**RESEARCH CONTRIBUTION** 



# Maximum Likelihood Degree of Surjective Rational Maps

Ilya Karzhemanov<sup>1</sup>

Received: 6 April 2021 / Revised: 4 March 2022 / Accepted: 2 May 2022 / Published online: 25 May 2022 © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

## Abstract

With any *surjective rational map*  $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$  of the projective space, we associate a numerical invariant (*ML degree*) and compute it in terms of a naturally defined vector bundle  $E_f \longrightarrow \mathbb{P}^n$ .

Keywords Surjective rational map · Vector bundle · Chern number

### Mathematics Subject Classification $14E05\cdot 14N10\cdot 14F10$

With a collection of effective divisors  $D_0, \ldots, D_m$  in the projective space  $\mathbb{P} := \mathbb{CP}^n$ is associated the *maximum likelihood degree*  $(-1)^n e_{top}(\mathbb{P} \setminus D), D := \bigcup_{i=0}^m D_i$ . Alternatively, letting  $\Omega^1_{\mathbb{P}}(\log D)$  be the *Saito's sheaf*, i.e., the *double dual* of the sheaf of logarithmic differential 1-forms, one computes the ML degree as the top Chern class  $c_n(\Omega^1_{\mathbb{P}}(\log D))$  (we refer to [2, 4] for basic properties of ML degree, its connections with algebraic statistics, topology of arrangements, combinatorics, etc.). Note, however, that it is difficult to compute  $c_n(\Omega^1_{\mathbb{P}}(\log D))$  in general (when *D* is not SNC).

In the present note, we study the ML degree under the condition that defining polynomials  $f_i$  of  $D_i$ ,  $0 \le i \le m = n$ , span the linear system of a *surjective rational map*  $f : \mathbb{P} \longrightarrow \mathbb{P}$  (see [1] and [6] for some aspects of such maps). Our main result (proved along the lines that follow) is the next.

**Theorem 1** In the previous setting, the ML degree  $c_n(\Omega^1_{\mathbb{P}}(\log D))$  is equal to the coefficient of  $z^n$  in  $\frac{(1-z\mathcal{O}_{\mathbb{P}}(1))^{n+1}}{\prod_{i=0}^n (1-z\mathcal{O}_{\mathbb{P}}(D'_i))}$ , where  $\bigcup_{i=0}^n D'_i =: D_{red}$  is the reduced scheme associated with D (so that  $D = D_{red}$  as sets).

For a vector bundle E over  $\mathbb{P}$ , given by an affine open cover  $\mathbb{P} = \bigcup_{\alpha} U_{\alpha}$ and transition functions  $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \longrightarrow \operatorname{GL}(r, \mathbb{C})$ , the *pullback*  $f^*(E)$  on  $\mathbb{P} \setminus \{\Sigma := \text{ base locus of } f\}$  is defined as usual (due to the surjectivity of f), via

☑ Ilya Karzhemanov karzhemanov.iv@mipt.ru

<sup>&</sup>lt;sup>1</sup> Laboratory of AGHA, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia

 $f^{-1}(U_{\alpha})$  and  $f^*(g_{\alpha\beta})$ . Note that all  $f^{-1}(U_{\alpha})$  are affine open in  $\mathbb{P}$ . Let  $\cup_k U_{\alpha,k}$  be an affine open cover of  $f^{-1}(U_{\alpha})$ , such that  $\mathbb{P} = \bigcup_{\alpha,k} U_{\alpha,k}$ . Then, since  $\operatorname{codim} \Sigma > 1$  and  $f^*(g_{\alpha\beta})$  are *algebraic*, every  $f^*(g_{\alpha\beta})$  extends through  $U_{\alpha,k} \cap U_{\beta,m} \cap \Sigma$  to each  $U_{\alpha,k} \cap U_{\beta,m}$ . Furthermore, the 1-cocyle property of  $f^*(g_{\alpha\beta})$  (considered on  $(\bigcup_k U_{\alpha,k}) \cap (\bigcup_m U_{\beta,m}) \supseteq f^{-1}(U_{\alpha}) \cap f^{-1}(U_{\beta}))$  is preserved and one gets a vector bundle, over  $\mathbb{P}$ , which we denote again by  $f^*(E)$ .

Furthermore, let  $x_0, \ldots, x_n$  be projective coordinates on  $\mathbb{P}$ , such that  $f^*(x_i) = f_i$ . Denote by *H* the union of coordinate hyperplanes  $H_i := (x_i = 0) \subset \mathbb{P}$ . There is an exact sequence

$$0 \longrightarrow \Omega^{1}_{\mathbb{P}} \xrightarrow{\psi_{H}} \Omega^{1}_{\mathbb{P}}(\log H) \xrightarrow{\varphi_{H}} \bigoplus_{i=0}^{n} \mathcal{O}_{H_{i}} \longrightarrow 0$$
(2)

(see, e.g., [2, Lemma 2]). We have  $f^*(\mathcal{O}_{\mathbb{P}}) = \mathcal{O}_{\mathbb{P}}$  and  $f^*(\mathcal{O}_{\mathbb{P}}(H)) = \mathcal{O}_{\mathbb{P}}(D)$  by construction. Then, (2) pulls back to an exact sequence

$$f^*(\Omega^1_{\mathbb{P}}) \xrightarrow{\psi_D} f^*(\Omega^1_{\mathbb{P}}(\log H)) \xrightarrow{\varphi_D} f^*\left(\bigoplus_{i=0}^n \mathcal{O}_{H_i}\right) = \bigoplus_{i=0}^n \mathcal{O}_{D_i}.$$
 (3)

Note, however, that the morphism  $\psi_D := f^*(\psi_H)$  (resp.  $\varphi_D := f^*(\varphi_H)$ ) need not be injective (resp. surjective)—see below.

Lemma 4  $f^*(\Omega^1_{\mathbb{P}}(\log H)) = \Omega^1_{\mathbb{P}}(\log D).$ 

**Proof** The bundle  $\Omega^1_{\mathbb{P}}(\log H)$  (resp.  $\Omega^1_{\mathbb{P}}(\log D)$ ) is trivial over an affine open set not containing H (resp. D). Hence, as  $f^*(\mathcal{O}_{\mathbb{P}}) = \mathcal{O}_{\mathbb{P}}$ , it suffices to restrict to an affine open  $U \subset \mathbb{P}^n$  (resp.  $f^{-1}(U)$ ), such that  $U \cap H \neq \emptyset$  (we may also assume that  $x_0 \neq 0$  on U). Then,  $\Omega^1_{\mathbb{P}}(\log H)|_U$  is generated by the local sections  $\sum_{i=1}^n c_i \log x_i, c_i \in \mathbb{C}$ , whereas  $f^*(\Omega^1_{\mathbb{P}}(\log H))|_{f^{-1}(U)}$  is generated by  $\sum_{i=1}^n c_i \log f^*(x_i)$  (as usual we take double duals when needed). This yields  $f^*(\Omega^1_{\mathbb{P}}(\log H))|_{f^{-1}(U)} = \Omega^1_{\mathbb{P}}(\log D)|_{f^{-1}(U)}$  and the result follows.

Before finding  $f^*(\Omega^1_{\mathbb{P}})$ , we need an auxiliary construction. Namely, put  $d_f :=$  deg  $f_i$  and consider the subspace  $V \subset H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(d_f))$  spanned by  $f_0, \ldots, f_n$ . Recall that by Kodaira's construction of rational maps via linear systems, every point  $p \in f(\mathbb{P}\backslash\Sigma)$  is represented by hyperplane  $H_p \subset V$ , which consists of all polynomials from V vanishing at  $f^{-1}(p)$ . Then, since f is surjective, this defines a *vector bundle*  $E_f \longrightarrow \mathbb{P} = f(\mathbb{P}\backslash\Sigma)$ , with fibers  $E_{f,p} = H_p$  for all p, and an exact sequence

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathbb{C}^{n+1} \longrightarrow E_f \longrightarrow 0 \tag{5}$$

for some line bundle  $\mathcal{L}$ . It is easy to prove (by induction on *n*) that  $\mathcal{L} = \mathcal{O}_{\mathbb{P}}(-n-1)$ . This implies that both  $E_f$  and  $f^*(E_f)$  are generated by global sections.

We now prove the following ("Hurwitz-type"):

Lemma 6 
$$f^*(\Omega^1_{\mathbb{P}}) \subseteq \Omega^1_{\mathbb{P}} \otimes_{\mathcal{O}_{\mathbb{P}}} \mathcal{O}_{\mathbb{P}}(-d_f+1).$$

**Proof** Each global section of  $f^*(E_f)$  is given by some choice of a basis (=  $\{x_0, \ldots, x_n\}$ ) in  $\mathbb{C}^{n+1}$  and a way every  $p \in \mathbb{P}$  (identified with  $\sum p_i x_i$  for  $p_i \in \mathbb{C}$ ) is represented by a point in  $V \simeq \mathbb{C}^{n+1} = H^0(\mathbb{P}, E_f)$ . This yields a *surjection* 

$$\mathcal{H}om_{\mathcal{O}_{\mathbb{P}}}(\mathcal{O}_{\mathbb{P}}(1), E_f \otimes_{\mathcal{O}_{\mathbb{P}}} \mathcal{O}_{\mathbb{P}}(d_f)) = E_f \otimes_{\mathcal{O}_{\mathbb{P}}} \mathcal{O}_{\mathbb{P}}(d_f - 1) \twoheadrightarrow f^*(E_f)$$

of vector bundles generated by global sections.

Now, observe that  $E_f \simeq T_{\mathbb{P}}$  (= the dual of  $\Omega^1_{\mathbb{P}}$ ) by (5) and [5, Theorem 3.1]. Hence,  $f^*(\Omega^1_{\mathbb{P}})$  embeds into  $\Omega^1_{\mathbb{P}} \otimes_{\mathcal{O}_{\mathbb{P}}} \mathcal{O}_{\mathbb{P}}(-d_f + 1)$  by duality.

Note that  $\Omega^1_{\mathbb{P}}(\log D) = \Omega^1_{\mathbb{P}}(\log D_{\text{red}})$  (cf. the proof of Lemma 4). Hence,  $\varphi_D(\Omega^1_{\mathbb{P}}(\log D)) = \bigoplus_{i=0}^n \mathcal{O}_{D'_i}$ . Further, it follows from (3) and Lemma 6 that the kernel of  $\varphi_D$  is a subsheaf of  $\psi_D(\Omega^1_{\mathbb{P}} \otimes \mathcal{O}_{\mathbb{P}}(-d_f + 1))$ , whose general local section is easily seen (by restricting on  $\mathbb{P} \setminus \Sigma$ ) to coincide with a holomorphic 1-form, which vanishes *at most* on  $D_{\text{red}}$ . One actually finds that this is a *subbundle* of  $\Omega^1_{\mathbb{P}}$  generated by all such 1-forms. Thus, we get Ker  $\varphi_D = \Omega^1_{\mathbb{P}}$  and an exact sequence

$$0 \longrightarrow \Omega^1_{\mathbb{P}} \longrightarrow \Omega^1_{\mathbb{P}}(\log D) \longrightarrow \bigoplus_{i=0}^n \mathcal{O}_{D'_i} \longrightarrow 0.$$

Taking the total Chern class of the latter concludes the proof of Theorem 1.

**Remark 7** We summarize that any f defines, *canonically*, a fiberwise non-degenerate element  $e \in \text{Hom}(\mathbb{P}; T_{\mathbb{P}}, T_{\mathbb{P}} \otimes \mathcal{O}_{\mathbb{P}}(d_f - 1))$ . This can also be seen as follows. Namely, the embedding  $\mathcal{L} \subset \mathbb{C}^{n+1}$  in (5) is given by some global sections  $s_0, \ldots, s_n \in$  $H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(n + 1))$ , so that  $x_i \mapsto s_i$ ,  $0 \le i \le n$ , defines a *regular surjective* selfmap of  $\mathbb{P}$ . This yields a family (a "field")  $\{H_p\}$  of hyperlines on  $\mathbb{P} \ni p$ . After choosing e, one gets another family  $\{H'_p\}$ , where  $H'_p \simeq H_p$  are spaces of forms of degree  $d_f$ and  $\bigcup H'_p = V$ . Identify  $H'_p$  with the set of corresponding hypersurfaces that vanish at p. The map f is now obtained by sending each  $p \in H'_p$  to  $H_p$  (it is defined exactly on  $\mathbb{P} \setminus \bigcap H'_p$ ). One thus obtains a description of the moduli spaces of surjective maps f. It would be interesting to relate this picture with [3], where the moduli of degree k rational self-maps of  $\mathbb{P}^1$  were interpreted as the moduli of (pairs of) *monopoles*, having magnetic charge k.

**Example 8** The need for  $D_{\text{red}}$  in Theorem 1 is justified by the *Frobenius map* f, given by  $f_i := x_i^{d_f}, 0 \le i \le n$ ; ML degree of f equals  $(-1)^n e_{\text{top}}((\mathbb{C}^*)^n) = \mathbf{0}$  in this case. Furthermore, one computes the ML degree of f in [6, Example1.6] to be  $\mathbf{9}$ , which can also be seen directly from [2, Corollary 6] (here, the divisors  $D_i$  satisfy the *GNC condition*). Indeed, in this case,  $D_i$  are reduced and deg  $f_i = 2$  for all i, so that the

#### expression with Chern classes from Theorem 1 becomes

$$\frac{(1-z\mathcal{O}_{\mathbb{P}}(1))^3}{(1-z\mathcal{O}_{\mathbb{P}}(2))^3} = (1-z\mathcal{O}_{\mathbb{P}}(1))^3(1+z\mathcal{O}_{\mathbb{P}}(2)+4z^2)^3$$
$$= (1+z\mathcal{O}_{\mathbb{P}}(1)+2z^2)^3 = 1+3(z\mathcal{O}_{\mathbb{P}}(1)+2z^2)$$
$$+3(z\mathcal{O}_{\mathbb{P}}(1)+2z^2)^2 = 1+z\mathcal{O}_{\mathbb{P}}(3)+9z^2.$$

Acknowledgements I am grateful to anonymous referee for helpful comments and corrections.

### References

- Arutyunov, A.V.: Smooth abnormal problems in extremum theory and analysis. Russian Math. Surveys. 67(3), 403–457 (2012)
- Catanese, F., Hosten, S., Khetan, A., Sturmfels, B.: The maximum likelihood degree. Amer. J. Math. 128(3), 671–697 (2006)
- Donaldson, S.: Nahm's equations and the classification of monopoles. Commun. Math. Phys. 96(3), 387–407 (1984)
- Huh, J.: The maximum likelihood degree of a very affine variety. Compos. Math. 149(8), 1245–1266 (2013)
- Hwang, J.-M.: Deformations of the tangent bundle and their restriction to standard rational curves. Acta Math. Vietnam. 35(1), 71–77 (2010)
- Karzhemanov, I., Zhdanovskiy, I.: Some properties of surjective rational maps. Eur. J. Math. 4(1), 326–329 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.