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Abstract

We discuss the notion of properness of a polynomial map f : K" — K", K = C or
R, at a point of the target. We present a method to describe the set of non-proper points
of f with respect to Newton polyhedra of f. We obtain an explicit precise description
of such a set of f when f satisfies certain condition (1.5). A relative version is also
given in Sect. 3. Several tricks to describe the set of non-proper points of f without
the condition (1.5) is also given in Sect. 5.

Keywords Polynomial map - Proper map - Newton polyhedra
Mathematics Subject Classification 14E15 - 58K05 - 58K30
We consider a polynomial map f = (f!,..., f") : K" — K", defined by
Fr=Ycx" d eK, x" = @) (o)™,
v

X=X, Xm),V=_V1,...,Vp), 0.1)
where K = C or R. We say that a point y, € K" is proper for f (or a proper point
of f) if, for any (algebraic) arc x(¢) : K*,0 — K™, K* = K\{0}, the following

condition holds:

lim f(x(#)) = yo = lim x(¢) exists in K™.
t—0 t—0

The first author is supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific
Research (C) Grant Number 19K03486.
All data generated or analyzed during this study are included in this published article.

B4 Toshizumi Fukui
tfukui @rimath.saitama-u.ac.jp

Takeki Tsuchiya
tkk.hst.tty.sh009 @ gmail.com

Department of Mathematics, Saitama University, Saitama 338-8570, Japan

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-022-00205-2&domain=pdf

206 T. Fukui, T. Tsuchiya

Let S¢ denote the set of points y( in K" which are not proper points of f. We say that
S K" — K" is proper if Sy = .

In this paper, we are looking for a method to determine whether a point y, in K" is
proper or not. The first statement is Theorem 1.3, which gives a complete description
of Sy when f satisfies certain non-degeneracy condition with respect to the Newton
polyhedron of f (see (1.5) in Theorem 1.3). Our approach is based on simple and
careful analysis of f along arcs x(¢), which suggests us usefulness of using arcs to
describe the set S ¢, even though f is degenerate (Remark 2.6). In Sect. 3, we describe
a relative version of our discussion. We present several examples to show how our
method works in Sect. 4.

The set Sy was introduced by Jelonek [4], [5] and showed that it is empty or a
uniruled hypersurface of K” when K = C and m = n. It is thus an interesting problem
to seek a method to describe S¢ in several concrete examples. Chen et al. [2] have
investigated the bifurcation locus of a polynomial map K” — K”,m > n, with respect
to Newton polyhedron. The bifurcation locus is the minimal locus in the target where
the map is not locally trivial, and they show a supset of the bifurcation locus under their
non-degeneracy condition. Jelonek and Lason [6] called S ¢ as the non-properness set
of f and showed that it is covered by parametric curves of degree at most d — 1 where
d is the algebraic degree of f for K = C. Their words “covered by parametric curves”
mean that the set Sy has a “C-ruling”. They also discuss real counterpart of their
results. Recently, El Hilany [3] has investigated to describe the set Sy via the Newton
polyhedra of f. He calls Sy as Jelonek set. He has introduced the notion of 7-BG
maps and claimed that Sy is described using only the data of f at several faces of its
Newton polyhedra. Comparing with these results, our method provides much precise
information on the set S ¢ with simple description. For example, Theorem 1.3 shows an
explicit decomposition of Sy providing an explicit ruling of each component in many
cases. In Sect. 3, we present a relative version of our theorem. Namely, we consider the
non-properness set S¢|, for f|x : X — K" where f = (fY oo M K™ — K
is a certain polynomial map and X = (f* %1 ..., M~ (c), c € K*. In Sect. 5, we
present tricks to describe S for certain degenerate f.

We say some words for the definition of S ¢ here. We compactify f as f:X—>vY
where X and Y are suitable projective manifolds. We set Xoo = X\K™, Yoo = Y\K”
and we can assume that X, and Y, are simple normal crossing divisors. Then, the
condition y, € Sy is equivalent to one of the following conditions.

e There exists an algebraic arc x(¢) : K, 0 — X, such that

lin})x(t) € X, and lir% fx(@) =Yy, 0.2)
11— 11—

e There exists an analytic arc x(¢) : K, 0 — X defined near 0 with (0.2).

e There exists a sequence {x}in X, such that lim x; € X and lim f(xy) = y,.
k—o00 k— 00

The last condition is equivalent to the condition that y is not a proper point of f as a
continuous map between metric spaces. We also have

Sf=fXoo) NK" = f(Xo0) N (Y\Ye0).
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Since f is proper, the set f(Xoo) is closed in Y and we obtain that § £ is closed.

When K = C and m > n, Noether’s normalization asserts that, for any y € C",
there is a linear surjection p : f’l(y) — C4,0 <d < m, whered = dim¢ ffl(y).
If £~1(y) is compact, then p(f ' (y)) = C¢ is compact and we obtain d = 0. Since
d > m — n, we conclude that m < n. This implies that S is the closure of the image
of f whenever m > n. Therefore, we assume m < n when K = C.

When K = C, Jelonek’s result asserts that Sy is Zariski closed. However, if K = R,
Sy may not be Zariski closed (for example, Sy = {(0,y2) € R? : y, > 0} for
f: R2 > R2, (x1, x2) — (xl,x%xg)).

Throughout the paper, we use the following notational convention:

K/ ={(x1,....,xp) €e K" :x;, =0,i ¢ J}, Z) ={(v1,...,v0) € Z" : v;=0,i ¢ J}.
forasubsetJof{l,...,n}.WesetZéO ={(v,...,vp) €Z) :v; >0,i € J}. We
also set (Z>0)" = {(v1,...,vy) € Z" : v; > 0,i =1, ..., n}. We often abbreviate

70 as Z following custom. We identify K" with K/ x K’ where J¢ = (1, ..., n}\J
without notice.

1 Newton Polyhedra

Let A(f7) denote Newton polyhedron of f/, the convex hull of the set {v : ci # 0},

under the notation in (0.1). For p = (py, ..., pm) € Z™, we define
dj(p) = —min{(p,v) : v € A(f))}, (L.1)
vi(p) ={v € A(f7) : (p,v) = —d;(p)}. (1.2)

We call y;(p) the face of A(f7) supported by p.
Wesayy = (y1, ..., ¥n) Whichis afag:e of A(f) = (A(fY), ..., A(f™M)) if there
exist p € Z™, so that y; is a face of A(f/) supported by p. We denote

y(p) = i(p), ... va(p)).

When we need to mention f explicitly, we denote them by y (f; p), y;(f; p), and
so on. We consider Minkowski sum A(f) = A(f)) + -+ + A(f") and its dual fan
A*, which we identify with the set of polyhedral cones. Note that y (p) = y1(p) +
-+« + yu(p) is a face of A(f). We denote

fy = £l where fi =" clx”.

vey;

Lemmall y(p) =y (q) < y(p) =y(.

Proof “==" partis clear, since “y (p) =y (@) < y;(p)=v;(@) (j=1,...,n)".
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208 T. Fukui, T. Tsuchiya

Take v € y(g), so that v = vy + - + v, for v; € y;(q). Since y;(q) C A(f/),
we have —d(p) < (p,v;). If we assume y(q) C y(p), we then have

=Y di(p) <Y (p.vi)={(p.v) == d;(p),
j=l1 j=1 j=1

and (p,v;) = —d;(p), thatis,v; € y;(p). We conclude y;(q) C y;(p). By symme-
try, we complete the proof of “<=". O

Compositing f with a translation of the target, the set S¢ is changed by its translation.
Without loss of generality, we thus can assume the following condition:

f J( j =1,...,n) are non-constant polynomials with non-zero constant terms.
(1.3)
Throughout the paper, we assume the condition (1.3) unless otherwise stated.
The condition (1.3) implies that d; (p) > 0 and equality holds if p € (Z>0)". For
aface y of A(f), wesetJ, ={j:0¢ y;}. We remark that
di(p) >0 < jeJ, for pwithy(p)=yp. (L.4)

Definition 1.2 Wesay aface y of A(f) isnon-coordinate ifthereis p € Z"\(Zxo)",
sothat y = y (p). Let Ay (f) denote the set of non-coordinate faces of A(f).

For a polynomial map g = (g!, ..., g") : K" — K”, we set

Z(@={xe®H : g/x)=00G=1,...,r}
¥(g) = {x € (K*)" : rank Jac (g)(x) < r},

where Jac (g) = (axl.gj)izl ,,,,, m; j=1,...,r- Remark that the codimension of Z(g)\ X (g)
isr.

Theorem 1.3 Assume that f is a polynomial map with (1.3) and
J I . J
Z(fy,\Z(f) isdensein Z(f,) (1.5)

foranyy € Anc(f) where J = J, . We have

sr= U s,

y €Anc(f)

where S, (f) = f;ﬂ(Z(f; N x K/, J = Jy, and f;L S (K*™ — K’ is the map
defined by x +— (f}fj (x))jeJ.

We often say that Z(f i’ ) has the dense nonsingular locus if the condition (1.5)
holds.
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Properness of Polynomial Maps... 209

When J = {1, ..., n}, we have f;c D (KH™ — K’ is a constant map, since K
is a one-point set.

Remark 1.4 Chen et al. [2] said that f is non-degenerate if Z(f i YNZ(f i ) = @ for
all y € Apc(f). This implies (1.5) for all y € Apc(f). However, our condition (1.5)
is weaker than their non-degeneracy condition.

Remark 1.5 If J, = {1,...,n}, the condition (1.5) implies that Z, = Z(f;’ ) is
empty. In fact, if we take a nonsingular point x € Z,, , then the condition (1.5) implies
that Z,, is of codimension n at x. This implies that x is isolated in Z,, . However, this

is impossible, since f)fj is weighted homogeneous with respect to the weight p.
We also remark that Z,, = (K*)" when J, = 0.

Corollary 1.6 A polynomial map f with (1.3) is proper, if for any y € Apc(f) none
of vj, j = 1,...,n, contains the origin and Z(f, ) has a dense nonsingular locus
foranyy € Anc(f).

Remark 1.7 When k = dimy; =}, dimy;, J = J,, f,J, is a system of polyno-

mials of k Laurent monomials of x and Z, = Z(f i’ ) is isomorphic to X x (K*)n—k
for some algebraic variety X in Kk If j € Jy,d;j =0and f/(x) (j € J)is
invariant under the natural K*-action(s). Thus, fJ(Z, ) = fJ(X x {(1,..., D}.
When f z is complete intersection, we have that

dim f1°(Z,) =dimX —dim F =k — #J — dim F,

where F is a suitable fiber of f;c : X — K’°. We thus have dim Sy =k—dimF.
When K = C, Sy is a hypersurface and Uy cAn(f) Sy should be the union of the
closures of S, withdimy =n — 1 (and dim F = 0).

To prove Theorem 1.3, we actually show the following.

Theorem 1.8 If a polynomial map f : K™ — K" satisfies (1.3), then

U sswcspc U S, (1.6)

Yy €Anc(f) y €Anc(f)

where S;_ (f) = f;C(Z(f; )\E(f: NxK/, J= Jy . Here, Z denotes the closure
of a set Z.

Remark 1.9 Assume that m = n = 2. Take y = (y1,¥2) € Anc(f) for a non-
degenerate map f : K> — K2. We assume that ¥ = y(p), p = (p1, p2) with
p1 <0and pr > 0.
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210 T. Fukui, T. Tsuchiya

e If0 € y; and 0 € y», then £} and f; are polynomial of a monomial u = x{'x3*.

We denote them as g1 () and g2 (). The defining equation of S, is the resultant
of g1 — y1 and g» — y» where (y1, ¥2) is a coordinate system of the target.
e If 0 ¢ y; and O € y», then we can write fyl1 = x{’gl(u) and fyz2 = go(u) with

u = xi“ xgz similarly. The defining equation of S,, is the resultant of g1 and g> — y».

2 Proof of Theorem 1.8
We are going to evaluate f(x) = (f'(x),..., f"(x)) along a curve x(¢) defined by
x() = P @), ..., tP"v" (1)) where p = (pi,..., pm) € Z", 2.1

() = (W @), ..., ")) =Zviti, vi=@, ... v, voe (KH™.  (22)
i=0

We denote A(p) the set of such arcs. It is clear that

limx(r) =00 <= p¢ (Z=0)". 2.3)

We have an obvious decomposition Sy = [ J » S5 (P)s where
Sp(p) =y € K" :3x() € A(p). limx(1) = oo, lim f(x(1) =y). (24)
— —

We have Sg(p) =0 if p € (Z=0)™ by (2.3).

Remark 2.1 Observe that the arcs having several components being identically zero
are not in A(p). However, this does not affect to detect Sy. Adding the terms t,
[ > 1, to such components does not affect the conditions for Sy and we can restrict
our attention to A(p).

Lemma2.2 For p ¢ (Zx0)", we have Sg(p) C Sy (p)([f).
Proof We express f/(x(t)) as

Fla@) =G + e+ 7 4+ flh 400y, 23

where dj = d;(p) > 0. We have foj = f]fj (vo) where y; = y;(p). Setting f/(x) =

Zv c{,x", more precisely, we have

Flem) = 74PN e Pty gy (2.6)

If y € Sf(p), then there exists an arc x(t) € A(p), so that

limx(t) = o0, and lim f(x(¢)) = y.
t—0 t—0
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Properness of Polynomial Maps... 211

Using the notation in (2.5) and J = J,, (), we have

fi=Ff=-=Ffl_1=0 (e,
and f}fj(p)(vo) = 0 (j € J). This implies that J¢ component of y is given by
f f( » (vo), and we complete the proof. O

Remark 2.3 1If dim y;(p) = 0 for some j € J, then foj # 0, and S,, (p) is empty.

Lemma24 If y =y (p) € Apc(f), then
FE(ZINE) x K C Sp(p) whered = Ty (p).

Proof Take p € Z"\(Z>)" and consider a curve defined by (2.1). We compare (2.5)
with (2.6) substituting by (2.2) and taking modulo /1. Remarking that the terms

concerning v; in fi] depend on the terms in f)f ; only, we obtain that

f = @fDw@) +r] o, .. o) (=1,2,..), @7
where rlj (vo, ..., v;—1) is a suitable polynomial of vy, ..., v;_1.
Take a point vg € Z(f; )\E(f;) where J = J, . Let (alg)je‘/;kzl be any
sequence. Suppose we have already taken vg, vy, ..., v;_1, so that

fl=al A<k<ljel.

By (2.7), there exists vy, so that flj = alj for j € J, whenever Jac ((f}{,.)je‘[) is of full

rank at vy. Choose (alj)jej;lzo, so that al.j = 0(0 <i < d;). Then, the corresponding
curve x (¢) has the following property:

. flwo) (g,
J — "
o) = @), (e

Since one can choose a(’ij arbitrary, we conclude that f;c (Z(f; )\Z(f; N x K/ ¢
Sr(p). O

In the situation above, we have
Corollary 2.5 S, (f) C Sy fory € Anc(f).

Proof We obtain

Sy () =f) (ZUINEUD) <K C I @SN x K cSp =54,

since Sy is closed. O
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212 T. Fukui, T. Tsuchiya

Remark 2.6 In the case that f does not satisfy (1.5), we would proceed further analysis
using higher order differentials of composite maps. Actually, in the expression (2.5),
we have

l i1 ik

Aj 1 . . . j P /—/‘

ﬁ ZZ Z llYlki(dll+ +lkf‘l_k)v()(v17"'1vlv"'3vka"'7vk)7
k=0 i14+2ir+---+kix=k

where _ ' ‘ .
) = flx) + fix) +~-~+fe’,-(x) with

FLaPxy, . Py = R (). 2.8)

Here, we use the notation in (2.1), (2.2), and d* g denotes the_symmetric multilinear
form defined by kth-order differential of g. The first few of f/ are as follows:

7 = fiwo),

Fl = f o) + df)u, (1),

71 = ®0) + @S oo 02) + (@f} )y (01) + 1@ fi oy (01, 01),

= H @)+ @f)ue@3) + @f] oo @2) + @f)ue (v1) 2.9)
+ (@ [y 1, v2) + 3@ Doy 01, v1) + 2@ [ w01, 01, 0. (2.10)

The set S ¢ (p) is described by eliminating vy, vy, v2, ... from the following system:
0=f(U=01.2,....d; - 1), y,:fdfj (=1,....,n),

where (y1, ..., y) denotes the coordinate system of the target.

3 Relative Version
The definition of non-properness set has an obvious generalization for a polynomial

map f : X — Y between algebraic varieties X and Y defined over K. We say f is
not proper at y, € Y if there exist an arc x(¢) : K*,0 — X, so that

lirr(l) x (1) does not exist, and lirr(l) f(x(@®) =y,
t— t—

We denote by S the set of non-proper points of f : X — Y.
Let f = (fl,..., f") : K" — K" be a polynomial map with (1.3). Set f’ =

(f' o P8 and f7 = (L Sety = (v, ") and yg = (v, ¥0)-
In this section, we describe a generalization of the discussion above to the map

fllx i X = K" where X = (f")"' ().
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Properness of Polynomial Maps... 213

Since flx = (f'lx, yy), we identify f|x with the map f’|x via the embedding
K"=* x {yg} C K". This means that we identify K"=% with K"=* x {y{}, and we
can identify f11-"=FN\ with f--"\ We call this map by f’°. For a face y =
W1y v Vi) ofA(f),wedeﬁney/ = 1s--- Yn—k) and y" = Vn—k+1s--->Vn)-In

the same way, we can identify f{y1 """ "=k With f{y] """ "N on the set Z(f)J’ /s f’; "=

Syryr =Ly @Y fyr =y XK, T =Ty =(jell,....n—k}:0¢y),

! = fJ° J " " J " J
andSy,;y//—fy (Z(fyh ’//_yo)\z(f7,7f’/,))xK .
Under the notation and assumption above, we have the following:

Theorem 3.1 We assume that the nonsingular locus of X is dense in X and X has no
component in {x1 - - - x, = 0}. Then

U s, cSivc U S 3.1
Y €Anc(f) Y €Anc(f)

g % f ; W f /}f » — ¥ has dense nonsingular loci for y € Ay, we have equalities in
).

The assumption that X has no component in {x;---x, = 0} comes from
Remark 2.1. If there is an arc x(¢) in X N K', I c {1,...,n}, with x(t) — oo, and
fx()) = yo (t = 0), one can choose x(¢) € A(p) for some p with X(t) — oo,
and f(x(t)) = yo (t = 0). However, we do not know that X (¢) can be chosen in X
in such a case.

Proof of Theorem 3.1 First, for x(¢) € A(p), we can write
fj(X(t)) =1 J(foj —|—fljt+..._’_fdjj_1tdj—l
+ f1Y 4ot G=1,....n=h),
@) —y§ =%y +f1jt+~-~+fjj_1td/*1
+ fL1 o) (G=n—k+ 1.0,

where dj = dj(p). We remark that y € Sy, if and only if there is an arc x(¢) :
K*, 0 — X, so thatlim;_,¢ x(¢) = oo, and that lim,_,¢ f(x(¢)) = y. In a similar way
to the proof of Lemma 2.2, we have

fi=0 (jedy Un—k+1,...,n).

This implies that f)fj(p)(vo) = 0for j € J,, and (fj — yé)yj(p)(vo) = 0 for
j=n—k+1,...,n, which show the second inclusion.
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214 T. Fukui, T. Tsuchiya

By the discussion similar to the proof of Lemma 2.4, for any a/ (j € J), we can
construct a formal power series v(¢) = w'@,..., v"(t)), such that

FIaPol @), ...t @) =al + o) (j e ), (3.2)

Fam' @, o) =y (G=n—k+1,....n), (3.3)

where y, = (yé, ..., ¥). Remark that we can reduce this system to polynomials by

multiplying some power #/. By the approximation theorem of Artin ( [1]), we can take

a convergent power series v(t) = ('), ..., v"(¢)) which satisfies (3.2) and (3.3).
This completes the proof of the first inclusion. O

If X has acomponent X in {x1 - - - x,, = 0}, we could proceed a similar computation
for f|x, which is a polynomial map with less number of variables and obtain that
Stix, € Sfix-

4 Examples

Example 4.1 Let us start with the simplest example K> — K2, f(x,y) = (x, xy).
For the assumption (1.3) we consider f(x,y) = (c1 + x, ca + xy) where cy, ¢ are
non-zero constants. It suffices to consider only 3 faces below thanks to Remark 2.3.
Since

Sy a1 =(c1,c2+xy), Z(fg 1.-1) = (K*)?,

2
fy .- = (c1+x,xy), Z(f{,.}(l,_l)) =0,
1
Fycin=0ea+x0), Z(f0h ) =10,

ACSH AU A(f)
we have Sy = {(c1,c2 +xy) : (x,y) € (K*)2} = {1} x K.

Example 4.2 Consider the map f(x,y) = (x*y?> +xy+y+ 1, x>y +y+x+1).
Since
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Properness of Polynomial Maps... 215

fy i = @2 4xy + Lx@y + D), z(fP

y (1,—
— (522 (42 {1.2} -
fy 0,—1) _(x y ,(x +1)y)), Z(fy (0,_1))_0

2.2 (1,2}
fy (1,-2) = X7y +y, ), Z(f’ (11_2)) =0

)=l +1=0)

A(S)

A(fYH . A

we have

" 4

Sp=(x2y? +xy+1:xy+1=0) x K={2 +1+1:14+1=0} x K={1}xK.

Example 4.3 Consider the map f(x, y) = (xy +y+ 1, x2y? +y2 +xy+ 1), we have

2.2 2
Fycin =+ L2 fxy+ 0. Z(f) ) = &Y

Fyon =+ Dy 62+, Z(E ) =0

ACFH AP A(S)

a4

Therefore, we have

Sp={(X,Y):3(x,y) € K)?st (X.¥) = (xy + 1, %y + xy + 1)}
={X,Y): I eK'st.(X,Y)=@t+ 1,12+t + 1))
={y-X’+X-1=0}.

Example 4.4 Consider the map f : K> — K> defined by
fx,yv,0)=(04+xy+xz, 1 +axz+x(1 —xy+x2), 1 +bxy +x(1 +xy+ x2)),

a # 0, b # 0. The Newton polyhedra look like

A B
. y y y 7 y

and we obtain the following data.
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216 T. Fukui, T. Tsuchiya

p fyw (d1, da, d3) Ty Zy
1,-1,-1)  (I4+xy+xz,1+axz, 1 +bxy) (0,0, 0) @ (K*)3
(1,-1,-2)  (xz,axz, 1 4+ bxy + x%2) 1,1,0) 1,2} /]
(1,=2,-1)  (xy,1—x%y +axz, bxy) (1,0, 1) {1, 3} ]
©,-1,-1)  x(y+2),x(xz—xy+az), x(xz+xy + by)) (1,1, 1) {1,2,3y ¢
(-1,1,1) I+xy+xz,x(1 —xy +x2), x(1 +xy + x2)) ©,1,1) {2,3}

We have

Sy a,-1,-1y ={3(x,y,2) (X,Y,Z) = (1 +xy + xz, -2(1 + axz), —1 — bxy)}
= {abX +bY +aZ = ab — a — b},
Sy -1,1,n = {3, y,2) X=1+xy+xz, (I1-xy+xz, 1+xy+xz) =0}={X=0}.

We conclude that Sf =8, 1,-1,-H YU Sy (—1,1,1)-

5 Degenerate Case

We present several tricks to handle the case when (1.5) does not hold for some y €

Anc(f).

5.1 The First Trick

Let h : K"tk — K"K be a polynomial map with (1.5). We assume that 2" (x) =
©1(X1, .., X)) — Xy fori =1, ..., k. Let X be a subset of K™tk defined by

Xmti = Qi(X1, ooy xm), 1=1,...,k.
The set X is isomorphic to K™ by the map defined by
(xla"'vxm)'_) (x]5"-7xm’(pl(x17"'7~xm)5"-7(pk(x17"‘7xm))'

If fx1,....,xm) = h(x1, ..., Xm, ©1(X15 ++ oy X))y ooy @ (X1, ..., X)), then we
have

Sy = Snix

via the identification of K" with K" x {0}. When h satisfies the required assumptions,
one can use Theorem 3.1 to describe S ¢, even though f does not satisfy (1.5) for some

Y € Anc(f).
Example 5.1 Let h : K> — K3 be the map defined by

h(x,y,2) = +x+22, 1+x>+23,y> —x* —2).
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Let X be the subset of K3 defined by z = y? — x3. Setting f(x, y) = h(x, y, y> —x>),
we have

f,y)=U+x+0> =% 1+x2+ 02 =xHd.

Applying Theorem 3.1, we conclude that & is proper, and thus so is f.

5.2 The Second Trick

We show another trick, which we do not use higher dimension. If V, =

Z(fi )\Z(fi )\E(fi ), J = J,, is not empty for some y € An.(f), we may
have a chance to change S, (f) (resp. S;, (f)) in (1.6) by a smaller subset of S,, (f)
(resp. by a supset of S; .

Let f : K" — K" be a polynomial map with (1.3). Set flj = (flj)jej for
J C{1,...,n} where f] is defined in (2.8). Remark that f; (x) = f;, (x). We set

I eV, ¥ =,
_ n . 7 J' J' J'
Wp) =y ek rank Ox; fo/,(x) = rank Ox; fon(x) Fi ();,), BRAN
8x,-f() (x) 8)c,-f() (x) f1 (x)

where y = y (p), y” = (yj/)j’eJ”

J'=J((p)={jefl,....,n}:dj(p)=1}, and
J"=J"(p)={jefl,....,n}:dj(p) = 2}.

Remark that J = J’ U J” because of (1.4). Under the notations and the assumptions
above, we have

Theorem 5.2 If V) (p), p € Z"\(Z=)", is not empty for y (p) € Anc(f), then
St (p) C Sp(p) TS, () (f)UW(p).

Moreover, we conclude that W' (p) C Sy (p), where

Proof If y € Sy(p), p € Z'\(Z>)", there exists x(¢) € A(p) with f(x(t)) — y
(t — 0). By (2.9) and (2.10), we have

0=fl(w) (jel)
v = flj/(vo) + (dfj')vo(vl) (j'el)
0=£"wo) + @fNuy(@1) (" €.
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Here, we use the expression in (2.1) and (2.2). This implies that

J/ J/ J/ J/
rank O fg//(x) = rank Ox; f(},/(x) fi (J;/)/ Y.
a)cl‘f() (X) 8)C,'fo (x) fl (x)

and we conclude Sy (p) C S; »HHUW(p).
Now, we assume y € W/(p). There exists x € V,, (p)» such that

rank (3, £ (X))iz1,..m = #J". (5.1)

By the discussion in the second paragraph of the proof of Lemma 2.4, we can choose
x(t) to attain arbitrary f[] (j" € J",1 > 1) wheneverx ¢ (f’ H). This implies that
W'(p) C S¢(p). o

We present a trick to describe Sy (y) =
defined by (2.4).

Assume that f does not satisfy (1.5) for some face y. We take a primitive p €
Z"\(Z=)", so that y (p) = y . Here, p is primitive means that the greatest common
divisor of all components of p is 1. Assume that there exists a rational map K" x K" —
K", (x, z) — W(x, z) with the following properties.

piy (p=y Sr(P) where S¢(p) is the set

e There exist a certain rational map g : K™ — K", possibly with points of indeter-
minacy, so that f(x) = W(x, g(x)), and g satisfies (1.5) for the face supported

by p.
e The limit lirr(l) W (x(1), z) exists forx () € A(p). We assume that this limit depends
—

on v, and denote the limit by Wy, (z), under the notation in (2.1) and(2.2),
e The limit liII(l) g(x(2)) for x(¢) € A(p) exists.
t—

Theorem 5.3 Under the notations and assumptions above, the set Sg(p), y (p) =¥,
is in the image of the following map:

Z(gy ) x K = K", (x,27) > Welg) () ®) x 27), T =Ty g -
Proof For p € 7"\ (Z>)"
Sr(p)=1{y €K":3x(0) € A(p), lim f(x()) =y}

={yeK":3x(t) € A(p), tlgrg) W(x(), g(x(@)) =y}

i 0 jeJ
C {y e K" :Jvg € (KN, Iz e K", y = Wy (2), g;j(,,)(vo) = L.,» G )}

G
={y eK":3vy € Z(g) (). T € K", y = Wy (2), g), ,(®0) =2/ (j ¢ ).

O

Since Sg(y) = Up;y (P)=y S¢(p), this may describe S¢(y), as we see in the
following example.
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Example 5.4 Consider the map f : K> — K defined by
S, x2,x3) = (1 + x1x3 +x2x3, 1+ x1(1 — x1x3 + x2x3), 1 + x2(1 — X133 + x2X3)).

The map f satisfies the condition (1.5) except the face y (—1, —1, 1), as we see in the
following data.

P Fy (di.dy.d3) Ty (p)
(1,1,—-1) (1 +x1x3 +x2x3,1,1) (0,0,0) [}
(1,1,-2) (x3(xp +x2), 1 +xpx3(xp — x1), 1 +x2x3(x2 — x1)) (1,0,0) {1}
(=1,0,1) (I +x1x3, x1(1 — x1x3), 1 + x2 — x1x2%3) ©0,1,0) {2}
O,—-1,1 (1 + x9x3, 1 +x1 + x1x0x3, x2(1 + x2x3)) 0,0,1) {3}
—L-11  (+4x1x3 +x2x3, x1 (1 —x1x3 + x2x3), x2(1 — x1x3 + x2x3)) (0, 1, 1) {2,3}

We easily see that

Sy .1,-n(H) ==y =1}, Sy (,1,-2(f) = {y2 +y3 =2},
Sy —1o,n(f) =y =2,y3 =1}, Sy 0,-1,0(f) ={y1 =0,y =1}.

We also have that

1, y2,¥3)  A(x1, x2, x3) 1 — x1x3 +x2x3 = 0, yp = 1 + x1x3 + x2x3,
W(—l,—l,l)={ rank 1~ 2X1%3 + x2x3 X1X3 X1 —x) L=y _ }
X2X3 1 —x1x3 + 2x2x3 x2(x2 —x1) 1 — y3

={y02—y3) —2»+2=0}
We will show that this coincides with S,, (—1,—1,1)(f), considering the rational map
X
P K xK - K, (x,y) > z=(21,22,23) = ()’Is V2, —x—?n +y3)-

Remark that g(x) = ®(x, f(x)) defines the map
K*x K> = K, (x1, %2, 63) > (1 + 2123 4 x203, 1+ x1 (1 — 2123 4 x2x3), 1= 32),

and obtain the following data:

p 8y () (d1,d2, d3) Iy (»

(-1,-1,1) (1 4+ x1x0 + x1x3, x1(1 — x1x2 +x2xg,),l—%) 0,1,0) {2}

The Newton polyhedra look like
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Z3 T3 T3 T3 g A(f) B A(g)
S e

As in the proof of Theorem 1.8, we conclude that

3(x1, x2,x3) 1 — x1x3 + x0x3 =0
—1.— = , , K3Z }
Sy c1-10(8) {(Zl @33 € (z1,23) = (I 4+ x1x3 + x2x3, 1 — x2/x1)
= {(z1,22,23) € K : z123 = 2}. (5.2)

For (x1, x3, x3) in (5.2), we have

2 2
Za(1-2)-1=n-1=2-1=2 -1
X1 X1 71 V1

Setting
VK xK S K (x,y) >z = (y1,y2, ;Eszryz),
1
we have y = W (x, ®(x, y)), and thus, f(x) = V(x, g(x)). The set
2 . 2
V(Z(gy (—1,1,1)) X Sg(~1,—1,1)) is defined by yl((z —Dy+y)=u3=2,

and we obtain S¢(y (=1, =1, 1)) = {y1y2 — y1y3 = 2y2 + 2 =0}
We thus obtain that Sy = {y; + y3 =2} U {y1y2 — y1y3 —2y2 + 2 =0}.

Example 5.5 Let us use the first trick to handle Example 5.4. We consider the map
h : K* — K* defined by

h(x1,x2,x3,x4) = (1 +x1x3 +x2x3, 1 +x1x4, 1 + x2x4, 1 — x1x3 + X2X3 — X4),
since f(x1, x2, x3) = h(x1, x2, x3, | — x1x3 4+ x2x3). We analyze h(x(¢)) for x(t) €
A(—1,—1,1,1), because p = (—1, —1, 1,k), k > 1, supports a three-dimensional
face of A(g) if and only if k = 1. Setting

x(®) = o F ot 40 T R F e 0] F x4t x4 --0)),
we have

hx(1) =1 —i—xéxS —i—x%xg, 1 +xéxé, 1 —i—x%xé, 1 - xéxg - xgxg — xg) + o(t).

Assuming x(¢f)isin X = {x € K* : 1 —x1x3+x2Xx3 = x4}, we obtain that 1 —xéxg —

xgxg = xé. Under this condition, we eliminate x(%, xg, xg from the system

(1 + 423 + %353, 1+ xdxg, 14 x3x¢, 1 — xx3 — x3x3) = 01, 2, 3, 0),
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we conclude that S, —1,—1,1,1y(h) = {2 — 2y2 — y1¥3 + y1¥2 = 0} x {0}. We thus
obtain that Sy = {y1 + y3 =2} U {y1y2 — y1y3 — 2y +2 = 0}.
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