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Abstract
We study the categorical entropy and counterexamples to Gromov–Yomdin type
conjecture via homological mirror symmetry of K3 surfaces established by Sheridan–
Smith. We introduce asymptotic invariants of quasi-endofunctors of dg categories,
called theHochschild entropy. It is proved that the categorical entropy is lower bounded
by the Hochschild entropy. Furthermore, motivated by Thurston’s classical result,
we prove the existence of a symplectic Torelli mapping class of positive categorical
entropy. We also consider relations to the Floer-theoretic entropy.

1 Introduction

1.1 Categorical Entropy and Gromov–Yomdin Type Equality

Let X be a smooth projective variety over C, and f ∈ Aut(X) an automorphism
of X . There is an important asymptotic invariant htop( f ) ∈ R≥0 called the topo-
logical entropy of f , which measures the complexity of the dynamical system
(X , f ). As a categorical analogue of the topological entropy, for a triangulated cate-
gory T , Dimitrov–Haiden–Katzarkov–Kontsevich introduced the categorical entropy
hcat(�) ∈ R≥0 of an autoequivalence � ∈ Aut(T ) [6]. These two entropies agree in
the following cases:

• Kikuta andTakahashi [21]: LetDb(X) be the bounded derived category of coherent
sheaves on X . For an automorphism f of X , its pull-back f ∗ ∈ Aut(Db(X))

satisfies htop( f ) = hcat( f ∗).
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224 K. Kikuta and G. Ouchi

• Dimitrov et al. [6]: Let �g be a connected oriented closed surface of genus g ≥ 2,
andDFuk(�g) the derived Fukaya category of�g . For a pseudo-Anosov mapping
class φ ∈ MCG(�g), its induced autoequivalence φ∗ ∈ Aut(DFuk(�g)) satisfies
htop(φ) = hcat(φ∗).

In general, it is hard to compute the topological entropy of homeomorphisms, whereas
that of automorphisms of algebraic varieties can be computed as the spectral radius of
the induced action on the cohomology due to Gromov–Yomdin.

Theorem 1.1 (Gromov–Yomdin [15, 16, 42]) For f ∈ Aut(X), one has

htop( f ) = log ρ(H∗( f )).

It is, therefore, natural to consider the categorical analogue of the Gromov–Yomdin
theorem, that is the agreement between the categorical entropy and the spectral radius
of the induced action on the numerical Grothendieck group of the derived category:

hcat(�) = log ρ(Knum(�)) for � ∈ Aut(Db(X)).

This Gromov–Yomdin type equality is conjectured by the first author and Takahashi
[21], and proved for any autoequivalence of curves, abelian surfaces, simple abelian
varieties and varieties with the ample (anti-)canonical sheaf [20, 21, 43]. This conjec-
ture is however not true in general. Y.-W. Fan found, as the first counterexample, some
autoequivalence of any Calabi–Yau hypersurfaces of even dimension greater than two
[8]. In the sequel the second author andMattei construct counterexamples for surfaces
[24, 30].

1.2 Counterexamples via Mirror Symmetry

In algebro-geometric viewpoint, it is natural to expect the categorical analogue of
Gromov–Yomdin theorem. On the other hand, Thurston proved the existence of
mapping classes of �g with positive topological entropy, trivially acting on the coho-
mology, hence in the Torelli subgroup of MCG(�g) [38]. Combining the above result
by Dimitrov et al. [6], in symplecto-geometric viewpoint, we obtain an autoequiva-
lence of DFuk(�g) with positive categorical entropy, which is induced by a Torelli
mapping class. We therefore expect the following.

Problem 1.2 (i) Does there exist a symplectic Torelli mapping class of positive cate-
gorical entropy for Calabi–Yau manifolds?

(i) Does a symplectic Torelli mapping class as in (i) give a counterexample to
Gromov–Yomdin type conjecture via the homological mirror symmetry?

These kinds of problems are one of Fan’s motivations to find a counterexample to the
conjecture as in [8, Section 1].
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Hochschild Entropy and Categorical Entropy 225

1.3 Floer-Theoretic Entropy

To study dynamics of mapping classes of closed surfaces via Floer theory, Fel’shtyn
introduced the asymptotic invariant defined to be the exponential growth rate of the
dimensions of the fixed-point Floer cohomology of φ ∈ MCG(�g)

hFloer(φ) := lim sup
n→∞

1

n
log dim� H F∗(φn),

see [10], and Smith also considered the same invariant which he called the Floer-
theoretic entropy [35]. For pseudo-Anosov mapping class, its Floer-theoretic entropy
coincides with the topological entropy [12].

It is interesting to compare the Floer-theoretic entropy and the categorical entropy,
which is a large motivation for this paper.

1.4 Main Results

Motivated by the comparison between the Floer-theoretic entropy and the categori-
cal entropy, we introduce the asymptotic invariants given by the exponential growth
rate of dimensions of Hochschild (co)homology of quasi-functors, which we call the
Hochschild (co)homological entropy: Let A be a smooth proper differential graded
(dg) category, and perdg(A) its perfect derived dg category. For a quasi-endofunctor
˜� of perdg(A), we define

hH H∗(˜�) := lim sup
n→∞

1

n
log dimk H H∗(˜�n),

hH H∗(˜�) := lim sup
n→∞

1

n
log dimk H H∗(˜�n).

These two entropies agree for Calabi–Yau dg categories. As Smith observed in [35,
Corollary 3.12], the fixed-point Floer cohomology is sometimes isomorphic to the
Hochschild cohomology. Therefore, in the first step, we replace the Floer-theoretic
entropy by the Hochschild entropy.

In this paper, we first compare the Hochschild entropy and the categorical entropy.

Theorem 1.3 (Theorem 2.10) For a quasi-endofunctor ˜� of perdg(A) and � :=
H0(˜�), we have

hH H∗(˜�) ≤ hcat(�) and hH H∗(˜�) ≤ hcat(�).

We furthermore expect the agreement between the Floer-theoretic entropy and the
Hochschild entropy for symplectic K3 surfaces, see Sect. 6 where we give Question
6.2 and propose how to prove it.

We then consider Problem 1.2 for K3 surfaces. Let X̌0 be the complex K3 surface
called mirror quartic, defined as the crepant resolution of the quotient of the Fermat
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226 K. Kikuta and G. Ouchi

quartic hypersurface in P
3
C
by Z/4 × Z/4. Sheridan–Smith proved the homological

mirror symmetry for Greene–Plesser mirrors [35]. Combining with a result in [36], as
a special case of Greene–Plesser mirrors, one has the mirror equivalence for the mirror
quartic (see Sect. 5 for details): There exists a Kähler form ω on X̌0 and a quartic K3
surface X of Picard rank one, which satisfies a quasi-equivalence of A∞ categories

DFuk(X̌0, ω) � perdg(X).

Here DFuk(X̌0, ω) is the split-closed triangulated envelope of the Fukaya category
of (X̌0, ω) and perdg(X) is the dg category of perfect complexes on X , which is
a dg enhancement of Db(X). Bayer–Bridgeland proved Bridgeland conjecture for
complex algebraic K3 surfaces of Picard rank one [1] and, as a corollary, identified
the subgroup of Calabi–Yau autoequivalences of Db(X), modulo even shifts, and
the stacky fundamental group of Kähler moduli space of X . Based on [33] and [1],
Sheridan–Smith furthermore developed the relation between the symplectic mapping
class groups and the autoequivalence groups [34]. Using their results, we prove that the
counterexample toGromov–Yomdin type conjecture on X in [30] induces a symplectic
Torelli mapping class on (X̌0, ω) as in Problem 1.2 (i).

Theorem 1.4 (Theorem 5.2) Let (X̌0, ω) be the mirror quartic. Then there exists a
symplectic Torelli mapping class φ of X̌0 satisfying

hcat(φ) > log ρ(H2(φ)) = 0.

By the construction, the symplectic Torelli mapping class φ in Theorem 1.4 answers
Problem 1.2 (ii).

The homological mirror symmetry is a quasi-equivalence of some A∞ categories
over the universal Novikov field �, not over C. To estimate the Hochschild and cate-
gorical entropy over � via complex models, we establish the base change formula for
field extensions in general settings, see Theorem 2.20.

Notation and Convention. Throughout this paper, for a smooth projective variety X
over a field k, the bounded derived category of coherent sheaves on X is denoted by
Db(X). For an object E ∈ Db(X ×Y ), the Fourier–Mukai functor �E associated with
the Fourier–Mukai kernel E is defined by

�E : Db(X) → Db(Y ), E 	→ Rp∗(q∗E ⊗L E),

where p : X × Y → Y and q : X × Y → X are projections. If � : Db(X) → Db(Y )

is an equivalence, there uniquely exists a Fourier–Mukai kernel E ∈ Db(X × Y ) such
that � � �E by [27, Theorem 2.19]. For E ∈ Db(X × Y ) and F ∈ Db(Y × Z), we
define the convolution product

F ◦ E := RπX Z∗(π∗
XYE ⊗L π∗

Y ZF) ∈ Db(X × Z),

where πXY , πX Z and πY Z are projections from X × Y × Z to X × Y , X × Z and
Y × Z respectively. By [17, Proposition 5.10], we have �F ◦ �E � �F◦E .
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Hochschild Entropy and Categorical Entropy 227

Let perdg(X) be the dg category of perfect complexes on X . Since X is smooth,
we have the exact equivalence H0(perdg(X)) � Db(X), that is, perdg(X) is a dg
enhancement of Db(X).

For a subring K ⊂ C and a finitely generated free K -module V , define the spectral
radius of a K -endomorphism f : V → V by ρ( f ) := ρ( fC). We set log 0 := −∞.

2 Entropy

2.1 Categorical Entropy

Let T be a triangulated category over a field k. For an object E ∈ T , let 〈E〉 be the
smallest full triangulated subcategory that contains E and is closed under taking direct
summands.

Definition 2.1 Let E, G be objects in T such that E ∈ 〈G〉. The complexity δt (G, E)

of E with respect to G is the function δt (G, E) : R → [0,+∞) defined by

δt (G, E) := inf

⎧

⎨

⎩

p
∑

i=1

eni t |
0 E1 . . . E p−1 E ⊕ E ′

G[n1] . . . G[n p]

��

����
��
��

�� ��

����
��
��

��
⎫

⎬

⎭

.

We collect fundamental inequalities.

Proposition 2.2 ([6, Proposition 2.2]) The following are hold.

(1) Let G1, G2, G3 be objects in T such that G2, G3 ∈ 〈G1〉, G3 ∈ 〈G2〉. We have
the inequality

δt (G1, G3) ≤ δt (G1, G2)δt (G2, G3).

(2) Let E, G be an object in T such that E ∈ 〈G〉. For a non-zero exact functor
� : T → T ′ to a triangulated category T ′, we have the inequality

δt (�(G),�(E)) ≤ δt (G, E).

An object G ∈ T is a split generator if T = 〈G〉. We recall the definition of the
categorical entropy of autoequivalences of T .

Definition 2.3 ([6, Definition 2.4, Lemma 2.5]) Let G and G ′ be split generators of
T . For an autoequivalence � : T → T , the categorical entropy ht (�) is defined by

ht (�) := lim
n→∞

1

n
log δt (G,�n(G ′)).

The limit exists in [−∞,+∞) for any t ∈ R and is independent of the choices of G
and G ′. Denote the value h0(�) ≥ 0 at t = 0 by hcat(�).
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228 K. Kikuta and G. Ouchi

Let A be a smooth proper differential graded (dg) category over a field k. Denote
the perfect derived category of A by per(A). Since A is proper, the triangulated
category per(A) is Ext-finite over k, and there is a split generator of per(A). Let T be
a triangulated category equivalent to per(A) for some smooth proper dg category A
over a field k. In this case, the categorical entropy can be computed by the following
theorem.

Theorem 2.4 ([6, Theorem 2.6]) Let G and G ′ be split generators of T . For an exact
endofunctor � : T → T such that �n is not zero for any n > 0, we have

ht (�) = lim
n→∞

1

n
log δ′

t (G,�n(G ′)).

Here, δ′
t (E, F) := ∑

i∈Z dimk Exti (E, F)e−i t for objects E, F ∈ T .

For E, F ∈ T , we define the Euler characteristic χ(E, F) by

χ(E, F) :=
∑

i∈Z
(−1)i dimk Ext

i (E, F).

It induces the bilinear form χ(−,−) on the Grothendieck group K0(T ) of T . The
numericalGrothendieck group Knum(T ) ofT is the quotient of K0(T ) by the radical of
χ . The group Knum(T ) is a finitely generated free abelian group by the Hirzebruch–
Riemann–Roch theorem [23], [37]. An autoequivalence � : T ∼−→ T induces the
linear map Knum(�) : Knum(T )

∼−→ Knum(T ).
The following is an analogue of Yomdin’s inequality [42].

Proposition 2.5 ([22, Theorem 2.13]) Let � be an autoequivalence of T . Then we
have the inequality

hcat(�) ≥ log ρ(Knum(�)). (2.1)

2.2 Hochschild Entropy

Let dgcatk be the category of dg categories over a field k, whose morphisms are dg
functors. Denote the localization of dgcatk along quasi-equivalences by hodgcatk .
The internal hom defines the functor

RHom(−,−) : hodgcatopk × hodgcatk → hodgcatk .

The tensor product defines the functor

− ⊗L − : hodgcatk × hodgcatk → hodgcatk .

For dg categories A,B, we have the natural bijection [39]

hodgcatk(A,B) � Iso(H0(RHom(A,B))).
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Hochschild Entropy and Categorical Entropy 229

Take a smooth proper dg categoryA. LetD be the perfect derived dg category perdg(A)

of A, which is a dg enhancement of per(A). By [39], we have the isomorphism

RHom(D,D) � perdg(Aop ⊗L A)

in hodgcatk . By the equivalence H0(RHom(D,D)) � per(Aop ⊗L A), we have
the object S−1

D ∈ H0(RHom(D,D)) which is corresponding to the inverse dual-
izing complex of A in per(Aop ⊗L A). An object of H0(RHom(D,D)) (or an
element in Iso(H0(RHom(D,D)))) is called a quasi-endofunctor of D. For ˜� ∈
H0(RHom(D,D)), we have the exact functor H0(˜�) : per(A) → per(A). Then we
obtain the functor

H0 : H0(RHom(D,D)) → Fun(per(A), per(A)).

We define Hochschild (co)homology groups of quasi-endofunctors ofD as follows.

Definition 2.6 Take an integer i ∈ Z. Let ˜� ∈ H0(RHom(D,D)) be a quasi-functor.
The i-th Hochschild cohomology group H Hi (˜�) of ˜� is defined by

H Hi (˜�) := ExtiH0(RHom(D,D))
(˜�, idD).

Similarly, the i th Hochschild homology group H Hi (˜�) of ˜� is defined by

H Hi (˜�) := Ext−i
H0(RHom(D,D))

(S−1
D , ˜�).

We put

H H∗(˜�) :=
⊕

i∈Z
H Hi (˜�),

H H∗(˜�) :=
⊕

i∈Z
H Hi (˜�).

Remark 2.7 By H0(RHom(D,D)) � per(Aop ⊗L A), H H∗(˜�) and H H∗(˜�) are
finite dimensional k-linear spaces for any quasi-functor ˜� ∈ H0(RHom(D,D)).

Definition 2.6 is the generalization of the usual Hochschild (co)homology group of
D.

Remark 2.8 The i th Hochschild cohomology group H Hi (D) of D is given by

H Hi (D) = H Hi (idD).

Similarly, the i th Hochschild homology group H Hi (D) of D is given by

H Hi (D) = H Hi (idD).
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230 K. Kikuta and G. Ouchi

We define the Hochschild (co)homological entropy of quasi-endofunctors of D.

Definition 2.9 Let ˜� ∈ H0(RHom(D,D)) be a quasi-endofunctor of D. We define
the Hochschild cohomological entropy of ˜� by

hH H∗(˜�) := lim sup
n→∞

1

n
log dimk H H∗(˜�n).

Similarly, we define the Hochschild homological entropy of ˜� by

hH H∗(˜�) := lim sup
n→∞

1

n
log dimk H H∗(˜�n).

Theorem 2.10 For ˜� ∈ H0(RHom(D,D)) and � := H0(˜�), we have

hH H∗(˜�) ≤ hcat(�) (2.2)

and

hH H∗(˜�) ≤ hcat(�). (2.3)

Proof Let G ∈ D be a split generator of D. Since D is smooth and proper,
G ⊗ RHom(G,−) is a split generator of H0(RHom(D,D)). First, we have

dimk H H∗(˜�n) = δ0(k,RHom(˜�n, idD))

= δ0(k,RHom(˜�n, idD)∗)
≤ δ0(k,RHom(G ⊗ RHom(G,−), idD)∗)

δ0(RHom(G ⊗ RHom(G,−), idD)∗,RHom(˜�n, idD)∗)
≤ δ0(k,RHom(G ⊗ RHom(G,−), idD)∗)

δ0(G ⊗ RHom(G,−), ˜�n).

Here, the first (resp. second) inequality is deduced from Proposition 2.2 (1) (resp. (2)).
Moreover, we obtain

δ0(G ⊗ RHom(G,−), ˜�n) ≤ δ0(G ⊗ RHom(G,−), ˜�n ◦ (G ⊗ RHom(G,−)))

δ0(˜�
n ◦ (G ⊗ RHom(G,−)),�n)

≤ δ0(G, H0(�)n(G))δ0(G ⊗ RHom(G,−), idD).

The first inequality is deduced from Proposition 2.2 (1). The second inequality
is deduced from the isomorphism ˜�n ◦ (G ⊗ RHom(G,−)) � H0(�)n(G) ⊗
RHom(G,−) and Proposition 2.2 (2). Therefore, we have the inequality

hH H∗(˜�) ≤ hcat(H0(�)).

To show hH H∗(˜�) ≤ hcat(�), we can apply similar computations. ��
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Hochschild Entropy and Categorical Entropy 231

Remark 2.11 The inequality (2.3) has already been proved via a different method by
the first author and Atsushi Takahashi.

Remark 2.12 If D is a Calabi–Yau dg category, we have

hH H∗(˜�) = hH H∗(˜�)

for any ˜� ∈ H0(RHom(D,D)).

We have the following question.

Question 2.13 Let ˜� ∈ H0(RHom(D,D)) and � := H0(˜�). When do we have

hH H∗(˜�) = hH H∗(˜�) = hcat(H0(�))?

After the first version of this article was submitted on arXiv, Atsushi Takahashi pointed
out that Question 2.13 is false in general: for a phantom dg category D �= 0,

hH H∗(idD) = 0 �= −∞ = hH H∗(idD)

by Remark 2.8. For example, (a dg enhancement of) an admissible subcategory of the
derived category of the classical Godeaux surface is smooth, proper and phantom by
[3, Theorem 1.1] and [2, Remark 5.17].

For ˜� ∈ H0(RHom(D,D)), we obtain the induced linear map

˜�H H∗ : H H∗(D) → H H∗(D).

When k = C, we compare the Hochschild homological entropy hH H∗(˜�) with the
spectral radius ρ(˜�H H∗).

Proposition 2.14 Assume that k = C and Hodd(D) = 0. For ˜� ∈ H0(RHom(D,D)),
we have the inequality

hH H∗(˜�) ≥ log ρ(˜�H H∗).

Proof By the Lefschetz fixed-point theorem for Hochschild homology [23] and the
assumption, we obtain

dimk H H∗(˜�n) ≥
∑

i∈Z
(−1)i dimk H Hi (˜�

n)

= tr
(

(

˜�H H∗)n
)

.

Note that we have the equality

exp
(
∑

i∈Z

tr((˜�H H∗)n)

i
zi

)

= det(1 − ˜�H H∗ z)−1.
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232 K. Kikuta and G. Ouchi

Computing the radius of convergence of the above function, we have

lim sup
n→∞

tr
(

(

˜�H H∗)n
)1/n = ρ(˜�H H∗).

Hence, we have proved the desired inequality. ��
Remark 2.15 The proof of Proposition 2.14 is almost the same as that of [6, Lemma
2.8], which is used to compare hcat(�) with log ρ(˜�H H∗).

We interpret Definition 2.6 in terms of Fourier–Mukai kernels. Let X be a smooth
projective variety over k. The dg category perdg(X) is isomorphic to the perfect derived
dg category of some smooth proper dg category in hodgcatk [41, Lemma 3.27]. By
[39, Theorem 8.15], there is the natural isomorphism

RHom(perdg(X), perdg(X)) � perdg(X × X)

in hodgcatk . Via the equivalence H0(RHom(perdg(X), perdg(X))) � Db(X × X) of
triangulated categories, the functor

H0 : H0(RHom(perdg(X), perdg(X))) → Fun(Db(X),Db(X))

is corresponding to �(−) : Db(X × X) → Fun(Db(X),Db(X)). The corresponding
quasi-functor to E ∈ Db(X × X) is denoted by ˜�E .

Remark 2.16 Let E ∈ Db(X × X) be an object. By [39, Theorem 8.15], we have
isomorphisms

H Hi (˜�E ) � Exti (E,�∗OX [dim X ])
H Hi (˜�E ) � Ext−i (�∗ω−1

X [− dim X ], E)

for an integer i ∈ Z, where � : X ↪→ X × X is the diagonal embedding.

2.2.1 A∞ Version

Wehere consider slight generalizations for cohomologically unital (c-unital) A∞ func-
tors ([31, Ch.1 (2e)]). Let B be a c-unital A∞ category over a field k. We denote
the A∞ category of c-unital A∞ functors from B to B by f un(B,B), and call an
object in f un(B,B) (c-unital) A∞ endofunctor of B. We define the full subcategory
f un(B,B)qe of f un(B,B) consisting of quasi-equivalent A∞ endofunctors of B.
Define the group

Aut(B) := Iso(H0( f un(B,B)qe)). (2.4)

Suppose that B is quasi-equivalent to the perfect derived dg category D of a
smooth proper (strictly unital) dg category. For F ∈ Aut(B) (or more rigorously,
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Hochschild Entropy and Categorical Entropy 233

F ∈ H0( f un(B,B))), the Hochschild cohomology of F is defined by

H Hi (F) := ExtiH0( f un(B,B))
(F, idB)(� Hi (hom f un(B,B)(F, idB))).

Canonaco–Ornaghi–Stellari proved the equivalence of categories

hodgcatk � hoA∞catck

and the isomorphism

RHom(D,D) � f un(D,D)(� f un(B,B)) (2.5)

in hoA∞catck ( [4, TheoremA, Theorem B, Corollary 2.6]), where hoA∞catck is the
localization (with respect to quasi-equivalences) of the category A∞catck of c-unital
A∞ categories over a field k, whose morphisms are c-unital A∞ functors. Therefore
the above definition is compatible with Definition 2.6. In the same manner as dg case,
we can define the Hochschild cohomological entropy of c-unital A∞ endofunctors.

Definition 2.17 For F ∈ Aut(B), we define

hH H∗(F) := lim sup
n→∞

1

n
log dimk H H∗(Fn),

which we call the Hochschild cohomological entropy of F .

This definition is compatible with Definition 2.9 by (2.5).

2.3 Base Change by Field Extensions

Let k ⊂ K be an extension of fields. For a smooth projective variety X over k, let
X K := X ×k Spec(K ) be its base change. Taking the pullback with respect to the
natural morphism X K → X , we have the exact functor (−)K : Db(X) → Db(X K ).

There are split generators of Db(X) and Db(X K ) which are compatible with the
base change.

Remark 2.18 Let OX (1) be a very ample line bundle on X . Put OX K (1) := OX (1)K .
Then OX K (1) is a very ample line bundle on X K . By [28, Theorem 4], the object

G p := ⊕p+dim X
i=p OX (i) is a split generator of Db(X) for any integer p ∈ Z. Thus

the object (G p)K is also a split generator of Db(X K ).

The following are fundamental properties for base change by a field extension
k ⊂ K .

Lemma 2.19 Let X and Y be smooth projective variety over k. The following hold.

(1) For an object E ∈ Coh(X), we have (E∨)K � (EK )∨.
(2) For an object E, F ∈ Db(X), we have (E ⊗ F)K � EK ⊗ FK .
(3) For an object E ∈ Db(X × Y ), we have (−)K ◦ �E � �EK ◦ (−)K .
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234 K. Kikuta and G. Ouchi

(4) For an object E ∈ Db(X), we have a natural isomorphism

R(X , E) ⊗k K
∼−→ R(X K , EK )

Proof (1) Take an object E ∈ Db(X). Recall the Cartesian diagram.

X K

��

v �� X

��
Spec(K ) �� Spec(k)

We have

(E∨)K = v∗(E∨)

� v∗RHom(E,OX )

� RHom(v∗E,OX K )

= (EK )∨.

(2) This is immediately deduced from the compatibility between the pull-back and the
tensor product.
(3) Take an object E ∈ Db(X × Y ). Consider the Cartesian diagrams.

X K
v ��

δ

��

X

T ε

��

X K × YK
w ��

��

X × Y

��
Spec(K ) �� Spec(k) Spec(K ) �� Spec(k)

Let pK : X K × YK → X K and qK : X K × YK → YK be projections. For an object
E ∈ Db(X), we have

�E (E)K = v∗(Rp∗(q∗E ⊗ E))

� RpK∗w∗(q∗E ⊗ E)

� RpK∗(w∗q∗E ⊗ w∗E)

� RpK∗(qK∗v∗E ⊗ w∗E)

= �EK (EK ).

Here, we use flat base changes in the second row and the fourth row.
(4) It follows from the flat base change theorem. ��

The categorical entropy and the Hochschild (co)homological entropy of Fourier–
Mukai functors are invariant under base changes.
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Theorem 2.20 For an object E ∈ Db(X × X), we have

ht (�E ) = ht (�EK )

for any real number t ∈ R, and

hH H∗(˜�E ) = hH H∗(�̃EK ), hH H∗(˜�E ) = hH H∗(�̃EK ).

Proof Let OX (1) be a very ample line bundle on X . Then G := ⊕dimX
i=0 OX (i) is

a split generator of Db(X). By Remark 2.18, the object G K is a split generator of
Db(X K ). By Lemma 2.19, we obtain

RHom(G,�n
E (G)) ⊗k K � R(X ,�n

E (G) ⊗ G∨) ⊗k K

� R(X K , (�n
E (G) ⊗ G∨)K )

� R(X K ,�n
EK

(G K ) ⊗ (G K )∨)

� RHom(G K ,�n
EK

(G K )).

Therefore, we have

δ′
t (G,�n

E (G)) = δ′
t (G K ,�n

EK
(G K ))

for any integer n ∈ Z>0. By Theorem 2.4, we have ht (�E ) = ht (�EK ).
By Lemma 2.19 (4) and Remark 2.16, we obtain

H H∗(�̃EK ) �
⊕

i∈Z
Exti (EK ,�∗OX K [dim X K ])

�
⊕

i∈Z
Exti (E,�∗OX [dim X ]) ⊗k K

� H H∗(˜�E ) ⊗k K ,

which implies hH H∗(˜�E ) = hH H∗(�̃EK ). The remaining equality can be proved
similarly.

3 Algebraic K3 Surface

In this section, we recall some notions for algebraic K3 surfaces.

3.1 Autoequivalence Groups

Let X be an algebraic K3 surface over an algebraically closed field K of characteristic
zero. Fourier–Mukai kernels induce an action on H H∗(X) := H H∗(perdg(X)) ([5,
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Section 4]), so we obtain a map

Aut(Db(X)) → Aut(H H∗(X)); � 	→ �H H∗ .

We define the two subgroups Aut0(Db(X)), AutCY (Db(X)) of Aut(Db(X)) by

Aut0(Db(X)) :=
{

� ∈ Aut(Db(X)) | �H H∗ = idH H∗(X)

}

AutCY (Db(X)) :=
{

� ∈ Aut(Db(X)) | �H H∗ |H H2(X) = idH H2(X)

}

.

An element in AutCY (Db(X)) is called a Calabi–Yau autoequivalence.

3.2 Complex Model

Let K be a field of characteristic zero, and X a K3 surface over K . We can define X
using only a finite number of elements of K , so there exists a finitely generated field
Q ⊂ k ⊂ K and a variety X ′ over k such that X � X ′ ×k K . We can embed k in C,
so we obtain a variety XC � X ′ ×k C. Using the fact that flat base change commutes
with cohomology, one can show that X ′, and therefore XC, are also K3 surfaces. We
call XC a complex model of X . Applying the pull-back functor ( )K , via the extension
k ↪→ K , to Fourier–Mukai kernels, one has a morphism

( )K : Aut(Db(X ′)) → Aut(Db(X)); �E 	→ �EK .

Lemma 3.1 ([18, Chapter 16, Section 4.2], see also [34, Lemma 6.7]) Let X be an
algebraic K3 surface over an algebraically closed field K of characteristic zero. Then
base change by the extensions C ←↩ k̄ ↪→ K yields the isomorphisms

α : Aut(Db(XC))
∼←−−

( )C
Aut(Db(X ′ ×k k̄))

∼−−→
( )K

Aut(Db(X)); � 	→ α(�)

Moreover, these isomorphisms induce

Aut0(Db(XC)) � Aut0(Db(X)) and AutCY (Db(XC)) � AutCY (Db(X)).

3.3 Complex K3 Surface andMukai Lattice

Let X be a complex algebraic K3 surface. The integral cohomology group H∗(X , Z)

of X has the lattice structure given by the Mukai pairing

((r1, c1, m1), (r2, c2, m2)) := c1 · c2 − r1m2 − r2m1

for (r1, c1, m1), (r2, c2, m2) ∈ H∗(X , Z). The lattice H∗(X , Z) called the Mukai
lattice of X is an even unimodular lattice of signature (4, 20). The Mukai lattice has
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a weight two Hodge structure ˜H(X) given by

˜H2,0(X) := H2,0(X), ˜H1,1(X) :=
2

⊕

p=0

H p,p(X), ˜H0,2(X) := H0,2(X).

The integral (1, 1)-part of ˜H(X) denoted by N(X) is equal to H0(X , Z) ⊕ NS ⊕
H4(X , Z). The lattice N(X) is called the algebraic Mukai lattice.

For an object E ∈ Db(X), the Mukai vector v(E) ∈ H2∗(X , Q) of E is given by

v(E) := ch(E)
√

tdX = (rk(E), c1(E), χ(E) − rk(E)).

By the Riemann–Roch formula, we have the isomorphism v : Knum(X)
∼−→ N(X)

satisfying (v(E), v(F)) = −χ(E, F) for any objects E, F ∈ Db(X).
For any autoequivalence�E ∈ Aut(Db(X)), we define the cohomological Fourier–

Mukai transform �H
E : H∗(X , Z)

∼−→ H∗(X , Z) associated with �E by

�H
E (v) := p∗(q∗(v) · v(E)),

which is a Hodge isometry of ˜H(X).
The actions of Aut(Db(X)) on H H∗(X) and H∗(X , C) are compatible with the

Hochschild–Kostant–Rosenberg isomorphism by [25, Theorem 1.2] (see also [1,
Appendix A]). we thus have

Aut0(Db(X)) = {� ∈ Aut(Db(X)) | �H = idH∗(X ,Z)}
AutCY (Db(X)) = {� ∈ Aut(Db(X)) | �H |

˜H2,0(X) = id
˜H2,0(X)}.

4 Symplectic K3 Surface

Symplectic K3 surface (X̌ , ω)means a complex K3 surface X̌ with a Kähler formω on
X̌ . We collect several facts on symplectic mapping class groups and Fukaya categories
from [33, 34].

4.1 Symplectic Mapping Class Group

Let (X̌ , ω) be a symplectic K3 surface. We denote Symp(X̌ , ω) the group of symplec-
tomorphisms of (X̌ , ω) equipped with the C∞-topology. The group π0Symp(X̌ , ω) is
called the symplectic mapping class group of (X̌ , ω). Since H1(X̌ , Z) = 0, the con-
nected component containing the identity Symp0(X̌ , ω) := Symp(X̌ , ω)∩Diff0(X̌) is
exactly the normal subgroup Ham(X̌ , ω) consisting of Hamiltonian diffeomorphisms
of (X̌ , ω). We thus have

π0Symp(X̌ , ω) � Symp(X̌ , ω)/Ham(X̌ , ω)
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The symplectic Torelli subgroup I (X̌ , ω) ⊂ π0Symp(X̌ , ω) is the kernel of the natural
homomorphism

π0Symp(X̌ , ω) → Aut(H∗(X̌ , Z)).

We call an element in I (X̌ , ω) ⊂ π0Symp(X̌ , ω) a symplectic Torelli mapping class.
Let (N , ( , )) be a lattice of signature (2, t). The periodic domain associated with

N is

�(N ) := {� ∈ P(N ⊗Z C) | (�,�) = 0, (�, �̄) > 0}.

The group of lattice automorphisms Aut(N ) acts on �(N ). The periodic domain
�(N ) has two connected components distinguished by the orientation of the positive
definite two-plane (〈Re�, Im�〉R, ( , )), and interchanged by complex conjugation.
We denote them by �±(N ). We denote the set of (−2)-classes in N by �(N ) := {δ ∈
N |(δ, δ) = −2}. We define

�±
0 (N ) := �±(N )\

⋃

δ∈�(N )

P((δ ⊗Z C)⊥).

Let (N ) ⊂ Aut(N ) be the subgroup of lattice automorphisms acting on the discrim-
inant group N∗/N . The group +(N ) ⊂ (N ) is defined to be the subgroup of lattice
automorphisms preserving �+(N ). We define the quotient stack

M0(N ) := [�+
0 (N )/+(N )].

Let π1(M0(N )) be the stacky fundamental group ofM0(N ) (see [34, subsection 2.1
and 2.2]).

We define the lattice

N(X̌ , ω) := [ω]⊥ ∩ H2(X̌ , Z)

equipped with the cup product pairing, and suppose that N(X̌ , ω) has signature (2, t).
The complex moduli space Mcpx(X̌ , ω) of (X̌ , ω) is defined to be

Mcpx(X̌ , ω) := M0(N(X̌ , ω)).

We can construct the symplectic monodromy homomorphism ([34, Proposition 3.9]):

π1(Mcpx(X̌ , ω)) → π0Symp(X̌ , ω).
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4.2 Fukaya Category

Let � denote the universal Novikov field over C:

� :=
⎧

⎨

⎩

∞
∑

j=0

c j q
λ j | c j ∈ C, λ j ∈ R, lim

j→∞ λ j = ∞
⎫

⎬

⎭

.

The field � is an algebraically closed field extension of C, with a non-Archimedean

valuation val : � → R∪{∞} defined by val
(

∑∞
j=0 c j qλ j

)

:= min j {λ j | c j �= 0}.We

can define a �-linear Z-graded c-unital non-curved A∞ category Fuk(X̌ , ω) called
Fukaya category of a symplectic K3 surface (X̌ , ω) (see [33, subsection 2.5] and
[34, subsection 5.1]). The split-closed derived category of Fuk(X̌ , ω) is denoted by
DFuk(X̌ , ω) (see [31, Ch.1 (4c)]), and set DFuk(X̌ , ω) := H0(DFuk(X̌ , ω)). The
(graded) symplectic mapping class group of (X̌ , ω) naturally acts onDFuk(X̌ , ω), so
that we have the homomorphism (see [34, subsection 5.6]):

π0Symp(X̌ , ω) → AutCY (DFuk(X̌ , ω))/[2]; φ 	→ φ∗ (4.1)

whereAutCY (DFuk(X̌ , ω)) is the subgroup ofAut(DFuk(X̌ , ω)) (cf. (2.4)) consisting
of F ∈ Aut(DFuk(X̌ , ω)) which preserves a 2-Calabi–Yau structure onDFuk(X̌ , ω)

(see [34, subsection 5.3, 5.4 and Lemma 5.11]).

5 Homological Mirror Symmetry

5.1 Example: TheMirror Quartic

Let X̌0 be the complex K3 surface called mirror quartic, defined as the crepant res-
olution of the quotient of the Fermat quartic hypersurface in P

3
C
by Z/4 × Z/4. We

define the set

�0 :=
{

κ = (κ1, κ2, κ3, κ4) ∈ (Z≥0)
4 |

∑

i

κi = 4 and at least two of the κi are 0

}

.

Associated to any λ ∈ (R>0)
�0 , there is a Kähler form ωλ on X̌0 ([33, subsection

1.3] for details). For any d ∈ ��0 , let Wd(z1, z2, z3, z4) ∈ �[z1, z2, z3, z4] be the
weighted homogeneous polynomial of degree 4 defined by

Wd(z1, z2, z3, z4) := −z1z2z3z4 +
∑

κ∈�0

dκ zκ1
1 zκ2

2 zκ3
3 zκ4

4 .

We define the quartic K3 surface Xd over � by Xd := {Wd = 0} ⊂ P
3
�.
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Theorem 5.1 ([33, Theorem C] and [34, Proposition 6.13 and Example 7.1]) There
exists λ ∈ (R>0)

�0 and d ∈ ��0 with λκ = val(dκ) for all κ ∈ �0, satisfying the
followings:

(i) Xd has Picard rank one.
(ii) We have a quasi-equivalence of Z-graded �-linear c-unital A∞ categories

DFuk(X̌0, ωλ) � perdg(Xd).

5.2 Symplectic Torelli Mapping Class of Positive Categorical Entropy

We firstly recall an example of an autoequivalence not satisfying the Gromov–Yomdin
type equality due to the second author.

Let X be a complex algebraic K3 surface, and OX (1) a very ample line bundle on
X such that c1(OX (1))2 = 2d (d ≥ 2). Define

�0 := (TOX ◦ (− ⊗ OX (−1)))4 ∈ Aut(Db(X)),

where TOX is the spherical twist with respect to OX . We then have the following
inequality ([30, Proposition 4.3])

hcat(�0) > log ρ(Knum(�0)) = log ρ(�H
0 ) = log ρ((�0)

H H∗)(≥ 0), (5.1)

For simplicity, we define

hcat(φ) := hcat(H0(φ∗))

for any φ ∈ π0Symp(X̌ , ω) via the morphism from (4.1)

π0Symp(X̌ , ω) −−→
(4.1)

AutCY (DFuk(X̌ , ω))/[2] −→
H0

Aut(DFuk(X̌ , ω))/[2].

Note that hcat([�]) for [�] ∈ Aut(DFuk(X̌ , ω))/[2] is well defined by hcat(� ◦
[2m]) = hcat(�) for all m ∈ Z.

The following is one of the main theorems in this paper.

Theorem 5.2 Let (X̌0, ωλ) be the mirror quartic as in Theorem 5.1. Then there exists
a symplectic Torelli mapping class φ of (X̌0, ωλ) such that

hcat(φ) > log ρ(H2(φ)) = 0.

Proof Let X = Xd be the quartic K3 surface over� homologicallymirror to (X̌ , ω) =
(X̌0, ωλ) as in Theorem 5.1, and XC be a complex model of X which is also a quartic
over C.

By (5.1), we have hcat(�0) > 0. It follows that �0 acts on H∗(XC, Z)(�
H H∗(XC)) trivially (cf. [8, Proof in Proposition 4.1]) from the equivalence to the
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category of graded matrix factorizations due to Orlov ([29, Theorem 3.11]). Recall
that there are group isomorphisms (cf. Lemma 3.1)

α : Aut(Db(XC))
∼←−−

( )C
Aut(Db(X ′ ×k k̄))

∼−−→
( )�

Aut(Db(X)); � 	→ α(�)

Note that the categorical entropy is invariant under base changes for field exten-
sions by Theorem 2.20, and that the above isomorphism induces Aut0(Db(XC)) �
Aut0(Db(X)) (cf. Lemma 3.1). We therefore have hcat(α(�0)) > 0 and α(�0) ∈
Aut0(Db(X)).

Using theBayer–Bridgeland theorem[1] and the symplecticmonodromy,Sheridan–
Smith proved that the morphism obtained by the restriction of (4.1)

I (X̌ , ω) −−−→
(4.1)

Aut0(DFuk(X̌ , ω))/[2] ∼−−−→
HMS

Aut0(perdg(X))/[2] ∼−−→
H0

Aut0(Db(X))/[2]

is surjective [34, The formula (52) in Proposition 7.8]. Therefore there exists a sym-
plectic mapping class φ in the symplectic Torelli subgroup I (X̌ , ω). Clearly, φ acts on
H2(X̌ , Z) trivially, so that log ρ(H2(φ)) = 0. By the definition of hcat(φ), we have
hcat(φ) > 0, which completes the proof. ��

6 Outlook

Associated to a symplectic mapping class of a symplectic K3 surface, there is the
asymptotic invariant called the Floer-theoretic entropy, which is defined to be the
exponential growth rate of the dimensions of its fixed-point Floer cohomology. In this
section, we introduce the Floer-theoretic entropy and give a question about the relation
to the Hochschild entropy and a strategy to prove it.

6.1 Floer-Theoretic Entropy

For simplicity, we suppose that (X̌ , ω) is a symplectic K3 surface. For a (graded)
symplectic mapping class φ, we can define a Z-graded �-linear space H F∗(φ) called
the fixed-point Floer cohomology of φ ([7], see also [32, Subsection (3a)]).

Definition 6.1 ([10, Section 6] and [35, Subsection 1.3, 2.4]) For a symplectic map-
ping class φ ∈ π0Symp(X̌ , ω), the Floer-theoretic entropy of φ is defined by

hFloer(φ) := lim sup
n→∞

1

n
log dim� H F∗(φn).

There are a few examples whose Floer-theoretic entropy can be computed. As an
application, Smith used the Floer-theoretic entropy to show the faithfulness of a
representation on symplectic mapping class groups of representation varieties ([35,
Subsection 1.3, 2.4]). The Floer-theoretic entropy is also closely related to the radius
of convergence of the symplectic zeta function ([9–12]).
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6.2 Relation to the Hochschild Entropy

Let (X̌ , ω) be a symplectic K3 surface. For a symplectic mapping class φ ∈
π0Symp(X̌ , ω), there are two notions of entropy i.e., the Floer-theoretic entropy and
the categorical entropy, which are expected to be related via the homological mirror
equivalence. As in Theorem 2.10, the categorical entropy is equal to or greater than
the Hochschild entropy, so we then have to compare the Floer-theoretic entropy and
the Hochschild entropy.

Question 6.2 Let (X̌ , ω) be a symplectic K3 surface. For a symplectic mapping class
φ ∈ π0Symp(X̌ , ω), does the equation

hFloer(φ) = hH H∗(φ∗)

hold?

All elements of finite order clearly satisfy the above equation. We hope that Question
6.2 is affirmative in general, and here propose a strategy to prove it. First, two entropy
is defined as the asymptotics of dimensions of some �-linear spaces:

H F∗(φ) and H H∗(φ∗)

so it suffices to show linear isomorphisms between them as follows.

Step 1. For a symplectomorphism ψ ∈ Symp(X̌ , ω), its graph ψ := {(x, ψ(x))} is
a Lagrangian submanifold of (X̌ × X̌ , pr∗1ω−pr∗2ω), where pri : X̌ × X̌ → X̌
is the projection onto the i th component. Let� := id X̌

be the diagonal. Then

for a symplectic mapping class φ := [ψ] ∈ π0Symp(X̌ , ω), show

H F∗(φ) � H F∗(ψ,�) := H∗(C F(ψ,�)).

This is true for the case of non-degenerate fixed points ( [32, Example 3.8]).
Step 2. Let F := Fuk(X̌ , ω). Show

H∗(C F(ψ,�)) � H∗(hom f un(F,F)(φ∗, idF)),

where we recall that f un(F,F) is the A∞ category of c-unital A∞ endofunc-
tor of F (see 2.2.1). To show, we need to consider the fully-faithfulness of
the Ma’u–Wehrheim–Woodward-type functor ([26, Theorem 1.1]), which
is related to whether the diagonal � is split-generated by products of
Lagrangians in X̌ . Fukaya proved the existence of some variant of this functor
in a more general setting ([13, Corollary 7.4]).
For monotone symplectic manifolds, Smith showed this isomorphism for a
symplectomorphism represented by compositions of Dehn twists in some
vanishing cycles ([35, Corollary 3.12]).
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Step 3. Let DF := DFuk(X̌ , ω). Show

H∗(hom f un(F,F)(φ∗, idF)) � H∗(hom f un(DF,DF)(φ∗, idDF))(� H H∗(φ∗)).

When φ = [id X̌ ], this isomorphism is a well-known fact that the Hochschild
cohomology of an A∞ category is invariant under passing to a split-closed
triangulated envelope.

If hH H∗(˜�0) = hcat(�0) holds and Question 6.2 is affirmative for the symplectic
mapping class φ appeared in Theorem 5.2, then φ gives a Floer-theoretic and higher
dimensional analogueof (real) surface’sTorellimapping classes of positive topological
entropy ([38, Corollary in Section 6]).
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