Properness of Polynomial Maps with Newton Polyhedra

Toshizumi Fukui ${ }^{1}$ •Takeki Tsuchiya ${ }^{1}$

Received: 22 June 2021 / Revised: 4 March 2022 / Accepted: 3 April 2022 /
Published online: 29 June 2022
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

Abstract

We discuss the notion of properness of a polynomial map $f: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}, \mathbb{K}=\mathbb{C}$ or \mathbb{R}, at a point of the target. We present a method to describe the set of non-proper points of \boldsymbol{f} with respect to Newton polyhedra of \boldsymbol{f}. We obtain an explicit precise description of such a set of f when f satisfies certain condition (1.5). A relative version is also given in Sect. 3. Several tricks to describe the set of non-proper points of f without the condition (1.5) is also given in Sect. 5.

Keywords Polynomial map • Proper map • Newton polyhedra
Mathematics Subject Classification 14E15 • 58K05 • 58K30
We consider a polynomial map $\boldsymbol{f}=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$, defined by

$$
\begin{align*}
f^{j} & =\sum_{\boldsymbol{v}} c_{\boldsymbol{\nu}}^{j} \boldsymbol{x}^{\boldsymbol{\nu}}, c_{\boldsymbol{v}}^{j} \in \mathbb{K}, \boldsymbol{x}^{\boldsymbol{\nu}}=\left(x_{1}\right)^{\nu_{1}} \cdots\left(x_{m}\right)^{\nu_{m}}, \\
\boldsymbol{x} & =\left(x_{1}, \ldots, x_{m}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{m}\right) \tag{0.1}
\end{align*}
$$

where $\mathbb{K}=\mathbb{C}$ or \mathbb{R}. We say that a point $\boldsymbol{y}_{0} \in \mathbb{K}^{n}$ is proper for \boldsymbol{f} (or a proper point of \boldsymbol{f}) if, for any (algebraic) arc $\boldsymbol{x}(t): \mathbb{K}^{*}, 0 \rightarrow \mathbb{K}^{m}, \mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$, the following condition holds:

$$
\lim _{t \rightarrow 0} f(\boldsymbol{x}(t))=\boldsymbol{y}_{0} \Longrightarrow \lim _{t \rightarrow 0} \boldsymbol{x}(t) \text { exists in } \mathbb{K}^{m}
$$

[^0]Let S_{f} denote the set of points \boldsymbol{y}_{0} in \mathbb{K}^{n} which are not proper points of \boldsymbol{f}. We say that $f: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ is proper if $S_{f}=\emptyset$.

In this paper, we are looking for a method to determine whether a point \boldsymbol{y}_{0} in \mathbb{K}^{n} is proper or not. The first statement is Theorem 1.3, which gives a complete description of S_{f} when f satisfies certain non-degeneracy condition with respect to the Newton polyhedron of \boldsymbol{f} (see (1.5) in Theorem 1.3). Our approach is based on simple and careful analysis of \boldsymbol{f} along arcs $\boldsymbol{x}(t)$, which suggests us usefulness of using arcs to describe the set S_{f}, even though f is degenerate (Remark 2.6). In Sect. 3, we describe a relative version of our discussion. We present several examples to show how our method works in Sect. 4.

The set S_{f} was introduced by Jelonek [4], [5] and showed that it is empty or a uniruled hypersurface of \mathbb{K}^{n} when $\mathbb{K}=\mathbb{C}$ and $m=n$. It is thus an interesting problem to seek a method to describe S_{f} in several concrete examples. Chen et al. [2] have investigated the bifurcation locus of a polynomial map $\mathbb{K}^{m} \rightarrow \mathbb{K}^{n}, m \geq n$, with respect to Newton polyhedron. The bifurcation locus is the minimal locus in the target where the map is not locally trivial, and they show a supset of the bifurcation locus under their non-degeneracy condition. Jelonek and Lasoń [6] called S_{f} as the non-properness set of \boldsymbol{f} and showed that it is covered by parametric curves of degree at most $d-1$ where d is the algebraic degree of f for $\mathbb{K}=\mathbb{C}$. Their words "covered by parametric curves" mean that the set S_{f} has a " \mathbb{C}-ruling". They also discuss real counterpart of their results. Recently, El Hilany [3] has investigated to describe the set S_{f} via the Newton polyhedra of f. He calls S_{f} as Jelonek set. He has introduced the notion of $T-B G$ maps and claimed that S_{f} is described using only the data of f at several faces of its Newton polyhedra. Comparing with these results, our method provides much precise information on the set S_{f} with simple description. For example, Theorem 1.3 shows an explicit decomposition of S_{f} providing an explicit ruling of each component in many cases. In Sect. 3, we present a relative version of our theorem. Namely, we consider the non-properness set $S_{f_{\mid X}}$ for $\left.\boldsymbol{f}\right|_{X}: X \rightarrow \mathbb{K}^{n}$ where $\boldsymbol{f}=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ is a certain polynomial map and $X=\left(f^{n-k+1}, \ldots, f^{n}\right)^{-1}(c), c \in \mathbb{K}^{k}$. In Sect. 5, we present tricks to describe S_{f} for certain degenerate f.

We say some words for the definition of S_{f} here. We compactify \boldsymbol{f} as $\bar{f}: X \rightarrow Y$ where X and Y are suitable projective manifolds. We set $X_{\infty}=X \backslash \mathbb{K}^{m}, Y_{\infty}=Y \backslash \mathbb{K}^{n}$ and we can assume that X_{∞} and Y_{∞} are simple normal crossing divisors. Then, the condition $\boldsymbol{y}_{0} \in S_{\boldsymbol{f}}$ is equivalent to one of the following conditions.

- There exists an algebraic arc $\boldsymbol{x}(t): \mathbb{K}, 0 \rightarrow X$, such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \boldsymbol{x}(t) \in X_{\infty}, \quad \text { and } \quad \lim _{t \rightarrow 0} f(x(t))=\boldsymbol{y}_{0} \tag{0.2}
\end{equation*}
$$

- There exists an analytic arc $\boldsymbol{x}(t): \mathbb{K}, 0 \rightarrow X$ defined near 0 with (0.2).
- There exists a sequence $\left\{\boldsymbol{x}_{k}\right\}$ in X, such that $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k} \in X_{\infty}$ and $\lim _{k \rightarrow \infty} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{y}_{0}$.

The last condition is equivalent to the condition that \boldsymbol{y}_{0} is not a proper point of f as a continuous map between metric spaces. We also have

$$
S_{f}=\overline{\boldsymbol{f}}\left(X_{\infty}\right) \cap \mathbb{K}^{n}=\overline{\boldsymbol{f}}\left(X_{\infty}\right) \cap\left(Y \backslash Y_{\infty}\right)
$$

Since $\overline{\boldsymbol{f}}$ is proper, the set $\overline{\boldsymbol{f}}\left(X_{\infty}\right)$ is closed in Y and we obtain that $S_{\boldsymbol{f}}$ is closed.
When $\mathbb{K}=\mathbb{C}$ and $m>n$, Noether's normalization asserts that, for any $\boldsymbol{y} \in \mathbb{C}^{n}$, there is a linear surjection $p: \boldsymbol{f}^{-1}(\boldsymbol{y}) \rightarrow \mathbb{C}^{d}, 0 \leq d \leq m$, where $d=\operatorname{dim}_{\mathbb{C}} \boldsymbol{f}^{-1}(\boldsymbol{y})$. If $\boldsymbol{f}^{-1}(\boldsymbol{y})$ is compact, then $p\left(\boldsymbol{f}^{-1}(\boldsymbol{y})\right)=\mathbb{C}^{d}$ is compact and we obtain $d=0$. Since $d \geq m-n$, we conclude that $m \leq n$. This implies that S_{f} is the closure of the image of \boldsymbol{f} whenever $m>n$. Therefore, we assume $m \leq n$ when $\mathbb{K}=\mathbb{C}$.

When $\mathbb{K}=\mathbb{C}$, Jelonek's result asserts that S_{f} is Zariski closed. However, if $\mathbb{K}=\mathbb{R}$, S_{f} may not be Zariski closed (for example, $S_{f}=\left\{\left(0, y_{2}\right) \in \mathbb{R}^{2}: y_{2} \geq 0\right\}$ for $\left.\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1}^{2} x_{2}^{2}\right)\right)$.

Throughout the paper, we use the following notational convention:
$\mathbb{K}^{J}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: x_{i}=0, i \notin J\right\}, \mathbb{Z}^{J}=\left\{\left(\nu_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}: v_{i}=0, i \notin J\right\}$.
for a subset J of $\{1, \ldots, n\}$. We set $\mathbb{Z}_{\geq 0}^{J}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{J}: v_{i} \geq 0, i \in J\right\}$. We also set $\left(\mathbb{Z}_{\geq 0}\right)^{n}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}: v_{i} \geq 0, i=1, \ldots, n\right\}$. We often abbreviate $\mathbb{Z}_{\geq 0}$ as \mathbb{Z}_{\geq}following custom. We identify \mathbb{K}^{n} with $\mathbb{K}^{J} \times \mathbb{K}^{J^{c}}$ where $J^{c}=\{1, \ldots, n\} \backslash J$ without notice.

1 Newton Polyhedra

Let $\Delta\left(f^{j}\right)$ denote Newton polyhedron of f^{j}, the convex hull of the set $\left\{\boldsymbol{v}: c_{\boldsymbol{v}}^{j} \neq 0\right\}$, under the notation in (0.1). For $\boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{Z}^{m}$, we define

$$
\begin{align*}
& d_{j}(\boldsymbol{p})=-\min \left\{\langle\boldsymbol{p}, \boldsymbol{v}\rangle: \boldsymbol{v} \in \Delta\left(f^{j}\right)\right\}, \tag{1.1}\\
& \gamma_{j}(\boldsymbol{p})=\left\{\boldsymbol{v} \in \Delta\left(f^{j}\right):\langle\boldsymbol{p}, \boldsymbol{v}\rangle=-d_{j}(\boldsymbol{p})\right\} . \tag{1.2}
\end{align*}
$$

We call $\gamma_{j}(\boldsymbol{p})$ the face of $\Delta\left(f^{j}\right)$ supported by \boldsymbol{p}.
We say $\boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ which is a face of $\boldsymbol{\Delta}(\boldsymbol{f})=\left(\Delta\left(f^{1}\right), \ldots, \Delta\left(f^{n}\right)\right)$ if there exist $\boldsymbol{p} \in \mathbb{Z}^{m}$, so that γ_{j} is a face of $\Delta\left(f^{j}\right)$ supported by \boldsymbol{p}. We denote

$$
\boldsymbol{\gamma}(\boldsymbol{p})=\left(\gamma_{1}(\boldsymbol{p}), \ldots, \gamma_{n}(\boldsymbol{p})\right) .
$$

When we need to mention \boldsymbol{f} explicitly, we denote them by $\boldsymbol{\gamma}(\boldsymbol{f} ; \boldsymbol{p}), \gamma_{j}(\boldsymbol{f} ; \boldsymbol{p})$, and so on. We consider Minkowski sum $\Delta(\boldsymbol{f})=\Delta\left(f^{1}\right)+\cdots+\Delta\left(f^{n}\right)$ and its dual fan Δ^{*}, which we identify with the set of polyhedral cones. Note that $\gamma(\boldsymbol{p})=\gamma_{1}(\boldsymbol{p})+$ $\cdots+\gamma_{n}(\boldsymbol{p})$ is a face of $\Delta(\boldsymbol{f})$. We denote

$$
\boldsymbol{f}_{\boldsymbol{\gamma}}=\left(f_{\gamma_{1}}^{1}, \ldots, f_{\gamma_{n}}^{n}\right) \text { where } f_{\gamma_{j}}^{j}=\sum_{\boldsymbol{v} \in \gamma_{j}} c_{\boldsymbol{v}}^{j} x^{\boldsymbol{\nu}}
$$

Lemma $1.1 \boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}(\boldsymbol{q}) \Longleftrightarrow \gamma(\boldsymbol{p})=\gamma(\boldsymbol{q})$.
Proof " \Longrightarrow " part is clear, since " $\boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}(\boldsymbol{q}) \Longleftrightarrow \gamma_{j}(\boldsymbol{p})=\gamma_{j}(\boldsymbol{q})(j=1, \ldots, n)$ ".

Take $\boldsymbol{v} \in \gamma(\boldsymbol{q})$, so that $\boldsymbol{v}=\boldsymbol{v}_{1}+\cdots+\boldsymbol{v}_{n}$ for $\boldsymbol{v}_{j} \in \gamma_{j}(\boldsymbol{q})$. Since $\gamma_{j}(\boldsymbol{q}) \subset \Delta\left(f^{j}\right)$, we have $-d_{j}(\boldsymbol{p}) \leq\left\langle\boldsymbol{p}, \boldsymbol{v}_{j}\right\rangle$. If we assume $\gamma(\boldsymbol{q}) \subset \gamma(\boldsymbol{p})$, we then have

$$
-\sum_{j=1}^{n} d_{j}(\boldsymbol{p}) \leq \sum_{j=1}^{n}\left\langle\boldsymbol{p}, \boldsymbol{v}_{j}\right\rangle=\langle\boldsymbol{p}, \boldsymbol{v}\rangle=-\sum_{j=1}^{n} d_{j}(\boldsymbol{p})
$$

and $\left\langle\boldsymbol{p}, \boldsymbol{v}_{j}\right\rangle=-d_{j}(\boldsymbol{p})$, that is, $\boldsymbol{v}_{j} \in \gamma_{j}(\boldsymbol{p})$. We conclude $\gamma_{j}(\boldsymbol{q}) \subset \gamma_{j}(\boldsymbol{p})$. By symmetry, we complete the proof of " $\Longleftarrow "$ ".

Compositing f with a translation of the target, the set S_{f} is changed by its translation. Without loss of generality, we thus can assume the following condition:

$$
\begin{equation*}
f^{j}(j=1, \ldots, n) \text { are non-constant polynomials with non-zero constant terms. } \tag{1.3}
\end{equation*}
$$

Throughout the paper, we assume the condition (1.3) unless otherwise stated.
The condition (1.3) implies that $d_{j}(\boldsymbol{p}) \geq 0$ and equality holds if $\boldsymbol{p} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$. For a face $\boldsymbol{\gamma}$ of $\boldsymbol{\Delta}(\boldsymbol{f})$, we set $J_{\boldsymbol{\gamma}}=\left\{j: 0 \notin \gamma_{j}\right\}$. We remark that

$$
\begin{equation*}
d_{j}(\boldsymbol{p})>0 \Longleftrightarrow j \in J_{\boldsymbol{\gamma}} \quad \text { for } \boldsymbol{p} \text { with } \boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma} . \tag{1.4}
\end{equation*}
$$

Definition 1.2 We say a face $\boldsymbol{\gamma}$ of $\boldsymbol{\Delta}(\boldsymbol{f})$ is non-coordinate if there is $\boldsymbol{p} \in \mathbb{Z}^{m} \backslash\left(\mathbb{Z}_{\geq 0}\right)^{m}$, so that $\boldsymbol{\gamma}=\boldsymbol{\gamma}(\boldsymbol{p})$. Let $\Delta_{\mathrm{nc}}(\boldsymbol{f})$ denote the set of non-coordinate faces of $\boldsymbol{\Delta}(\boldsymbol{f})$.

For a polynomial map $\boldsymbol{g}=\left(g^{1}, \ldots, g^{r}\right): \mathbb{K}^{m} \rightarrow \mathbb{K}^{r}$, we set

$$
\begin{aligned}
& Z(\boldsymbol{g})=\left\{\boldsymbol{x} \in\left(\mathbb{K}^{*}\right)^{m}: g^{j}(\boldsymbol{x})=0(j=1, \ldots, r)\right\}, \\
& \Sigma(\boldsymbol{g})=\left\{\boldsymbol{x} \in\left(\mathbb{K}^{*}\right)^{m}: \operatorname{rank} \operatorname{Jac}(\boldsymbol{g})(\boldsymbol{x})<r\right\},
\end{aligned}
$$

where Jac $(\boldsymbol{g})=\left(\partial_{x_{i}} g^{j}\right)_{i=1, \ldots, m ; j=1, \ldots, r}$. Remark that the codimension of $Z(\boldsymbol{g}) \backslash \Sigma(\boldsymbol{g})$ is r.

Theorem 1.3 Assume that \boldsymbol{f} is a polynomial map with (1.3) and

$$
\begin{equation*}
Z\left(f_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(f_{\boldsymbol{\gamma}}^{J}\right) \text { is dense in } Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \tag{1.5}
\end{equation*}
$$

for any $\boldsymbol{\gamma} \in \Delta_{\mathrm{nc}}(\boldsymbol{f})$ where $J=J_{\boldsymbol{\gamma}}$. We have

$$
S_{f}=\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{y}}(\boldsymbol{f})
$$

where $S_{\boldsymbol{\gamma}}(\boldsymbol{f})=\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)\right) \times \mathbb{K}^{J}, J=J_{\boldsymbol{\gamma}}$, and $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}:\left(\mathbb{K}^{*}\right)^{m} \rightarrow \mathbb{K}^{J^{c}}$ is the map defined by $\boldsymbol{x} \mapsto\left(f_{\gamma_{j}}^{j}(\boldsymbol{x})\right)_{j \notin J}$.

We often say that $Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma}_{\boldsymbol{\gamma}}}\right)$ has the dense nonsingular locus if the condition (1.5) holds.

When $J=\{1, \ldots, n\}$, we have $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}:\left(\mathbb{K}^{*}\right)^{m} \rightarrow \mathbb{K}^{J^{c}}$ is a constant map, since \mathbb{K}^{\emptyset} is a one-point set.

Remark 1.4 Chen et al. [2] said that \boldsymbol{f} is non-degenerate if $Z\left(\boldsymbol{f}_{\boldsymbol{y}}^{J}\right) \cap \Sigma\left(\boldsymbol{f}_{\boldsymbol{y}}^{J}\right)=\emptyset$ for all $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$. This implies (1.5) for all $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$. However, our condition (1.5) is weaker than their non-degeneracy condition.

Remark 1.5 If $J_{\boldsymbol{\gamma}}=\{1, \ldots, n\}$, the condition (1.5) implies that $Z_{\boldsymbol{\gamma}}=Z\left(f_{\boldsymbol{\gamma}}^{J_{\boldsymbol{\gamma}}}\right)$ is empty. In fact, if we take a nonsingular point $\boldsymbol{x} \in Z_{\boldsymbol{\gamma}}$, then the condition (1.5) implies that $Z_{\boldsymbol{y}}$ is of codimension n at \boldsymbol{x}. This implies that \boldsymbol{x} is isolated in $Z_{\boldsymbol{\gamma}}$. However, this is impossible, since $f_{\gamma_{j}}^{j}$ is weighted homogeneous with respect to the weight \boldsymbol{p}.

We also remark that $Z_{\boldsymbol{\gamma}}=\left(\mathbb{K}^{*}\right)^{m}$ when $J_{\boldsymbol{\gamma}}=\emptyset$.
Corollary 1.6 A polynomial map \boldsymbol{f} with (1.3) is proper, if for any $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$ none of $\gamma_{j}, j=1, \ldots, n$, contains the origin and $Z\left(\boldsymbol{f}_{\boldsymbol{y}}\right)$ has a dense nonsingular locus for any $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$.

Remark 1.7 When $k=\operatorname{dim} \gamma_{J}=\sum_{j \in J} \operatorname{dim} \gamma_{j}, J=J_{\boldsymbol{\gamma}}, \boldsymbol{f}_{\boldsymbol{\gamma}}^{J}$ is a system of polynomials of k Laurent monomials of \boldsymbol{x} and $Z_{\boldsymbol{y}}=Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{\boldsymbol{J}_{\boldsymbol{\gamma}}}\right)$ is isomorphic to $X \times\left(\mathbb{K}^{*}\right)^{n-k}$ for some algebraic variety X in $\left(\mathbb{K}^{*}\right)^{k}$. If $j \in J_{\boldsymbol{\gamma}}, d_{j}=0$ and $f^{j}(x)(j \in J)$ is invariant under the natural \mathbb{K}^{*}-action(s). Thus, $\boldsymbol{f}^{J}\left(Z_{\boldsymbol{y}}\right)=\boldsymbol{f}^{J}(X \times\{(1, \ldots, 1)\})$. When $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}$ is complete intersection, we have that

$$
\operatorname{dim} f_{\boldsymbol{y}}^{J^{c}}\left(Z_{\boldsymbol{y}}\right)=\operatorname{dim} X-\operatorname{dim} F=k-\# J-\operatorname{dim} F,
$$

where F is a suitable fiber of $\boldsymbol{f}_{\boldsymbol{y}}^{J^{c}}: X \rightarrow \mathbb{K}^{J^{c}}$. We thus have $\operatorname{dim} S_{\boldsymbol{\gamma}}=k-\operatorname{dim} F$. When $\mathbb{K}=\mathbb{C}, S_{f}$ is a hypersurface and $\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{\gamma}}$ should be the union of the closures of $S_{\boldsymbol{\gamma}}$ with $\operatorname{dim} \boldsymbol{\gamma}=n-1$ (and $\operatorname{dim} F=0$).

To prove Theorem 1.3, we actually show the following.
Theorem 1.8 If a polynomial map $\boldsymbol{f}: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ satisfies (1.3), then

$$
\begin{equation*}
\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{\gamma}}^{\prime}(\boldsymbol{f}) \subset S_{\boldsymbol{f}} \subset \bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{\gamma}}(\boldsymbol{f}) \tag{1.6}
\end{equation*}
$$

 of a set Z.

Remark 1.9 Assume that $m=n=2$. Take $\boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}\right) \in \boldsymbol{\Delta}_{\text {nc }}(\boldsymbol{f})$ for a nondegenerate map $\boldsymbol{f}: \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$. We assume that $\boldsymbol{\gamma}=\boldsymbol{\gamma}(\boldsymbol{p}), \boldsymbol{p}=\left(p_{1}, p_{2}\right)$ with $p_{1}<0$ and $p_{2}>0$.

- If $0 \in \gamma_{1}$ and $0 \in \gamma_{2}$, then $f_{\gamma_{1}}^{1}$ and $f_{\gamma_{2}}^{2}$ are polynomial of a monomial $u=x_{1}^{q_{1}} x_{2}^{q_{2}}$. We denote them as $g_{1}(u)$ and $g_{2}(u)$. The defining equation of $S_{\boldsymbol{\gamma}}$ is the resultant of $g_{1}-y_{1}$ and $g_{2}-y_{2}$ where $\left(y_{1}, y_{2}\right)$ is a coordinate system of the target.
- If $0 \notin \gamma_{1}$ and $0 \in \gamma_{2}$, then we can write $f_{\gamma_{1}}^{1}=x_{1}^{p} g_{1}(u)$ and $f_{\gamma_{2}}^{2}=g_{2}(u)$ with $u=x_{1}^{q_{1}} x_{2}^{q_{2}}$ similarly. The defining equation of $S_{\boldsymbol{\gamma}}$ is the resultant of g_{1} and $g_{2}-y_{2}$.

2 Proof of Theorem 1.8

We are going to evaluate $\boldsymbol{f}(x)=\left(f^{1}(x), \ldots, f^{n}(x)\right)$ along a curve $\boldsymbol{x}(t)$ defined by

$$
\begin{align*}
& \boldsymbol{x}(t)=\left(t^{p_{1}} v^{1}(t), \ldots, t^{p_{m}} v^{m}(t)\right) \text { where } \boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{Z}^{m}, \tag{2.1}\\
& \boldsymbol{v}(t)=\left(v^{1}(t), \ldots, v^{m}(t)\right)=\sum_{i=0}^{\infty} \boldsymbol{v}_{i} t^{i}, \boldsymbol{v}_{i}=\left(v_{i}^{1}, \ldots, v_{i}^{m}\right), \boldsymbol{v}_{0} \in\left(\mathbb{K}^{*}\right)^{m} . \tag{2.2}
\end{align*}
$$

We denote $\mathcal{A}(\boldsymbol{p})$ the set of such arcs. It is clear that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \boldsymbol{x}(t)=\infty \Longleftrightarrow \boldsymbol{p} \notin\left(\mathbb{Z}_{\geq 0}\right)^{m} \tag{2.3}
\end{equation*}
$$

We have an obvious decomposition $S_{f}=\bigcup_{p} S_{f}(\boldsymbol{p})$, where

$$
\begin{equation*}
S_{f}(p)=\left\{y \in \mathbb{K}^{n}: \exists x(t) \in \mathcal{A}(p), \lim _{t \rightarrow 0} x(t)=\infty, \lim _{t \rightarrow 0} f(x(t))=\boldsymbol{y}\right\} \tag{2.4}
\end{equation*}
$$

We have $S_{\boldsymbol{f}}(\boldsymbol{p})=\emptyset$ if $\boldsymbol{p} \in\left(\mathbb{Z}_{\geq 0}\right)^{m}$ by (2.3).
Remark 2.1 Observe that the arcs having several components being identically zero are not in $\mathcal{A}(\boldsymbol{p})$. However, this does not affect to detect S_{f}. Adding the terms t^{l}, $l \gg 1$, to such components does not affect the conditions for S_{f} and we can restrict our attention to $\mathcal{A}(\boldsymbol{p})$.

Lemma 2.2 For $\boldsymbol{p} \notin\left(\mathbb{Z}_{\geq 0}\right)^{m}$, we have $S_{f}(\boldsymbol{p}) \subset S_{\boldsymbol{\gamma}(\boldsymbol{p})}(\boldsymbol{f})$.
Proof We express $f^{j}(\boldsymbol{x}(t))$ as

$$
\begin{equation*}
f^{j}(\boldsymbol{x}(t))=t^{-d_{j}}\left(\hat{f}_{0}^{j}+\hat{f}_{1}^{j} t+\cdots+\hat{f}_{d_{j}-1}^{j} t^{d_{j}-1}+\hat{f}_{d_{j}}^{j} t^{d_{j}}+o\left(t^{d_{j}}\right)\right) \tag{2.5}
\end{equation*}
$$

where $d_{j}=d_{j}(\boldsymbol{p}) \geq 0$. We have $\hat{f}_{0}^{j}=f_{\gamma_{j}}^{j}\left(\boldsymbol{v}_{0}\right)$ where $\gamma_{j}=\gamma_{j}(\boldsymbol{p})$. Setting $f^{j}(x)=$ $\sum_{\nu} c_{\nu}^{j} \boldsymbol{x}^{\nu}$, more precisely, we have

$$
\begin{equation*}
f^{j}(\boldsymbol{x}(t))=t^{-d_{j}(\boldsymbol{p})} \sum_{\boldsymbol{v}} c_{\boldsymbol{v}}^{j} t^{\langle\boldsymbol{p}, \boldsymbol{v}\rangle+d_{j}(\boldsymbol{p})} \boldsymbol{v}(t)^{\boldsymbol{v}} \tag{2.6}
\end{equation*}
$$

If $\boldsymbol{y} \in S_{f}(\boldsymbol{p})$, then there exists an $\operatorname{arc} \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p})$, so that

$$
\lim _{t \rightarrow 0} x(t)=\infty, \quad \text { and } \quad \lim _{t \rightarrow 0} f(x(t))=\boldsymbol{y}
$$

Using the notation in (2.5) and $J=J_{\boldsymbol{\gamma}}(\boldsymbol{p})$, we have

$$
\hat{f}_{0}^{j}=\hat{f}_{1}^{j}=\cdots=\hat{f}_{d_{j}-1}^{j}=0 \quad(j \in J),
$$

and $f_{\gamma_{j}(\boldsymbol{p})}^{j}\left(\boldsymbol{v}_{0}\right)=0(j \in J)$. This implies that J^{c} component of \boldsymbol{y} is given by $\boldsymbol{f}_{\boldsymbol{\gamma}(\boldsymbol{p})}^{J^{c}}\left(\boldsymbol{v}_{0}\right)$, and we complete the proof.

Remark 2.3 If $\operatorname{dim} \gamma_{j}(\boldsymbol{p})=0$ for some $j \in J$, then $\hat{f}_{0}^{j} \neq 0$, and $S_{\boldsymbol{y}(\boldsymbol{p})}$ is empty.
Lemma 2.4 If $\boldsymbol{\gamma}=\boldsymbol{\gamma}(\boldsymbol{p}) \in \Delta_{n c}(\boldsymbol{f})$, then

$$
\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)\right) \times \mathbb{K}^{J} \subset S_{\boldsymbol{f}}(\boldsymbol{p}) \text { where } J=J_{\boldsymbol{\gamma}(\boldsymbol{p})}
$$

Proof Take $\boldsymbol{p} \in \mathbb{Z}^{n} \backslash\left(\mathbb{Z}_{\geq}\right)^{n}$ and consider a curve defined by (2.1). We compare (2.5) with (2.6) substituting by (2.2) and taking modulo t^{i+1}. Remarking that the terms concerning \boldsymbol{v}_{i} in \hat{f}_{i}^{j} depend on the terms in $f_{\gamma_{j}}^{j}$ only, we obtain that

$$
\begin{equation*}
\hat{f}_{l}^{j}=\left(d f_{\gamma_{j}}^{j}\right) \boldsymbol{v}_{0}\left(\boldsymbol{v}_{l}\right)+r_{l}^{j}\left(\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{l-1}\right) \quad(l=1,2, \ldots) \tag{2.7}
\end{equation*}
$$

where $r_{l}^{j}\left(\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{l-1}\right)$ is a suitable polynomial of $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{l-1}$.
Take a point $\boldsymbol{v}_{0} \in Z\left(\boldsymbol{f}_{\boldsymbol{y}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{y}}^{J}\right)$ where $J=J_{\boldsymbol{\gamma}}$. Let $\left(a_{k}^{j}\right)_{j \in J ; k \geq 1}$ be any sequence. Suppose we have already taken $\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{l-1}$, so that

$$
\hat{f}_{k}^{j}=a_{k}^{j} \quad(1 \leq k<l, j \in J) .
$$

By (2.7), there exists \boldsymbol{v}_{l}, so that $\hat{f}_{l}^{j}=a_{l}^{j}$ for $j \in J$, whenever $\operatorname{Jac}\left(\left(f_{\gamma_{j}}^{j}\right)_{j \in J}\right)$ is of full rank at \boldsymbol{v}_{0}. Choose $\left(a_{l}^{j}\right)_{j \in J ; l \geq 0}$, so that $a_{i}^{j}=0\left(0 \leq i<d_{j}\right)$. Then, the corresponding curve $\boldsymbol{x}(t)$ has the following property:

$$
\lim _{t \rightarrow 0} f^{j}(\boldsymbol{x}(t))= \begin{cases}f_{\gamma_{j}}^{j}\left(\boldsymbol{v}_{0}\right) & (j \notin J), \\ a_{d_{j}}^{j} & (j \in J)\end{cases}
$$

Since one can choose $a_{d_{j}}^{j}$ arbitrary, we conclude that $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)\right) \times \mathbb{K}^{J} \subset$ $S_{f}(\boldsymbol{p})$.

In the situation above, we have
Corollary 2.5 $S_{\boldsymbol{\gamma}}^{\prime}(\boldsymbol{f}) \subset S_{f}$ for $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$.
Proof We obtain

$$
S_{\boldsymbol{\gamma}}^{\prime}(\boldsymbol{f})=\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(\overline{Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)}\right) \times \mathbb{K}^{J} \subset \overline{\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)\right)} \times \mathbb{K}^{J} \subset \overline{S_{f}}=S_{f}
$$ since S_{f} is closed.

Remark 2.6 In the case that f does not satisfy (1.5), we would proceed further analysis using higher order differentials of composite maps. Actually, in the expression (2.5), we have

$$
\hat{f}_{l}^{j}=\sum_{k=0}^{l} \sum_{i_{1}+2 i_{2}+\cdots+k i_{k}=k} \frac{1}{i_{1}!\cdots i_{k}!}\left(d^{i_{1}+\cdots+i_{k}} f_{l-k}^{j}\right)_{\boldsymbol{v}_{0}}(\overbrace{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{1}}^{i_{1}}, \ldots, \overbrace{\boldsymbol{v}_{k}, \ldots, \boldsymbol{v}_{k}}^{i_{k}}),
$$

where

$$
\begin{align*}
& f^{j}(\boldsymbol{x})=f_{0}^{j}(\boldsymbol{x})+f_{1}^{j}(\boldsymbol{x})+\cdots+f_{e_{j}}^{j}(\boldsymbol{x}) \text { with } \\
& f_{k}^{j}\left(t^{p_{1}} x_{1}, \ldots, t^{p_{m}} x_{m}\right)=t^{-d_{j}+k} f_{k}^{j}(\boldsymbol{x}) . \tag{2.8}
\end{align*}
$$

Here, we use the notation in (2.1), (2.2), and $d^{k} g$ denotes the symmetric multilinear form defined by k th-order differential of g. The first few of \hat{f}_{l}^{j} are as follows:

$$
\begin{align*}
\hat{f}_{0}^{j} & =f_{0}^{j}\left(\boldsymbol{v}_{0}\right), \\
\hat{f}_{1}^{j} & =f_{1}^{j}\left(\boldsymbol{v}_{0}\right)+\left(d f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}\right), \\
\hat{f}_{2}^{j} & =f_{2}^{j}\left(\boldsymbol{v}_{0}\right)+\left(d f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{2}\right)+\left(d f_{1}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}\right)+\frac{1}{2}\left(d^{2} f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right), \\
\hat{f}_{3}^{j} & =f_{3}^{j}\left(\boldsymbol{v}_{0}\right)+\left(d f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{3}\right)+\left(d f_{1}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{2}\right)+\left(d f_{2}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}\right) \tag{2.9}\\
& +\left(d^{2} f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)+\frac{1}{2}\left(d^{2} f_{1}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right)+\frac{1}{6}\left(d^{3} f_{0}^{j}\right)_{\boldsymbol{v}_{0}}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right) . \tag{2.10}
\end{align*}
$$

The set $S_{\boldsymbol{f}}(\boldsymbol{p})$ is described by eliminating $\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots$ from the following system:

$$
0=\hat{f}_{l}^{j}\left(l=0,1,2, \ldots, d_{j}-1\right), \quad y_{j}=\hat{f}_{d_{j}}^{j} \quad(j=1, \ldots, n)
$$

where $\left(y_{1}, \ldots, y_{n}\right)$ denotes the coordinate system of the target.

3 Relative Version

The definition of non-properness set has an obvious generalization for a polynomial map $\boldsymbol{f}: X \rightarrow Y$ between algebraic varieties X and Y defined over \mathbb{K}. We say \boldsymbol{f} is not proper at $\boldsymbol{y}_{0} \in Y$ if there exist an arc $\boldsymbol{x}(t): \mathbb{K}^{*}, 0 \rightarrow X$, so that

$$
\lim _{t \rightarrow 0} x(t) \text { does not exist, and } \lim _{t \rightarrow 0} f(x(t))=y_{0}
$$

We denote by S_{f} the set of non-proper points of $\boldsymbol{f}: X \rightarrow Y$.
Let $\boldsymbol{f}=\left(f^{1}, \ldots, f^{n}\right): \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ be a polynomial map with (1.3). Set $\boldsymbol{f}^{\prime}=$ $\left(f^{1}, \ldots, f^{n-k}\right)$ and $\boldsymbol{f}^{\prime \prime}=\left(f^{n-k+1}, \ldots, f^{n}\right)$. Set $\boldsymbol{y}=\left(\boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}\right)$ and $\boldsymbol{y}_{0}=\left(\boldsymbol{y}_{0}^{\prime}, \boldsymbol{y}_{0}^{\prime \prime}\right)$. In this section, we describe a generalization of the discussion above to the map

$$
\left.\boldsymbol{f}^{\prime}\right|_{X}: X \rightarrow \mathbb{K}^{n-k} \quad \text { where } X=\left(\boldsymbol{f}^{\prime \prime}\right)^{-1}\left(\boldsymbol{y}_{0}^{\prime \prime}\right)
$$

Since $\left.\boldsymbol{f}\right|_{X}=\left(\left.\boldsymbol{f}^{\prime}\right|_{X}, \boldsymbol{y}_{0}^{\prime \prime}\right)$, we identify $\left.\boldsymbol{f}\right|_{X}$ with the map $\left.\boldsymbol{f}^{\prime}\right|_{X}$ via the embedding $\mathbb{K}^{n-k} \times\left\{\boldsymbol{y}_{0}^{\prime \prime}\right\} \subset \mathbb{K}^{n}$. This means that we identify \mathbb{K}^{n-k} with $\mathbb{K}^{n-k} \times\left\{\boldsymbol{y}_{0}^{\prime \prime}\right\}$, and we can identify $\boldsymbol{f}^{\{1, \ldots, n-k\} \backslash J}$ with $\boldsymbol{f}^{\{1, \ldots, n\} \backslash J}$. We call this map by $\boldsymbol{f}^{J^{c}}$. For a face $\boldsymbol{\gamma}=$ $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of $\boldsymbol{\Delta}(\boldsymbol{f})$, we define $\boldsymbol{\gamma}^{\prime}=\left(\gamma_{1}, \ldots, \gamma_{n-k}\right)$ and $\boldsymbol{\gamma}^{\prime \prime}=\left(\gamma_{n-k+1}, \ldots, \gamma_{n}\right)$. In the same way, we can identify $\boldsymbol{f}_{\boldsymbol{\gamma}}^{\{1, \ldots, n-k\} \backslash J}$ with $\boldsymbol{f}_{\boldsymbol{y}}^{\{1, \ldots, n\} \backslash J}$ on the set $Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}}{ }^{\prime \prime}-\right.$ $\left.\boldsymbol{y}_{0}^{\prime \prime}\right)$. So denote its image by $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}$ as $\boldsymbol{f}_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}^{\prime}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}}^{\prime \prime}-\boldsymbol{y}_{0}^{\prime \prime}\right)\right)$. Set
$S_{\boldsymbol{\gamma}^{\prime} ; \boldsymbol{\gamma}^{\prime \prime}}=f_{\boldsymbol{\gamma}}^{J^{c}}\left(Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}^{\prime}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}^{\prime \prime}}^{\prime \prime}-\boldsymbol{y}_{0}^{\prime \prime}\right)\right) \times \mathbb{K}^{J}, J=J_{\boldsymbol{\gamma}^{\prime}}=\left\{j \in\{1, \ldots, n-k\}: 0 \notin \gamma_{j}\right\}$,
and $S_{\boldsymbol{\gamma}^{\prime} ; \boldsymbol{\gamma}^{\prime \prime}}^{\prime}=\boldsymbol{f}_{\boldsymbol{y}}^{J^{c}}\left(\overline{Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}^{\prime}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}^{\prime \prime}}^{\prime \prime}-\boldsymbol{y}_{0}^{\prime \prime}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}^{\prime}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}^{\prime \prime}}^{\prime \prime}\right)}\right) \times \mathbb{K}^{J}$.
Under the notation and assumption above, we have the following:
Theorem 3.1 We assume that the nonsingular locus of X is dense in X and X has no component in $\left\{x_{1} \cdots x_{n}=0\right\}$. Then

$$
\begin{equation*}
\bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{\gamma}^{\prime} ; \boldsymbol{\gamma}^{\prime \prime}}^{\prime} \subset S_{\boldsymbol{f} \mid X} \subset \bigcup_{\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})} S_{\boldsymbol{y}^{\prime} ; \boldsymbol{y}^{\prime \prime}} \tag{3.1}
\end{equation*}
$$

If $Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}^{\prime}}^{J}, \boldsymbol{f}_{\boldsymbol{\gamma}}{ }^{\prime \prime}-\boldsymbol{y}_{0}^{\prime \prime}\right)$ has dense nonsingular loci for $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}$, we have equalities in (3.1).

The assumption that X has no component in $\left\{x_{1} \cdots x_{n}=0\right\}$ comes from Remark 2.1. If there is an $\operatorname{arc} \boldsymbol{x}(t)$ in $X \cap \mathbb{K}^{I}, I \subsetneq\{1, \ldots, n\}$, with $\boldsymbol{x}(t) \rightarrow \infty$, and $\boldsymbol{f}(\boldsymbol{x}(t)) \rightarrow \boldsymbol{y}_{0}(t \rightarrow 0)$, one can choose $\hat{\boldsymbol{x}}(t) \in \mathcal{A}(\boldsymbol{p})$ for some \boldsymbol{p} with $\hat{\boldsymbol{x}}(t) \rightarrow \infty$, and $\boldsymbol{f}(\hat{\boldsymbol{x}}(t)) \rightarrow \boldsymbol{y}_{0}(t \rightarrow 0)$. However, we do not know that $\hat{\boldsymbol{x}}(t)$ can be chosen in X in such a case.

Proof of Theorem 3.1 First, for $\boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p})$, we can write

$$
\begin{aligned}
f^{j}(\boldsymbol{x}(t))= & t^{-d_{j}}\left(\hat{f}_{0}^{j}+\hat{f}_{1}^{j} t+\cdots+\hat{f}_{d_{j}-1}^{j} t^{d_{j}-1}\right. \\
& \left.+\hat{f}_{d_{j}}^{j} t^{d_{j}}+o\left(t^{d_{j}}\right)\right) \quad(j=1, \ldots, n-k), \\
f^{j}(\boldsymbol{x}(t))-y_{0}^{j}= & t^{-d_{j}}\left(\hat{f}_{0}^{j}+\hat{f}_{1}^{j} t+\cdots+\hat{f}_{d_{j}-1}^{j} t^{d_{j}-1}\right. \\
& \left.+\hat{f}_{d_{j}}^{j} t^{d_{j}}+o\left(t^{d_{j}}\right)\right) \quad(j=n-k+1, \ldots, n),
\end{aligned}
$$

where $d_{j}=d_{j}(\boldsymbol{p})$. We remark that $\boldsymbol{y} \in S_{\boldsymbol{f} \mid X}$ if and only if there is an arc $\boldsymbol{x}(t)$: $\mathbb{K}^{*}, 0 \rightarrow X$, so that $\lim _{t \rightarrow 0} \boldsymbol{x}(t)=\infty$, and that $\lim _{t \rightarrow 0} \boldsymbol{f}(\boldsymbol{x}(t))=\boldsymbol{y}$. In a similar way to the proof of Lemma 2.2, we have

$$
\hat{f}_{0}^{j}=0 \quad\left(j \in J_{\boldsymbol{y}} \cup\{n-k+1, \ldots, n\}\right)
$$

This implies that $f_{\gamma_{j}(\boldsymbol{p})}^{j}\left(\boldsymbol{v}_{0}\right)=0$ for $j \in J_{\boldsymbol{\gamma}}$, and $\left(f^{j}-y_{0}^{j}\right)_{\gamma_{j}(\boldsymbol{p})}\left(\boldsymbol{v}_{0}\right)=0$ for $j=n-k+1, \ldots, n$, which show the second inclusion.

By the discussion similar to the proof of Lemma 2.4, for any $a^{j}(j \in J)$, we can construct a formal power series $\boldsymbol{v}(t)=\left(v^{1}(t), \ldots, v^{n}(t)\right)$, such that

$$
\begin{align*}
& f^{j}\left(t^{p_{1}} v^{1}(t), \ldots, t^{p_{n}} v^{n}(t)\right)=a^{j}+o(t) \quad(j \in J), \tag{3.2}\\
& f^{j}\left(t^{p_{1}} v^{1}(t), \ldots, t^{p_{n}} v^{n}(t)\right)=y_{0}^{j} \quad(j=n-k+1, \ldots, n), \tag{3.3}
\end{align*}
$$

where $\boldsymbol{y}_{0}=\left(y_{0}^{1}, \ldots, y_{0}^{n}\right)$. Remark that we can reduce this system to polynomials by multiplying some power t^{l}. By the approximation theorem of Artin ([1]), we can take a convergent power series $\boldsymbol{v}(t)=\left(v^{1}(t), \ldots, v^{n}(t)\right)$ which satisfies (3.2) and (3.3). This completes the proof of the first inclusion.

If X has a component X_{1} in $\left\{x_{1} \cdots x_{n}=0\right\}$, we could proceed a similar computation for $\left.\boldsymbol{f}\right|_{X_{1}}$ which is a polynomial map with less number of variables and obtain that $S_{\left.f\right|_{X_{1}}} \subset S_{\left.\boldsymbol{f}\right|_{X}}$.

4 Examples

Example 4.1 Let us start with the simplest example $\mathbb{K}^{2} \rightarrow \mathbb{K}^{2}, f(x, y)=(x, x y)$. For the assumption (1.3) we consider $\boldsymbol{f}(x, y)=\left(c_{1}+x, c_{2}+x y\right)$ where c_{1}, c_{2} are non-zero constants. It suffices to consider only 3 faces below thanks to Remark 2.3. Since
$\boldsymbol{f}_{\boldsymbol{\gamma}(1,-1)}=\left(c_{1}, c_{2}+x y\right), Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}(1,-1)}^{\emptyset}\right)=\left(\mathbb{K}^{*}\right)^{2}$,
$\boldsymbol{f}_{\boldsymbol{\gamma}(0,-1)}=\left(c_{1}+x, x y\right), Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}(1,-1)}^{\{2\}}\right)=\emptyset$,
$\boldsymbol{f}_{\boldsymbol{\gamma}(-1,1)}=\left(x, c_{2}+x y\right), Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}(1,-1)}^{\{1\}}\right)=\emptyset$,

$\Delta\left(f^{1}\right)$

$\Delta\left(f^{2}\right)$
$\underbrace{\square}_{\Delta(f)}$
we have $S_{f}=\left\{\left(c_{1}, c_{2}+x y\right):(x, y) \in\left(\mathbb{K}^{*}\right)^{2}\right\}=\left\{c_{1}\right\} \times \mathbb{K}$.
Example 4.2 Consider the map $f(x, y)=\left(x^{2} y^{2}+x y+y+1, x^{2} y+y+x+1\right)$. Since

$$
\begin{aligned}
& f_{\boldsymbol{\gamma}(-1,1)}=\left(x^{2} y^{2}+x y+1, x(x y+1)\right), Z\left(f_{\boldsymbol{\gamma}}^{\{2\}}(1,-1)\right. \\
& \left.f_{\boldsymbol{\gamma}(0,-1)}=\left(x^{2} y^{2},\left(x^{2}+1\right) y\right)\right), Z\left(f_{\boldsymbol{\gamma}(0,-1)}^{\{1,2\}}\right)=\emptyset \\
& f_{\boldsymbol{\gamma}(1,-2)}=\left(x^{2} y^{2}+y, y\right), Z\left(f_{\boldsymbol{y}(1,-2)}^{\{1,2\}}\right)=\emptyset
\end{aligned}
$$

we have

$$
S_{f}=\left\{x^{2} y^{2}+x y+1: x y+1=0\right\} \times \mathbb{K}=\left\{t^{2}+t+1: t+1=0\right\} \times \mathbb{K}=\{1\} \times \mathbb{K} .
$$

Example 4.3 Consider the map $\boldsymbol{f}(x, y)=\left(x y+y+1, x^{2} y^{2}+y^{2}+x y+1\right)$, we have

$$
\begin{array}{ll}
f_{\boldsymbol{\gamma}(-1,1)}=\left(x y+1, x^{2} y^{2}+x y+1\right), & Z\left(f_{\boldsymbol{\gamma}(1,-1)}^{\emptyset}\right)=\left(\mathbb{K}^{*}\right)^{2} \\
f_{\boldsymbol{\gamma}(0,-1)}=\left((x+1) y,\left(x^{2}+1\right) y^{2}\right), & Z\left(f_{\boldsymbol{\gamma}(0,-1)}^{\{1,2\}}\right)=\emptyset
\end{array}
$$

Therefore, we have

$$
\begin{aligned}
S_{f} & =\left\{(X, Y): \exists(x, y) \in\left(\mathbb{K}^{*}\right)^{2} \text { s.t. }(X, Y)=\left(x y+1, x^{2} y^{2}+x y+1\right)\right\} \\
& =\left\{(X, Y): \exists t \in \mathbb{K}^{*} \text { s.t. }(X, Y)=\left(t+1, t^{2}+t+1\right)\right\} \\
& =\left\{Y-X^{2}+X-1=0\right\} .
\end{aligned}
$$

Example 4.4 Consider the map $f: \mathbb{K}^{3} \rightarrow \mathbb{K}^{3}$ defined by
$\boldsymbol{f}(x, y, z)=(1+x y+x z, 1+a x z+x(1-x y+x z), 1+b x y+x(1+x y+x z))$,
$a \neq 0, b \neq 0$. The Newton polyhedra look like

and we obtain the following data.

\boldsymbol{p}	$\boldsymbol{f}_{\boldsymbol{\gamma}(\boldsymbol{p})}$	$\left(d_{1}, d_{2}, d_{3}\right)$	$J_{\boldsymbol{\gamma}(\boldsymbol{p})}$	$Z_{\boldsymbol{\gamma}}$
$(1,-1,-1)$	$(1+x y+x z, 1+a x z, 1+b x y)$	$(0,0,0)$	\emptyset	$\left(\mathbb{K}^{*}\right)^{3}$
$(1,-1,-2)$	$\left(x z, a x z, 1+b x y+x^{2} z\right)$	$(1,1,0)$	$\{1,2\}$	\emptyset
$(1,-2,-1)$	$\left(x y, 1-x^{2} y+a x z, b x y\right)$	$(1,0,1)$	$\{1,3\}$	\emptyset
$(0,-1,-1)$	$(x(y+z), x(x z-x y+a z), x(x z+x y+b y))$	$(1,1,1)$	$\{1,2,3\}$	\emptyset
$(-1,1,1)$	$(1+x y+x z, x(1-x y+x z), x(1+x y+x z))$	$(0,1,1)$	$\{2,3\}$	

We have

$$
\begin{aligned}
S_{\boldsymbol{\gamma}(1,-1,-1)} & =\{\exists(x, y, z)(X, Y, Z)=(1+x y+x z,-2(1+a x z),-1-b x y)\} \\
& =\{a b X+b Y+a Z=a b-a-b\}, \\
S_{\boldsymbol{\gamma}(-1,1,1)} & =\{\exists(x, y, z) X=1+x y+x z,(1-x y+x z, 1+x y+x z)=0\}=\{X=0\} .
\end{aligned}
$$

We conclude that $S_{f}=S_{\boldsymbol{\gamma}(1,-1,-1)} \cup S_{\boldsymbol{\gamma}(-1,1,1)}$.

5 Degenerate Case

We present several tricks to handle the case when (1.5) does not hold for some $\boldsymbol{\gamma} \in$ $\Delta_{\mathrm{nc}}(f)$.

5.1 The First Trick

Let $\boldsymbol{h}: \mathbb{K}^{m+k} \rightarrow \mathbb{K}^{n+k}$ be a polynomial map with (1.5). We assume that $h^{n+i}(x)=$ $\varphi_{1}\left(x_{1}, \ldots, x_{m}\right)-x_{m+i}$ for $i=1, \ldots, k$. Let X be a subset of \mathbb{K}^{m+k} defined by

$$
x_{m+i}=\varphi_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1, \ldots, k
$$

The set X is isomorphic to \mathbb{K}^{m} by the map defined by

$$
\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(x_{1}, \ldots, x_{m}, \varphi_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, \varphi_{k}\left(x_{1}, \ldots, x_{m}\right)\right) .
$$

If $\boldsymbol{f}\left(x_{1}, \ldots, x_{m}\right)=\boldsymbol{h}\left(x_{1}, \ldots, x_{m}, \varphi_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, \varphi_{k}\left(x_{1}, \ldots, x_{m}\right)\right)$, then we have

$$
S_{f}=S_{\left.\boldsymbol{h}\right|_{X}}
$$

via the identification of \mathbb{K}^{n} with $\mathbb{K}^{n} \times\{0\}$. When \boldsymbol{h} satisfies the required assumptions, one can use Theorem 3.1 to describe S_{f}, even though f does not satisfy (1.5) for some $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$.

Example 5.1 Let $\boldsymbol{h}: \mathbb{K}^{3} \rightarrow \mathbb{K}^{3}$ be the map defined by

$$
\boldsymbol{h}(x, y, z)=\left(1+x+z^{2}, 1+x^{2}+z^{3}, y^{2}-x^{3}-z\right) .
$$

Let X be the subset of \mathbb{K}^{3} defined by $z=y^{2}-x^{3}$. Setting $\boldsymbol{f}(x, y)=\boldsymbol{h}\left(x, y, y^{2}-x^{3}\right)$, we have

$$
f(x, y)=\left(1+x+\left(y^{2}-x^{3}\right)^{2}, 1+x^{2}+\left(y^{2}-x^{3}\right)^{3}\right)
$$

Applying Theorem 3.1, we conclude that \boldsymbol{h} is proper, and thus so is \boldsymbol{f}.

5.2 The Second Trick

We show another trick, which we do not use higher dimension. If $V_{\boldsymbol{\gamma}}=$ $Z\left(f_{\boldsymbol{\gamma}}^{J}\right) \backslash \overline{Z\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right) \backslash \Sigma\left(\boldsymbol{f}_{\boldsymbol{\gamma}}^{J}\right)}, J=J_{\boldsymbol{\gamma}}$, is not empty for some $\boldsymbol{\gamma} \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$, we may have a chance to change $S_{\boldsymbol{\gamma}}(\boldsymbol{f})$ (resp. $S_{\boldsymbol{\gamma}}^{\prime}(\boldsymbol{f})$) in (1.6) by a smaller subset of $S_{\boldsymbol{\gamma}}(\boldsymbol{f})$ (resp. by a supset of $S_{\boldsymbol{\gamma}}^{\prime}(\boldsymbol{f})$).

Let $\boldsymbol{f}: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$ be a polynomial map with (1.3). Set $\boldsymbol{f}_{l}^{J}=\left(f_{l}^{j}\right)_{j \in J}$ for $J \subset\{1, \ldots, n\}$ where f_{k}^{j} is defined in (2.8). Remark that $f_{0}^{j}(x)=f_{\gamma_{j}}^{j}(x)$. We set

$$
W(\boldsymbol{p})=\left\{\begin{aligned}
\exists \boldsymbol{x} \in V_{\boldsymbol{\gamma}}, \boldsymbol{y}^{J^{c}} & =\boldsymbol{f}_{\boldsymbol{y}}^{J^{c}}(\boldsymbol{x}), \\
\boldsymbol{y} \in \mathbb{K}^{n}: \operatorname{rank}\binom{\partial_{x_{i}} f_{0}^{J^{\prime}}(\boldsymbol{x})}{\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x})} & =\operatorname{rank}\left(\begin{array}{cc}
\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime}}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J^{\prime}}(\boldsymbol{x})-\boldsymbol{y}^{J^{\prime}} \\
\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J^{\prime \prime}}(\boldsymbol{x})
\end{array}\right),
\end{aligned}\right\}
$$

where $\boldsymbol{\gamma}=\boldsymbol{\gamma}(\boldsymbol{p}), \boldsymbol{y}^{J^{\prime}}=\left(y^{j^{\prime}}\right)_{j^{\prime} \in J^{\prime}}$,

$$
\begin{aligned}
J^{\prime}=J^{\prime}(\boldsymbol{p}) & =\left\{j \in\{1, \ldots, n\}: d_{j}(\boldsymbol{p})=1\right\}, \text { and } \\
J^{\prime \prime}=J^{\prime \prime}(\boldsymbol{p}) & =\left\{j \in\{1, \ldots, n\}: d_{j}(\boldsymbol{p}) \geq 2\right\}
\end{aligned}
$$

Remark that $J=J^{\prime} \cup J^{\prime \prime}$ because of (1.4). Under the notations and the assumptions above, we have

Theorem 5.2 If $V_{\boldsymbol{\gamma}}(\boldsymbol{p}), \boldsymbol{p} \in \mathbb{Z}^{n} \backslash\left(\mathbb{Z}_{\geq}\right)^{n}$, is not empty for $\boldsymbol{\gamma}(\boldsymbol{p}) \in \boldsymbol{\Delta}_{\mathrm{nc}}(\boldsymbol{f})$, then

$$
S_{f}^{\prime}(\boldsymbol{p}) \subset S_{f}(\boldsymbol{p}) \subset S_{\boldsymbol{y}(\boldsymbol{p})}^{\prime}(\boldsymbol{f}) \cup W(\boldsymbol{p})
$$

Moreover, we conclude that $W^{\prime}(\boldsymbol{p}) \subset S_{f}(\boldsymbol{p})$, where
$W^{\prime}(\boldsymbol{p})=\left\{\boldsymbol{y} \in W(\boldsymbol{p}): \exists \boldsymbol{x} \in V_{\boldsymbol{y}(\boldsymbol{p})}, \boldsymbol{y}^{J^{c}}=\boldsymbol{f}_{\boldsymbol{y}(\boldsymbol{p})}^{J^{c}}(\boldsymbol{x}), \operatorname{rank}\left(\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x})\right)_{i=1, \ldots, m}=\# J^{\prime \prime}\right\}$.
Proof If $\boldsymbol{y} \in S_{f}(\boldsymbol{p}), \boldsymbol{p} \in \mathbb{Z}^{n} \backslash\left(\mathbb{Z}_{\geq}\right)^{n}$, there exists $\boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p})$ with $\boldsymbol{f}(\boldsymbol{x}(t)) \rightarrow \boldsymbol{y}$ ($t \rightarrow 0$). By (2.9) and (2.10), we have

$$
\begin{aligned}
0 & \left.=f_{0}^{j}\left(\boldsymbol{v}_{0}\right) \quad(j \in J)\right) \\
y^{j^{\prime}} & =f_{1}^{j^{\prime}}\left(\boldsymbol{v}_{0}\right)+\left(d f^{j^{\prime}}\right)_{v_{0}}\left(\boldsymbol{v}_{1}\right) \quad\left(j^{\prime} \in J^{\prime}\right) \\
0 & =f_{1}^{j^{\prime \prime}}\left(\boldsymbol{v}_{0}\right)+\left(d f^{j^{\prime \prime}}\right)_{v_{0}}\left(\boldsymbol{v}_{1}\right) \quad\left(j^{\prime \prime} \in J^{\prime \prime}\right) .
\end{aligned}
$$

Here, we use the expression in (2.1) and (2.2). This implies that

$$
\operatorname{rank}\binom{\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime}}(\boldsymbol{x})}{\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x})}=\operatorname{rank}\left(\begin{array}{cc}
\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime}}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J^{\prime}}(\boldsymbol{x})-\boldsymbol{y}^{J^{\prime}} \\
\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x}) & \boldsymbol{f}_{1}^{J^{\prime \prime}}(\boldsymbol{x})
\end{array}\right),
$$

and we conclude $S_{f}(\boldsymbol{p}) \subset S_{\boldsymbol{y}(\boldsymbol{p})}^{\prime}(\boldsymbol{f}) \cup W(\boldsymbol{p})$.
Now, we assume $\boldsymbol{y} \in W^{\prime}(\boldsymbol{p})$. There exists $\boldsymbol{x} \in V_{\boldsymbol{y}(\boldsymbol{p})}$, such that

$$
\begin{equation*}
\operatorname{rank}\left(\partial_{x_{i}} \boldsymbol{f}_{0}^{J^{\prime \prime}}(\boldsymbol{x})\right)_{i=1, \ldots, m}=\# J^{\prime \prime} \tag{5.1}
\end{equation*}
$$

By the discussion in the second paragraph of the proof of Lemma 2.4, we can choose $\boldsymbol{x}(t)$ to attain arbitrary $\hat{f}_{l}^{j^{\prime \prime}}\left(j^{\prime \prime} \in J^{\prime \prime}, l \geq 1\right)$ whenever $\boldsymbol{x} \notin \Sigma\left(\boldsymbol{f}^{J^{\prime \prime}}\right)$. This implies that $W^{\prime}(\boldsymbol{p}) \subset S_{f}(\boldsymbol{p})$.

We present a trick to describe $S_{f}(\boldsymbol{\gamma})=\bigcup_{\boldsymbol{p}: \boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}} S_{f}(\boldsymbol{p})$ where $S_{f}(\boldsymbol{p})$ is the set defined by (2.4).

Assume that \boldsymbol{f} does not satisfy (1.5) for some face $\boldsymbol{\gamma}$. We take a primitive $\boldsymbol{p} \in$ $\mathbb{Z}^{n} \backslash\left(\mathbb{Z}_{\geq}\right)^{n}$, so that $\boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}$. Here, \boldsymbol{p} is primitive means that the greatest common divisor of all components of \boldsymbol{p} is 1 . Assume that there exists a rational map $\mathbb{K}^{m} \times \mathbb{K}^{n} \rightarrow$ $\mathbb{K}^{n},(\boldsymbol{x}, \boldsymbol{z}) \mapsto \Psi(\boldsymbol{x}, \boldsymbol{z})$ with the following properties.

- There exist a certain rational map $\boldsymbol{g}: \mathbb{K}^{m} \rightarrow \mathbb{K}^{n}$, possibly with points of indeterminacy, so that $\boldsymbol{f}(\boldsymbol{x})=\Psi(\boldsymbol{x}, \boldsymbol{g}(\boldsymbol{x}))$, and \boldsymbol{g} satisfies (1.5) for the face supported by p.
- The limit $\lim _{t \rightarrow 0} \Psi(\boldsymbol{x}(t), \boldsymbol{z})$ exists for $\boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p})$. We assume that this limit depends on \boldsymbol{v}_{0}, and denote the limit by $\Psi_{v_{0}}(\boldsymbol{z})$, under the notation in (2.1) and(2.2),
- The limit $\lim _{t \rightarrow 0} \boldsymbol{g}(\boldsymbol{x}(t))$ for $\boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p})$ exists.

Theorem 5.3 Under the notations and assumptions above, the set $S_{f}(\boldsymbol{p}), \boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}$, is in the image of the following map:

$$
Z\left(\boldsymbol{g}_{\boldsymbol{y}(p)}^{J}\right) \times \mathbb{K}^{J} \rightarrow \mathbb{K}^{n},\left(\boldsymbol{x}, z^{J}\right) \mapsto \Psi_{x}\left(\boldsymbol{g}_{\boldsymbol{y}(p)}^{J^{c}}(\boldsymbol{x}) \times z^{J}\right), J=J_{\boldsymbol{\gamma}(\boldsymbol{g} ; \boldsymbol{p})} .
$$

Proof For $\boldsymbol{p} \in \mathbb{Z}^{n} \backslash\left(\mathbb{Z}_{\geq}\right)^{n}$

$$
\begin{aligned}
S_{f}(\boldsymbol{p}) & =\left\{\boldsymbol{y} \in \mathbb{K}^{n}: \exists \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p}), \lim _{t \rightarrow 0} f(\boldsymbol{x}(t))=\boldsymbol{y}\right\} \\
& =\left\{\boldsymbol{y} \in \mathbb{K}^{n}: \exists \boldsymbol{x}(t) \in \mathcal{A}(\boldsymbol{p}), \lim _{t \rightarrow 0} \Psi(\boldsymbol{x}(t), \boldsymbol{g}(\boldsymbol{x}(t)))=\boldsymbol{y}\right\} \\
& \subset\left\{\boldsymbol{y} \in \mathbb{K}^{n}: \exists \boldsymbol{v}_{0} \in\left(\mathbb{K}^{*}\right)^{m}, \exists z \in \mathbb{K}^{n}, \boldsymbol{y}=\Psi_{v_{0}}(z), g_{\gamma_{j}(\boldsymbol{p})}^{j}\left(\boldsymbol{v}_{0}\right)=\left\{\begin{array}{ll}
0 & (j \in J) \\
z^{j} & (j \notin J)
\end{array}\right\}\right. \\
& =\left\{\boldsymbol{y} \in \mathbb{K}^{n}: \exists \boldsymbol{v}_{0} \in Z\left(\boldsymbol{g}_{\boldsymbol{\gamma}(\boldsymbol{p})}^{J}\right), \exists z \in \mathbb{K}^{n}, \boldsymbol{y}=\Psi_{v_{0}}(z), g_{\gamma_{j}(\boldsymbol{p})}^{j}\left(\boldsymbol{v}_{0}\right)=z^{j}(j \notin J)\right\} .
\end{aligned}
$$

Since $S_{f}(\boldsymbol{\gamma})=\bigcup_{p: \boldsymbol{\gamma}(\boldsymbol{p})=\boldsymbol{\gamma}} S_{f}(\boldsymbol{p})$, this may describe $S_{f}(\boldsymbol{\gamma})$, as we see in the following example.

Example 5.4 Consider the map $f: \mathbb{K}^{3} \rightarrow \mathbb{K}^{3}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(1+x_{1} x_{3}+x_{2} x_{3}, 1+x_{1}\left(1-x_{1} x_{3}+x_{2} x_{3}\right), 1+x_{2}\left(1-x_{1} x_{3}+x_{2} x_{3}\right)\right) .
$$

The map \boldsymbol{f} satisfies the condition (1.5) except the face $\boldsymbol{\gamma}(-1,-1,1)$, as we see in the following data.

\boldsymbol{p}	$\boldsymbol{f}_{\boldsymbol{\gamma}(\boldsymbol{p})}$	$\left(d_{1}, d_{2}, d_{3}\right)$	$J_{\boldsymbol{\gamma}(\boldsymbol{p})}$
$(1,1,-1)$	$\left(1+x_{1} x_{3}+x_{2} x_{3}, 1,1\right)$	$(0,0,0)$	\emptyset
$(1,1,-2)$	$\left(x_{3}\left(x_{1}+x_{2}\right), 1+x_{1} x_{3}\left(x_{2}-x_{1}\right), 1+x_{2} x_{3}\left(x_{2}-x_{1}\right)\right)$	$(1,0,0)$	$\{1\}$
$(-1,0,1)$	$\left(1+x_{1} x_{3}, x_{1}\left(1-x_{1} x_{3}\right), 1+x_{2}-x_{1} x_{2} x_{3}\right)$	$(0,1,0)$	$\{2\}$
$(0,-1,1)$	$\left(1+x_{2} x_{3}, 1+x_{1}+x_{1} x_{2} x_{3}, x_{2}\left(1+x_{2} x_{3}\right)\right)$	$(0,0,1)$	$\{3\}$
$(-1,-1,1)$	$\left(1+x_{1} x_{3}+x_{2} x_{3}, x_{1}\left(1-x_{1} x_{3}+x_{2} x_{3}\right), x_{2}\left(1-x_{1} x_{3}+x_{2} x_{3}\right)\right)$	$(0,1,1)$	$\{2,3\}$

We easily see that

$$
\begin{array}{ll}
S_{\boldsymbol{y}(1,1,-1)}(\boldsymbol{f})=\left\{y_{1}=y_{3}=1\right\}, & S_{\boldsymbol{y}(1,1,-2)}(\boldsymbol{f})=\left\{y_{2}+y_{3}=2\right\} \\
S_{\boldsymbol{\gamma}(-1,0,1)}(\boldsymbol{f})=\left\{y_{1}=2, y_{3}=1\right\}, & S_{\boldsymbol{y}(0,-1,1)}(\boldsymbol{f})=\left\{y_{1}=0, y_{2}=1\right\}
\end{array}
$$

We also have that

$$
\begin{aligned}
W(-1,-1,1) & =\left\{\begin{array}{cc}
\left(y_{1}, y_{2}, y_{3}\right): \exists\left(x_{1}, x_{2}, x_{3}\right) 1-x_{1} x_{3}+x_{2} x_{3}=0, y_{1}=1+x_{1} x_{3}+x_{2} x_{3} \\
\operatorname{rank}\left(\begin{array}{c}
1-2 x_{1} x_{3}+x_{2} x_{3} \\
x_{2} x_{3} \\
x_{1} x_{3} \\
x_{1}\left(x_{2}-x_{1}\right) 1-y_{2} \\
1-x_{1} x_{3}+2 x_{2} x_{3} \\
x_{2}\left(x_{2}-x_{1}\right) 1-y_{3}
\end{array}\right)=1
\end{array}\right\} \\
& =\left\{y_{1}\left(y_{2}-y_{3}\right)-2 y_{2}+2=0\right\} .
\end{aligned}
$$

We will show that this coincides with $S_{\boldsymbol{\gamma}(-1,-1,1)}(\boldsymbol{f})$, considering the rational map

$$
\Phi: \mathbb{K}^{3} \times \mathbb{K}^{3} \rightarrow \mathbb{K}^{3},(\boldsymbol{x}, \boldsymbol{y}) \mapsto z=\left(z_{1}, z_{2}, z_{3}\right)=\left(y_{1}, y_{2},-\frac{x_{2}}{x_{1}} y_{2}+y_{3}\right)
$$

Remark that $\boldsymbol{g}(\boldsymbol{x})=\Phi(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$ defines the map

$$
\mathbb{K}^{*} \times \mathbb{K}^{2} \rightarrow \mathbb{K}^{3},\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(1+x_{1} x_{3}+x_{2} x_{3}, 1+x_{1}\left(1-x_{1} x_{3}+x_{2} x_{3}\right), 1-\frac{x_{2}}{x_{1}}\right),
$$

and obtain the following data:

\boldsymbol{p}	$\boldsymbol{g}_{\boldsymbol{\gamma}(\boldsymbol{p})}$	$\left(d_{1}, d_{2}, d_{3}\right)$	$J_{\boldsymbol{\gamma}(\boldsymbol{p})}$
$(-1,-1,1)$	$\left(1+x_{1} x_{2}+x_{1} x_{3}, x_{1}\left(1-x_{1} x_{2}+x_{2} x_{3}\right), 1-\frac{x_{2}}{x_{1}}\right)$	$(0,1,0)$	$\{2\}$

As in the proof of Theorem 1.8, we conclude that

$$
\begin{align*}
S_{\boldsymbol{\gamma}(-1,-1,1)}(\boldsymbol{g}) & =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{K}^{3}: \begin{array}{c}
\exists\left(x_{1}, x_{2}, x_{3}\right) 1-x_{1} x_{3}+x_{2} x_{3}=0 \\
\left(z_{1}, z_{3}\right)=\left(1+x_{1} x_{3}+x_{2} x_{3}, 1-x_{2} / x_{1}\right)
\end{array}\right\} \\
& =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{K}^{3}: z_{1} z_{3}=2\right\} . \tag{5.2}
\end{align*}
$$

For $\left(x_{1}, x_{2}, x_{3}\right)$ in (5.2), we have

$$
-\frac{x_{2}}{x_{1}}=\left(1-\frac{x_{2}}{x_{1}}\right)-1=z_{3}-1=\frac{2}{z_{1}}-1=\frac{2}{y_{1}}-1 .
$$

Setting

$$
\Psi: \mathbb{K}^{3} \times \mathbb{K}^{3} \rightarrow \mathbb{K}^{3},(\boldsymbol{x}, \boldsymbol{y}) \mapsto z=\left(y_{1}, y_{2}, \frac{x_{2}}{x_{1}} y_{2}+y_{3}\right)
$$

we have $\boldsymbol{y}=\Psi(\boldsymbol{x}, \Phi(\boldsymbol{x}, \boldsymbol{y}))$, and thus, $\boldsymbol{f}(\boldsymbol{x})=\Psi(\boldsymbol{x}, \boldsymbol{g}(\boldsymbol{x}))$. The set

$$
\Psi\left(Z\left(\boldsymbol{g}_{\boldsymbol{\gamma}(-1,1,1)}^{2}\right) \times S_{\boldsymbol{g}(-1,-1,1)}\right) \text { is defined by } y_{1}\left(\left(\frac{2}{y_{1}}-1\right) y_{2}+y_{3}\right)=z_{1} z_{3}=2
$$

and we obtain $S_{f}(\boldsymbol{\gamma}(-1,-1,1))=\left\{y_{1} y_{2}-y_{1} y_{3}-2 y_{2}+2=0\right\}$.
We thus obtain that $S_{f}=\left\{y_{1}+y_{3}=2\right\} \cup\left\{y_{1} y_{2}-y_{1} y_{3}-2 y_{2}+2=0\right\}$.
Example 5.5 Let us use the first trick to handle Example 5.4. We consider the map $\boldsymbol{h}: \mathbb{K}^{4} \rightarrow \mathbb{K}^{4}$ defined by
$\boldsymbol{h}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(1+x_{1} x_{3}+x_{2} x_{3}, 1+x_{1} x_{4}, 1+x_{2} x_{4}, 1-x_{1} x_{3}+x_{2} x_{3}-x_{4}\right)$,
since $\boldsymbol{f}\left(x_{1}, x_{2}, x_{3}\right)=\boldsymbol{h}\left(x_{1}, x_{2}, x_{3}, 1-x_{1} x_{3}+x_{2} x_{3}\right)$. We analyze $\boldsymbol{h}(\boldsymbol{x}(t))$ for $\boldsymbol{x}(t) \in$ $\mathcal{A}(-1,-1,1,1)$, because $\boldsymbol{p}=(-1,-1,1, k), k \geq 1$, supports a three-dimensional face of $\boldsymbol{\Delta}(\mathrm{g})$ if and only if $k=1$. Setting
$\boldsymbol{x}(t)=\left(t^{-1}\left(x_{0}^{1}+x_{1}^{1} t+\cdots\right), t^{-1}\left(x_{0}^{2}+x_{1}^{1} t+\cdots\right), t\left(x_{0}^{3}+x_{1}^{3} t+\cdots\right), t\left(x_{0}^{4}+x_{1}^{4} t+\cdots\right)\right)$,
we have
$\boldsymbol{h}(\boldsymbol{x}(t))=\left(1+x_{0}^{1} x_{0}^{3}+x_{0}^{2} x_{0}^{3}, 1+x_{0}^{1} x_{0}^{4}, 1+x_{0}^{2} x_{0}^{4}, 1-x_{0}^{1} x_{0}^{3}-x_{0}^{2} x_{0}^{3}-x_{0}^{4}\right)+o(t)$.
Assuming $\boldsymbol{x}(t)$ is in $X=\left\{\boldsymbol{x} \in \mathbb{K}^{4}: 1-x_{1} x_{3}+x_{2} x_{3}=x_{4}\right\}$, we obtain that $1-x_{0}^{1} x_{0}^{3}-$ $x_{0}^{2} x_{0}^{3}=x_{0}^{4}$. Under this condition, we eliminate $x_{0}^{1}, x_{0}^{2}, x_{0}^{3}$ from the system

$$
\left(1+x_{0}^{1} x_{0}^{3}+x_{0}^{2} x_{0}^{3}, 1+x_{0}^{1} x_{0}^{4}, 1+x_{0}^{2} x_{0}^{4}, 1-x_{0}^{1} x_{0}^{3}-x_{0}^{2} x_{0}^{3}\right)=\left(y_{1}, y_{2}, y_{3}, 0\right),
$$

we conclude that $S_{\boldsymbol{\gamma}(-1,-1,1,1)}(\boldsymbol{h})=\left\{2-2 y_{2}-y_{1} y_{3}+y_{1} y_{2}=0\right\} \times\{0\}$. We thus obtain that $S_{f}=\left\{y_{1}+y_{3}=2\right\} \cup\left\{y_{1} y_{2}-y_{1} y_{3}-2 y_{2}+2=0\right\}$.

References

1. Artin, M.: On the solutions of analytic equations. Invent. Math. 5, 277-291 (1968)
2. Chen, Y., Dias, L.R.G., Takeuchi, K., Tibăr, M.: Invertible polynomial mappings via Newton nondegeneracy. Ann. Inst. Fourier Grenoble 64(5), 1807-1822 (2014)
3. El Hilany, B.: Describing the Jelonek set of polynomial maps via Newton polytopes. https://arxiv.org/ abs/1909.07016v1
4. Jelonek, Z.: The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, 259-266 (1993)
5. Jelonek, Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315(1), 1-35 (1999)
6. Jelonek, Z., Lasoń, M.: Quantitative properties of the non-properness set of a polynomial map. Manuscr. Math. 156, 383-397 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: The first author is supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) Grant Number 19K03486.
 All data generated or analyzed during this study are included in this published article.

 Toshizumi Fukui
 tfukui@rimath.saitama-u.ac.jp
 Takeki Tsuchiya
 tkk.hst.tty.sh009@gmail.com
 1 Department of Mathematics, Saitama University, Saitama 338-8570, Japan

