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Abstract
We connect generalized permutahedra with Schubert calculus. Thereby, we give suf-
ficient vanishing criteria for Schubert intersection numbers of the flag variety. Our
argument utilizes recent developments in the study of Schubitopes, which are Newton
polytopes of Schubert polynomials. The resulting tableau test executes in polynomial
time.

1 Introduction

1.1 Background

Let X = Flags(Cn) be the variety of complete flags of vector spaces

F• : 〈0〉 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ Fn−1 ⊂ C
n, dim(Fi ) = i .

X has a left action of GLn , and hence also by lower triangular invertible matrices B−.
The B−-orbits X◦

w are indexed by permutations w in the symmetric group Sn . Let ≤
denote Bruhat order. The Schubert varieties are the closures

Xw =
∐

v≥w

X◦
v;

this is codimension �(w) = #{(i, j) : 1 ≤ i < j ≤ n, w(i) > w( j)}. Thus, X = Xid

and Xw0 is the Schubert point, where w0 = n n − 1 n − 2 · · · 2 1.
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The Poincaré duals σw := [Xw] form the Schubert basis of H∗(X), the coho-
mology ring of X . A Schubert problem is a tuple (w(1), w(2), . . . , w(k)) ∈ Sk

n with∑k
i=1 �(w(i)) = (n

2

) = dimC(X). The Schubert intersection number is

Cw(1),w(2),...,w(k) :=multiplicity of σw0 in
k∏

i=1

σw(i) ∈ H∗(X)

=number of points in
k⋂

i=1

gi Xσ (i) , (1)

where (g1, . . . , gk) are elements of a dense open subset O of GLk
n (whose existence

is guaranteed by Kleiman transversality). For more on this topic, see the book [8] or
the expository articles [10, 11].

Algorithms exist for computing these numbers; see, e.g., [5, 13, 15] and the
references therein. It is the famous open problem of Schubert calculus to find a combi-
natorial counting rule that computesCw(1),w(2),...,w(k) . Such a rule would generalize the
classical Littlewood–Richardson rule governing Schubert calculus of Grassmannians.

This paper explores a related, but not necessarily easier, open problem

Find an efficient algorithm to decide if Cw(1),w(2),...,w(k) = 0.

Known algorithms to compute Cw(1),w(2),...,w(k) do not provide a solution (being
inefficient). In theGrassmannian setting, neither does the Littlewood–Richardson rule,
per se. However, the saturation theorem [14] permits a polynomial-time algorithm in
that case [6, 17], by way of linear programming results. For flag varieties, criteria were
found by Knutson [12] and Purbhoo [18]; no efficiency guarantees were stated.

1.2 Vanishing Criterion

Our main goal is to connect the theory of generalized permutahedra to Schubert
calculus. We give a sufficient test for Cw(1),w(2),...,w(k) = 0 and prove it executes
in polynomial time. The starting point is a simple consideration about Schubert
polynomials. However, it becomes effective due to recent developments about New-
ton polytopes of Schubert polynomials [1, 7, 16], as instances of generalized
permutahedra.

The Rothe diagram of w ∈ Sn , denoted D(w), is the subset of boxes of [n] × [n]
given by

D(w) :=
{
(i, j) : 1 ≤ i, j ≤ n, j < w(i), i < w−1( j)

}
.

Let code(w) = (c1(w), c2(w), . . . , cn(w)), where ci counts boxes of D(w) in row i .
Define

D := D
(
w(1), . . . , w(k)

)
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Generalized Permutahedra and Schubert Calculus 519

by concatenating D(w(1)), . . . , D(w(k)), left to right. Set T abw(1),...,w(k) to be the set
of fillings of D with nonnegative integers, such that:

(a) Each column is strictly increasing from top to bottom.
(b) Any label � in row r satisfies � ≤ r .
(c) The number of �’s is n − �, for 1 ≤ � ≤ n.

The first version of our test is:

Theorem A Let (w(1), . . . , w(k)) be a Schubert problem. If T ab = ∅, then
Cw(1),w(2),...,w(k) = 0. There is an algorithm to determine emptiness in O(poly(k, n)).

Example 1.1 Let w(1) = 3256147, w(2) = 2143657, w(3) = 4632175. Below, we
depict D. The numerically labelled boxes are forced by conditions (a) and (b) for any
(putative) T ∈ T ab.

1 1
2
3
4

a
b

1

c

d

1 1 1
2 2 2 e
3 3
4

f

≤ 1
≤ 2
≤ 3
≤ 4
≤ 5
≤ 6
≤ 7

Condition (b) forces e ≤ 2, a, c ≤ 3, b ≤ 4, d ≤ 5, f ≤ 6. Thus, to satisfy
(c), e = 2 is also forced, which implies a, c = 3. Therefore, T has at least five 3’s,
violating (c) for � = 3.

Our idea (see Sect. 4) uses that Cw(1),w(2),w(3) = 0 if Sw0 = x61 x52 x43 x34 x25 x6 does
not appear in the product of Schubert polynomials Sw(1)Sw(2)Sw(3) , combined with
an argument that the rule of Theorem A permits an efficient check of this vanishing
condition. ��

1.3 Organization

Section 2 discusses generalized permutahedra; we derive facts we will use. Section 3
reviews the subfamily of Schubitopes. In Sect. 4,we state TheoremB, an “asymmetric”
version of TheoremA; it is a stronger test (see Proposition 4.6). TheoremCgives linear
inequalities necessary for Cw(1),...,w(k) > 0. Theorems A, B, C, and Proposition 4.6
are proved together, as they follow from the same reasoning. In Sect. 5, we compare
with the vanishing criteria of [12, 18]. We show examples that our test captures but
are not captured by those criteria, and conversely.

2 Newton Polytopes of Products

If f is an element of a polynomial ring whose variables are indexed by some set I ,
the support of f is the lattice point set in R

I consisting of the exponent vectors of the
monomials that have nonzero coefficient in f . TheNewton polytopeNewton( f ) ⊆ R

I
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520 A. St. Dizier , A. Yong

is the convex hull of the support of f . A polynomial f has saturated Newton polytope
(SNP) if every lattice point in Newton( f ) is a vector in the support of f [16].

The standard permutahedron is the polytope inR
n whose vertices consist of all per-

mutations of the entries of the vector (0, 1, . . . , n − 1). A generalized permutahedron
is a deformation of the standard permutahedron obtained by translating the vertices in
such a way that all edge directions and orientations are preserved (edges are allowed to
degenerate to points). Generalized permutahedra are uniquely parameterized by sub-
modular functions (see [2, Theorem 12.3] for several equivalent definitions). These
are maps

z : 2[n] → R,

such that z∅ = 0 and

zI + z J ≥ zI∪J + zI∩J for all I , J ⊆ [n].

Given z, the associated generalized permutahedron is given by

P(z) =
{

t ∈ R
n :

∑

i∈I

ti ≤ zI for I �= [n], and
n∑

i=1

ti = z[n]

}
.

The vertices of generalized permutahedra have been determined.

Proposition 2.1 [21, Corollary 44.3a] Let P(z) be a generalized permutahedron in
R

n. The vertices of P(z) are {v(w) : w ∈ Sn} where v(w) = (v1, . . . , vn) ∈ R
n is

defined by

vwk = z{w1,...,wk } − z{w1,...,wk−1}. (2)

It is well known that the class of generalized permutahedra is closed under
Minkowski sums (see for instance [3, Lemma 2.2]). We provide a proof for complete-
ness. One can also easily see closure under Minkowski sums using that generalized
permutahedra are exactly the polytopes whose normal fans are refined by the braid
arrangement [2, Theorem 12.3].

Lemma 2.2 If P(z) and P(z′) are generalized permutahedra, then

P(z) + P(z′) = P(z + z′).

Proof Clearly, P(z) + P(z′) ⊆ P(z + z′). For the opposite containment, let q be a
vertex of P(z+z′). By Proposition 2.1, write q in the form q = v(w) for somew ∈ Sn .
Let p and p′ be the vertices of P(z) and P(z′), respectively, corresponding to w. By
(2), q = p + p′ ∈ P(z) + P(z′). Convexity implies P(z + z′) ⊆ P(z) + P(z′). ��

It follows easily from [21, Theorem 46.2] that whenever z and z′ are integer-valued,
P(z)∩ P(z′) is either empty or an integral polytope (all vertices are lattice points). This
is used to prove that integer polymatroids [21, Chapter 44] satisfy a generalization of
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Generalized Permutahedra and Schubert Calculus 521

the integer decomposition property. We state and prove (for convenience) the special
case that applies to generalized permutahedra:

Theorem 2.3 [21, Corollary 46.2c] If P(z) and P(z′) are integral generalized per-
mutahedra in R

n, then

(P(z) ∩ Z
n) + (P(z′) ∩ Z

n) = (P(z) + P(z′)) ∩ Z
n .

Proof Let r ∈ (P(z)+P(z′))∩Z
n . Set Q = r+(−1)P(z′). Clearly, Q is a generalized

permutahedron (by the deformation description). Also, note that r = p + p′ for some
p ∈ P(z) and p′ ∈ P(z′), so p ∈ P ∩ Q and P ∩ Q �= ∅. Since both r and z′
are integral, Q is an integral polytope. Thus, P ∩ Q contains an integer point q. By
definition of Q, the lattice point r − q is in P(z′). Finally, we have

r = q + (r − q) ∈ (P(z) ∩ Z
n) + (P(z′) ∩ Z

n).

��

Therefore, in the realm of generalized permutahedra, SNP carries through products.

Proposition 2.4 If f , g ∈ R≥0[x1, . . . , xn] have SNP andNewton( f ),Newton(g) are
generalized permutahedra, then

(i) Newton( f g) is a generalized permutahedron;
(ii) f g has SNP.

Proof For any polynomials f and g, Newton( f g) = Newton( f )+Newton(g). State-
ment (i) follows fromLemma2.2. Statement (ii) follows fromLemma2.2 andTheorem
2.3. ��

3 Schubitopes and an Integer Linear Program

We are interested in a particular family of generalized permutahedra. For an arbitrary
subset D ⊆ [n]× [m], the Schubitope SD was defined by C. Monical, N. Tokcan, and
the second author [16] (for squares [n] × [n] instead of rectangles [n] × [m], but the
difference is negligible).

Fix S ⊆ [n] and a column c ∈ [m]. Let ωc,S(D) be formed by reading c from top
to bottom and recording

• ( if (r , c) /∈ D and r ∈ S,
• ) if (r , c) ∈ D and r /∈ S, and
• � if (r , c) ∈ D and r ∈ S.

Let

θc
D(S) = #paired ( )′s inωc,S(D) + #�′s inωc,S(D).
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522 A. St. Dizier , A. Yong

Fig. 1 SD(21543) = Newton(S21543) and a minimal set of defining inequalities

Set θD(S) = ∑
c∈[m] θc

D(S). Define the Schubitope as

SD =
{

(α1, . . . , αn) ∈ R
n≥0 :

n∑

i=1

αi = #D and
∑

i∈S

αi ≤ θD(S) for all S ⊂ [n]
}

.

Example 3.1 (cf. [16, Section 1]) Let w = 21543. The Schubert polynomial of w is

Sw = x31 x2 + x31 x3 + x31 x4 + x21 x22 + x21 x23 + 2x21 x2x3 + x21 x2x4 + x21 x3x4

+ x1x2x23 + x1x22 x3 + x1x22 x4 + x1x23 x4 + x1x2x3x4.

As stated in Theorem 4.3, SD(w) = Newton(Sw). This generalized permutahedron
and a minimal set of defining inequalities are shown in Fig. 1. ��

Given a diagram D and any point α, we wish to efficiently determine whether
α ∈ SD . However, SD is described by exponentially many inequalities. A way around
this is towork insteadwith the polytopeP(D, α) introducedbyA.Adve,C.Robichaux,
and the second author in [1], which is able to detect membership in SD .

Given D ⊆ [n] × [m] and α = (α1, . . . , αn) ∈ Z
n≥0. Let

P(D, α) ⊆ R
n×m

be the polytope whose points

(αi j )1≤i≤n,1≤ j≤m = (α11, . . . , αn1, . . . , α1m, . . . , αnm)

satisfy the inequalities (I),(II),(III) below.

(I) Column-injectivity: For all i, j ∈ [n],

0 ≤ αi j ≤ 1.
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Generalized Permutahedra and Schubert Calculus 523

(II) Content: For all i ∈ [n],
n∑

j=1

αi j = αi .

(III) Row bounds: For all s, j ∈ [n],
s∑

i=1

αi j ≥ #{(i, j) ∈ D : i ≤ s}.

Define T ab(D, α) to be the set of fillings of D with nonnegative integers, such that

(a) Each column is strictly increasing from top to bottom.
(b) Any label � in row r satisfies � ≤ r .
(c) The number of �’s is α�.

Theorem 3.2 [1, Theorem 1.3] Suppose D ⊆ [n] × [m] . Then

α ∈ SD ∩ Z
n ⇐⇒ T ab(D, α) �= ∅.

The map f : T ab(D, α) → P(D, α), that sets αi j = 1 if the label i appears in
column j of D, and set αi j = 0 otherwise, is a bijection. Therefore, T ab(D, α) �= ∅
if and only if α1 + · · · + αn = #D and P(D, α) ∩ Z

n×m �= ∅.

Theorem 3.3 [1, Theorem 2.2.7] Let D ⊆ [n]×[m] and α = (α1, . . . , αn) ∈ Z
n with

α1 + · · · + αn = #D. Then, P(D, α) ∩ Z
n×m �= ∅ if and only if P(D, α) �= ∅.

The above two theorems, combined with the ellipsoid method and/or interior point
methods in linear programming, imply:

Corollary 3.4 [1] Deciding if α ∈ SD, or equivalently, if T ab(D, α) = ∅, can be
determined in O(poly(n, m))-time.

As explained in [1], using the codes of w(i) as the encoding of the decision problem,
or “compressing” D, one can reduce the upper bound on the complexity. We will not
pursue these technical improvements here.

4 Schubert Polynomials and Schubitopes

4.1 Schubert Polynomials

Our reference for Schubert polynomials is [15]. They are recursively defined; the initial
condition is that for w0 ∈ Sn

Sw0 := xn−1
1 xn−2

2 · · · xn−1.
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524 A. St. Dizier , A. Yong

The divided difference operator on polynomials in Pol := Z[x1, x2, . . .] is

∂i : Pol → Pol, f �→ f (. . . , xi , xi+1, . . .) − f (. . . , xi+1, xi , . . .)

xi − xi+1
.

If w �= w0, let i satisfy w(i) < w(i + 1), then Sw := ∂iSwsi . Since the divided
difference operators satisfy the braid relations

∂i∂ j = ∂ j∂i for |i − j | ≥ 2; ∂i∂i+1∂i = ∂i+1∂i∂i+1,

it follows that Sw only depends on w, and not the choices of i in the recursion.
Schubert polynomials are stable under the inclusion of Sn ↪→ Sn+1 that sends w to

wwith n+1 appended. Thus, one unambiguously definesSw forw ∈ S∞ = ⋃
n≥1 Sn .

The set of Schubert polynomials {Sw : w ∈ S∞} forms a Z-linear basis of Pol.
Borel’s isomorphism [8, Chapter 9; Prop. 3] asserts

H∗(X) ∼= Q[x1, . . . , xn]/I Sn where I Sn = 〈ed(x1, . . . , xn) : 1 ≤ d ≤ n〉,

and

ed(x1, . . . , xn) =
∑

1≤i1<i2<···<id≤n

xi1xi2 · · · xid

is the dth elementary symmetric polynomial. Under this isomorphism

σw �→ Sw + I Sn . (3)

One has the polynomial identity

SuSv =
∑

w∈S∞
Cw

u,vSw ∈ Pol.

Define Cw(k)

w(1),...,w(k−1) to be the multiplicity of σw(k) in
∏k−1

i=1 σw(i) ∈ H∗(X), which

we also write with the coefficient operator as [σw(k)] ∏k−1
i=1 σw(i) .

Lemma 4.1 Cw(k)

w(1),...,w(k−1) = Cw(1),...,w(k−1),w0w(k) . Also, Cw(k)

w(1),...,w(k−1) = [Sw(k)]
∏k−1

i=1 Sw(i) . In particular, Cw
u,v = Cu,v,w0w.

Proof Duality in Schubert calculus (see, e.g., [15, Proposition 3.6.11]) states that if
�(u) + �(v) = (n

2

)
, then

σu 
 σv =
{

σw0 if v = w0u

0 otherwise.
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Generalized Permutahedra and Schubert Calculus 525

Now

k−1∏

i=1

σw(i) = Cw(k)

w1,...,w(k−1)σw(k) +
∑

w∈Sn ,w �=w(k)

Cw
w(1),...,w(k−1)σw.

Multiply both sides by σw0w(k) and apply duality. Then, use (1) to obtain the first
statement. The second assertion follows from (3). The final claim is merely the k = 3
case. ��
Lemma 4.2 If (w(1), . . . , w(k)) is a Schubert problem, then

Cw(1),...,w(k) = [xn−1
1 xn−2

2 · · · xn−1]
k∏

i=1

Sw(i) .

Proof This follows from (1), (3), and Sw0 = xn−1
1 xn−2

2 · · · xn−1. ��

4.2 Schubitopes are Newton Polytopes

This result from work of Fink, Mészáros, and the first author [7] proves conjectures
of [16]:

Theorem 4.3 [7, Theorems 7,10] Sw has SNP, and Newton(Sw) = SD(w) is a
generalized permutahedron.

Proposition 4.4 f = ∏k−1
i=1 Sw(i) has SNP. In addition

Newton( f ) =
k−1∑

i=1

SD(w(i)) (Minkowski sum). (4)

Proof This follows from combining Theorem 4.3 with Proposition 2.4. ��
By the same argument as Proposition 4, any product of key polynomials (see, e.g.,

[20]) with Schubert polynomials is SNP, and has a similarly described Newton poly-
tope.

Corollary 4.5 If α ∈ Z
n≥0, then

[xα]
k−1∏

i=1

Sw(i) �= 0 ⇐⇒ α ∈
k−1∑

i=1

SD(w(i)).

Proof Let f = ∏k−1
i=1 Sw(i) . If [xα] f �= 0, then α ∈ Newton( f ). Now, apply

(4). Conversely, by (4), α ∈ Newton( f ). By Proposition 4.4, f has SNP. Hence,
[xα] f �= 0. ��
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4.3 The Asymmetric Version of Theorem A

Let D′ := D(w(1), . . . , w(k−1)) and let T ab′ := T ab′
w1,...,w(k) be the set of fillings of

D′ with nonnegative integers, such that:

(a) Each column is strictly increasing from top to bottom.
(b) Any label � in row r satisfies � ≤ r .
(c) The number of �’s is c�(w

(k)).

Theorem B Let (w(1), . . . , w0w
(k)) be a Schubert problem. If T ab′ = ∅, then

Cw(k)

w(1),w(2),...,w(k−1) = 0. There is an algorithm to determine emptiness in O(poly(k, n)).

Proposition 4.6 If Theorem A’s test shows Cw(1),...,w(k−1),w0w(k) = 0, then Theorem B’s

also shows Cw(k)

w(1),...,w(k−1) = 0.

Example 4.7 The converse of Proposition 4.6 is false. That is, Theorem B provides a
strictly stronger test than Theorem A. For example

S4123S1342 = x41 x3 + x41 x2 + x31 x2x3

avoids code(4312) = 3200 as an exponent vector, proving Cw
u,v = C4312

4123,1342 = 0.
However

SuSvSw0w = x41 x22 + x41 x23 + 3x41 x2x3 + x31 x2x23 + x31 x22 x3 + x51 x3 + x51 x2

implies T ab �= ∅, and hence, Theorem A does not show Cu,v,w0w = C4123,1342,1243
= 0. ��

4.4 The Schubitope Inequalities and Schubert Calculus

The Schubitope inequalities provide necessary conditions for nonvanishing of a Schu-
bert intersection number.

Theorem C If Cw(1),w(2),...,w(k) > 0, then (n − 1, n − 2, . . . , 2, 1) must satisfy the
Schubitope inequalities defining SD where D = D(w(1), . . . , w(k)). Similarly, if
Cw(k)

w(1),...,w(k−1) > 0, then code(w(k)) must satisfy the Schubitope inequalities defin-

ing SD′ where D′ = D(w(1), . . . , w(k−1)).

Let

sλ(x1, . . . , xk) =
∑

T

xT

be the Schur polynomial of λ, where the sum is over semistandard Young tableaux of
shape λ filled using {1, 2, . . . , k} and xT = ∏k

i=1 x#i∈T
i . Then

sλ(x1, . . . , xk)sμ(x1, . . . , xk) =
∑

ν

cν
λ,μsν(x1, . . . , xk),
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where cν
λ,μ is the Littlewood–Richardson coefficient. By the proof of [16, Proposition

2.9]

xν ∈ sλsμ if and only if ν ∈ Newton(sλ+μ) = Pλ+μ( the permutahedron for λ + μ).

(5)

By Rado’s theorem [19, Theorem 1], this means ν ≤Dom λ + μ (dominance order).
That is

cν
λ,μ > 0 �⇒

t∑

i=1

νi ≤
t∑

j=1

λ j +
t∑

k=1

νk, for t ≥ 1.

These are instances of the famous Horn’s inequalities; see the survey [9]. Those are
generalized in the “Levi-movable” case of X in work of P. Belkale-S. Kumar [4]. Our
methods are in the same vein. Hence, we speculate that Theorem C is a first glimpse of
putative linear inequalities that control Cw(1),...,w(k) > 0. We hope to study this further
in a sequel.

4.5 Proof of Theorems A, B, C and Proposition 4.6

We combine the proofs of these four results, since they all stem from the same
reasoning.

We prove Theorem B first. It is known (e.g., follows from [15, Theorem 2.5.1])
that

[xcode(w)]Sw �= 0. (6)

Hence

[
xcode(w(k))

] k−1∏

i=1

Sw(i) = 0 ⇒ Cw(k)

w(1),w(2),...,w(k−1) = 0.

By one direction of Corollary 4.5

[
xcode(w(k))

] k−1∏

i=1

Sw(i) = 0 ⇐� code(w(k)) /∈ Newton

(
k−1∏

i=1

Sw(i)

)

=
k−1∑

i=1

SD(w(i)). (7)

By Theorem 4.3, each SD(w(i)) is a generalized permutahedron. Hence, by Lemma 2.2

Newton

(
k−1∏

i=1

Sw(i)

)
= SD′ .
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528 A. St. Dizier , A. Yong

Now, we may apply Theorem 3.2 in the special case that D = D′ and α = code(w(k))

to obtain the second sentence of the theorem. The final sentence follows from Corol-
lary 3.4. This completes the proof of Theorem B.

The proof of Theorem A is the same, except that we use Lemma 4.2.
Theorem C follows from the above arguments, combined with Theorems 3.2

and 4.3.
Finally, we turn to Proposition 4.6. We prove the contrapositive. Suppose Theo-

rem B’s test is inconclusive, that is

[
xcode(w(k))

]
Sw(1) · · ·Sw(k−1) �= 0. (8)

Claim 4.8 If w ∈ Sn, then code(w) + code(w0w) = (n − 1, n − 2, . . . , 3, 2, 1, 0).

Proof of Claim 4.8 By definition of D(w)

cr (w) = (w(r) − 1) − #{i < r : w(i) < w(r)}.

On the other hand

cr (w0w) = (w0w(r) − 1) − #{i < r : w0w(i) < w0w(r)}
= ((n + 1 − w(r)) − 1) − #{i < r : w(r) < w(i)}.

Hence, cr (w) + cr (w0w) = n − r , as desired. ��
By (6) and (8) combined

[
xn−1
1 xn−2

2 · · · xn−1

] (
Sw(1) · · ·Sw(k−1)

)
Sw0w(k)

=
[
xn−1
1 xn−2

2 · · · xn−1

] (
xcode(w(k)) + · · ·

) (
xcode(w0w

(k)) + · · ·
)

�= 0,

where inequality is by Claim 4.8. Thus, Theorem A’s test is inconclusive. ��

4.6 A Flexible Version of the Asymmetric Test

The condition (c) in defining T ab′ can be replaced by the exponent vector of any
monomial inSw(k) . Unfortunately, the number of such exponent vectors is potentially
large. Instead, one can sample points from SD(w) as follows. Construct the Rothe
diagram D(w). Fix a column c of D(w). Suppose the boxes of D(w) in that column
are in rows r1, r2, . . . , rz . Find integers 1 ≤ x1 < x2 < . . . < xz , such that x j ≤ r j .
Repeat for every column c. The result is an element of T ab(D(w), α) for some α.
(Thus, one can create a randomized version of Theorem B.)

It is possible that, even with choice, no exponent vector exhibits nonvanishing:

Example 4.9 C451623
231645,231645 = 0. Now

S451623 = x31 x32 x24 + x31 x32 x3x4 + x31 x32 x23 .

123



Generalized Permutahedra and Schubert Calculus 529

Here, code(451623) = 3302. One can check that

[xcode(451623)]S2
231645 > 0, [x31 x32 x24 ]S2

231645 > 0, and [x31 x32 x3x4]S2
231645 > 0.

Thus, Theorem B’s test is inconclusive using any choice of monomial from
S451623. ��

Individual monomials have no geometric meaning in Schubert calculus. Thus, our
tests seem inherently combinatorial, as opposed to being avatars of the geometry.

Remark 4.10 Textbook linear programming results implying efficiency of TheoremsA
andBoffer an additional benefit. There is a short certificatewhen T ab or T ab′ is empty.
This follows from standard reasoning using Farkas’ lemma.

Theorem C provides an alternative certification method. Recording one Schubitope
inequality defining SD for which (n, n − 1, . . . , 2, 1) fails proves Cw(1),...,w(k) = 0.
(A similar statement holds about SD′ .)

5 Comparisons to Other Vanishing Tests

We compare our tests to three non-ad hoc vanishing tests. There are examples where
our method is successful where the others are not, and vice versa.

5.1 Bruhat Order

Bruhat order on Sn is (combinatorially) defined as the reflexive and transitive closure
of the covering relations u ≤ uti j if �(uti j ) = �(u) + 1, where ti j is the transposition
interchanging i and j . There exist efficient tests to determine u ≤ v, such as the
Ehresmann tableau criterion [15, Proposition 2.2.11]. The following is well known;
we include a proof, since we do not know where it exactly appears in the literature:

Fact 5.1 (Bruhat vanishing test) Cw(1),...,w(k) = 0 if w(i)
� w0w

( j) for some i, j .

Proof We prove the case k = 3; the general case is similar. Say u � w0w but
Cu,v,w > 0.ByLemma4.1,Cw0w

u,v = Cu,v,w > 0.Monk’s formula [15, Theorem2.7.1]
states that if z ∈ Sn

σz 
 σtm,m+1 =
∑

σzt jk ∈ H∗(X); (9)

the sum is over all j ≤ m < k, such that �(zt jk) = �(w) + 1 and zt jk ∈ Sn . Suppose
sm := tm,m+1 and v = sm1sm2 · · · sm�(v)

is a reduced expression for v. By (9), for some
α ∈ Z>0

�(v)∏

i=1

σsmi
= α σv + (positive sum of Schubert classes). (10)
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By induction using (9)

[σy] σu

�(v)∏

i=1

σsmi
�= 0 ⇐⇒ y ≥ u. (11)

By the positivity of Schubert calculus, and the assumption Cw0w
u,v > 0

[σw0w] σu(α σv + (positive sum of Schubert classes)) �= 0.

In view of (10), this contradicts (11). ��
We give bad news first:

Example 5.2 (u, v, w) = (1243, 1342, 3142) is a vanishing problem detected by
Fact 5.1 since 1342 = v � w0w = 2413. Our methods do not detect Cw0w

u,v =
C2413
1243,1342. Since

S1243S1342 = x2x23 + x1x23 + 3x1x2x3 + x22 x3 + x1x22 + x21 x3 + x21 x2

contains both monomials of Sw0w = S2413 = x1x22 + x21 x2, no monomial of Sw0w

can be used to detect vanishing. In particular, Theorem B is inconclusive (and hence,
by Proposition 4.6, the symmetric test is also inconclusive.) Since Cu,v,w = Cw0u

v,w =
Cw0v

u,w , one hope that the asymmetric method shows either Cw0u
v,w = C4312

1342,3142 = 0 or

Cw0v
u,w = C4213

1243,3142 = 0. Unfortunately, both attempts are similarly inconclusive. ��
Example 5.3 The vanishing of the Schubert problem (u, v, w) = (1423, 1423, 1423)
is undetected by Fact 5.1. Now

S3
1423 = x62 + 3x1x52 + 6x21 x42 + 7x31 x32 + 6x41 x22 + 3x51 x2 + x61

does not contain Sw0 = S4321 = x31 x22 x3, and hence, vanishing is seen by
Theorem A. ��

5.2 A. Knutson’s Descent Cycling

In [12], A. Knutson introduced a vanishing criterion. Recall that u ∈ Sn has a descent
at position i if u(i) > u(i + 1) and has an ascent at position i otherwise. That is,
respectively, usi ≤ u and usi ≥ u.

Fact 5.4 (dc triviality) If (u, v, w) is a Schubert problem, such that usi ≥ u, vsi ≥
v,wsi ≥ w, then Cu,v,w = 0.

Example 5.5 The triple (1423, 1423, 1342) is dc trivial, and hence, C1423,1423,1342 =
0. Here, the asymmetric test (Theorem B) is inconclusive (again, thus by Proposi-
tion 4.6, the symmetric test is also inconclusive). Indeed, Cw0w

u,v = C4213
1423,1423 = 0 is
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not detected, since

S2
1423 = x42 + 2x1x32 + 3x21 x22 + 2x31 x2 + x41 ,

but Sw0w = S4213 = x31 x2. Also, Cw0v
u,w = 0 and Cw0u

v,w = 0 are not detected, since

S1423S1342 = x32 x3 + 2x1x22 x3 + 2x21 x2x3 + x31 x3 + x1x32 + x21 x22 + x31 x2.

Since Sw0u = Sw0v = S4132 = x31 x3 + x31 x2, no lattice point in SD(4132) proves
vanishing. ��
Example 5.6 The Schubert problem (3256147, 2143657, 4632175) from Example 1.1
is not dc trivial, but C3256147,2143657,4632175 = 0, as determined by Theorem A. ��

Define the descent cycling equivalence ∼ on Schubert problems by

(dc.1) (u, v, w) ∼ (usi , v, wsi ), (u, vsi , wsi ) if usi ≥ u, vsi ≥ v,wsi ≤ w;
(dc.2) (u, v, w) ∼ (usi , v, wsi ), (usi , vsi , w) if usi ≤ u, vsi ≥ v,wsi ≥ w;
(dc.3) (u, v, w) ∼ (u, vsi , wsi ), (usi , vsi , w) if vsi ≤ v, usi ≥ u, wsi ≥ w.

Therefore, Cu,v,w = 0 if (u, v, w) is ∼ equivalent to a dc trivial problem.

Example 5.7 As reported in [12], for n = 6, there is one dc equivalence class of
problems (u, v, w) which vanishes, but does not contain a dc trivial triple. This is
precisely the problem studied in Example 4.9, which our methods also cannot explain.

��
Example 5.8 Let (u, v, w) = (3216547, 3216547, 4261573) be a problem in S7. The-
orem A shows Cu,v,w = 0 (any element of T ab must contain at least seven 1’s). The
∼ class contains 9 elements, namely

(3216574, 3261547, 4216537), (3216547, 3216574, 4261537), (3261547, 3216574, 4216537),

(3261547, 3216547, 4216573), (3216574, 3216547, 4261537), (3216547, 3216547, 4261573),

(3261574, 3216547, 4216537), (3216547, 3261574, 4216537), (3216547, 3261547, 4216573).

None are dc trivial. ��

5.3 K. Purbhoo’s Root Games

K. Purbhoo’s root games from [18] give a vanishing criteria. Fix the positive roots

+ associated with GLn to be αi, j = εi − ε j for 1 ≤ i < j ≤ n, where εi is the i th
standard basis vector. The poset P of positive roots takes the form shown in Fig. 2.

The maximal element of this poset is the highest root α1n . For each i , place a token
• in square αmn if w(i)(m) > w(i)(n). This is called the initial position. An upper
order ideal A is an up-closed subset of P , a subset containing any roots lying above
any of its members (see Fig. 2). This initial position is doomed if there exists an upper
order ideal A, such that there are more tokens in A than #A. This is [18, Theorem 3.6]:
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Fig. 2 The poset P of positive
roots associated with GL7

Fact 5.9 (Doomed root game) If (w(1), . . . , w(k))’s initial position is doomed,
Cw(1),...,w(k) = 0.

This test is quite handy. However, the number of upper order ideals for type An−1
is the Catalan number Cn = 1

n+1

(2n
n

)
, which is exponential in n.

Example 5.10 The vanishing of (1423, 1423, 1342) is seen byFact 5.9. This is doomed

•• •••
•

.

As is explained in Example 5.5, our methods are inconclusive here. ��
Example 5.11 Let u = v = 3216547 and w = 1652473. Below, we mark the inver-
sions of u, v, w with •, •, • respectively

•• ••
••• • • •

• • •
•• ••

•• •
•

.

This game is not doomed, so Fact 5.9 is inconclusive here. (Descent cycling does
not help either, as the equivalence class of size 9 contains no dc trivial elements.)
Also, Theorem A does not succeed. However, Theorem B’s test shows Cw0w

u,v =
C7236415
3216547,3216547 = 0. ��
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