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Abstract
With any surjective rational map f : Pn ��� P

n of the projective space, we associate a
numerical invariant (ML degree) and compute it in terms of a naturally defined vector
bundle E f −→ P

n .
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With a collection of effective divisors D0, . . . , Dm in the projective space P := CP

n

is associated the maximum likelihood degree (−1)netop(P\D), D := ⋃m
i=0 Di . Alter-

natively, letting �1
P
(log D) be the Saito’s sheaf, i.e., the double dual of the sheaf of

logarithmic differential 1-forms, one computes the ML degree as the top Chern class
cn(�1

P
(log D)) (we refer to [2, 4] for basic properties of ML degree, its connections

with algebraic statistics, topology of arrangements, combinatorics, etc.). Note, how-
ever, that it is difficult to compute cn(�1

P
(log D)) in general (when D is not SNC).

In the present note, we study the ML degree under the condition that defining
polynomials fi of Di , 0 ≤ i ≤ m = n, span the linear system of a surjective rational
map f : P ��� P (see [1] and [6] for some aspects of such maps). Our main result
(proved along the lines that follow) is the next.

Theorem 1 In the previous setting, the ML degree cn(�1
P
(log D)) is equal to the

coefficient of zn in (1−zOP(1))n+1
∏n

i=0(1−zOP(D′
i ))

, where
⋃n

i=0 D′
i =: Dred is the reduced scheme

associated with D (so that D = Dred as sets).

For a vector bundle E over P, given by an affine open cover P = ∪α Uα

and transition functions gαβ : Uα ∩ Uβ −→ GL(r ,C), the pullback f ∗(E) on
P\{� := base locus of f } is defined as usual (due to the surjectivity of f ), via
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f −1(Uα) and f ∗(gαβ). Note that all f −1(Uα) are affine open in P. Let ∪k Uα,k be an
affine open cover of f −1(Uα), such that P = ∪α,k Uα,k . Then, since codim� > 1
and f ∗(gαβ) are algebraic, every f ∗(gαβ) extends through Uα,k ∩ Uβ,m ∩ � to
each Uα,k ∩ Uβ,m . Furthermore, the 1-cocyle property of f ∗(gαβ) (considered on
(∪k Uα,k) ∩ (∪m Uβ,m) ⊇ f −1(Uα) ∩ f −1(Uβ)) is preserved and one gets a vector
bundle, over P, which we denote again by f ∗(E).

Furthermore, let x0, . . . , xn be projective coordinates on P, such that f ∗(xi ) = fi .
Denote by H the union of coordinate hyperplanes Hi := (xi = 0) ⊂ P. There is an
exact sequence

0 −→ �1
P

ψH−→ �1
P
(log H)

ϕH−→
n⊕

i=0

OHi −→ 0 (2)

(see, e.g., [2, Lemma 2]). We have f ∗(OP) = OP and f ∗(OP(H)) = OP(D) by
construction. Then, (2) pulls back to an exact sequence

f ∗(�1
P
)

ψD−→ f ∗(�1
P
(log H))

ϕD−→ f ∗
(

n⊕

i=0

OHi

)

=
n⊕

i=0

ODi . (3)

Note, however, that the morphism ψD := f ∗(ψH ) (resp. ϕD := f ∗(ϕH )) need not be
injective (resp. surjective)—see below.

Lemma 4 f ∗(�1
P
(log H)) = �1

P
(log D).

Proof The bundle �1
P
(log H) (resp. �1

P
(log D)) is trivial over an affine open set not

containing H (resp. D). Hence, as f ∗(OP) = OP, it suffices to restrict to an affine
open U ⊂ P

n (resp. f −1(U )), such that U ∩ H 
= ∅ (we may also assume that x0 
= 0
on U ). Then, �1

P
(log H)

∣
∣
U is generated by the local sections

∑n
i=1 ci log xi , ci ∈ C,

whereas f ∗(�1
P
(log H))

∣
∣

f −1(U )
is generated by

∑n
i=1 ci log f ∗(xi ) (as usual we take

double duals when needed). This yields f ∗(�1
P
(log H))

∣
∣

f −1(U )
= �1

P
(log D)

∣
∣

f −1(U )

and the result follows. �
Before finding f ∗(�1

P
), we need an auxiliary construction. Namely, put d f :=

deg fi and consider the subspace V ⊂ H0(P,OP(d f )) spanned by f0, . . . , fn . Recall
that by Kodaira’s construction of rational maps via linear systems, every point p ∈
f (P\�) is represented by hyperplane Hp ⊂ V , which consists of all polynomials
from V vanishing at f −1(p). Then, since f is surjective, this defines a vector bundle
E f −→ P = f (P\�), with fibers E f ,p = Hp for all p, and an exact sequence

0 −→ L −→ C
n+1 −→ E f −→ 0 (5)

for some line bundle L. It is easy to prove (by induction on n) that L = OP(−n − 1).
This implies that both E f and f ∗(E f ) are generated by global sections.

We now prove the following (“Hurwitz-type”):
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Lemma 6 f ∗(�1
P
) ⊆ �1

P
⊗OP

OP(−d f + 1).

Proof Each global section of f ∗(E f ) is given by some choice of a basis (=
{x0, . . . , xn}) in C

n+1 and a way every p ∈ P (identified with
∑

pi xi for pi ∈ C) is
represented by a point in V � C

n+1 = H0(P, E f ). This yields a surjection

HomOP
(OP(1), E f ⊗OP

OP(d f )) = E f ⊗OP
OP(d f − 1) � f ∗(E f )

of vector bundles generated by global sections.
Now, observe that E f � TP (= the dual of�1

P
) by (5) and [5, Theorem 3.1]. Hence,

f ∗(�1
P
) embeds into �1

P
⊗OP

OP(−d f + 1) by duality. �

Note that �1
P
(log D) = �1

P
(log Dred) (cf. the proof of Lemma 4). Hence,

ϕD(�1
P
(log D)) = ⊕n

i=0 OD′
i
. Further, it follows from (3) and Lemma 6 that the

kernel of ϕD is a subsheaf of ψD(�1
P

⊗ OP(−d f + 1)), whose general local section
is easily seen (by restricting on P\�) to coincide with a holomorphic 1-form, which
vanishes at most on Dred. One actually finds that this is a subbundle of �1

P
generated

by all such 1-forms. Thus, we get Ker ϕD = �1
P
and an exact sequence

0 −→ �1
P

−→ �1
P
(log D) −→

n⊕

i=0

OD′
i
−→ 0.

Taking the total Chern class of the latter concludes the proof of Theorem 1.

Remark 7 We summarize that any f defines, canonically, a fiberwise non-degenerate
element e ∈ Hom (P; TP, TP⊗OP(d f −1)). This can also be seen as follows. Namely,
the embedding L ⊂ C

n+1 in (5) is given by some global sections s0, . . . , sn ∈
H0(P,OP(n + 1)), so that xi �→ si , 0 ≤ i ≤ n, defines a regular surjective self-
map of P. This yields a family (a “field”) {Hp} of hyperlines on P � p. After choosing
e, one gets another family {H ′

p}, where H ′
p � Hp are spaces of forms of degree d f

and
⋃

H ′
p = V . Identify H ′

p with the set of corresponding hypersurfaces that vanish

at p. The map f is now obtained by sending each p ∈ H ′
p to Hp (it is defined exactly

on P\
⋂

H ′
p). One thus obtains a description of the moduli spaces of surjective maps

f . It would be interesting to relate this picture with [3], where the moduli of degree
k rational self-maps of P1 were interpreted as the moduli of (pairs of) monopoles,
having magnetic charge k.

Example 8 The need for Dred in Theorem 1 is justified by the Frobenius map f , given

by fi := x
d f
i , 0 ≤ i ≤ n; ML degree of f equals (−1)netop((C∗)n) = 0 in this case.

Furthermore, one computes the ML degree of f in [6, Example1.6] to be 9, which
can also be seen directly from [2, Corollary 6] (here, the divisors Di satisfy the GNC
condition). Indeed, in this case, Di are reduced and deg fi = 2 for all i , so that the
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expression with Chern classes from Theorem 1 becomes

(1 − zOP(1))3

(1 − zOP(2))3
= (1 − zOP(1))3(1 + zOP(2) + 4z2)3

= (1 + zOP(1) + 2z2)3 = 1 + 3(zOP(1) + 2z2)

+3(zOP(1) + 2z2)2 = 1 + zOP(3) + 9z2.
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