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Abstract
The fundamental theorem of affine geometry says that if a self-bijection f of an affine
space of dimenion n over a possibly skew field takes left affine subspaces to left
affine subspaces of the same dimension, then f of the expected type, namely f is
a composition of an affine map and an automorphism of the field. We prove a two-
sided analogue of this: namely, we consider self-bijections as above which take affine
subspaces to affine subspaces but which are allowed to take left subspaces to right
ones and vice versa. We show that under some conditions these maps again are of the
expected type.

Keywords Fundamental theorem of affine geometry · Division ring ·
Anti-automorphism · Semi-linear and semi-affine maps

1 Introduction

Let k be an associative division ring. The “fundamental theorem of affine geometry”
(see e.g. [3] and references therein) is the statement that if a bijection f : kn → kn

takes every left affine subspace to a left affine subspace of the same dimension, then
f is an affine map composed with a map induced by an automorphism of k, provided
∞ > n ≥ 2. The projective version of this result can be found e.g. in [2, Chapter
2]. Here we prove a two-sided analogue of the affine version. We will say that an
affine subspace ⊂ kn is purely left (respectively purely right) if it is left but not right
(respectively right but not left). Affine subspaces which are both right and left will
be called two-sided and affine subspaces which are purely left or purely right will be
called one-sided.

In what follows affine subspaces of kn of dimension 1 and 2 will be referred to as
lines and planes respectively. By saying that a map f : kn → kn takes A ⊂ kn to
B ⊂ kn , or that A goes to B under f , we will mean that f (A) = B.
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470 A. Gorinov

A homomorphism kn → kn of left k-modules is given by x �→ xM where x =
(x1, . . . , xn) is a row vector, M = (mi j ) is an n × n-matrix with entries in k, and
(xM)i = ∑n

l=1 xlmli . Similarly, a homomorphism kn → kn of right k-modules is

given by x �→ Mx where x =
( x1···
xn

)
is a column vector, M = (mi j ) is a matrix as

above, and (Mx)i = ∑n
l=1mil xl .

We will denote the centre of k by Z(k). A map f : kn → kn is a homomorphism
of k-bimodules if and only if it is a homomorphism of left (or right) k-modules and
all entries of the corresponding matrix are in Z(k), or equivalently, if and only if
using the natural isomorphism kn ∼= k ⊗Z(k) Z(k)n the map f can be written as
f = Idk ⊗Z(k) f ′ where f ′ : Z(k)n → Z(k)n is a homomorphism of Z(k)-vector
spaces.

Our main result is the following version of the fundamental theorem of affine
geometry for two-sided affine subspaces.

Theorem 1 Let k be an integer ∈ {2, . . . , n − 1}, and let f : kn → kn, n ≥ 3 be a
bijective map that takes every left or right affine subspace of dimension k to a left or
right affine subspace of dimension ≤ k. The image of a left affine subspace may be
right and vice versa. Then f is the composition of multiplication on the right by an
a ∈ k \ {0}, an isomorphism of k-bimodules, a translation, and an automorphism or
anti-automorphism of k applied component-wise.

In particular, if k = H, the skew field of quaternions, then there exist an automor-
phism g : H

n → H
n of H-bimodules, and elements a, q ∈ H \ {0} and b ∈ H

n such
that f is the map

x �→ q(g(xa) + b)q−1,

possibly composed with the quaternion conjugation.

This theorem is a consequence of the following proposition.

Proposition 1 Suppose n is an integer ≥ 3 and let f : kn → kn be a bijective map.
Suppose there is a k ∈ {2, . . . , n − 1} such that f takes every left or right affine
subspace of dimension k to a left or right affine subspace of dimension≤ k. The image
of a left affine subspace may be right and vice versa. Then the following holds:

(1) The map f takes every two-sided, respectively one-sided affine subspace of
dimension ≤ 2 to a two-sided, respectively one-sided affine subspace of the same
dimension.

(2) Suppose k is commutative, or k is non-commutative and there exists a two-sided
plane P and a purely left line L ⊂ P such that f (L) is left. Then the image of every
left affine subspace is a left affine subspace of the same dimension, and the map f can
then be written as

f (x) = σ(g(xa) + b) (1)

where a ∈ k \ {0}, b ∈ kn, σ is an automorphism of k (applied component-wise) and
g : kn → kn is an isomorphism of k-bimodules.
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Two-Sided Fundamental Theorem of Affine Geometry 471

(3) Suppose k is non-commutative and for every two-sided plane P and purely left
line L ⊂ P the image f (L) is right. Then k admits an anti-automorphism, which we
will denote by ε. The composition ε ◦ f (where ε is applied component-wise) is then
as in part (2) above.

Let us deduce the statement of the first paragraph of Theorem 1 from Proposition 1.
We first note that by part (1) of the proposition, either the hypothesis of part (2) or the
hypothesis of part (3) is true. In the former case the statement follows from formula
(1). In the latter case by part (3) of the proposition, k has an anti-automorphism ε, and
we then apply part (2) to the map ε ◦ f . To conclude the proof of Theorem 1 assuming
Proposition 1 we use the Skolem-Noether theorem (see e.g. [6, Theorem 1.8]), which
implies that every automorphism of H is inner.

Remark. There is an apparent asymmetry in formula (1): namely, this formula
involves right multiplication by an a ∈ k \ {0}, but not left multiplication. To see that
this asymmetry is not really there, suppose a, b, g, σ are as in part (2) of Proposition 1.
For x ∈ kn set σ1(x) = axa−1. We then have g(ax) + b = σ1(g(xa) + σ−1

1 (b)), so
the map kn → kn given by x �→ σ(g(ax) + b) can be written as

x �→ (σ ◦ σ1)(g(xa) + σ−1
1 (b)),

which is covered by formula (1).

Remark. In [1, Problem 2002–10] V. I.Arnold asked for a description of bijective
maps f : H

n → H
n that take quaternionic affine subspaces to quaternionic affine

subspaces but are allowed to interchange left and right subspaces. The author was able
to provide an answer assuming f is a homeomorphism [4]. For n ≥ 3, Theorem 1
gives a similar description over an arbitrary associative division ring.

Open questions. It would be interesting to know if there is an analogue of Theorem 1
for n = 2. A related question is whether the condition k ∈ {2, . . . , n−1} in Theorem 1
can be replaced with k ∈ {1, . . . , n − 1}. The answer to the latter question is no in
general, but all examples the author is aware of are as follows: take k = Z/2; then
affine lines ⊂ kn are precisely two element subsets of kn , cf. [3, Remark 9]. So every
self-bijection of (Z/2)n takes lines to lines, but for n ≥ 3 there are self-bijections of
(Z/2)n that are not affine. It follows from the main theorem of [3] that these are all
examples that are possible when k is commutative, and a natural question is whether
there are other examples when k is no longer assumed commutative.

It would also be interesting to know if other hypotheses of Theorem 1 can be
weakened. For example, one way to weaken the hypotheses is to replace the bijectivity
of f by injectivity or surjectivity, cf. [3] and [5], and another one is to require that f
should take every left or right affine subspace of dimension k to a left or right affine
subspace not necessarily of dimension ≤ k.

Organisation of the paper. In Sect. 2 we prove a few preliminary results and deduce
part (1) of Proposition 1. In Sect. 3 we reduce part (2) of Proposition 1 to the usual
fundamental theorem of affine geometry. Finally, in Sect. 4 we prove part (3) of Propo-
sition 1.
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472 A. Gorinov

2 Linear Algebra Over a Division Ring

In order to prove the proposition we need to make a few observations first. The author
was unable to find a reference for these, so proofs are provided for completeness.
To begin with, let us summarise a few definitions and facts related to k-modules. In
the next paragraph we do this for left modules; the analogues for right modules are
straightforward.

Every left k-module is free. In view of this, in the sequel left k-modules will often
be referred to as left k-vector spaces. A free generating set of a left k-module V
will be called a basis. All bases of V have the same number of elements, called the
(left) dimension of V and denoted dim V . If V ′ ⊂ V is a left k-submodule, then
dim V ′ ≤ dim V ; moreover, if dim V < ∞ and V ′

� V , then dim V ′ < dim V .
For i ∈ {1, . . . , n} let ei ∈ kn be the element such that the i-th coordinate is 1 and

all the rest are 0. For I ⊂ {1, . . . , n} we set E I
1 , respectively E I

2 to be the two-sided
k-vector subspace of kn spanned by ei , i ∈ I , respectively by ei , i ∈ {1, . . . , n}\I .
Lemma 1 Suppose V ⊂ kn is a left vector subspace, and let m be the left dimension of
V . There exists a subset I ⊂ {1, . . . , n} of cardinality n−m such that V ∩E I

1 = 0 and
the projection p : kn = E I

1 ⊕ E I
2 → E I

2 restricted to V is an isomorphism V → E I
2 .

Moreover, n−m is the maximum cardinality of J ⊂ {1, . . . , n} such that V ∩ E J
1 = 0.

Similar statements are true for right vector subspaces.

Proof We will consider the case when V is a left vector subspace. Choose a basis
x1, . . . xm of V and form a matrix M with rows x1, . . . xm . By using row operations
we can transform M to get a matrix M ′ in row echelon form such that the i-th row
of M ′ has a non-zero element at ji -th place and zeroes before that, where 1 ≤ j1 <

j2 < · · · < jm ≤ n is an increasing sequence of integers. (The row operations are
as follows: given rows ri , r j such that i, j ∈ {1, . . . ,m}, i �= j , we are allowed to 1.
interchange ri and r j , and 2. replace ri by ri + ar j , a ∈ k.) The rows of M ′ will still
be a basis of V .

Now set I = {1, . . . , n} \ { j1, . . . , jm}. The projection p : kn = E I
1 ⊕ E I

2 → E I
2

restricted to V is an isomorphism V → E I
2 , as it takes a basis to a basis. So V ∩ E I

1 =
V ∩ ker p = 0. Moreover, if J ⊂ {1, . . . , n} contains more than n−m elements, then
we cannot have V ∩ E J

1 = 0 for dimension reasons. ��
Lemma 2 Suppose V ⊂ kn is a left vector subspace which contains a right vector
subspace W. Then dim V ≥ dimW where dim V is the left dimension of V and dimW
is the right dimension of W. Moreover, the inequality is strict if and only if W � V .

The same is true with “left” and “right” interchanged. As a corollary, for two-sided
affine or vector subspaces the left and right dimensions coincide.

Proof Let m = dim V . The inequality dim V ≥ dimW follows straight from
Lemma 1. To prove that dim V > dimW if W � V , let I ⊂ {1, . . . , n}, E I

1 , E
I
2

and p : kn → E I
2 be as in that lemma.

The projection p is a homomorphism of k-bimodules, and its restriction to V is
an isomorphism V → E I

2 of left k-modules. When we restrict p to W we get a
homomorphism of right k-modules. So W � V if and only if p(W ) is a proper right
subspace of E I

2
∼= km , which is equivalent to dimW < m. ��
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Two-Sided Fundamental Theorem of Affine Geometry 473

So from now on we do not distinguish between the left and right dimensions of an
affine subspace of kn : when both make sense, they coincide.

Lemma 3 The group of automorphisms of kn as a k-bimodule is transitive on the set
of two-sided vector subspaces of kn of any fixed dimension.

Proof Suppose V ⊂ kn is a two-sided vector subspace of dimensionm. Let us consider
V as a left vector subspace and I , E I

1 , E
I
2 , p : kn → E I

2 be as in Lemma 1. We have
kn = E I

1⊕V = E I
1⊕E I

2 .Moreover, p restricted toV is an injective homomorphismof
k-bimodules V → E I

2 of the same dimension, hence an isomorphism. So idE I
1
⊕ p|V :

E I
1⊕V → E I

1⊕E I
2 is an isomorphism ofk-bimodules that takes V to E I

2 , a coordinate
subspace of dimension m. ��

We will say that an affine subspace A ⊂ kn of dimension > 0 and an affine line
L ⊂ kn have the wrong intersection if A ∩ L �= ∅, a point or L . Note that if this is
the case, then both A and L are one sided and if one is left, then the other one is right;
moreover, we have L �⊂ A, and by Lemma 2, A �⊂ L .

Lemma 4 An affine subspace A ⊂ kn of dimension > 0 is one sided if and only if
there exists an affine line L ⊂ kn that has the wrong intersection with A.

Proof It suffices to consider the case when A is a vector subspace of kn , so let us
assume that. Saying that e.g. A is left but not right is equivalent to saying that there is
a non-zero x ∈ A such that the right line L through the origin and x is not contained
in A, which is equivalent to the intersection L ∩ A not being equal to either the empty
set, a point or L . ��
Lemma 5 Suppose k is non-commutative, and let P ⊂ kn be a two-sided plane. Then
for every X ∈ P there are lines L1, L2, L3, L4 through X such that

– L1 and L3 are purely right, and L2 and L4 are purely left;
– L1 �= L3 and L2 �= L4;
– L2 has the wrong intersection with L1 and L3, and L3 has the wrong intersection
with L2 and L4;

see Fig.1.

Proof ByLemma 3wemay assume that P = k2. Let L2 be any purely left line through
X . (For example, one could take L2 to be the left line through X and X + e1 + ae2 for
a /∈ Z(k).) We then choose an X ′ �= X on L2 and set L3 to be the right line through
X and X ′. The line L3 is then purely right and L2 and L3 have the wrong intersection.
By Lemma 2, both sets L2\L3 and L3\L2 are non-empty. We now take L1 to be the
right line through X and an element of L2 \ L3 and similarly, we take L4 to be the left
line through X and an element of L3 \ L2. ��
Lemma 6 A purely left affine plane P cannot contain more than one right line through
any of its points.
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Proof It suffices to consider the case when P contains two distinct right lines L1, L2
through the origin. Note that then P, L1 and L2 are abelian subgroups of kn , and P
contains the right plane L1 + L2, which by Lemma 2 implies that P is two sided. ��
Lemma 7 Let f and k be as in Theorem 1. Then f takes every affine subspace A ⊂ kn

of dimension ≤ k to an affine subspace of dimension dim A. Moreover, if dim A ≤ 2
and A is one sided, respectively two sided, then f (A) is one sided, respectively two
sided.

Proof We first show by descending induction on i ≤ k that every affine subspace of
dimension i goes under f to an affine subspace of dimension ≤ i . To perform the
induction step we note that every left affine subspace A ⊂ kn can be written as the
intersection A′ ∩ A′′ where A′ and A′′ are left affine subspaces of dimension dim A+1
such that f (A′) and f (A′′) are both left or both right.

We now show that for every affine subspace A ⊂ kn of dimension ≤ k the image
f (A) has dimension dim A (and not less). To do this we note that A is an element of
a flag

Ak � Ak−1 � · · · � A0

of left affine subspaces such that dim A j = j , cf. [5, proof of Lemma 10]. Recall
that one the hypotheses of Proposition 1 is that dim f (Ak) ≤ k. We conclude that
dim f (A) = dim A using Lemma 2 and the fact that f preserves strict inclusions.

Note that f takes every one-sided affine subspace A of dimension ≤ k to a one-
sided affine subspace, because A has the wrong intersection with some affine line by
Lemma 4. So to prove Lemma 7 it remains to show that f takes two-sided planes,
respectively lines to two-sided planes, respectively lines. Recall that we assume that
n ≥ 3, so it suffices to prove this statement for planes. Moreover, it suffices to consider
the case when k is non-commutative.

Let P ⊂ kn be a two-sided plane, and let L1, L2, L3, L4 ⊂ P be lines as in
Lemma 5. If f (L1) is a right line, then it is purely right, and so is f (L3), while f (L2)

and f (L4) are purely left. Similarly, if f (L1) is a left line, then f (L1) and f (L3) are
purely left and f (L2) and f (L4) are purely right. In any case the plane f (P) contains

Fig. 1 Lemma 5; the dotted arcs
indicate the wrong intersections

L1

L2

L3

L4
X

123



Two-Sided Fundamental Theorem of Affine Geometry 475

Fig. 2 Lemma 8

L′
P ′

P

L
X

two purely left lines and two purely right lines that all pass through a single point, so
we conclude using Lemma 6 that f (P) is two sided. Lemma 7 is proved. ��
Proof of Part (1) of Proposition 1. The result follows from Lemma 7. ��

3 Proof of part (2) of Proposition 1

In this section f : kn → kn is a map that satisfies the hypotheses of part (2) of the
proposition.

Lemma 8 Let P be a two-sided affine plane and let L ⊂ P be a purely left affine
line such that f (L) is purely left. Let P ′ �= P be a two-sided affine plane such that
P ′ ∩ P is a line which contains some X ∈ L. Then f takes every purely left affine line
L ′ ⊂ P ′ through X to a purely left affine line, see Fig.2; the same is true for every
purely left affine line L ′′ ⊂ P through X.

Proof The intersection P ∩ P ′ is two sided, so P ∩ P ′ �= L . Let L ′ ⊂ P ′ be a purely
left line through X . Let us show that f (L ′) is purely left.

Let R be the left plane spanned by L and L ′; the plane R is purely left, as if it were
two sided, so would be L = P ∩ R and L ′ = P ′ ∩ R. So by Lemma 7 the plane f (R)

is purely left or purely right. If it were purely right, then f (R)∩ f (P) would be right,
as f (P) is two sided by Lemma 7. But f (R) ∩ f (P) = f (R ∩ P) = f (L), which
is assumed purely left. So we conclude that f (R) is purely left, which implies that
f (L ′) = f (P ′ ∩ R) = f (P ′) ∩ f (R) is left, hence purely left.
By symmetry we conclude that every purely left line L ′′ ⊂ P through X goes to a

purely left line. ��
Here is a corollary of this lemma:

Lemma 9 Let P and P ′ be affine two-sided planes such that P ∩ P ′ is a line. Then if
some purely left affine line L ⊂ P goes to a purely left affine line under f , so does
every purely left affine line ⊂ P ∪ P ′.

Proof By taking parallel copies of P ′ and using Lemma 8 we conclude that every
purely left line L1 ⊂ P that intersects L is mapped to a purely left line. By replacing
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476 A. Gorinov

L with one of these lines and applying the same argument we see that f takes every
purely left line in P to a purely left line. Purely left lines ⊂ P ′ can be handled in a
similar way. ��
Lemma 10 The map f takes every purely left affine line which is contained in some
two-sided plane P ′ to a purely left affine line.

Proof Let P be as in part (2) of Proposition 1. By Lemma 9 it suffices to prove that
there is a sequence

P = P0, P1, . . . , Pm = P ′

of two-sided affine planes in kn such that Pi ∩ Pi−1 is a line for all i = 1, . . . ,m.
Moreover, by Lemma 3 it suffices to prove this in the case when P is spanned by
e1, e2.

We proceed by induction on the leastm such that the 2-dimensional vector subspace
V ′ corresponding to P ′ is included in the 2-sided subspace km ⊂ kn spanned by
e1, . . . , em . Let us first consider the case m = 2. The plane P ′ is then

{(x, y, a3, . . . , an) | x, y ∈ k}

for some fixed a3, . . . , an ∈ k. The intersection of this subspace with

{(x ′, 0, y′, a4, . . . , an) | x ′, y′ ∈ k} (2)

is a 2-sided line. So both P ′ and the plane P ′′ given by the same equations as P ′ but
with a3 replaced by 0 intersect (2) in a line. Repeating this for all ai with i > 3 we
construct a sequence of two-sided planes with the required properties.

Suppose now V ′ ⊂ km+1 but V ′ �⊂ km . Then W = V ′ ∩ km is a (two-sided)
1-dimensional vector subspace. Let V̄ ⊂ km be a two-sided 2-dimensional vector
subspace that contains W . (Such a subspace exists by Lemma 3.) Set P̄ = z + V̄
for some z ∈ P ′. Note that P̄ ∩ P ′ is the two-sided line z + W . We now apply the
induction hypothesis to P̄ . ��
Lemma 11 All left lines go to left lines under f .

Proof Let L be a left line. The case when L is two sided is covered by Lemma 7, so
in the rest of the proof we suppose that L is purely left. We use induction on the least
m such that L is contained in an affine two-sided m-subspace. The case m = 2 is
Lemma 10.

Suppose m ≥ 2 and L ⊂ A, a two-sided affine m + 1-subspace, but L is not
contained in any affine two-sided m-subspace. Choose an X ∈ L and let A′ ⊂ A
and L ′ ⊂ A be a two-sided affine m-subspace, respectively a 2-sided line through X
such that A′ ∩ L ′ = {X}; these exist as A ∼= km+1 by Lemma 3. We also know that
L ∩ L ′ = L ∩ A′ = X , as L is purely left and is not included in any 2-sided affine
subspace of dimension m ≥ 2. Let P be the left plane through L and L ′; note that P
is purely left, as L can’t be contained in a two-sided plane.
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Fig. 3 Proof of Lemma 11 L′

L′′

L

A′

X

Since P ⊂ A and dim P + dim A′ = dim A + 1, the intersection P ∩ A′ is a left
line L ′′, see Fig. 3. (Note that L ′′ �= L ′ as L ′′ ⊂ A′ but L ′ �⊂ A′.)

By Lemma 7, the image f (P) is purely left or purely right, and it contains the left
lines f (L ′) (this is in fact a two-sided line since L ′ is two sided) and f (L ′′) (here we
use the induction hypothesis, L ′′ being a subspace of A′). So f (P) is in fact purely
left, again using Lemma 6, and so f (L) is left: f (P) contains the two-sided line f (L ′)
and so it cannot contain any more right lines. ��

Now we apply the usual fundamental theorem of affine geometry to conclude that
f is of the expected type.

Lemma 12 The map f can be written as

x �→ σ(G(x) + b)

where σ is an automorphism of k (applied component-wise), b ∈ kn and G : kn → kn

is a left linear map.

Proof For k �= Z/2 this is an immediate consequence of Lemma 11 and the main
theorem of [3]. If k = Z/2, then the lemma follows from [3, Corollary 3] and
Lemma 7. ��
Lemma 13 The left and right lines spanned by a non-zero x ∈ kn coincide iff x = ax ′
with a and x ′ being non-zero elements of k, respectively kn, and all components of x ′
being in the centre Z(k) of k.

Proof Suppose the left and right lines through the origin and x coincide. Then for every
a ∈ k there is an a′ ∈ k such that ax = xa′. So if xi , x j are two non-zero coordinates
of x , the inner automorphisms of k given by a �→ x−1

i axi and a �→ x−1
j ax j coincide,

which implies xi x
−1
j ∈ Z(k). ��

Proof of part (2) of Proposition 1. We apply Lemma 12. Note that by Lemma 4, f takes
two-sided affine lines to two-sided affine lines, and hence so must G. Let M be the
matrix of G in the basis e1, . . . , en . The map G can then be written as x �→ xM where
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478 A. Gorinov

x is a row vector. To prove part (2) of Proposition 1 it remains to show that M = aM ′,
where a ∈ k \ {0} and all entries of M ′ are in Z(k).

It follows from Lemma 13 applied to G(ei ), i = 1, . . . , n that the i-th row of M is
an element ai ∈ k \ {0} times a vector in Z(k)n . We now show that a1, . . . , an are all
equal up to multiplication by non-zero elements of Z(k).

We have M = diag(a1, . . . , an)N where N is an invertible matrix over Z(k). The
map x �→ x diag(a1, . . . , an)must take two-sided affine lines to two-sided affine lines.
Applying this map to ei +e j , which spans a two-sided line, and using Lemma 13 again
we see that aia

−1
j ∈ Z(k) for all i, j = 1, . . . , n. ��

4 Proof of part (3) of Proposition 1

Proof assuming Lemma 14. Let f : kn → kn be a map that satisfies the hypotheses
of part (3) of the proposition. By Lemma 7, f takes two-sided affine subspaces of
dimension ≤ 2 to two-sided affine subspaces of the same dimension. So applying
Lemma 3 we can construct a map g : kn → kn of k-bimodules that takes f (k2) to k2,
where k2 ⊂ kn is the two-sided plane spanned by e1 and e2. Part (3) of the proposition
now follows from part (2) and the next lemma. ��
Lemma 14 Let h : k2 → k2 be an bijective map which takes two-sided affine lines to
two-sided affine lines. Suppose also that h takes every purely left affine line to a purely
right one. Then k admits an anti-automorphism.

In order to prove this lemma we will need the following result.

Lemma 15 Let h be as in Lemma 14, and suppose moreover that h(0) = 0. Then h
takes left linearly independent vectors to right linearly independent vectors, and is a
homomorphism of abelian groups.

Proof of Lemma 15. For x, y ∈ k2 such that x �= y we will denote the left (respec-
tively right) line through x and y by L(x, y) (respectively R(x, y)). Let us prove the
first assertion of the lemma. Suppose x, y ∈ k2 are left linearly independent. Then
h(x), h(y) are right linearly independent: since h is a bijection, the lines

h(L(0, x)) = R(0, h(x)), h(L(0, y)) = R((0, h(y))

must be different.
We will now prove the second assertion. We need to check that for every x, y ∈ k2

h(x + y) = h(x) + h(y). (3)

Clearly, it suffices to prove this assuming both x and y to be non-zero, which we do
from now on.

We will say that two left lines ⊂ k2 are parallel iff they do not intersect, and
similarly for right lines. If L1 and L2 are parallel lines, we write L1 ‖ L2. Note that
if x, y are left linearly independent vectors in k2, then the following holds:
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Fig. 4 Proof of Lemma 15

yy′

x

x′

O

1. x + y is the intersection point of the left line passing through x and parallel to
L(0, y) and the left line passing through y and parallel to L(0, x).

2. Suppose the characteristic of k is �= 2. If x ′ ∈ L(0, x), y′ ∈ L(0, y), x ′ �= 0, y′ �=
0, L(x ′, y) ‖ L(y′, x), L(x ′, y′) ‖ L(x, y), then x ′ = −x, y′ = −y; see Fig. 4.

There are obvious analogues of these statements for right linearly independent
vectors and right lines.

We will now check (3). Suppose first that x, y are left linearly independent. It
follows from the first assertion of Lemma 15 that h(x) and h(y) are right linearly
independent. So formula (3) follows from remark 1 above and from the fact that f
takes parallel left lines to parallel right lines. Similarly, it follows from remark 2 above
that if x, y ∈ k2 are left linearly independent, then h(−x) = −h(x), h(−y) = −h(y).

Suppose now that x, y ∈ k2 are non-zero but left linearly dependent, i.e., y = ax
for some a ∈ k, a �= 0. The case a = −1 has already been taken care of, so we
may assume a �= −1. Let z be a vector that is left linearly independent with x . Since
a �= −1, the vectors x + z, y − z are left linearly independent, so we have

h(x + y) = h(x + z + y − z)=h(x + z) + h(y − z)=h(x) + h(z) + h(y) + h(−z)

= h(x) + h(y).

So we have proved (3) for all x, y ∈ k2. ��

Proof of Lemma 14. By composing h with a translation if necessary we may assume
thath(0) = 0, so applyingLemma15weconclude that h is a homomorphismof abelian
groups. Suppose (a1, a2) ∈ k2 is a non-zero vector. Define a map αa1,a2 : k → k
by the formula h(ca1, ca2) = h(a1, a2)αa1,a2(c). All these maps are additive and
bijective. If a1, a2 are both non-zero, we have

(h(a1, 0) + h(0, a2))αa1,a2(c) = h(a1, a2)αa1,a2(c) = h(ca1, ca2)

= h(a1, 0)αa1,0(c) + h(0, a2)α0,a2(c).

Expressing both sides of this equation in terms of h(1, 0) and h(0, 1) and using the
fact that these vectors are right linearly independent (see Lemma 15) we see that for
all a1, a2, c ∈ k such that a1 �= 0 �= a2 we have

α1,0(a1)αa1,a2(c) = α1,0(a1)αa1,0(c)
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and

α0,1(a2)αa1,a2(c) = α0,1(a2)α0,a2(c).

This implies that all αa1,a2 coincide. Indeed, if a1 �= 0 then for all a2 ∈ k we have

αa1,a2 = αa1,0 = αa1,1 = α1,1.

If a2 �= 0, then for all a1 ∈ k we have

αa1,a2 = α0,a2 = α1,a2 = α1,1.

Set α = α1,1. We now check that α is an anti-automorphism of k: if a1, a2 ∈ k are
both non-zero, then

h(1, 0)α(a1a2) = h(a1a2, 0) = h(a2, 0)α(a1) = h(1, 0)α(a2)α(a1).
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