RESEARCH CONTRIBUTION

Properness of Polynomial Maps with Newton Polyhedra

Toshizumi Fukui¹ · Takeki Tsuchiya¹

Received: 22 June 2021 / Revised: 4 March 2022 / Accepted: 3 April 2022 / Published online: 29 June 2022 © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

Abstract

We discuss the notion of properness of a polynomial map $f : \mathbb{K}^m \to \mathbb{K}^n$, $\mathbb{K} = \mathbb{C}$ or \mathbb{R} , at a point of the target. We present a method to describe the set of non-proper points of f with respect to Newton polyhedra of f. We obtain an explicit precise description of such a set of f when f satisfies certain condition (1.5). A relative version is also given in Sect. 3. Several tricks to describe the set of non-proper points of f without the condition (1.5) is also given in Sect. 5.

Keywords Polynomial map · Proper map · Newton polyhedra

Mathematics Subject Classification 14E15 · 58K05 · 58K30

We consider a polynomial map $f = (f^1, \ldots, f^n) : \mathbb{K}^m \to \mathbb{K}^n$, defined by

$$f^{j} = \sum_{\mathbf{v}} c_{\mathbf{v}}^{j} \mathbf{x}^{\mathbf{v}}, \ c_{\mathbf{v}}^{j} \in \mathbb{K}, \ \mathbf{x}^{\mathbf{v}} = (x_{1})^{\nu_{1}} \cdots (x_{m})^{\nu_{m}},$$
$$\mathbf{x} = (x_{1}, \dots, x_{m}), \ \mathbf{v} = (\nu_{1}, \dots, \nu_{m}),$$
(0.1)

where $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . We say that a point $y_0 \in \mathbb{K}^n$ is **proper** for f (or a **proper point** of f) if, for any (algebraic) arc $x(t) : \mathbb{K}^*, 0 \to \mathbb{K}^m, \mathbb{K}^* = \mathbb{K} \setminus \{0\}$, the following condition holds:

$$\lim_{t \to 0} \boldsymbol{f}(\boldsymbol{x}(t)) = \boldsymbol{y}_0 \implies \lim_{t \to 0} \boldsymbol{x}(t) \text{ exists in } \mathbb{K}^m.$$

All data generated or analyzed during this study are included in this published article.

 Toshizumi Fukui tfukui@rimath.saitama-u.ac.jp
 Takeki Tsuchiya tkk.hst.tty.sh009@gmail.com

¹ Department of Mathematics, Saitama University, Saitama 338-8570, Japan

The first author is supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) Grant Number 19K03486.

Let S_f denote the set of points y_0 in \mathbb{K}^n which are not proper points of f. We say that $f : \mathbb{K}^m \to \mathbb{K}^n$ is **proper** if $S_f = \emptyset$.

In this paper, we are looking for a method to determine whether a point y_0 in \mathbb{K}^n is proper or not. The first statement is Theorem 1.3, which gives a complete description of S_f when f satisfies certain non-degeneracy condition with respect to the Newton polyhedron of f (see (1.5) in Theorem 1.3). Our approach is based on simple and careful analysis of f along arcs x(t), which suggests us usefulness of using arcs to describe the set S_f , even though f is degenerate (Remark 2.6). In Sect. 3, we describe a relative version of our discussion. We present several examples to show how our method works in Sect. 4.

The set S_f was introduced by Jelonek [4], [5] and showed that it is empty or a uniruled hypersurface of \mathbb{K}^n when $\mathbb{K} = \mathbb{C}$ and m = n. It is thus an interesting problem to seek a method to describe S_f in several concrete examples. Chen et al. [2] have investigated the bifurcation locus of a polynomial map $\mathbb{K}^m \to \mathbb{K}^n, m \ge n$, with respect to Newton polyhedron. The bifurcation locus is the minimal locus in the target where the map is not locally trivial, and they show a supset of the bifurcation locus under their non-degeneracy condition. Jelonek and Lasoń [6] called S_f as the non-properness set of f and showed that it is covered by parametric curves of degree at most d-1 where d is the algebraic degree of f for $\mathbb{K} = \mathbb{C}$. Their words "covered by parametric curves" mean that the set S_f has a "C-ruling". They also discuss real counterpart of their results. Recently, El Hilany [3] has investigated to describe the set S_f via the Newton polyhedra of f. He calls S_f as Jelonek set. He has introduced the notion of T-BG maps and claimed that S_f is described using only the data of f at several faces of its Newton polyhedra. Comparing with these results, our method provides much precise information on the set S_f with simple description. For example, Theorem 1.3 shows an explicit decomposition of S_f providing an explicit ruling of each component in many cases. In Sect. 3, we present a relative version of our theorem. Namely, we consider the non-properness set $S_{f|_X}$ for $f|_X : X \to \mathbb{K}^n$ where $f = (f^1, \ldots, f^n) : \mathbb{K}^m \to \mathbb{K}^n$ is a certain polynomial map and $X = (f^{n-k+1}, \ldots, f^n)^{-1}(c), c \in \mathbb{K}^k$. In Sect. 5, we present tricks to describe S_f for certain degenerate f.

We say some words for the definition of S_f here. We compactify f as $f : X \to Y$ where X and Y are suitable projective manifolds. We set $X_{\infty} = X \setminus \mathbb{K}^m$, $Y_{\infty} = Y \setminus \mathbb{K}^n$ and we can assume that X_{∞} and Y_{∞} are simple normal crossing divisors. Then, the condition $y_0 \in S_f$ is equivalent to one of the following conditions.

• There exists an algebraic arc $\mathbf{x}(t) : \mathbb{K}, 0 \to X$, such that

$$\lim_{t \to 0} \mathbf{x}(t) \in X_{\infty}, \quad \text{and} \quad \lim_{t \to 0} f(\mathbf{x}(t)) = \mathbf{y}_0.$$
(0.2)

- There exists an analytic arc $x(t) : \mathbb{K}, 0 \to X$ defined near 0 with (0.2).
- There exists a sequence $\{x_k\}$ in X, such that $\lim_{k \to \infty} x_k \in X_\infty$ and $\lim_{k \to \infty} f(x_k) = y_0$.

The last condition is equivalent to the condition that y_0 is not a proper point of f as a continuous map between metric spaces. We also have

$$S_f = \overline{f}(X_\infty) \cap \mathbb{K}^n = \overline{f}(X_\infty) \cap (Y \setminus Y_\infty).$$

Since \overline{f} is proper, the set $\overline{f}(X_{\infty})$ is closed in Y and we obtain that S_f is closed.

When $\mathbb{K} = \mathbb{C}$ and m > n, Noether's normalization asserts that, for any $y \in \mathbb{C}^n$, there is a linear surjection $p: f^{-1}(y) \to \mathbb{C}^d$, $0 \le d \le m$, where $d = \dim_{\mathbb{C}} f^{-1}(y)$. If $f^{-1}(y)$ is compact, then $p(f^{-1}(y)) = \mathbb{C}^d$ is compact and we obtain d = 0. Since $d \ge m - n$, we conclude that $m \le n$. This implies that S_f is the closure of the image of f whenever m > n. Therefore, we assume $m \le n$ when $\mathbb{K} = \mathbb{C}$.

When $\mathbb{K} = \mathbb{C}$, Jelonek's result asserts that S_f is Zariski closed. However, if $\mathbb{K} = \mathbb{R}$, S_f may not be Zariski closed (for example, $S_f = \{(0, y_2) \in \mathbb{R}^2 : y_2 \ge 0\}$ for $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (x_1, x_1^2 x_2^2)$).

Throughout the paper, we use the following notational convention:

$$\mathbb{K}^{J} = \{ (x_{1}, \dots, x_{n}) \in \mathbb{K}^{n} : x_{i} = 0, i \notin J \}, \ \mathbb{Z}^{J} = \{ (v_{1}, \dots, v_{n}) \in \mathbb{Z}^{n} : v_{i} = 0, i \notin J \}.$$

for a subset J of $\{1, \ldots, n\}$. We set $\mathbb{Z}_{\geq 0}^J = \{(v_1, \ldots, v_n) \in \mathbb{Z}^J : v_i \geq 0, i \in J\}$. We also set $(\mathbb{Z}_{\geq 0})^n = \{(v_1, \ldots, v_n) \in \mathbb{Z}^n : v_i \geq 0, i = 1, \ldots, n\}$. We often abbreviate $\mathbb{Z}_{\geq 0}$ as \mathbb{Z}_{\geq} following custom. We identify \mathbb{K}^n with $\mathbb{K}^J \times \mathbb{K}^{J^c}$ where $J^c = \{1, \ldots, n\} \setminus J$ without notice.

1 Newton Polyhedra

Let $\Delta(f^j)$ denote Newton polyhedron of f^j , the convex hull of the set $\{\mathbf{v} : c_{\mathbf{v}}^j \neq 0\}$, under the notation in (0.1). For $\mathbf{p} = (p_1, \dots, p_m) \in \mathbb{Z}^m$, we define

$$d_j(\boldsymbol{p}) = -\min\{\langle \boldsymbol{p}, \boldsymbol{\nu} \rangle : \boldsymbol{\nu} \in \Delta(f^j)\},\tag{1.1}$$

$$\gamma_j(\boldsymbol{p}) = \{ \boldsymbol{v} \in \Delta(f^J) : \langle \boldsymbol{p}, \boldsymbol{v} \rangle = -d_j(\boldsymbol{p}) \}.$$
(1.2)

We call $\gamma_i(\mathbf{p})$ the face of $\Delta(f^j)$ supported by \mathbf{p} .

We say $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_n)$ which is a face of $\boldsymbol{\Delta}(f) = (\Delta(f^1), \dots, \Delta(f^n))$ if there exist $\boldsymbol{p} \in \mathbb{Z}^m$, so that γ_j is a face of $\Delta(f^j)$ supported by \boldsymbol{p} . We denote

$$\boldsymbol{\gamma}(\boldsymbol{p}) = (\gamma_1(\boldsymbol{p}), \ldots, \gamma_n(\boldsymbol{p})).$$

When we need to mention f explicitly, we denote them by $\boldsymbol{\gamma}(f; \boldsymbol{p}), \gamma_j(f; \boldsymbol{p})$, and so on. We consider Minkowski sum $\Delta(f) = \Delta(f^1) + \cdots + \Delta(f^n)$ and its dual fan Δ^* , which we identify with the set of polyhedral cones. Note that $\gamma(\boldsymbol{p}) = \gamma_1(\boldsymbol{p}) + \cdots + \gamma_n(\boldsymbol{p})$ is a face of $\Delta(f)$. We denote

$$\boldsymbol{f}_{\boldsymbol{\gamma}} = (f_{\gamma_1}^1, \dots, f_{\gamma_n}^n) \text{ where } f_{\gamma_j}^j = \sum_{\boldsymbol{\nu} \in \gamma_j} c_{\boldsymbol{\nu}}^j x^{\boldsymbol{\nu}}.$$

Lemma 1.1 $\boldsymbol{\gamma}(\boldsymbol{p}) = \boldsymbol{\gamma}(\boldsymbol{q}) \iff \gamma(\boldsymbol{p}) = \gamma(\boldsymbol{q}).$

Proof "
$$\Longrightarrow$$
" part is clear, since " $\boldsymbol{\gamma}(\boldsymbol{p}) = \boldsymbol{\gamma}(\boldsymbol{q}) \iff \gamma_j(\boldsymbol{p}) = \gamma_j(\boldsymbol{q}) (j = 1, ..., n)$ ".

Take $\mathbf{v} \in \gamma(\mathbf{q})$, so that $\mathbf{v} = \mathbf{v}_1 + \cdots + \mathbf{v}_n$ for $\mathbf{v}_j \in \gamma_j(\mathbf{q})$. Since $\gamma_j(\mathbf{q}) \subset \Delta(f^j)$, we have $-d_j(\mathbf{p}) \leq \langle \mathbf{p}, \mathbf{v}_j \rangle$. If we assume $\gamma(\mathbf{q}) \subset \gamma(\mathbf{p})$, we then have

$$-\sum_{j=1}^n d_j(\boldsymbol{p}) \leq \sum_{j=1}^n \langle \boldsymbol{p}, \boldsymbol{v}_j \rangle = \langle \boldsymbol{p}, \boldsymbol{v} \rangle = -\sum_{j=1}^n d_j(\boldsymbol{p}),$$

and $\langle \boldsymbol{p}, \boldsymbol{v}_j \rangle = -d_j(\boldsymbol{p})$, that is, $\boldsymbol{v}_j \in \gamma_j(\boldsymbol{p})$. We conclude $\gamma_j(\boldsymbol{q}) \subset \gamma_j(\boldsymbol{p})$. By symmetry, we complete the proof of " \Leftarrow ".

Compositing f with a translation of the target, the set S_f is changed by its translation. Without loss of generality, we thus can assume the following condition:

 $f^{j}(j = 1, ..., n)$ are non-constant polynomials with non-zero constant terms.

(1.3)

Throughout the paper, we assume the condition (1.3) unless otherwise stated.

The condition (1.3) implies that $d_j(\mathbf{p}) \ge 0$ and equality holds if $\mathbf{p} \in (\mathbb{Z}_{\ge 0})^n$. For a face $\mathbf{\gamma}$ of $\Delta(f)$, we set $J_{\mathbf{y}} = \{j : 0 \notin \gamma_j\}$. We remark that

$$d_j(\boldsymbol{p}) > 0 \iff j \in J_{\boldsymbol{\gamma}} \quad \text{for } \boldsymbol{p} \text{ with } \boldsymbol{\gamma}(\boldsymbol{p}) = \boldsymbol{\gamma}.$$
 (1.4)

Definition 1.2 We say a face $\boldsymbol{\gamma}$ of $\boldsymbol{\Delta}(f)$ is **non-coordinate** if there is $\boldsymbol{p} \in \mathbb{Z}^m \setminus (\mathbb{Z}_{\geq 0})^m$, so that $\boldsymbol{\gamma} = \boldsymbol{\gamma}(\boldsymbol{p})$. Let $\boldsymbol{\Delta}_{nc}(f)$ denote the set of non-coordinate faces of $\boldsymbol{\Delta}(f)$.

For a polynomial map $\boldsymbol{g} = (g^1, \dots, g^r) : \mathbb{K}^m \to \mathbb{K}^r$, we set

$$Z(\boldsymbol{g}) = \{ \boldsymbol{x} \in (\mathbb{K}^*)^m : g^J(\boldsymbol{x}) = 0 \ (j = 1, \dots, r) \},$$

$$\Sigma(\boldsymbol{g}) = \{ \boldsymbol{x} \in (\mathbb{K}^*)^m : \text{rank Jac} (\boldsymbol{g})(\boldsymbol{x}) < r \},$$

where Jac $(\boldsymbol{g}) = (\partial_{x_i} g^j)_{i=1,...,m;j=1,...,r}$. Remark that the codimension of $Z(\boldsymbol{g}) \setminus \Sigma(\boldsymbol{g})$ is *r*.

Theorem 1.3 Assume that f is a polynomial map with (1.3) and

$$Z(f_{\boldsymbol{\gamma}}^{J}) \setminus \Sigma(f_{\boldsymbol{\gamma}}^{J}) \text{ is dense in } Z(f_{\boldsymbol{\gamma}}^{J})$$
(1.5)

for any $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(f)$ where $J = J_{\boldsymbol{\gamma}}$. We have

$$S_f = \bigcup_{\mathbf{y} \in \mathbf{\Delta}_{\mathrm{nc}}(f)} S_{\mathbf{y}}(f),$$

where $S_{\mathbf{y}}(f) = f_{\mathbf{y}}^{J^c}(Z(f_{\mathbf{y}}^J)) \times \mathbb{K}^J$, $J = J_{\mathbf{y}}$, and $f_{\mathbf{y}}^{J^c} : (\mathbb{K}^*)^m \to \mathbb{K}^{J^c}$ is the map defined by $\mathbf{x} \mapsto (f_{\gamma_j}^j(\mathbf{x}))_{j \notin J}$.

We often say that $Z(f_{\gamma}^{J_{\gamma}})$ has the dense nonsingular locus if the condition (1.5) holds.

When $J = \{1, ..., n\}$, we have $f_{\gamma}^{J^c} : (\mathbb{K}^*)^m \to \mathbb{K}^{J^c}$ is a constant map, since \mathbb{K}^{\emptyset} is a one-point set.

Remark 1.4 Chen et al. [2] said that f is non-degenerate if $Z(f_{\gamma}^{J}) \cap \Sigma(f_{\gamma}^{J}) = \emptyset$ for all $\gamma \in \Delta_{nc}(f)$. This implies (1.5) for all $\gamma \in \Delta_{nc}(f)$. However, our condition (1.5) is weaker than their non-degeneracy condition.

Remark 1.5 If $J_{\mathbf{y}} = \{1, ..., n\}$, the condition (1.5) implies that $Z_{\mathbf{y}} = Z(f_{\mathbf{y}}^{J_{\mathbf{y}}})$ is empty. In fact, if we take a nonsingular point $\mathbf{x} \in Z_{\mathbf{y}}$, then the condition (1.5) implies that $Z_{\mathbf{y}}$ is of codimension n at \mathbf{x} . This implies that \mathbf{x} is isolated in $Z_{\mathbf{y}}$. However, this is impossible, since $f_{\gamma_i}^{j_i}$ is weighted homogeneous with respect to the weight \mathbf{p} .

We also remark that $Z_{\mathbf{y}} = (\mathbb{K}^*)^m$ when $J_{\mathbf{y}} = \emptyset$.

Corollary 1.6 A polynomial map f with (1.3) is proper, if for any $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{nc}(f)$ none of γ_j , j = 1, ..., n, contains the origin and $Z(f_{\boldsymbol{\gamma}})$ has a dense nonsingular locus for any $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{nc}(f)$.

Remark 1.7 When $k = \dim \gamma_J = \sum_{j \in J} \dim \gamma_j$, $J = J_{\mathbf{y}}$, $f_{\mathbf{y}}^J$ is a system of polynomials of k Laurent monomials of x and $Z_{\mathbf{y}} = Z(f_{\mathbf{y}}^{J_{\mathbf{y}}})$ is isomorphic to $X \times (\mathbb{K}^*)^{n-k}$ for some algebraic variety X in $(\mathbb{K}^*)^k$. If $j \in J_{\mathbf{y}}$, $d_j = 0$ and $f^j(x)$ $(j \in J)$ is invariant under the natural \mathbb{K}^* -action(s). Thus, $f^J(Z_{\mathbf{y}}) = f^J(X \times \{(1, \dots, 1)\})$. When $f_{\mathbf{y}}^J$ is complete intersection, we have that

$$\dim f_{\mathbf{v}}^{J^{\mathsf{c}}}(Z_{\mathbf{v}}) = \dim X - \dim F = k - \#J - \dim F,$$

where *F* is a suitable fiber of $f_{\boldsymbol{\gamma}}^{J^c}: X \to \mathbb{K}^{J^c}$. We thus have dim $S_{\boldsymbol{\gamma}} = k - \dim F$. When $\mathbb{K} = \mathbb{C}$, S_f is a hypersurface and $\bigcup_{\boldsymbol{\gamma} \in \Delta_{nc}(f)} S_{\boldsymbol{\gamma}}$ should be the union of the closures of $S_{\boldsymbol{\gamma}}$ with dim $\boldsymbol{\gamma} = n - 1$ (and dim F = 0).

To prove Theorem 1.3, we actually show the following.

Theorem 1.8 If a polynomial map $f : \mathbb{K}^m \to \mathbb{K}^n$ satisfies (1.3), then

$$\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(f)} S'_{\boldsymbol{\gamma}}(f) \subset S_f \subset \bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(f)} S_{\boldsymbol{\gamma}}(f),$$
(1.6)

where $S'_{\mathbf{y}}(f) = f_{\mathbf{y}}^{J^c}(\overline{Z(f_{\mathbf{y}}^J) \setminus \Sigma(f_{\mathbf{y}}^J)}) \times \mathbb{K}^J, J = J_{\mathbf{y}}$. Here, \overline{Z} denotes the closure of a set Z.

Remark 1.9 Assume that m = n = 2. Take $\boldsymbol{\gamma} = (\gamma_1, \gamma_2) \in \boldsymbol{\Delta}_{nc}(\boldsymbol{f})$ for a nondegenerate map $\boldsymbol{f} : \mathbb{K}^2 \to \mathbb{K}^2$. We assume that $\boldsymbol{\gamma} = \boldsymbol{\gamma}(\boldsymbol{p}), \boldsymbol{p} = (p_1, p_2)$ with $p_1 < 0$ and $p_2 > 0$.

- If $0 \in \gamma_1$ and $0 \in \gamma_2$, then $f_{\gamma_1}^1$ and $f_{\gamma_2}^2$ are polynomial of a monomial $u = x_1^{q_1} x_2^{q_2}$. We denote them as $g_1(u)$ and $g_2(u)$. The defining equation of $S_{\mathbf{y}}$ is the resultant of $g_1 - y_1$ and $g_2 - y_2$ where (y_1, y_2) is a coordinate system of the target.
- If $0 \notin \gamma_1$ and $0 \in \gamma_2$, then we can write $f_{\gamma_1}^1 = x_1^p g_1(u)$ and $f_{\gamma_2}^2 = g_2(u)$ with $u = x_1^{q_1} x_2^{q_2}$ similarly. The defining equation of $S_{\mathbf{y}}$ is the resultant of g_1 and $g_2 y_2$.

2 Proof of Theorem 1.8

We are going to evaluate $f(x) = (f^1(x), \dots, f^n(x))$ along a curve x(t) defined by

$$\mathbf{x}(t) = (t^{p_1}v^1(t), \dots, t^{p_m}v^m(t)) \text{ where } \mathbf{p} = (p_1, \dots, p_m) \in \mathbb{Z}^m,$$
 (2.1)

$$\boldsymbol{v}(t) = (v^{1}(t), \dots, v^{m}(t)) = \sum_{i=0}^{\infty} \boldsymbol{v}_{i} t^{i}, \ \boldsymbol{v}_{i} = (v_{i}^{1}, \dots, v_{i}^{m}), \ \boldsymbol{v}_{0} \in (\mathbb{K}^{*})^{m}.$$
 (2.2)

We denote $\mathcal{A}(\mathbf{p})$ the set of such arcs. It is clear that

$$\lim_{t \to 0} \mathbf{x}(t) = \infty \iff \mathbf{p} \notin (\mathbb{Z}_{\geq 0})^m.$$
(2.3)

We have an obvious decomposition $S_f = \bigcup_{p} S_f(p)$, where

$$S_f(\boldsymbol{p}) = \{ \boldsymbol{y} \in \mathbb{K}^n : \exists \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p}), \ \lim_{t \to 0} \boldsymbol{x}(t) = \infty, \ \lim_{t \to 0} \boldsymbol{f}(\boldsymbol{x}(t)) = \boldsymbol{y} \}.$$
(2.4)

We have $S_f(p) = \emptyset$ if $p \in (\mathbb{Z}_{\geq 0})^m$ by (2.3).

Remark 2.1 Observe that the arcs having several components being identically zero are not in $\mathcal{A}(p)$. However, this does not affect to detect S_f . Adding the terms t^l , $l \gg 1$, to such components does not affect the conditions for S_f and we can restrict our attention to $\mathcal{A}(p)$.

Lemma 2.2 For $p \notin (\mathbb{Z}_{\geq 0})^m$, we have $S_f(p) \subset S_{\gamma(p)}(f)$.

Proof We express $f^{j}(\boldsymbol{x}(t))$ as

$$f^{j}(\mathbf{x}(t)) = t^{-d_{j}}(\hat{f}_{0}^{j} + \hat{f}_{1}^{j}t + \dots + \hat{f}_{d_{j}-1}^{j}t^{d_{j}-1} + \hat{f}_{d_{j}}^{j}t^{d_{j}} + o(t^{d_{j}})), \qquad (2.5)$$

where $d_j = d_j(\mathbf{p}) \ge 0$. We have $\hat{f}_0^j = f_{\gamma_j}^j(\mathbf{v}_0)$ where $\gamma_j = \gamma_j(\mathbf{p})$. Setting $f^j(x) = \sum_{\mathbf{v}} c_{\mathbf{v}}^j \mathbf{x}^{\mathbf{v}}$, more precisely, we have

$$f^{j}(\boldsymbol{x}(t)) = t^{-d_{j}(\boldsymbol{p})} \sum_{\boldsymbol{\nu}} c_{\boldsymbol{\nu}}^{j} t^{\langle \boldsymbol{p}, \boldsymbol{\nu} \rangle + d_{j}(\boldsymbol{p})} \boldsymbol{v}(t)^{\boldsymbol{\nu}}.$$
(2.6)

If $y \in S_f(p)$, then there exists an arc $x(t) \in \mathcal{A}(p)$, so that

$$\lim_{t\to 0} \mathbf{x}(t) = \infty, \text{ and } \lim_{t\to 0} f(\mathbf{x}(t)) = \mathbf{y}$$

🖉 Springer

Using the notation in (2.5) and $J = J_{\boldsymbol{\gamma}}(\boldsymbol{p})$, we have

$$\hat{f}_0^j = \hat{f}_1^j = \dots = \hat{f}_{d_j-1}^j = 0 \quad (j \in J),$$

and $f_{\gamma_j(p)}^j(v_0) = 0$ $(j \in J)$. This implies that J^c component of y is given by $f_{\gamma(p)}^{J^c}(v_0)$, and we complete the proof.

Remark 2.3 If dim $\gamma_j(p) = 0$ for some $j \in J$, then $\hat{f}_0^j \neq 0$, and $S_{\boldsymbol{y}(p)}$ is empty.

Lemma 2.4 If $\boldsymbol{\gamma} = \boldsymbol{\gamma}(\boldsymbol{p}) \in \Delta_{nc}(\boldsymbol{f})$, then

$$f_{\boldsymbol{\gamma}}^{J^{c}}(Z(f_{\boldsymbol{\gamma}}^{J}) \setminus \Sigma(f_{\boldsymbol{\gamma}}^{J})) \times \mathbb{K}^{J} \subset S_{f}(\boldsymbol{p}) \text{ where } J = J_{\boldsymbol{\gamma}}(\boldsymbol{p}).$$

Proof Take $p \in \mathbb{Z}^n \setminus (\mathbb{Z}_{\geq})^n$ and consider a curve defined by (2.1). We compare (2.5) with (2.6) substituting by (2.2) and taking modulo t^{i+1} . Remarking that the terms concerning v_i in \hat{f}_i^j depend on the terms in $f_{\gamma_i}^j$ only, we obtain that

$$\hat{f}_{l}^{j} = (df_{\gamma_{j}}^{j})_{\boldsymbol{v}_{0}}(\boldsymbol{v}_{l}) + r_{l}^{j}(\boldsymbol{v}_{0}, \dots, \boldsymbol{v}_{l-1}) \quad (l = 1, 2, \dots),$$
(2.7)

where $r_l^j(\boldsymbol{v}_0,\ldots,\boldsymbol{v}_{l-1})$ is a suitable polynomial of $\boldsymbol{v}_0,\ldots,\boldsymbol{v}_{l-1}$.

Take a point $v_0 \in Z(f_{\gamma}^J) \setminus \Sigma(f_{\gamma}^J)$ where $J = J_{\gamma}$. Let $(a_k^j)_{j \in J; k \ge 1}$ be any sequence. Suppose we have already taken $v_0, v_1, ..., v_{l-1}$, so that

$$\hat{f}_k^j = a_k^j \quad (1 \leq k < l, j \in J).$$

By (2.7), there exists v_l , so that $\hat{f}_l^j = a_l^j$ for $j \in J$, whenever Jac $((f_{\gamma_j}^j)_{j \in J})$ is of full rank at v_0 . Choose $(a_l^j)_{j \in J; l \ge 0}$, so that $a_i^j = 0$ ($0 \le i < d_j$). Then, the corresponding curve $\mathbf{x}(t)$ has the following property:

$$\lim_{t \to 0} f^{j}(\boldsymbol{x}(t)) = \begin{cases} f_{j}^{j}(\boldsymbol{v}_{0}) & (j \notin J), \\ a_{d_{j}}^{j} & (j \in J). \end{cases}$$

Since one can choose $a_{d_j}^j$ arbitrary, we conclude that $f_{\boldsymbol{\gamma}}^{J^c}(Z(f_{\boldsymbol{\gamma}}^J) \setminus \Sigma(f_{\boldsymbol{\gamma}}^J)) \times \mathbb{K}^J \subset S_f(\boldsymbol{p})$.

In the situation above, we have

Corollary 2.5 $S'_{\mathbf{v}}(f) \subset S_f$ for $\mathbf{v} \in \Delta_{\mathrm{nc}}(f)$.

Proof We obtain

$$S'_{\boldsymbol{\gamma}}(f) = f^{J^c}_{\boldsymbol{\gamma}} \left(\overline{Z(f^J_{\boldsymbol{\gamma}}) \setminus \Sigma(f^J_{\boldsymbol{\gamma}})} \right) \times \mathbb{K}^J \subset \overline{f^{J^c}_{\boldsymbol{\gamma}}(Z(f^J_{\boldsymbol{\gamma}}) \setminus \Sigma(f^J_{\boldsymbol{\gamma}}))} \times \mathbb{K}^J \subset \overline{S_f} = S_f,$$

since S_f is closed.

Remark 2.6 In the case that f does not satisfy (1.5), we would proceed further analysis using higher order differentials of composite maps. Actually, in the expression (2.5), we have

$$\hat{f}_{l}^{j} = \sum_{k=0}^{l} \sum_{i_{1}+2i_{2}+\dots+ki_{k}=k} \frac{1}{i_{1}!\cdots i_{k}!} (d^{i_{1}+\dots+i_{k}} f_{l-k}^{j})_{\boldsymbol{v}_{0}} (\overbrace{\boldsymbol{v}_{1},\dots,\boldsymbol{v}_{1}}^{i_{1}},\dots,\overbrace{\boldsymbol{v}_{k},\dots,\boldsymbol{v}_{k}}^{i_{k}}),$$

where

$$f^{j}(\mathbf{x}) = f_{0}^{j}(\mathbf{x}) + f_{1}^{j}(\mathbf{x}) + \dots + f_{e_{j}}^{j}(\mathbf{x}) \text{ with}$$

$$f_{k}^{j}(t^{p_{1}}x_{1}, \dots, t^{p_{m}}x_{m}) = t^{-d_{j}+k}f_{k}^{j}(\mathbf{x}).$$
(2.8)

Here, we use the notation in (2.1), (2.2), and d^kg denotes the symmetric multilinear form defined by kth-order differential of g. The first few of \hat{f}_{l}^{j} are as follows:

$$\begin{aligned} \hat{f}_{0}^{j} &= f_{0}^{j}(\mathbf{v}_{0}), \\ \hat{f}_{1}^{j} &= f_{1}^{j}(\mathbf{v}_{0}) + (df_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}), \\ \hat{f}_{2}^{j} &= f_{2}^{j}(\mathbf{v}_{0}) + (df_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{2}) + (df_{1}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}) + \frac{1}{2}(d^{2}f_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}, \mathbf{v}_{1}), \\ \hat{f}_{3}^{j} &= f_{3}^{j}(\mathbf{v}_{0}) + (df_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{3}) + (df_{1}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{2}) + (df_{2}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}) \\ &+ (d^{2}f_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}, \mathbf{v}_{2}) + \frac{1}{2}(d^{2}f_{1}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}, \mathbf{v}_{1}) + \frac{1}{6}(d^{3}f_{0}^{j})_{\mathbf{v}_{0}}(\mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}). \end{aligned}$$

$$(2.10)$$

The set $S_f(\mathbf{p})$ is described by eliminating $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \dots$ from the following system:

$$0 = \hat{f}_l^j \ (l = 0, 1, 2, \dots, d_j - 1), \quad y_j = \hat{f}_{d_j}^j \ (j = 1, \dots, n),$$

where (y_1, \ldots, y_n) denotes the coordinate system of the target.

3 Relative Version

The definition of non-properness set has an obvious generalization for a polynomial map $f: X \to Y$ between algebraic varieties X and Y defined over K. We say f is not proper at $y_0 \in Y$ if there exist an arc $x(t) : \mathbb{K}^*, 0 \to X$, so that

$$\lim_{t \to 0} \mathbf{x}(t) \text{ does not exist, and } \lim_{t \to 0} f(\mathbf{x}(t)) = \mathbf{y}_0.$$

We denote by S_f the set of non-proper points of $f: X \to Y$. Let $f = (f^1, \ldots, f^n) : \mathbb{K}^m \to \mathbb{K}^n$ be a polynomial map with (1.3). Set $f' = (f^1, \ldots, f^{n-k})$ and $f'' = (f^{n-k+1}, \ldots, f^n)$. Set y = (y', y'') and $y_0 = (y'_0, y''_0)$. In this section, we describe a generalization of the discussion above to the map

$$f'|_X : X \to \mathbb{K}^{n-k}$$
 where $X = (f'')^{-1}(y_0'')$.

Since $f|_X = (f'|_X, y_0'')$, we identify $f|_X$ with the map $f'|_X$ via the embedding $\mathbb{K}^{n-k} \times \{y_0''\} \subset \mathbb{K}^n$. This means that we identify \mathbb{K}^{n-k} with $\mathbb{K}^{n-k} \times \{y_0''\}$, and we can identify $f^{\{1,\ldots,n-k\}\setminus J}$ with $f^{\{1,\ldots,n\}\setminus J}$. We call this map by f^{J^c} . For a face $\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_n)$ of $\boldsymbol{\Delta}(f)$, we define $\boldsymbol{\gamma}' = (\gamma_1, \ldots, \gamma_{n-k})$ and $\boldsymbol{\gamma}'' = (\gamma_{n-k+1}, \ldots, \gamma_n)$. In the same way, we can identify $f_{\boldsymbol{\gamma}}^{\{1,\ldots,n-k\}\setminus J}$ with $f_{\boldsymbol{\gamma}}^{\{1,\ldots,n\}\setminus J}$ on the set $Z(f_{\boldsymbol{\gamma}'}^J, f_{\boldsymbol{\gamma}''}'' - y_0'')$. So denote its image by $f_{\boldsymbol{\gamma}}^{J^c}$ as $f_{\boldsymbol{\gamma}}^{J^c}(Z(f_{\boldsymbol{\gamma}'}^J, f_{\boldsymbol{\gamma}''}'' - y_0''))$. Set

$$S_{\mathbf{y}';\mathbf{y}''} = f_{\mathbf{y}}^{J^{c}}(Z(f_{\mathbf{y}'}^{J}, f_{\mathbf{y}''}'' - \mathbf{y}_{0}'')) \times \mathbb{K}^{J}, \ J = J_{\mathbf{y}'} = \{j \in \{1, \ldots, n-k\} : 0 \notin \gamma_{j}\},\$$

and $S'_{\boldsymbol{\gamma}';\boldsymbol{\gamma}''} = f_{\boldsymbol{\gamma}}^{J^c}(\overline{Z(f_{\boldsymbol{\gamma}'}^J, f_{\boldsymbol{\gamma}''}'' - y_0'')} \setminus \Sigma(f_{\boldsymbol{\gamma}'}^J, f_{\boldsymbol{\gamma}''}'')) \times \mathbb{K}^J.$

Under the notation and assumption above, we have the following:

Theorem 3.1 We assume that the nonsingular locus of X is dense in X and X has no component in $\{x_1 \cdots x_n = 0\}$. Then

$$\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(f)} S'_{\boldsymbol{\gamma}';\boldsymbol{\gamma}''} \subset S_{f|_{X}} \subset \bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(f)} S_{\boldsymbol{\gamma}';\boldsymbol{\gamma}''}.$$
(3.1)

If $Z(f_{\mathbf{y}'}^J, f_{\mathbf{y}''}'' - \mathbf{y}_0'')$ has dense nonsingular loci for $\mathbf{y} \in \Delta_{nc}$, we have equalities in (3.1).

The assumption that X has no component in $\{x_1 \cdots x_n = 0\}$ comes from Remark 2.1. If there is an arc $\mathbf{x}(t)$ in $X \cap \mathbb{K}^I$, $I \subseteq \{1, \ldots, n\}$, with $\mathbf{x}(t) \to \infty$, and $f(\mathbf{x}(t)) \to \mathbf{y}_0$ ($t \to 0$), one can choose $\hat{\mathbf{x}}(t) \in \mathcal{A}(\mathbf{p})$ for some \mathbf{p} with $\hat{\mathbf{x}}(t) \to \infty$, and $f(\hat{\mathbf{x}}(t)) \to \mathbf{y}_0$ ($t \to 0$). However, we do not know that $\hat{\mathbf{x}}(t)$ can be chosen in X in such a case.

Proof of Theorem 3.1 First, for $x(t) \in \mathcal{A}(p)$, we can write

$$f^{j}(\mathbf{x}(t)) = t^{-d_{j}}(\hat{f}_{0}^{j} + \hat{f}_{1}^{j}t + \dots + \hat{f}_{d_{j}-1}^{j}t^{d_{j}-1} + \hat{f}_{d_{j}}^{j}t^{d_{j}} + o(t^{d_{j}})) \quad (j = 1, \dots, n-k),$$

$$f^{j}(\mathbf{x}(t)) - y_{0}^{j} = t^{-d_{j}}(\hat{f}_{0}^{j} + \hat{f}_{1}^{j}t + \dots + \hat{f}_{d_{j}-1}^{j}t^{d_{j}-1} + \hat{f}_{d_{j}}^{j}t^{d_{j}} + o(t^{d_{j}})) \quad (j = n-k+1, \dots, n),$$

where $d_j = d_j(\mathbf{p})$. We remark that $\mathbf{y} \in S_{f|X}$ if and only if there is an arc $\mathbf{x}(t)$: $\mathbb{K}^*, 0 \to X$, so that $\lim_{t\to 0} \mathbf{x}(t) = \infty$, and that $\lim_{t\to 0} f(\mathbf{x}(t)) = \mathbf{y}$. In a similar way to the proof of Lemma 2.2, we have

$$\hat{f}_0^J = 0 \ (j \in J_{\gamma} \cup \{n - k + 1, \dots, n\}).$$

This implies that $f_{\gamma_j(p)}^j(\mathbf{v}_0) = 0$ for $j \in J_{\mathbf{y}}$, and $(f^j - y_0^j)_{\gamma_j(p)}(\mathbf{v}_0) = 0$ for j = n - k + 1, ..., n, which show the second inclusion.

Deringer

By the discussion similar to the proof of Lemma 2.4, for any a^j $(j \in J)$, we can construct a formal power series $v(t) = (v^1(t), \dots, v^n(t))$, such that

$$f^{j}(t^{p_{1}}v^{1}(t),\ldots,t^{p_{n}}v^{n}(t)) = a^{j} + o(t) \quad (j \in J),$$
(3.2)

$$f^{j}(t^{p_{1}}v^{1}(t),\ldots,t^{p_{n}}v^{n}(t)) = y_{0}^{j} \quad (j = n - k + 1,\ldots,n),$$
(3.3)

where $\mathbf{y}_0 = (y_0^1, \dots, y_0^n)$. Remark that we can reduce this system to polynomials by multiplying some power t^l . By the approximation theorem of Artin ([1]), we can take a convergent power series $\mathbf{v}(t) = (v^1(t), \dots, v^n(t))$ which satisfies (3.2) and (3.3). This completes the proof of the first inclusion.

If *X* has a component X_1 in $\{x_1 \cdots x_n = 0\}$, we could proceed a similar computation for $f|_{X_1}$ which is a polynomial map with less number of variables and obtain that $S_{f|_{X_1}} \subset S_{f|_X}$.

4 Examples

Example 4.1 Let us start with the simplest example $\mathbb{K}^2 \to \mathbb{K}^2$, f(x, y) = (x, xy). For the assumption (1.3) we consider $f(x, y) = (c_1 + x, c_2 + xy)$ where c_1, c_2 are non-zero constants. It suffices to consider only 3 faces below thanks to Remark 2.3. Since

$$\begin{aligned} f_{\gamma(1,-1)} &= (c_1, c_2 + xy), \, Z(f_{\gamma(1,-1)}^{\emptyset}) = (\mathbb{K}^*)^2, \\ f_{\gamma(0,-1)} &= (c_1 + x, xy), \, Z(f_{\gamma(1,-1)}^{\{2\}}) = \emptyset, \\ f_{\gamma(-1,1)} &= (x, c_2 + xy), \, Z(f_{\gamma(1,-1)}^{\{1\}}) = \emptyset, \end{aligned}$$

we have $S_f = \{(c_1, c_2 + xy) : (x, y) \in (\mathbb{K}^*)^2\} = \{c_1\} \times \mathbb{K}.$

Example 4.2 Consider the map $f(x, y) = (x^2y^2 + xy + y + 1, x^2y + y + x + 1)$. Since

$$\begin{aligned} f_{\boldsymbol{\gamma}}(-1,1) &= (x^2y^2 + xy + 1, x(xy + 1)), Z(f_{\boldsymbol{\gamma}}^{\{2\}}(1,-1)) = \{xy + 1 = 0\} \\ f_{\boldsymbol{\gamma}}(0,-1) &= (x^2y^2, (x^2 + 1)y)), Z(f_{\boldsymbol{\gamma}}^{\{1,2\}}(0,-1)) = \emptyset \\ f_{\boldsymbol{\gamma}}(1,-2) &= (x^2y^2 + y, y), Z(f_{\boldsymbol{\gamma}}^{\{1,2\}}(1,-2)) = \emptyset \end{aligned}$$

we have

$$S_f = \{x^2y^2 + xy + 1 : xy + 1 = 0\} \times \mathbb{K} = \{t^2 + t + 1 : t + 1 = 0\} \times \mathbb{K} = \{1\} \times \mathbb{K}.$$

Example 4.3 Consider the map $f(x, y) = (xy + y + 1, x^2y^2 + y^2 + xy + 1)$, we have

$$\begin{split} f_{\pmb{\gamma}}(-1,1) &= (xy+1, x^2y^2 + xy + 1), \quad Z(f_{\pmb{\gamma}}^{\emptyset}(1,-1)) = (\mathbb{K}^*)^2 \\ f_{\pmb{\gamma}}(0,-1) &= ((x+1)y, (x^2+1)y^2), \qquad Z(f_{\pmb{\gamma}}^{\{1,2\}}) = \emptyset \end{split}$$

Therefore, we have

$$S_f = \{(X, Y) : \exists (x, y) \in (\mathbb{K}^*)^2 \text{ s.t. } (X, Y) = (xy + 1, x^2y^2 + xy + 1)\}$$

= $\{(X, Y) : \exists t \in \mathbb{K}^* \text{ s.t. } (X, Y) = (t + 1, t^2 + t + 1)\}$
= $\{Y - X^2 + X - 1 = 0\}.$

Example 4.4 Consider the map $f : \mathbb{K}^3 \to \mathbb{K}^3$ defined by

f(x, y, z) = (1 + xy + xz, 1 + axz + x(1 - xy + xz), 1 + bxy + x(1 + xy + xz)),

 $a \neq 0, b \neq 0$. The Newton polyhedra look like

and we obtain the following data.

p	f y (p)	(d_1,d_2,d_3)	J y (p)	Zγ
(1, -1, -1)	(1 + xy + xz, 1 + axz, 1 + bxy)	(0, 0, 0)	Ø	(K *) ³
(1, -1, -2)	$(xz, axz, 1 + bxy + x^2z)$	(1, 1, 0)	{1, 2}	Ø
(1, -2, -1)	$(xy, 1 - x^2y + axz, bxy)$	(1, 0, 1)	{1, 3}	Ø
(0, -1, -1)	(x(y+z), x(xz - xy + az), x(xz + xy + by))	(1, 1, 1)	$\{1, 2, 3\}$	Ø
(-1, 1, 1)	(1 + xy + xz, x(1 - xy + xz), x(1 + xy + xz))	(0, 1, 1)	{2, 3}	

We have

$$S_{\mathbf{y}(1,-1,-1)} = \{ \exists (x, y, z) \ (X, Y, Z) = (1 + xy + xz, -2(1 + axz), -1 - bxy) \}$$

= $\{ abX + bY + aZ = ab - a - b \},$
$$S_{\mathbf{y}(-1,1,1)} = \{ \exists (x, y, z) \ X = 1 + xy + xz, \ (1 - xy + xz, 1 + xy + xz) = 0 \} = \{ X = 0 \}$$

We conclude that $S_f = S_{y(1,-1,-1)} \cup S_{y(-1,1,1)}$.

5 Degenerate Case

We present several tricks to handle the case when (1.5) does not hold for some $\boldsymbol{\gamma} \in \Delta_{\text{nc}}(f)$.

5.1 The First Trick

Let $h : \mathbb{K}^{m+k} \to \mathbb{K}^{n+k}$ be a polynomial map with (1.5). We assume that $h^{n+i}(x) = \varphi_1(x_1, \ldots, x_m) - x_{m+i}$ for $i = 1, \ldots, k$. Let *X* be a subset of \mathbb{K}^{m+k} defined by

$$x_{m+i} = \varphi_i(x_1, \dots, x_m), \quad i = 1, \dots, k.$$

The set *X* is isomorphic to \mathbb{K}^m by the map defined by

 $(x_1,\ldots,x_m)\mapsto (x_1,\ldots,x_m,\varphi_1(x_1,\ldots,x_m),\ldots,\varphi_k(x_1,\ldots,x_m)).$

If $f(x_1, ..., x_m) = h(x_1, ..., x_m, \varphi_1(x_1, ..., x_m), ..., \varphi_k(x_1, ..., x_m))$, then we have

$$S_f = S_{h|_X}$$

via the identification of \mathbb{K}^n with $\mathbb{K}^n \times \{0\}$. When h satisfies the required assumptions, one can use Theorem 3.1 to describe S_f , even though f does not satisfy (1.5) for some $\gamma \in \Delta_{nc}(f)$.

Example 5.1 Let $h : \mathbb{K}^3 \to \mathbb{K}^3$ be the map defined by

$$h(x, y, z) = (1 + x + z^2, 1 + x^2 + z^3, y^2 - x^3 - z).$$

Let *X* be the subset of \mathbb{K}^3 defined by $z = y^2 - x^3$. Setting $f(x, y) = h(x, y, y^2 - x^3)$, we have

$$f(x, y) = (1 + x + (y^2 - x^3)^2, 1 + x^2 + (y^2 - x^3)^3).$$

Applying Theorem 3.1, we conclude that h is proper, and thus so is f.

5.2 The Second Trick

We show another trick, which we do not use higher dimension. If $V_{\mathbf{y}} = Z(f_{\mathbf{y}}^J) \setminus \overline{Z(f_{\mathbf{y}}^J)} \setminus \Sigma(f_{\mathbf{y}}^J)$, $J = J_{\mathbf{y}}$, is not empty for some $\mathbf{y} \in \Delta_{\mathrm{nc}}(f)$, we may have a chance to change $S_{\mathbf{y}}(f)$ (resp. $S'_{\mathbf{y}}(f)$) in (1.6) by a smaller subset of $S_{\mathbf{y}}(f)$ (resp. by a supset of $S'_{\mathbf{y}}(f)$).

Let $f : \mathbb{K}^m \to \dot{\mathbb{K}}^n$ be a polynomial map with (1.3). Set $f_l^J = (f_l^j)_{j \in J}$ for $J \subset \{1, \ldots, n\}$ where f_k^j is defined in (2.8). Remark that $f_0^j(x) = f_{\gamma_j}^j(x)$. We set

$$W(\boldsymbol{p}) = \left\{ \begin{array}{l} \exists \boldsymbol{x} \in V_{\boldsymbol{p}}, \ \boldsymbol{y}^{J^{c}} = \boldsymbol{f}_{\boldsymbol{p}}^{J^{c}}(\boldsymbol{x}), \\ \boldsymbol{y} \in \mathbb{K}^{n} : \\ \operatorname{rank} \begin{pmatrix} \partial_{x_{i}} \boldsymbol{f}_{0}^{J'}(\boldsymbol{x}) \\ \partial_{x_{i}} \boldsymbol{f}_{0}^{J''}(\boldsymbol{x}) \end{pmatrix} = \operatorname{rank} \begin{pmatrix} \partial_{x_{i}} \boldsymbol{f}_{0}^{J'}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J'}(\boldsymbol{x}) - \boldsymbol{y}^{J'} \\ \partial_{x_{i}} \boldsymbol{f}_{0}^{J''}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J''}(\boldsymbol{x}) \end{pmatrix}, \end{array} \right\}$$

where $\boldsymbol{\gamma} = \boldsymbol{\gamma}(p), \, y^{J'} = (y^{j'})_{j' \in J'},$

$$J' = J'(\mathbf{p}) = \{j \in \{1, \dots, n\} : d_j(\mathbf{p}) = 1\}, \text{ and}$$

 $J'' = J''(\mathbf{p}) = \{j \in \{1, \dots, n\} : d_j(\mathbf{p}) \ge 2\}.$

Remark that $J = J' \cup J''$ because of (1.4). Under the notations and the assumptions above, we have

Theorem 5.2 If $V_{\boldsymbol{y}}(\boldsymbol{p})$, $\boldsymbol{p} \in \mathbb{Z}^n \setminus (\mathbb{Z}_{\geq})^n$, is not empty for $\boldsymbol{\gamma}(\boldsymbol{p}) \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$, then

$$S'_f(p) \subset S_f(p) \subset S'_{\gamma(p)}(f) \cup W(p).$$

Moreover, we conclude that $W'(\mathbf{p}) \subset S_f(\mathbf{p})$, where

$$W'(p) = \{ y \in W(p) : \exists x \in V_{\gamma(p)}, y^{J^{c}} = f_{\gamma(p)}^{J^{c}}(x), \text{ rank } (\partial_{x_{i}} f_{0}^{J^{\prime\prime}}(x))_{i=1,...,m} = \#J^{\prime\prime} \}.$$

Proof If $y \in S_f(p)$, $p \in \mathbb{Z}^n \setminus (\mathbb{Z}_{\geq})^n$, there exists $x(t) \in \mathcal{A}(p)$ with $f(x(t)) \to y$ $(t \to 0)$. By (2.9) and (2.10), we have

$$0 = f_0^{J}(\mathbf{v}_0) \quad (j \in J))$$

$$y^{j'} = f_1^{j'}(\mathbf{v}_0) + (df^{j'})_{\mathbf{v}_0}(\mathbf{v}_1) \quad (j' \in J')$$

$$0 = f_1^{j''}(\mathbf{v}_0) + (df^{j''})_{\mathbf{v}_0}(\mathbf{v}_1) \quad (j'' \in J'').$$

🖄 Springer

Here, we use the expression in (2.1) and (2.2). This implies that

$$\operatorname{rank}\begin{pmatrix} \partial_{x_i} f_0^{J'}(\mathbf{x}) \\ \partial_{x_i} f_0^{J''}(\mathbf{x}) \end{pmatrix} = \operatorname{rank}\begin{pmatrix} \partial_{x_i} f_0^{J'}(\mathbf{x}) & f_1^{J'}(\mathbf{x}) - \mathbf{y}^{J'} \\ \partial_{x_i} f_0^{J''}(\mathbf{x}) & f_1^{J''}(\mathbf{x}) \end{pmatrix},$$

and we conclude $S_f(p) \subset S'_{\gamma(p)}(f) \cup W(p)$.

Now, we assume $y \in W'(p)$. There exists $x \in V_{\gamma(p)}$, such that

$$\operatorname{rank} \left(\partial_{x_i} f_0^{J''}(\mathbf{x})\right)_{i=1,\dots,m} = \# J''.$$
(5.1)

By the discussion in the second paragraph of the proof of Lemma 2.4, we can choose $\mathbf{x}(t)$ to attain arbitrary $\hat{f}_l^{j''}$ ($j'' \in J'', l \ge 1$) whenever $\mathbf{x} \notin \Sigma(\mathbf{f}^{J''})$. This implies that $W'(\mathbf{p}) \subset S_f(\mathbf{p})$.

We present a trick to describe $S_f(\mathbf{y}) = \bigcup_{p:\mathbf{y}} S_f(p)$ where $S_f(p)$ is the set defined by (2.4).

Assume that f does not satisfy (1.5) for some face $\boldsymbol{\gamma}$. We take a primitive $\boldsymbol{p} \in \mathbb{Z}^n \setminus (\mathbb{Z}_{\geq})^n$, so that $\boldsymbol{\gamma}(\boldsymbol{p}) = \boldsymbol{\gamma}$. Here, \boldsymbol{p} is primitive means that the greatest common divisor of all components of \boldsymbol{p} is 1. Assume that there exists a rational map $\mathbb{K}^m \times \mathbb{K}^n \to \mathbb{K}^n$, $(\boldsymbol{x}, \boldsymbol{z}) \mapsto \Psi(\boldsymbol{x}, \boldsymbol{z})$ with the following properties.

- There exist a certain rational map $g : \mathbb{K}^m \to \mathbb{K}^n$, possibly with points of indeterminacy, so that $f(x) = \Psi(x, g(x))$, and g satisfies (1.5) for the face supported by p.
- The limit $\lim_{t\to 0} \Psi(\mathbf{x}(t), \mathbf{z})$ exists for $\mathbf{x}(t) \in \mathcal{A}(\mathbf{p})$. We assume that this limit depends on \mathbf{v}_0 , and denote the limit by $\Psi_{\mathbf{v}_0}(\mathbf{z})$, under the notation in (2.1) and(2.2),
- The limit $\lim_{t\to 0} g(x(t))$ for $x(t) \in \mathcal{A}(p)$ exists.

Theorem 5.3 Under the notations and assumptions above, the set $S_f(p)$, $\boldsymbol{\gamma}(p) = \boldsymbol{\gamma}$, is in the image of the following map:

$$Z(\boldsymbol{g}_{\boldsymbol{\gamma}}^{J}(\boldsymbol{p})) \times \mathbb{K}^{J} \to \mathbb{K}^{n}, \ (\boldsymbol{x}, \boldsymbol{z}^{J}) \mapsto \Psi_{\boldsymbol{x}}(\boldsymbol{g}_{\boldsymbol{\gamma}}^{J^{c}}(\boldsymbol{p})(\boldsymbol{x}) \times \boldsymbol{z}^{J}), \ J = J_{\boldsymbol{\gamma}}(\boldsymbol{g}; \boldsymbol{p}).$$

Proof For $p \in \mathbb{Z}^n \setminus (\mathbb{Z}_{\geq})^n$

$$\begin{split} S_f(\boldsymbol{p}) &= \{ \boldsymbol{y} \in \mathbb{K}^n : \exists \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p}), \lim_{t \to 0} f(\boldsymbol{x}(t)) = \boldsymbol{y} \} \\ &= \{ \boldsymbol{y} \in \mathbb{K}^n : \exists \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p}), \lim_{t \to 0} \Psi(\boldsymbol{x}(t), \boldsymbol{g}(\boldsymbol{x}(t))) = \boldsymbol{y} \} \\ &\subset \left\{ \boldsymbol{y} \in \mathbb{K}^n : \exists \boldsymbol{v}_0 \in (\mathbb{K}^*)^m, \; \exists \boldsymbol{z} \in \mathbb{K}^n, \; \boldsymbol{y} = \Psi_{\boldsymbol{v}_0}(\boldsymbol{z}), \; g_{\gamma_j(\boldsymbol{p})}^j(\boldsymbol{v}_0) = \begin{cases} 0 & (j \in J) \\ z^j & (j \notin J) \end{cases} \right\} \\ &= \{ \boldsymbol{y} \in \mathbb{K}^n : \exists \boldsymbol{v}_0 \in Z(\boldsymbol{g}_{\boldsymbol{y}(\boldsymbol{p})}^J), \; \exists \boldsymbol{z} \in \mathbb{K}^n, \; \boldsymbol{y} = \Psi_{\boldsymbol{v}_0}(\boldsymbol{z}), \; g_{\gamma_j(\boldsymbol{p})}^j(\boldsymbol{v}_0) = z^j(j \notin J) \}. \end{split}$$

Since $S_f(\mathbf{y}) = \bigcup_{p:\mathbf{y}} S_f(p)$, this may describe $S_f(\mathbf{y})$, as we see in the following example.

Example 5.4 Consider the map $f : \mathbb{K}^3 \to \mathbb{K}^3$ defined by

$$f(x_1, x_2, x_3) = (1 + x_1x_3 + x_2x_3, 1 + x_1(1 - x_1x_3 + x_2x_3), 1 + x_2(1 - x_1x_3 + x_2x_3)).$$

The map f satisfies the condition (1.5) except the face γ (-1, -1, 1), as we see in the following data.

р	f _y (p)	(d_1,d_2,d_3)	J y (p)
(1, 1, -1)	$(1 + x_1x_3 + x_2x_3, 1, 1)$	(0, 0, 0)	Ø
(1, 1, -2)	$(x_3(x_1+x_2), 1+x_1x_3(x_2-x_1), 1+x_2x_3(x_2-x_1))$	(1, 0, 0)	{1}
(-1, 0, 1)	$(1 + x_1x_3, x_1(1 - x_1x_3), 1 + x_2 - x_1x_2x_3)$	(0, 1, 0)	{2}
(0, -1, 1)	$(1 + x_2x_3, 1 + x_1 + x_1x_2x_3, x_2(1 + x_2x_3))$	(0, 0, 1)	{3}
(-1, -1, 1)	$(1 + x_1x_3 + x_2x_3, x_1(1 - x_1x_3 + x_2x_3), x_2(1 - x_1x_3 + x_2x_3))$	(0, 1, 1)	{2, 3}

We easily see that

$$S_{\mathbf{y}(1,1,-1)}(f) = \{y_1 = y_3 = 1\}, \qquad S_{\mathbf{y}(1,1,-2)}(f) = \{y_2 + y_3 = 2\}, \\S_{\mathbf{y}(-1,0,1)}(f) = \{y_1 = 2, y_3 = 1\}, \qquad S_{\mathbf{y}(0,-1,1)}(f) = \{y_1 = 0, y_2 = 1\}.$$

We also have that

$$W(-1, -1, 1) = \begin{cases} (y_1, y_2, y_3) : \exists (x_1, x_2, x_3) \ 1 - x_1 x_3 + x_2 x_3 = 0, y_1 = 1 + x_1 x_3 + x_2 x_3, \\ rank \begin{pmatrix} 1 - 2x_1 x_3 + x_2 x_3 & x_1 x_3 & x_1 (x_2 - x_1) \ 1 - y_2 \\ x_2 x_3 & 1 - x_1 x_3 + 2x_2 x_3 & x_2 (x_2 - x_1) \ 1 - y_3 \end{pmatrix} = 1 \end{cases}$$
$$= \{y_1(y_2 - y_3) - 2y_2 + 2 = 0\}.$$

We will show that this coincides with $S_{\mathbf{y}}(-1,-1,1)(f)$, considering the rational map

$$\Phi: \mathbb{K}^3 \times \mathbb{K}^3 \to \mathbb{K}^3, \ (\boldsymbol{x}, \boldsymbol{y}) \mapsto \boldsymbol{z} = (z_1, z_2, z_3) = \left(y_1, y_2, -\frac{x_2}{x_1}y_2 + y_3\right).$$

Remark that $g(x) = \Phi(x, f(x))$ defines the map

$$\mathbb{K}^* \times \mathbb{K}^2 \to \mathbb{K}^3, \ (x_1, x_2, x_3) \mapsto (1 + x_1 x_3 + x_2 x_3, 1 + x_1 (1 - x_1 x_3 + x_2 x_3), 1 - \frac{x_2}{x_1}),$$

and obtain the following data:

p	gy (p)	(d_1,d_2,d_3)	J y (p)
(-1, -1, 1)	$(1 + x_1x_2 + x_1x_3, x_1(1 - x_1x_2 + x_2x_3), 1 - \frac{x_2}{x_1})$	(0, 1, 0)	{2}

The Newton polyhedra look like

As in the proof of Theorem 1.8, we conclude that

$$S_{\mathbf{y}}(-1,-1,1)(\mathbf{g}) = \left\{ (z_1, z_2, z_3) \in \mathbb{K}^3 : \begin{array}{c} \exists (x_1, x_2, x_3) \ 1 - x_1 x_3 + x_2 x_3 = 0\\ (z_1, z_3) = (1 + x_1 x_3 + x_2 x_3, 1 - x_2/x_1) \end{array} \right\}$$
$$= \{ (z_1, z_2, z_3) \in \mathbb{K}^3 : z_1 z_3 = 2 \}.$$
(5.2)

For (x_1, x_2, x_3) in (5.2), we have

$$-\frac{x_2}{x_1} = \left(1 - \frac{x_2}{x_1}\right) - 1 = z_3 - 1 = \frac{2}{z_1} - 1 = \frac{2}{y_1} - 1.$$

Setting

$$\Psi: \mathbb{K}^3 \times \mathbb{K}^3 \to \mathbb{K}^3, \ (\boldsymbol{x}, \boldsymbol{y}) \mapsto \boldsymbol{z} = \left(y_1, y_2, \frac{x_2}{x_1}y_2 + y_3\right),$$

we have $y = \Psi(x, \Phi(x, y))$, and thus, $f(x) = \Psi(x, g(x))$. The set

$$\Psi(Z(g_{\gamma}^2_{(-1,1,1)}) \times S_{g(-1,-1,1)})$$
 is defined by $y_1((\frac{2}{y_1}-1)y_2+y_3) = z_1z_3 = 2$,

and we obtain $S_f(\mathbf{y}(-1, -1, 1)) = \{y_1y_2 - y_1y_3 - 2y_2 + 2 = 0\}$. We thus obtain that $S_f = \{y_1 + y_3 = 2\} \cup \{y_1y_2 - y_1y_3 - 2y_2 + 2 = 0\}$.

Example 5.5 Let us use the first trick to handle Example 5.4. We consider the map $h : \mathbb{K}^4 \to \mathbb{K}^4$ defined by

$$\boldsymbol{h}(x_1, x_2, x_3, x_4) = (1 + x_1 x_3 + x_2 x_3, 1 + x_1 x_4, 1 + x_2 x_4, 1 - x_1 x_3 + x_2 x_3 - x_4),$$

since $f(x_1, x_2, x_3) = h(x_1, x_2, x_3, 1 - x_1x_3 + x_2x_3)$. We analyze $h(\mathbf{x}(t))$ for $\mathbf{x}(t) \in \mathcal{A}(-1, -1, 1, 1)$, because $\mathbf{p} = (-1, -1, 1, k)$, $k \ge 1$, supports a three-dimensional face of $\Delta(\mathbf{g})$ if and only if k = 1. Setting

$$\mathbf{x}(t) = (t^{-1}(x_0^1 + x_1^1 t + \cdots), t^{-1}(x_0^2 + x_1^1 t + \cdots), t(x_0^3 + x_1^3 t + \cdots), t(x_0^4 + x_1^4 t + \cdots)),$$

we have

$$\boldsymbol{h}(\boldsymbol{x}(t)) = (1 + x_0^1 x_0^3 + x_0^2 x_0^3, 1 + x_0^1 x_0^4, 1 + x_0^2 x_0^4, 1 - x_0^1 x_0^3 - x_0^2 x_0^3 - x_0^4) + o(t).$$

Assuming $\mathbf{x}(t)$ is in $X = \{\mathbf{x} \in \mathbb{K}^4 : 1 - x_1x_3 + x_2x_3 = x_4\}$, we obtain that $1 - x_0^1 x_0^3 - x_0^2 x_0^3 = x_0^4$. Under this condition, we eliminate x_0^1, x_0^2, x_0^3 from the system

$$(1 + x_0^1 x_0^3 + x_0^2 x_0^3, 1 + x_0^1 x_0^4, 1 + x_0^2 x_0^4, 1 - x_0^1 x_0^3 - x_0^2 x_0^3) = (y_1, y_2, y_3, 0),$$

Deringer

we conclude that $S_{\mathbf{y}(-1,-1,1,1)}(\mathbf{h}) = \{2 - 2y_2 - y_1y_3 + y_1y_2 = 0\} \times \{0\}$. We thus obtain that $S_f = \{y_1 + y_3 = 2\} \cup \{y_1y_2 - y_1y_3 - 2y_2 + 2 = 0\}$.

References

- 1. Artin, M.: On the solutions of analytic equations. Invent. Math. 5, 277-291 (1968)
- Chen, Y., Dias, L.R.G., Takeuchi, K., Tibăr, M.: Invertible polynomial mappings via Newton nondegeneracy. Ann. Inst. Fourier Grenoble 64(5), 1807–1822 (2014)
- El Hilany, B.: Describing the Jelonek set of polynomial maps via Newton polytopes. https://arxiv.org/ abs/1909.07016v1
- Jelonek, Z.: The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, 259–266 (1993)
- 5. Jelonek, Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315(1), 1-35 (1999)
- Jelonek, Z., Lasoń, M.: Quantitative properties of the non-properness set of a polynomial map. Manuscr. Math. 156, 383–397 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.