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Abstract
We prove various mathematical aspects of the quantitative uncertainty principles,
including Donoho–Stark’s uncertainty principle and a variant of Benedicks theorem
for Lions transform.
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1 Introduction

The uncertainty principle says that a function and its transform cannot concentrate
both on small sets. Depending on the precise way to measure “concentration” and
“smallness”, this principle can assume different forms. This paper focuses on study-
ing different uncertainty principles for the Jacobi–Dunkl transform, by following the
procedures for similar transforms, such as the Fourier transform (the classical setting)
we refer to the book [12] and the surveys [5, 9] for further references. The concept
of concentration has taken different interpretations in different contexts. For example,
Benedicks [2], Slepian and Pollak [17], Landau and Pollak [13], andDonoho and Stark
[7] paid attention to the supports of functions and gave quantitative uncertainty princi-
ples for the Fourier transforms. Qualitative uncertainty principles are not inequalities,
but are theorems that tell us how a function (and its Fourier transform) behave under
certain circumstances. For example, Hardy [11], Cowling and Price [6], Beurling [4],
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and Miyachi [14] theorems enter within the framework of the quantitative uncertainty
principles. The quantitative and qualitative uncertainty principles have been studied
by many authors for various Fourier transforms, cf. for instance [1, 3, 10, 15, 18].
The first principle, studied in Sect. 2, is a Benedicks-type result which shows that
two measurable sets (S, �) with finite measure form a strong annihilating pair. This
means that a function supported in S cannot have an spectrum in� giving a quantitative
information of the mass of a function whose spectrum is contained in�. The approach
is based on the corresponding version of this type of principle for the Fourier–Bessel
transform, studied in [10].

The second principle that is studied is a Donoho–Stark-type inequality. One can
write the classical uncertainty principle in the following way: if a function f (t) is
essentially zero outside an interval of length �t and its Fourier transform f (w) is
essentially zero outside an interval of length �w, then �t�w ≥ 1. In [7], Donoho
and Stark show that it is not necessary to assume that the support and the spectrum are
concentrated on intervals and one can replace intervals by measurable sets, and then
the length of the interval is naturally replaced by the measure of the set. In Sect. 3, a
version of this inequality for the Jacobi–Dunkl transform is given, and, as it appears in
[7] it is explained how to reconstruct a signal f from a noisy measurement, knowing
that the signal is supported on a set S.

In the last section, after having introduced the notion of ε-concentration we study
what is the relation between the measure of the support of the function f and the mea-
sure of the support of the Fourier transform of f , that is ε-concentrated in measurable
sets giving. More precisely we will prove that |supp( f )|.|supp(F( f )| ≥ 1.

To describe our results, we first need to introduce some facts about harmonic anal-
ysis related to Lions transform. We cite here, as briefly as possible, some properties.
For more details, we refer to [20].
The Lions operator � defined on ]0,+∞[ by

� = ∂2

∂x2
+ A′(x)

A(x)

∂

∂x
+ ρ2,

where

A(x) = x2α+1B(x), α >
−1

2

where B is an even C∞-function on R such that B(0) = 1 and ρ ≥ 0. Moreover, we
assume that A satisfy the following conditions:

• A is increasing and limx→∞ A(x) = ∞.

• A′

A is decreasing and limx→∞ A′(x)
A(x) = 2ρ ≥ 0.

• There exists a constant δ > 0 such that

B ′(x)
B(x)

= 2ρ − 2α + 1

x
+ D(x)exp(−δx), ρ ≥ 0

B ′(x)
B(x)

= D(x)exp(−δx), ρ = 0
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Quantitative Uncertainty Principles Related to Lions Transform 483

where D is an infinitely differentiable function bounded together with its derivatives.
For all λ ∈ C, the equation

{
�u = −λ2u
u(0) = 1, u′(0) = 0.

(1)

admits a unique C∞ solution on R+ denoted ϕλ.
Equation (1) possesses also two solutions φ±λ linearly independent having the

following behavior at infinity: φ±λ(x) ∼ e(±iλ−ρ)x . Then, there exists a function C
such that

ϕλ(x) = C(λ)φλ(x) + C(−λ)φ−λ(x).

For λ ∈ C and x ≥ 0 such that |Img(λ)| ≤ ρ, we have

|ϕλ(x)| ≤ 1.

We denote by L p(R+, μ), 1 ≤ p ≤ ∞ the space of measurable functions f on
R

+ such that

‖ f ‖L p(R+,μ) =
(∫

R+
| f (x)|pdμ(x)

) 1
p

< +∞, if 1 ≤ p < +∞,

‖ f ‖∞ = ess sup
x∈R+

| f (x)| < +∞, if p = ∞

where

dμ(x) = A(x)dx .

The Lions transform F is defined on L1(R+, μ) by

F( f )(λ) =
∫
R+

f (x)ϕλ(x)dμ(x), for all λ ∈ R
+.

Let ν be the measure defined on [0,∞[ by

dν(λ) = dλ

C(λ)2
.

Let L p(R+, ν), 1 ≤ p ≤ ∞, the space of measurable functions f on [0,∞[, such
that ‖ f ‖L p(R+,ν) < ∞.

Plancherel theorem. The Lions transform F extends uniquely to an isometric
isomorphism of L2(R+, μ) onto L2(R+, ν)

∫
R+

| f (x)|2dμ(x) =
∫
R+

|F( f )(λ)|2dν(λ). (2)
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Inversion theorem. Let f ∈ L1(R+, μ) such that F( f ) ∈ L1(R+, ν). Then,

f (x) =
∫
R+

F( f )(λ)ϕλ(x)dν(λ), a.e. x ∈ R
+.

Definition 1 Let S, � be two measurable subsets of R+. Then, (S, �) is called a
strong annihilating pair for the Lions transform if there exists a constantC(S, �) such
that for all function f ∈ L2(R+, μ), with supp F( f ) ⊂ �,

‖ f ‖L2(R+,μ) ≤ C(S, �)‖ f ‖L2(Sc,μ) (3)

where Sc = R
+\S and supp f = {x : f (x) �= 0}.

Lemma 1 Let ρ > 0, 1 ≤ p < 2 and Dp be the strip in the complex ξ -plane defined
by

Dp =
{
ξ ∈ C : |Img(ξ)| < ρ

(
2

p
− 1

)}
.

For any function f ∈ L p(R+, μ), its Lions transform F( f ) is well defined and
holomorphic in Dp and for all ξ ∈ Dp,

|F( f )(ξ)| ≤ ‖ f ‖L p(R+,μ)‖ϕξ‖Lq (R+,ν)

where 1
p + 1

q = 1.

Proof See Lemma 3.1 in [8]. �
As |ϕξ (x)| ≤ 1, then if f ∈ L1(R+, μ), F( f ) is continuous also in the closure D1

of D1 and for all ξ ∈ D1

‖F( f )‖∞ ≤ ‖ f ‖L1(R+,μ), (4)

where ‖.‖∞ is the usual essential supremum norm.

2 Uncertainty Principles

In this section, we will give some remarks about Annihilating sets.

Proposition 1 Let f ∈ L2(R+, μ) has non empty support, then

ν(supp F( f ))μ(supp f ) ≥ 1.

In particular, if :

μ(supp f )ν(supp F( f )) < 1 then f = 0.
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Quantitative Uncertainty Principles Related to Lions Transform 485

Proof If the function f ∈ L2(R+, μ) has non empty support, by theCauchy–Schwartz
inequality and (4), we have

‖F( f )‖2L2(R+,ν)
≤ ν(supp F( f ))‖F( f )‖2∞
≤ ν(supp F( f ))‖ f ‖2L1(R+,μ)

≤ ν(supp F( f ))μ(supp f )‖ f ‖2L2(R+,μ)
.

Using Plancherel’s theorem (2), we have the following quantitative uncertainty
inequality connecting the support of f and the support of its Lions transform F :

ν(suppF( f ))μ(supp f ) ≥ 1. (5)

It follows that if :

μ(supp f )ν(suppF( f )) < 1 then f = 0.

�

We consider a pair of orthogonal projections on L2(R+, μ). The first is the operator
defined by

ES f = χS f (6)

and the second is the operator defined by

F� f = F−1 [χ�F( f )] , (7)

where S and� aremeasurable subsets ofR+, andχS denote the characteristic function
of S.

Let 0 < εS, ε� < 1 and let f ∈ L p(R+, μ), be a nonzero function where 1 < p ≤
2. We say that f is εS-concentrated on S if:

‖ESc f ‖L2(R+,μ) ≤ εS‖ f ‖L2(R+,μ). (8)

Similarly, we say that f is ε�-concentrated on � for the Lion transform if

‖F�c f ‖L2(R+,μ) ≤ ε�‖ f ‖L2(R+,μ).

We define the norm of ES as following:

‖ES‖ = sup
f ∈L2(R+,μ)

‖ES( f )‖L2(R+,μ)

‖ f ‖L2(R+,μ)

.
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In the same way, the norm of F� is defined by

‖F�‖ = sup
f ∈L2(R+,μ)

‖F�( f )‖L2(R+,μ)

‖ f ‖L2(R+,μ)

.

Since ES and F� are projections, it is clear that ‖ES‖ = ‖F�‖ = 1.

Lemma 2 Let (S, �) be two measurable subsets ofR+. Then, the following assertions
are equivalent:

(i) ‖ESF�‖ < 1.
(ii) (S, �) is strongly annihilating pair for the Lions transform. Moreover, we have

‖ f ‖2L2(R+,μ)
≤ (1 − ‖ESF�‖)−2

(
‖ESc f ‖2L2(R+,μ)

+ ‖F�c f ‖2L2(R+,μ)

)
.

Proof First, we show the following implication (i) ⇒ (ii). The identity operator I
satisfies

I = ES + ESc = ESF� + ESF�c + ESc ,

we have from the orthogonality of ES and ESc

‖ f − ESF� f ‖2L2(R+,μ)
= ‖ESF�c f + ESc f ‖2L2(R+,μ)

= ‖ESF�c f ‖2L2(R+,μ)
+ ‖ESc f ‖2L2(R+,μ)

.

It follows by ‖ES‖ = 1 that

‖ f − ESF� f ‖L2(R+,μ) ≤
(
‖F�c f ‖2L2(R+,μ)

+ ‖ESc f ‖2L2(R+,μ)

) 1
2
. (9)

On the other hand, we have

‖ f − ESF� f ‖L2(R+,μ) ≥ ‖ f ‖L2(R+,μ) − ‖ESF� f ‖L2(R+,μ)

≥ ‖ f ‖L2(R+,μ) − ‖ESF�‖.‖ f ‖L2(R+,μ).

It follows from inequality (9)

(1 − ‖ESF�‖)‖ f ‖L2(R+,μ) ≤
(
‖ESc f ‖2L2(R+,μ)

+ ‖F�c f ‖2L2(R+,μ)

) 1
2
. (10)

As ‖ESF�‖ < 1, then we obtain the desired result.
Let us now show the second implication (ii) ⇒ (i). We have

‖ESF�‖ ≤ ‖ES‖‖F�‖ ≤ 1.

We suppose that ‖ESF�‖ = 1. Then, we can find a bandlimited sequence fn ∈
L2(R+, μ) on � of norm 1 (in particular fn = F� fn) such that
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‖ES fn‖L2(R+,μ) −→ 1 as n −→ ∞.

By the fact that ES f and Ec
S f are orthogonal for every f , we have

‖ESc fn‖2L2(R+,μ)
= ‖ fn‖2L2(R+,μ)

− ‖ES fn‖L2(R+,μ) −→ 0 as n −→ ∞,

which contradicts (3). �
Theorem 1 If 0 < μ(S)ν(�) < 1 then for all functions f ∈ L2(R+, μ) such that
supp F( f ) ⊂ �

‖ f ‖L2(R+,μ) ≤
(
1 − √

μ(S)ν(�)
)−1 ‖ f ‖L2(Sc,μ).

Proof A straightforward computation shows that ESF� is an integral operator with
kernel

N (t, x) = χS(t)F−1(χ�ϕλ(t))(x).

Indeed, we have

ESF� f (t) = χS(t)
∫
R+

χ�(ξ)F( f )(ξ)ϕλ(t)dν(ξ)

= χS(t)
∫
R+

χ�(ξ)ϕλ(t)

(∫
R+

f (x)ϕλ(x)dμ(x)

)
dν(ξ)

=
∫
R+

f (x)N (t, x)dμ(x),

where

N (t, x) = χS(t)
∫
R+

χ�(ξ)ϕλ(t)ϕλ(x)dν(ξ).

Since ν(�) < ∞ and ϕλ is bounded, then for all t ∈ R
+, χ�ϕλ(t) ∈ L2(R+, ν).

Then, ESF� is an integral operator with Kernel

N (t, x) = χS(t)F−1(χ�ϕλ(t))(x).

As ‖ESF�‖HS = ‖N‖L2(R+×R+,μ⊗μ), it follows from Plancherel’s theorem (2) that

‖ESF�‖2HS =
∫
R+

|χS(t)|2
(∫

R+
|F−1(χ�ϕλ(t))(x)|2dμ(ξ)

)
dμ(t)

=
∫
R+

χS(t)
∫
R+

χ�(ξ)|ϕλ(t)|2dν(ξ)dμ(t).

123



488 A. Achak et al.

We can deduce from |ϕλ(t)| < 1 that

‖ESF�‖ ≤ ‖ESF�‖HS ≤ √
μ(S)�(�). (11)

Since μ(S)ν(�) < 1, then we have from inequality (11) and Lemma 2

‖ f ‖2L2(R+,μ)
≤

(
1 − √

μ(S).ν(�)
)−2 (

‖ESc f ‖2L2(R+,μ)
+ ‖F�c f ‖2L2(R+,μ)

)
.

Since supp F( f ) ⊂ �, it follows from Plancherel’s theorem (2) that

‖F�c f ‖2L2(R+,μ)
=

∫
�c

|F(ξ)|2dν(ξ) = ‖F( f )‖2L2(�c,ν)
= 0,

which shows the desired result. �
We are now in position to prove our main result for the Lions transform.

Theorem 2 Let S and � be a pair of measurable subsets of R+ with 0 < μ(S),
ν(�) < ∞, then the pair (S, �) is strong annihilating pair.

Proof Let f ∈ L2(R+, μ) be a nonzero function such that

supp f ⊂ S and supp F( f ) ⊂ �.

Using the Cauchy–Schwartz inequality, we have

‖ f ‖2L1(R+,μ)
≤ μ(supp f )‖ f ‖2L2(R+,μ)

.

As f has support of finite measure, hence f belongs in L1(R+, μ). From Lemma
1 , F( f ) is analytic in the open strip {ξ : |ξ | < ρ}. This contradicts that F( f )
has support of finite measure. Then, (S, �) is weak annihilating pair for the Lions
transform. According to [[12], I.1.3.2.A, p. 90], if ESF� is compact (in particular
if ESF� is Hilbert–Schmidt), then if the pair (S, �) is weakly annihilating, it is also
strongly annihilating. �

3 The Donoho–Stark’s Uncertainty Principle

The classical uncertainty principle says that if a function f (t) is essentially zero outside
an interval of length �t and its Fourier transform f̂ (w) is essentially zero outside an
interval of length �w, then

�t · �w ≥ 1.

In this section, we will prove a quantitative uncertainty inequality like (5) about the
essential supports of a nonzero function f ∈ L2(R+, μ) and its Lions transform. The
first such inequality for the usual Fourier transform was obtained by Donoho–Stark
[7].
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Quantitative Uncertainty Principles Related to Lions Transform 489

Theorem 3 Let �, S ⊂ R
+ be a pair of measurable subsets and let εS, ε� > 0 such

that ε2S + ε2� < 1. Let f ∈ L2(R+, μ) be a nonzero function. If f is εS-concentrated
on S and ε�-concentrated on � for the Lions transform, then

μ(S)ν(�) ≥
(
1 −

√
ε2S + ε2�

)2

.

Proof The result follows from inequalities (10) and (11). �
Often the uncertainty principle is used to show that certain things are impossi-

ble, such as determining the momentum and position of a particle simultaneously or
measuring the “instantaneous frequency” of a signal. In the following, we present an
example where the generalized uncertainty principle shows something. Unexpectedly
is possible the recovery of a signal or image despite significant amounts of missing
information.

The following example is prototypical. A signal f is transmitted to a receiver
who knows that f is bandlimited on � for the Lions transform, meaning that f is
synthesized using only frequencies on �; equivalently f = F� f . Suppose that the
observation of f is corrupted by a noise n ∈ L2(R+, μ) (which is nonetheless assumed
to be small) and unregistered values on S. Thus, the observable function r satisfies

r(x) =
{
f (x) + n(x), x ∈ Sc;
0, x ∈ S.

Here, we have assumed without loss of generality that n = 0 on S. Equivalently,

r = (I − ES) f + n.

We say that f can be stably reconstructed from r , if there exists a linear operator K
and a constant C such that

‖ f − Kr‖L2(R+,μ) ≤ C‖n‖L2(R+,μ). (12)

The estimate (12) shows that the noise n is at most amplified by a factor C .

Corollary 1 If S and � are arbitrary measurable sets of R+ with 0 < μ(S)ν(�) < 1.
If f is bandlimited on � then f can be stably reconstructed from r. The constant C
in Eq. (12) is not larger than

(
1 − √

μ(S)ν(�)
)−1

.

Proof If μ(S)ν(�) < 1, using (11), ‖ESF�‖ < 1. Hence, I − ESF� is invertible.
Let

K = (I − ESF�)−1.

Since f is bandlimited on �, then (I − ES) f = (I − ESF�) f . Therefore,

f − Kr = f − K ((I − ES) f + n)
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= f − K (I − ESF�) f − Kn

= f − (I − ESF�)(I − ESF�)−1 f − Kn

= 0 − Kn.

So that

‖ f − Kr‖L2(R+,μ) = ‖Kn‖L2(R+,μ)

≤ ‖(I − ESF�)−1‖‖n‖L2(R+,μ)

≤
∞∑
k=0

‖ESF�‖k‖n‖L2(R+,μ)

≤
∞∑
k=0

(μ(S)ν(�))
k
2 ‖n‖L2(R+,μ)

=
(
1 − √

μ(S)ν(�)
)−1 ‖n‖L2(R+,μ).

The constant C in Eq. (12) is, therefore, not larger than
(
1 − √

μ(S)ν(�)
)−1. �

The identity

K = (I − ESF�)−1 =
∞∑
k=0

(ESF�)k

suggests an algorithm for computing Kr . Put

f (n) =
n∑

k=0

(ESF�)kr ,

then

f (0) = r , f (n+1) = r + ESF� f (n) and f (n) → Kr as n → ∞.

As f is bandlimited on � we deduce that

f (n+1) − f = ESF�( f (n) − f ). (13)

Algorithms of this type have applied to a lot of problems in signal recovery (see for
examples [13, 16]).

Theorem 4 If S and � are arbitrary measurable sets of R+. If the pair (S, �) is
strongly annihilating for the Lions transform, then f can be stably reconstructed from
r. The constant C in Eq. (12) is not larger than

(
1 − √

μ(S)ν(�)
)−1

.
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Proof The result follows immediately from the proof of Theorem 1 and from Lemma
2. �

Under the hypotheses of Theorem 4 and from equality (13), the following error
estimate holds:

‖ f − f (n)‖L2(R+,μ) ≤ ‖ESF�‖‖ f − r‖L2(R+,μ).

4 Quantitative Uncertainty Principle for Lions Transform

Many uncertainty principles have already been proved for the Fourier transform on
L p space for 1 < p ≤ 2 (see [18]). In this section, we shall investigate the case where
f and F( f ) are close to zero outside measurable sets. Here, the notion of ’close to
zero’ is formulated as follows.
We say that F( f ) is ε�-concentrated on � if and only if

‖F( f ) − F(F� f )‖Lq (R+,ν) ≤ ε�‖F( f )‖Lq (R+,ν). (14)

By Riesz’s interpolation theorem [19], we deduce that for every 1 ≤ p ≤ 2 and
for every f ∈ L p(R+, μ) the function F( f ) belongs to the space Lq(R+, ν), q =
p/(p − 1), and

‖F( f )‖Lq (R+,ν) ≤ ‖ f ‖L p(R+,μ). (15)

Theorem 5 If ν(�) < ∞ and f ∈ L p(R+, μ), 1 ≤ p ≤ 2,

F� f (x) =
∫

�

F( f )(ξ)ϕ−ξ (x)dν(ξ).

Proof Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2 and q = p
p−1 . Then, by Hölder’s inequality

and (15)

‖F( f )‖L1(�,ν) =
∫

�

|F( f )(x)|dν(x)

≤ (ν(�))
1
p ‖F( f )‖Lq (R+,ν)

≤ (ν(�))
1
p ‖ f ‖L p(R+,ν)

and

‖F( f )‖L2(�,ν) =
(∫

�

|F( f )(x)|2dν(x)

) 1
2

≤ (ν(�))
q−2
2q ‖F( f )‖Lq (R+,ν)

≤ (ν(�))
q−2
2q ‖ f ‖L p(R+,μ).
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Hence χ�F( f ) ∈ L1(R+, ν) ∩ L2(R+, ν) and by (7)

F� f = F−1 (χ�F( f )) .

�
Lemma 3 If f ∈ L p(R+, μ), 1 ≤ p ≤ 2 and q = p

p−1 then

‖F(F� f )‖Lq (R+,ν) ≤ ‖ f ‖L p(R+,μ).

Proof Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2 and q = p
p−1 . From (15) and (7)

‖F(F� f )‖Lq (R+,ν) =
(∫

�

|F( f )(x)|qdν(x)

) 1
q ≤ ‖F( f )‖Lq (R+,ν) ≤ ‖ f ‖L p(R+,μ)

this yields the desired result. �
Lemma 4 Let S and � be measurable subsets of R+, if f ∈ L p(R+, μ), 1 ≤ p ≤ 2
and q = p

p−1 then

‖F(F�ES f )‖Lq (R+,ν) ≤ (μ(S))
1
q (ν(�))

1
q ‖ f ‖L p(R+,μ).

Proof Assume that μ(S) < ∞ and ν(�) < ∞. Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2 and
q = p

p−1 . From (7)

F(F�ES f ) = χ�F(ES f )

thus

‖F(F�ES f )‖Lq (R+,ν) =
(∫

�

|F(ES f )(x)|qdν(x)

) 1
q

(16)

so

F(ES f )(x) =
∫
S
f (x)ϕ−ξ (x)dμ(x)

since |ϕλ(x)| ≤ 1 and by Hölder’s inequality

|F(ES f )(x)| ≤
∫
S
| f (x)|dμ(x)

≤ (μ(S))
1
q ‖ f ‖L p(R+,μ)

Then, by (16)

‖F(F�ES f )‖Lq (R+,ν) ≤ (μ(S))
1
q (ν(�))

1
q ‖ f ‖L p(R+,μ).
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Thus, the proof is complete. �
Theorem 6 Let S and � be a measurable subsets of R+ and f ∈ L p(R+, μ), 1 <

p ≤ 2. If f is εS-concentrated to S in L p-norm and F( f ) is ε�-concentrated to � in
Lq(R+, ν)-norm, then

‖F( f )‖Lq (R+,ν) ≤ (μ(S))
1
q (ν(�))

1
q + εS

1 − ε�

‖ f ‖L p(R+,μ)

Proof Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2 and q = p
p−1 . From (8), (14) and Lemma 3, it

follows that

‖F( f ) − F(F�ES f )‖Lq (R+,ν) ≤ ‖F( f ) − F(F� f )‖Lq (R+,ν)

+‖F(F� f ) − F(F�ES f )‖Lq (R+,ν)

≤ ε�‖F( f )‖Lq (R+,ν) + ‖ f − ES f ‖L p(R+,μ)

≤ ε�‖F( f )‖Lq (R+,ν) + εS‖ f ‖L p(R+,μ).

The triangle inequality and the Lemma 4 show that

‖F( f )‖Lq (R+,ν) ≤ ‖F(F�ES f )‖Lq (R+,ν) + ‖F( f ) − F(F�ES f )‖Lq (R+,ν)

≤
[
(μ(S))

1
q (ν(�))

1
q + εS

]
‖ f ‖L p(R+,μ) + ε�‖F( f )‖Lq (R+,ν)

which gives the desired result. �
Next the second continuous-time uncertainty principle of concentrated type for the
L1(R+, μ) ∩ L p(R+, μ) theory is given by the following theorem.

Theorem 7 Let S and � be a measurable subsets of R+ and f ∈ L1(R+, μ) ∩
L p(R+, μ), 1 < p ≤ 2. If f is εS-concentrated to S in L1(R+, μ)-norm and F( f )
is ε�-concentrated to � in Lq(R+, ν)-norm, then

‖F( f )‖Lq (R+,ν) ≤ (μ(S))
1
p (ν(�))

1
q

(1 − εS)(1 − ε�)
‖ f ‖L p(R+,μ).

Proof Let f ∈ L1(R+, μ) ∩ L p(R+, μ), 1 < p ≤ 2. Since F( f ) is εS-concentrated
to � in Lq(R+, ν)-norm, q = p

p−1 , then

‖F( f )‖Lq (R+,ν) ≤ ε�‖F( f )‖Lq (R+,ν) +
(∫

�

|F( f )|qdν(x)

) 1
q

≤ ε�‖F( f )‖Lq (R+,ν) + (ν(�))
1
q ‖F( f )‖L∞(R+,ν)

thus by |ϕλ(x)| ≤ 1, we have

‖F( f )‖Lq (R+,ν) ≤ (ν(�))
1
q

1 − ε�

‖ f ‖L1(R+,μ). (17)
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On the other hand, since f is εS-concentrated to S in L1-norm

‖ f ‖L1(R+,μ) ≤ εS‖ f ‖L1(R+,μ) +
∫
S
| f (t)|dμ(t)

≤ εS‖ f ‖L1(R+,μ) + (μ(S))
1
p ‖ f ‖L p(R+,μ)

thus

‖ f ‖L1(R+,μ) ≤ (μ(S))
1
p

1 − εS
‖ f ‖L p(R+,μ). (18)

Combining (17) and (18), we obtain the result of this theorem. �
Let E p(F), 1 ≤ p ≤ 2, be the set of functions g ∈ L p(R+, μ) that are bandlimited

to � i.e (g ∈ E p(F) implies F�g = g).
We say that f is ε-bandlimited to � in L p-norm if there is a g ∈ E p(F) with

‖ f − g‖L p(R+,μ) ≤ ε�‖ f ‖L p(R+,μ).

Then, the space E p(F) satisfies the following property.

Lemma 5 Let S and � be measurable subsets of R+. For g ∈ E p(F), 1 ≤ p ≤ 2,

‖ESg‖L p(R+,μ) ≤ (μ(S))
1
p (ν(�))

1
p ‖g‖L p(R+,μ)

Proof If μ(S) = ∞ or ν(�) = ∞ the inequality is clear. Assume that μ(S) < ∞ and
ν(�) < ∞. For g ∈ E p(F), 1 ≤ p ≤ 2 from Theorem 5

|g(t)| =
∫

�

ϕ−t (x)F(g)(x)dν(x)

≤
∫

�

|F(g)(x)|dν(x)

by |ϕλ(x)| ≤ 1 and Hölder inequality

|g(t)| ≤ (ν(�))
1
p ‖F(g)‖Lq (R+,ν) ≤ (ν(�))

1
p ‖g‖L p(R+,μ), q = p

p − 1
,

Hence,

‖ESg‖L p(R+,μ) =
(∫

S
|g(t)|pdμ(t)

) 1
p ≤ (μ(S))

1
p (ν(�))

1
p ‖g‖L p(R+,μ)

which yields the result. �
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Theorem 8 Let S and � be measurable subsets of R+ and f ∈ L p(R+, μ), 1 ≤ p ≤
2. If f is ε�-bandlimited to � in L p(R+, μ)-norm then

‖ESg‖L p(R+,μ) ≤
[
(1 + ε�)(μ(S))

1
p (ν(�))

1
p + ε�

]
‖ f ‖L p(R+,μ).

Proof Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2.Since f is ε�-bandlimited to� in L p(R+, μ)-
norm by definition there is a g ∈ E(F) with ‖ f − g‖L p(R+,μ) ≤ ε�‖ f ‖L p(R+,μ). For
this g, we have

‖ES f ‖L p(R+,μ) ≤ ‖ESg‖L p(R+,μ) + ‖ES( f − g)‖L p(R+,μ) ≤ ‖ESg‖L p(R+,μ)

+ε�‖ f ‖L p(R+,μ).

Then, by Lemma 5 and the fact that ‖g‖L p(R+,μ) ≤ (1+ ε�)‖ f ‖L p(R+,μ), we get the
result. �
Corollary 2 Let S and � be measurable subsets of R+ and f ∈ L p, 1 ≤ p ≤ 2. If f
is εS-concentrated to S and ε�-bandlimited to � in L p-norm then

1 − εS − ε�

1 + ε�

≤ (μ(S))
1
p (ν(�))

1
p .

Proof Let f ∈ L p(R+, μ), 1 ≤ p ≤ 2. Since f is εS-concentrated to S in L p-norm
then by (8)

‖ f ‖L p(R+,μ) ≤ εS‖ f ‖L p(R+,μ) + ‖ES f ‖L p(R+,μ).

Thus,

‖ f ‖L p(R+,μ) ≤ 1

1 − εS
‖ES f ‖L p(R+,μ).

By Lemma 5 and Theorem 8, we deduce the desired inequality. �
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