compact set in the Julia set is either expanding, contains parabolic points or critical
points, or intersects the ω-limit set of a recurrent critical point (see also de Melo and
van Strien ([65], Section III.5) for the real version of Mañé’s theorem). In this section,
we will show that a similar and in some sense stronger statement also holds for box
mappings for which each domain is ‘well inside’ its range.

More precisely, let F : U → V be a complex box mapping for which there exists
δ > 0 so that for each x ∈ U , we have

mod(Vx\U x ) � δ or Ux = Vx . (14.1)

20 A map f is called postcritically finite if each critical point of f is eventually periodic. In the setting of
branched coverings, a critical point is a point at which the map is not locally injective. Postcritically finite
topological branched coverings of the sphere are sometimes called Thurston maps.
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Here, Ux denotes the component of U that contains a point x ∈ U . The theorem below
gives a lower bound for |DFk(x)| provided the distance d(Fk(x), ∂V) of Fk(x) to
∂V is at least κ > 0 and the iterates x, . . . , Fk−1(x) do not enter ‘deep’ critical puzzle
pieces.

Let F0 = F , U0 = U and V0 = V and let V1 be the union of the components of U0

containing critical points. Next, for i � 0 define inductively Fi+1 : U i+1 → V i+1 to
be the first returnmap toV i+1 and denote byV i+2 the union of the components ofU i+1

containing critical points. If y is a forward iterate of x under various compositions of
F0, . . . , Fi then we define t(y, x) so that y = Ft (x).

Theorem 14.1 (Mañé-type theorem for box mappings) Let F : U → V be a complex
box mapping so (14.1) holds. For each ν � 1 and each κ > 0 there exists λ > 1
and C > 0 so that for all k � 0 and each x so that x, . . . , Fk−1(x) ∈ U\Vν ,
d(Fk(x), ∂V) � κ one has

|DFk(x)| � Cλk .

Remark Notice that this statement ismore similar to the statement of theMañé theorem
for real maps than the one for rational maps. Indeed, in the above theorem, it is not
required that the distance of the orbit of x to the ω-limit set of any recurrent critical
point is bounded away from zero. For general rational maps (rather than boxmappings
as above), the inequality |DFk(x)| � Cλk fails: for example if x is in the boundary
of a Siegel disk and this boundary does not containing critical points.

Remark λ > 1 and C > 0 also depend on F .

To prove Theorem 14.1, we first need to introduce some notation, and prove some
preparatory lemmas. Denote by ||v||O be the Poincaré norm of a vector v ∈ TxC on
a simply connected open domain O 
 x and by ||v|| the Euclidean norm of v.

Lemma 14.2 Let F : U → V be a complex box mapping so that (14.1) holds and
define Fi as above. Then, for each i � 0, there exist δi > 0 and τi > 1 and for each
κ0 > 0 there exists �i ∈ (0, 1) (which also depend on F) so that for each x ∈ U i and
each v ∈ TxU i

1. we have either

mod(V i
x\U i

x ) � δi or U i
x = V i

x .

If U i
x = V i

x then U i
x contains a critical point.

2. If U i
x does not contain a critical point of Fi then U i

x is compactly contained in V i
x

and

||DFi (x)v||V i
Fi (x)

� τi ||v||V i
x
.

3. If U i
x contains a critical point of Fi and d(x,Crit(F)) � κ0, then U i

x = V i+1
x and

||DFi (x)v||V i
Fi (x)

� �i ||v||V i+1
x

.
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4. In fact, if i � 1, x ∈ U i , U i
x contains a critical point of Fi , v ∈ TxU i and

d(x,Crit(F)) � κ0, then

||DFi (x)v||V i−1
Fi (x)

� �i−1 · τ
t(i−1)−1
i−1 · ||v||V i

x

where t(i − 1) � 1 is so that Fi (x) = Ft(i−1)
i−1 (x).

5. If i � 1, y ∈ V i and w ∈ TyV i , then

||w||V i−1
y

� (1/�i )||w||V0
y

(we will apply this assertion for the case when x ∈ U i and y = Fi (x) ∈ V i ).

Proof Part (1) follows inductively from the corresponding statement for Fi−1: since
conformal maps preserve moduli and since one pulls back at most N = # Crit(F)

times by a non-conformal map, see Kozlovski and van Strien ([47], Lemma 8.3). Part
(2) follows since Fi : U i

x → V i
Fi (x)

is an isometry w.r.t. to the Poincaré metric and the

embedding U i
x ↪→ V i

x is a contraction (by a factor which only depends on δi ). Part (3)
holds because DFi only vanishes at critical points of F .

To see Part (4), we need to consider two subcases. (i) Fi−1(x) ∈ V i and (ii)
Fi−1(x) ∈ V i−1\V i . If (i) holds then Fi (x) = Fi−1(x) and so by Part (3) we have

||DFi (x)v||V i−1
Fi (x)

= ||DFi−1(x)v||V i−1
Fi−1(x)

� �i−1||v||V i
x
.

On the other hand, if (ii) holds, i.e. if Fi−1(x) ∈ V i−1\V i , then Fi is of the form
Ft(i−1)−1
i−1 ◦ Fi−1 where t(i − 1) � 1 and where the first iterate is through a critical

branch of Fi−1 : U i−1 → V i−1 and the other iterates pass through diffeomorphic
branches. Therefore, using Parts (2) and (3), we obtain Part (4).

Part (5) holds because the diameter of each component ofV i is bounded from below
(with a bound which depends on F and i) and because one has a lower bound for the
modulus of the component of V i−1\V i containing y. ��
Proposition 14.3 Let F : U → V be a complex box mapping so that (14.1) holds and
define the maps Fi as above. Then for each n � 0 and κ0 > 0 there exist τ > 1 and
C > 0 so that the following holds. Assume that 0 � i � n, x ∈ U i , d(x,Crit(F)) � κ0
and y = Fi (x) and define t = t(y, x), i.e. so that Fi (x) = Ft (x). Then, for each
v ∈ TxU i one has

||DFi (x)v||V i
y

� Cτ t · ||v||V i
x
,

and if U i
x does not contain a critical point

||DFi (x)v||V i
y

� τ t · ||v||V i
x
.
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Proof Define t( j) = #{x, . . . , Ft−1(x) ∈ U j }, let � = mini=0,...,n �i and τ =
mini=0,...,n τi where �i , τi are as in the previous lemma, and choose η > 0 so that
τ(�/τ)η > τ ′ := (1+τ)/2. Let j be the smallest integer< i so that t( j) < ηt( j−1).

Case 1: j does not exist. Then, t(i −1) � ηi−1t . As before write Fi (x) = Ft(i−1)−1
i−1 ◦

Fi−1(x). Then, by Part (4) of Lemma 14.2

||DFi (x)v||V i−1
Fi (x)

� �i−1 · τ
t(i−1)−1
i−1 · ||v||V i

x
.

Since t(i − 1) � ηi−1t , by Schwarz inclusion and since V i
y ⊂ V i−1

Fi (x)
, this implies

||DFi (x)v||V i
y

� Cτ t∗ · ||v||V i
x
,

when takingC = �/τ and by defining τ∗ = τηi−1
. This gives the first inequality, when

renaming τ∗ by τ . Let t0 be so large that Cτ t∗ > 1 for t � t0. Now, take τ̂ > 1 so that
Cτ t∗ > τ̂ t for t � t0. This implies the 2nd inequality when t � t0 (again renaming τ̂

by τ ). If t < t0 then the 2nd inequality holds immediately from Part (2) of the previous
lemma, by choosing τ > 1 sufficiently close to one.

Case 2: j does exist. Then, t( j − 1) � η j−1t and t( j) � η · t( j − 1). In that case,
iterate x by Fj−1 through its critical branches until an iterate enters V j−1\V j , and
then iterate Fj−1 through diffeomorphic branches until we again hit V j . This may
repeat several times, but the net expansion we obtain is

||DFi (x)v||V i−1
Fi (x)

� �t( j)τ t( j−1)−t( j) · ||v||V i
x
.

Since τ(�/τ)η > τ ′ the first inequality follows. The 2nd inequality then holds as in
Case 1. ��

The following lemma is straight-forward.

Lemma 14.4 There exists �0 > 0 so that if x ∈ V , v ∈ TxV , then

||v||V � �0||v||.

If d(x, ∂V) � κ , then there exists �1(κ) > 0 so that

�1||v||V � ||v||.

��
Let us now prove Theorem 14.1.

Proof of Theorem 14.1 We will decompose Fk , by first mapping it via iterates of, suc-
cessively, Fm0 and then of Fm1 , . . . , Fmi0

going down closer and closer to the critical
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points of F (wherem0 < m1 < · · · < mi0 ) and then bymaps Fmi0+1, . . . , Fmi1
(where

mi0 > mi0+1 > · · · > mi1 ) up to when the point Fk(x) has been reached.
As we will iterate x not only by F but also by the maps Fm , we need to be sure we

stop before we reach the k-th iterate of F . For this reason, we define t = t(x,m, n)

for x ∈ Vm so that Fn
m = Ft near x . This will allow us to make sure that if xi is an

iterate of F of time < k, then we will only iterate this point with further iterates of F
up to time < k.

Therefore, let first describe m0 < · · · < mi0 . Let m0 � 0 be so that x0 := x ∈
Vm0\Vm0+1. Then, let n0 � 0 be maximal so that Fi

m0
(x0) ∈ Vm0\Vm0+1 for all

0 � i < n0 and so that t(x0, 0) := t(x0,m0, n0) � k. If n0 = 0, then define
i0 = 0. If n0 > 0, then let x1 := Fn0

m0(x0) = Ft(x0,0)(x0) ∈ Vm0+1, let m1 be so
that x1 ∈ Vm1\Vm1+1 and let n1 � 0 be maximal so that Fn1

m1(x1) ∈ Vm1 and so that
t(x0, 1) := t(x1,m1, n1)+t(x0, 0) � k. Define x2 := Fn1

m1(x1) = Ft(x0,1)(x0) ∈ Vm1 .
If n1 > 0 we continue and define inductively in a similar way xi ,mi , ni , t(x0, i) for
i = 0, . . . , i0 − 1 and xi0 where i0 is chosen maximal, i.e. xi0 ∈ Vmi0 , but there is
no F-iterate of x0 (up to k of F) which enters Vmi0+1. In this case let ni0 � 0 be
maximal so that Fni0 (xi0) ∈ Vmi0 and so that t(x0, i0) := t(xi0 ,mi0 , ni0) + t(x0, i0 −
1) � k. Define xi0+1 = F

ni0
mi0

(xi0) = Ft(x0,i0) ∈ Vmi0 . Note that xi ∈ Vmi for
i = 0, . . . , i0 but that also xi0+1 ∈ Vmi0 . Moreover, 0 � m0 < m1 < · · · < mi0
and n0, . . . , ni0−1 > 0. Next, we will define mi0+1, . . . ,mi1 . Define mi0+1 maximal
so that that t(xi0+1,mi0+1, 1) + t(x0, i0) � k, i.e. so that the iterate Fmi0+1(xi0+1)

is before time k. Note that mi0+1 < mi0 and so xi0+1 ∈ Vmi0 ⊂ Vmi0+1 . Then, take
ni0+1 to be maximal so that t(x0, i0+1) := t(xi0+1,mi0+1, ni0+1)+ t(x0, i0) � k and
define xi0+2 = F

ni0+1
mi0+1(xi0) = Ft(x0,i0+1)(x0) ∈ Vmi0+1 . Next, take mi0+2 maximal

so that t(xi0+1,mi0+1, 1) + t(x0, i0 + 1) � k and define ni0+2 to be maximal so
that t(x0, i0 + 2) := j(xi0+2,mi0+2, ni0+2) + t(x0, i0 + 1) � k. Similarly, define
mi , ni , t(x0, i) for i = i0 + 1, . . . , i1 where i1 is maximal so that ‘time runs out’ (so
further iterates would consider more than k iterates under F of x).

Note that for i = i0 + 1, . . . , i1, the maximality of mi implies that

ni > 1 �⇒ F j
mi (xi ) /∈ Vmi+1 for j = 0, . . . , ni − 1 (14.2)

because otherwise one could iterate with Fmi+1 (before reaching time k).
Let us now discuss expansion in terms of some Poincaré metrics along this orbit.

For simplicity choose τ > 1 and � > 0 so that these bound from below the constants
τi , �i , i = 0, . . . , ν from Lemma 14.2 and so that the conclusion of Proposition 14.3
holds. For i = 0, . . . , i0 and 0 � j < ni , by definition F j

mi (xi ) is not contained in a
critical domain of Vmi and so by Proposition 14.3, we get

||DFmi (F
j
mi (xi ))v||V

F
j+1
mi

(xi )
� τ t(F

j
mi (xi ),xi ) · ||v||V

F
j+1
mi

(xi )

where τ > 1. This gives for i = 0, . . . , i0,

||DFni
mi

(xi )v||Vmi
xi+1

� τ t(xi+1,xi ) · ||v||Vmi
xi

.
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Note that xi0 = F
ni0−1

m0−1 ◦ · · · ◦ Fn0
m0(x0) ∈ Vmi0 and that the above statement gives

||DF
ni0−1
mi0−1 · · ·DFn0

m0
(x0)(v)||Vmi0−1

xi0

� τ t(xi0 ,x0) · ||v||Vm0
x0

.

If ni0 = 0, then xi0+1 = xi0 and we obtain from Part (5) of Lemma 14.2 that

||DF
ni0
mi0

· · ·DFn0
m0

(x0)(v)||V0
xi0+1

� τ t(xi0 ,x0) · � · ||v||Vm0
x0

.

If ni0 � 1, then note that xi0+1 ∈ Vmi0 and so for all v ∈ Txi0U
mi0−1
xi0

||DF
ni0
mi0

(xi0)(v)||Vmi0
−1

xi0+1

� τ t(xi0 ,x0) · � · ||v||Vmi0−1
xi0

where we use for the first n0 − 1 iterates of Fmi0
Proposition 14.3 and for the last

iterate Part (4) of Lemma 14.2. Therefore, in all cases, we have

||DF
ni0
mi0

· · ·DFn0
m0

(x0)(v)||V0
xi0+1

� τ t(xi0+1,x0) · �2 · ||v||Um0
x0

.

Using the same argument for i = i0 + 1, . . . , i1, we thus obtain

||DFk(x0)v||V0
Fk (x0)

= ||DF
ni1
mi1

· · ·DFn0
m0

(x0)(v)||V0
xi0+1

� τ t(F
k(x0),x0) · (�2/τ)ν · ||v||Um0

x0
.

Using d(Fk(x), ∂V) � κ and Lemma 14.4, we can transfer this statement to one in
terms of the Euclidean norm on C and obtain

||DFk(x0)v|| � C · τ t(F
k(x0),x0) · ||v||

where C = (�2/τ)ν(�1�0) and where ν is fixed (as in the statement of the theorem).
��
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Appendix A: Some Basic Facts

In this appendix, we present some facts that are standard and go without saying for the
experts. However, for the readers who are just entering the field, not knowing these
facts might be an undesirable obstacle towards understanding our paper. With this
larger audience in mind, in this appendix, we have collected some basic statements
that are used throughout the paper and that would be very useful to keep in mind while
reading. The proofs can be found in good textbook sources (e.g. [65], [Lyu7] , [63])
or in some research papers (e.g. [DS]).

A.1 First Entry and Return Constructions

One of the most fundamental constructions to study recurrent orbits is that of first
return and first entry. The next three lemmas explain in steps the construction and its
properties.

Lemma A.1 (Orbits of entry components are disjoint) Let f : U → V , U ⊂ V be a
map between two sets. Pick a set A ⊂ U and for each point x ∈ U so that the orbit
of x under f intersects A, define kx to be the entry time in A, i.e. the smallest integer
k � 1 such that f k(x) ∈ A. For n ∈ N, define Dn := {x ∈ U : kx = n}. Then, the
sets

Dn, f (Dn), . . . , f n−1(Dn)

are pairwise disjoint for every n.

Proof Immediately from the definition, f p(Dn) ⊆ Dn−p and Dn ∩ Dm = ∅ for every
p < n and m 
= n. Therefore, if f p(Dn) ∩ f s(Dn) 
= ∅ for some p 
= s, then
Dn−p ∩ Dn−s 
= ∅, a contradiction. ��
Lemma A.2 (Boundary maps to boundary for nice sets) If in the previous lemma we
additionally assume that f is continuous and A is a nice open set, then every connected
component of Dn:

• is nice and open;
• is either contained in A, or is disjoint from A;
• after exactly n steps maps over a connected component of A.

Proof For simplicity, assume that Dn and A are connected. Then, Dn is nice since A
is nice. By continuity of f , Dn must be open. Since A is nice, Dn ∩ ∂A = ∅. This
yields the second property. The last property follows since f n(∂Dn) = ∂A, again by
continuity. ��

Recall the definitions of the first entry, landing and return maps from Sect. 1.5.3.
It is often the case that the first return map to a nice union of topological disks has
the structure of a complex box mapping. The following two lemmas should give the
reader a “flavor” of what kind of formal statements one might expect in this direction
(recall from Sect. 1.5.3 the definition of a strictly nice set).
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Lemma A.3 (Box mappings from strictly nice unions) Let U ⊂ V ⊂ Ĉ be a pair of
domains, and let f : U → V be a holomorphic map with finitely many critical points.
Let V ⊂ U be a strictly nice set such that

• V is a union of finitely many open Jordan disks with disjoint closures;
• Crit( f ) ⊂ V .

Then, the first return map to V under f is a complex box mapping. ��
In Lemma A.4, the condition of being strictly nice ensures that the components of

the first return domain are compactly contained in V . One can weaken the conditions
Crit( f ) ⊂ V and # Crit( f ) < ∞ in the previous lemma, for example, as follows.

Lemma A.4 (Box mappings from strictly nice unions, version 2) Let U ⊂ V ⊂ Ĉ be
a pair of domains, and let f : U → V be a holomorphic map. Let V ⊂ U be a strictly
nice set such that

• V is a union of finitely many open Jordan disks with disjoint closures;
• no iterate of a critical point intersects ∂V .

LetW be the union of V and all the components of the first landing domain to V under
f that intersectCrit( f ). Assume that #(W∩Crit( f )) < ∞. Then, the first return map
toW under f is a complex box mapping. ��
Remark Note that W in the lemma above is a nice, but not necessarily strictly nice
set.

In the context of box mappings, Lemmas A.1 and A.2 imply that every connected
component X of the first entry map to a nice union of puzzle pieces is a puzzle
piece itself, and moreover, the branch of the entry map restricted to X is a branched
covering of uniformly bounded degree (with the bound that depends only on the
number of critical points of the startingmap and their multiplicities). The latter follows
immediately from Lemma A.1 as the sequence Dn, f (Dn), . . . , f n−1(Dn) can meet
a critical point at most once. We summarize some properties of the entry, as well as
landing and return, maps in the following lemma.

Lemma A.5 (First return, entry and landing maps to a nice set) Let F : U → V be a
complex box mapping, and let W ⊂ U be a nice union of puzzle pieces of F. Then,
the first entry map E : L → W, the first return map R : R → W, and the first landing
map L : L̂ → W have the following properties.:

1. L and R are disjoint unions puzzle pieces of F, and hence are open;
2. for every component Y ′ of L there is a component W ′ of W and an integer n so

that E |Y ′ = Fn|Y ′ , and E : Y ′ → W ′ is a proper map. The same property follows
for R and L by restriction.

3. the local degrees of the maps R, E, and L are bounded in terms of F : U → V .
Moreover, if Crit(F) ⊂ W, then Crit(R), Crit(E) and Crit(L) are contained in
Crit(F);

4. If Fn(x) ∈ W and Fm(x) ∈ W for some m > n and x ∈ U , then Fn(x) ∈ R. In
particular, every orbit x, F(x), F2(x), . . . that intersects W infinitely often, lands
in the set {x ∈ R : Rn(x) ∈ R for all n � 0} (the non-escaping set of R).

��
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A.2 Koebe Distortion Theorem, Bounded Geometry and qc Mappings

Theorem A.6 (Invariant Koebe Distortion Theorem) Let � ⊂ D ⊂ C be a pair of
open topological disks with mod(D\�) � μ > 0. Let f : D → C be a univalent
map. Then, there is a constant C(μ) such that the distortion of f on � is bounded by
C(μ):

| f ′(x)|
| f ′(y)| � C(μ) for every x, y ∈ �.

Moreover, C(μ) → 1 as μ → ∞. ��
Lemma A.7 (Annulus pull-back and geometry control under branched covering) Let
f : U ′ → V ′ be a branched covering of degree at most D between open topological
disks, and suppose V ⊂ V ′ is a topological disk with mod(V ′\V ) � μ > 0. Let
U ⊂ U ′ be a component of f −1(V ). Then

mod(U ′\U ) � μ

D
.

If we additionally assume that V has η-bounded geometry, then U has η′ =
η′(η, μ, D)-bounded geometry. ��

There are several equivalent definitions for the notion of quasiconformal homeo-
morphism. The one which seems to be the most natural in our context is the one given
by [32]:

Definition A.8 For open domains �, �̃ ⊂ C and K � 1, a homeomorphism ϕ : � →
�̃ is called K -quasiconformal (or K -qc for short) if for each x ∈ �,

lim inf
r→0

sup|y−x |=r |ϕ(y) − ϕ(x)|
inf |y−x |=r |ϕ(y) − ϕ(x)| � K < ∞.

This definition also motivates why the notion of bounded geometry appears in the
QC-Criterion (Theorem 8.6).
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