
Arnold Mathematical Journal (2023) 9:245–265
https://doi.org/10.1007/s40598-022-00211-4

RESEARCH CONTRIBUT ION

Relations Between Escape Regions in the Parameter Space
of Cubic Polynomials

Araceli Bonifant1 · Chad Estabrooks2 · Thomas Sharland1

Received: 2 March 2022 / Revised: 10 June 2022 / Accepted: 20 June 2022 /
Published online: 22 July 2022
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

Abstract
We describe a topological relationship between slices of the parameter space of cubic
maps. In the paper [9], Milnor defined the curves Sp as the set of all cubic polynomials
with a marked critical point of period p. In this paper, we will describe a relationship
between the boundaries of the connectedness loci in the curves S1 and S2.
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Basilica angles
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1 Introduction

The studyof parameter spaces of polynomials is of fundamental importance in complex
dynamics. The Orsay notes [5] contained, amongst other things, a detailed study of
the space of quadratic polynomials. Since then, mathematicians have also turned their
attention to other spaces of polynomials. In particular, researchers including Branner,
Hubbard,Milnor,Roesch andTan (amongmanyothers) have endeavored to understand
the space of cubic polynomials.
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This present paper is a modest step in that direction. It reports the main results of
the thesis of the second author [6], and looks at the boundary of the connectedness
locus C(P(3)) of cubic polynomials. A main tool for this analysis are the tessellations
considered byMilnor and the first author in [2], which themselves are partially inspired
by the puzzles (originally called patterns) discussed in [4] by Branner and Hubbard.
In this paper, they remarked that knowledge of the escape regions may “provide tools
for creeping up to the cubic connectedness locus”. The main result of this work is to
prove that the conformal isomorphism between escape regions in the parameter space
of cubic polynomials can be extended (in a special case) to their boundaries.

2 Preliminaries

We quickly state some standard definitions from Complex Dynamics. For a more
detailed treatment, the reader is encouraged to refer to [8]. Recall that a rational map
F on the Riemann sphere divides the sphere into two disjoint sets. The Julia set J (F),
the closure of the set of periodic repelling points, iswhere the dynamics is “chaotic” and
its complement, the Fatou set is where the dynamics is tame. A connected component
of the Fatou set is called a Fatou component.

2.1 Notation

We quickly present the notation we will use in the paper. The external (respectively,
internal) ray of angle t for a map F will be denoted by r Fe (t) (respectively, r Fi (t)); its
landing point is denoted by λF

e (t) (respectively λF
i (t)). We will sometimes drop the

superscript if it is clear which map is being referred to. In the parameter space, the
external (respectively, internal) ray of angle t is denoted by Re(t) (respectively, Ri (t))
and its landing point is �e(t) (respectively, �i (t)). Thus we use lower case for the
dynamical objects and upper case for the parameter objects. If fa ∈ S1, the immediate
basin of the fixed critical point is denoted by ̂Aa .

2.2 Cubic Polynomials

Following Milnor [9], we may parameterize the space of cubic polynomials by the
pairs (a, v) ∈ C

2 such that

f = fa,v(z) = z3 − 3a2z + 2a3 + v.

Here the polynomial fa,v has critical points at a and −a. Milnor observed that it is
helpful to divide this parameter space up into “slices”. Of particular interest are the
slicesSp, polynomials for which the (marked) critical point a has exact period p under
iteration, while −a is the “free” critical point. The point 2a has the same image under
fa,v as the critical point −a; we call 2a the cocritical point.
There are four types of hyperbolic components in the connectedness locus. A hyper-

bolic component is called
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Relations Between Escape 247

Fig. 1 Connectedness loci and escape regions (red) in the curves S1 and S2 (left and right, respectively)
shown side by side. The principal hyperbolic component ̂H0 in S1 is the large orange lemon-shaped
region in the middle of the image. The escape regions have been labelled, and the coloring of the hyperbolic
components indicates the periods of the free critical points for maps in that component. The most prominent
colors are orange (period 1) and yellow (period 2)

• Type A (Adjacent) if both critical points belong to the same periodic Fatou com-
ponent.

• Type B (Bitransitive) if the two critical points belong to different Fatou components
in the same periodic cycle.

• Type C (Capture) if one critical point belongs to a periodic cycle of Fatou compo-
nents, and the second critical point eventually lands in this cycle.

• Type D (Disjoint) if the polynomial has two distinct attracting periodic orbits, both
of which attracts one critical point.

It is easy to see that one may parameterize the space S1 by a single complex
parameter a, since then fa = fa,a has a fixed critical point at a. There is a unique type
A component in S1 (see Fig. 1), which is called the principal hyperbolic component
and denoted by ̂H0.

2.3 Escape Regions

Following [1], we define an escape region to be a connected component of Sp \C(Sp),
where C(Sp) = Sp ∩ C(P(3)). We will be interested in two particular escape regions:
the unique escape region E1 in S1 and the basilica escape region E B

2 in S2 (Fig. 1).
For a polynomial f ∈ E1, all components of the filled Julia set which are not points
are quasidisks. Similarly, in E B

2 , all non-point components of the filled Julia set of a
polynomial are quasiconformal copies of the Julia set for the “basilica”map z �→ z2−1
(see Sect. 3). There is another escape region ED

2 inS2, where all non-point components
of the filled Julia set are quasidisks.
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248 A. Bonifant et al.

Let f = fa,v ∈ Sp. From Böttcher’s theorem (see e.g [8, Theorem 9.1]), there is
a maximal neighborhood V of ∞ and a corresponding minimal r ≥ 1 such that the
map

B f : ̂C \ V → ̂C \ Dr ,

conjugates f to the map z �→ z3. Adding the requirement that B f is tangent to the
identity near ∞, there is a unique such map. Given an escape region E of multiplicity
one1, we may then define the conformal isomorphism

�E : E → C \ D

by �E ( f ) = B f (2a f ). Observe that these maps �E provide a “coordinate system”
on E : we denote by (ρ, t)E the polynomial f in E for which �E ( f ) = ρe2π i t .

2.4 Tessellations ofSp

For some q ∈ N, let Aq ⊂ Q/Z be the set of all arguments periodic of period q under
tripling. Such arguments have the form

m

3q − 1

with q minimal. We will say an argument t is coperiodic (of period q) if one of t + 1
3

or t − 1
3 belongs to Aq .

The following definition comes from [2].

Definition 2.1 Let q ∈ N. We construct the period q tessellation Tesq(Sp) of Sp as
follows. The collection of all coperiod q parameter rays in Sp decomposes Sp into a
finite number of open sets Fk , which we call the faces of the tessellation. The edges
of the tessellation are the parameter rays of coperiod q, while the vertices split into
two types: parabolic vertices are the (parabolic) landing points of the coperiodic rays
and the ideal points are the elements of Sp \ Sp.

Of particular importance will be the tessellation Tes2(S2).
Given a tessellation Tesq(Sp), we may write

Tesq(Sp) =
(

Tes(0)q (Sp),Tes(1)q (Sp),Tes(2)q (Sp)
)

where Tes(0)q (Sp) is the set of vertices, Tes
(1)
q (Sp) is the set of edges and Tes(2)q (Sp)

is the set of faces of Tesq(Sp).
We will also need the notion of an orbit portrait from [2] (Compare [7]).

1 All escape regions considered in this paper are of multiplicity 1. For more details, refer to [1].
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Definition 2.2 Let F ∈ Sp be such that every ray of period q lands at a (necessarily
periodic) point of J (F). We define an equivalence relation on the set of angles which
have period q under tripling as follows. Two such angles φ and ψ are equivalent if
and only if the dynamical rays re(φ) and re(ψ) have a common landing point in J (F).
This equivalence relation will be called the (period q) orbit portrait of F .

Note that the orbit portrait is well-defined unless the map F belongs to a parameter
ray of coperiod q. In particular, it is well-defined for all faces of Tesq(Sp) and so is
well-defined on the connectedness locus C(Sp). In fact we have the following.

Theorem 2.3 [2, Theorem 3.12] Let Fk be a face of Tesq(Sp). Then for each F ∈ Fk

and each angle θ0 which is periodic of period q under tripling, the dynamical ray
r Fe (θ0) lands at a repelling periodic point z(F) ∈ J (F). Furthermore the correspon-
dence F �→ z(F) defines a holomorphic function z : Fk → C. The period q orbit
portrait is the same for all maps F ∈ Fk .

2.5 Conformal Isomorphisms Between Escape Regions

We will make use of the conformal isomorphisms

�1 = �E1 : E1 → C \ D and �2 = �E B
2

: E B
2 → C \ D,

which are defined by mapping parameter rays to radial lines of corresponding argu-
ment. The composition


 = �−1
2 ◦ �1 : E1 → E B

2

is then a conformal isomorphism between the two escape regions. Writing (ρ, t)1 =
(ρ, t)E1 and (ρ, t)2 = (ρ, t)E B

2
, we have in particular that 
((ρ, t)1) = (ρ, t)2. We

will show that there exists a continuous extension ̂
 of 
, defined on the boundary
points of the type A andC components ofS1 which are the landing points of parameter
rays of rational angle. We are interested in the points at which ̂
 is not injective.

Our main result is the following.

Main Theorem The map ̂
 is injective at all points x except for the following.

• The point x lies on the boundary of a type C component and has internal argument
which is a basilica angle.

• The point x lies on the boundary of ̂H0 and has internal argument which is a
basilica angle distinct from 1

3 or 2
3 .

See Sect. 3 for the definition of a basilica angle. We remark that it is not immediate
that the map ̂
 is well-defined. Indeed, the analogous map from E1 to ED

2 (the escape
region ofS2 associated to the disk, see [1]) has no continuous extension to the boundary
of the type A and C components of S1. We prove that ̂
 is well-defined in Sect. 4 and
prove the Main Theorem in Sect. 5. See Fig. 2 for an illustration of the main theorem.
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Fig. 2 An example of the result of theMain Theorem, with some important parameter rays marked. As with
many of the figures in this paper, the rays are hand-drawn approximations to the true rays. Observe that the
(orange) type C components in S1 are collapsed down to (homeomorphic) copies of the basilica in S2 (the
components of which are yellow). Only the numerator or each angle is given; the common denominator is
648

2.5.1 Laminations

Wewill alsomake use of the notion of a lamination, originally constructed by Thurston
[11] to study the dynamics of rational maps on the sphere. A lamination is a set of
chords (called leaves of the lamination) in the closed unit disk satisfying the following.
Let L be the collection of leaves in a lamination.

• The leaves are pairwise unlinked: that is, two different elements of L are disjoint,
except possibly at their endpoints;

• the union of L is closed.

A gap is the closure of the component of the complement of
⋃

L in the closed unit
disk. One can use laminations to model the structure of Julia sets of a polynomial p:
two points s and t are identified in the lamination if and only if λ

p
e (s) = λ

p
e (t). One

may draw a lamination by drawing chords in the disk: the chord st is drawn in if and
only if s is identified with t in the lamination, see Fig. 3.

3 The Basilica Polynomial

In this section we collect together results on the basilica polynomial z �→ z2 − 1.
These will be important when we start discussing the structure of the Julia sets in E B

2
in Sect. 4. We begin with a simple fact about how the rays land on the Julia set of the
basilica.

Lemma 3.1 Let t ∈ R/Z and suppose there exists n ∈ N such that 2nt ≡ 1
3 . Then

there is a unique t̃ ∈ R/Z, t̃ �= t , such that the external rays of angles t and t̃ land at
the same point of the Julia set of the basilica.

The proof follows from Proposition 4.3 of [10]. This allows us to introduce the
notion of a basilica angle.
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Fig. 3 The Julia set of the basilica and its associated lamination

Definition 3.2 An argument t ∈ R/Z will be called a basilica angle if there is n ∈ N

such that 2nt ≡ 1
3 (mod 1). Equivalently, t is a basilica angle if the external ray of

angle t for the basilica lands at a biaccessible point (that is, a point at which more than
one external ray lands). If s �= t and the rays of angles s and t have the same landing
point on the basilica, we say {s, t} is a basilica pair.

We now want to transport the well-known facts about the basilica to polynomials
belonging to the basilica escape region.

Lemma 3.3 For a map F = (r , t)B2 ∈ E B
2 , there is a unique fixed point α in J on

the boundary of the Fatou components containing the marked critical point a, and its
associated critical value v.

Proof There is a neighborhood U of the main basilica component of K (F) such that
the restriction of F to U is hybrid equivalent to the basilica map z �→ z2 − 1. �

In particular, every polynomial in E B
2 has a distinguished fixed point. We will refer

to this distinguished fixed point as α (Fig. 4).

4 Preliminary Results

In this section, we build a portfolio of results that will allow us to tackle the proof of
the main theorem in Sect. 5.

4.1 Behavior of the Conformal Isomorphism9

Wewould like to nowdescribe the relationship between J ( f ) and J (
( f )) for f ∈ S1.
Let f ∈ E1 ∪ E B

2 . Since f ∈ Re(t) if and only if re(t) lands at the cocritical point of
f , we see that the rays of angle t − 1

3 and t + 1
3 , along with their landing point −a,

split the plane into two regions. We denote these regions by U0, which contains the
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Fig. 4 The filled Julia set of a
map in EB

2 showing the
placement of the fixed point α

Fig. 5 An illustration of a
typical boundary of the maximal
domain of definition of the
Böttcher coordinate for a map on
the external parameter ray of
argument t , with important
dynamical external rays marked.
The same applies to a map in E1
with a disc in place of the main
basilica component illustrated

critical point a, and U1. Now observe that any ray landing on the main component of
the filled Julia set K ( f )must have argument in the arc

(

t − 1
3 , t + 1

3

)

(see Fig. 5), and
so must be contained in U0. We state this as a lemma.

Lemma 4.1 Any pair of rays landing at α for a map (ρ, t)B2 must have both arguments
in (t − 1

3 , t + 1
3 ).

Lemma 4.2 At most four period two rays could possibly land at α for any F ∈ E B
2 .

Proof Any arc containing all six period two arguments will necessarily have length
greater than 2

3 . Therefore, by Lemma 4.1, at least one pair must always be excluded.
�
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We now show that any period 2 ray that enters U0 must land on α. To do this, we
will decompose E B

2 into regions depending on how many pairs of rays belong to U0.

Definition 4.3 We will define the set W := ⋃

i=1,2,3,4
Wi , where W1 will consist of all

maps in E B
2 on parameter rays of argument t ∈ ( 1

24 ,
2
24 ), and W2,W3, and W4 are

defined similarly with the intervals ( 1024 ,
11
24 ), (

13
24 ,

14
24 ), and ( 2224 ,

23
24 ), respectively, see

Fig. 6.

The following result explains what happens on the boundary ∂W . Note that this
boundary consists of eight parameter rays, all of which are coperiodic of co-period
two.

Lemma 4.4 Suppose F ∈ Re(t) ⊂ E B
2 . Then all period two dynamic rays land on

J (F) if and only if t ∈ R/Z is not coperiodic of co-period two.

Proof Suppose first that t is coperiodic of coperiod two. Then one of the dynamic rays
re(t + 1

3 ) and re(t − 1
3 ) is a period two ray which crashes into the free critical point

−a and therefore does not land on J (F). Conversely, suppose that there is a period
two dynamic ray re(t̃) which does not land. Then there is a minimal n ∈ N such that
F−n(−a) ∈ re(t̃). Taking forward iterates, it then follows that one of the rays re(t̃)
or re(3t̃), depending on the parity of n, crashes into the free critical point −a. This
implies that t̃ ∈ {t − 1

3 , t + 1
3 } or 3t̃ ∈ {t − 1

3 , t + 1
3 }, and therefore that t is coperiodic

of co-period two by definition. �
A simple combinatorial argument and the above lemma shows that for F = (ρ, t) ∈

E B
2 \W , exactly two period two rays are contained inU0. For example, if t ∈ ( 2324 ,

1
24 )

then only the period two rays of angle 2/8 and 6/8 can enterU0. On the other hand, if
F = (ρ, t) ∈ W , then there are four period two rays enteringU0. An analogous result
holds in E1. These are summarized in the following lemmas and illustrated in Fig. 6.

Lemma 4.5 For (ρ, t)B2 ∈ E B
2 \ W, there is exactly one possible pair of period two

rays contained in U0, and for (ρ, t)B2 ∈ W, there are exactly two pairs of period two
rays which are contained in U0.

Lemma 4.6 For (ρ, t)1 = 
−1((ρ, t)B2 ), if (ρ, t)B2 ∈ E B
2 \ W, then there is exactly

one pair of period two rays contained in U0, and if (ρ, t)B2 ∈ W, then there are exactly
two pairs of period two rays contained in U0.

We now show that if F ∈ E B
2 , then any pair of period two rays contained in U0

must land on α. Similarly, if F ∈ E1, any pair of period two rays contained inU0 must
land on a period two cycle on the boundary of ̂Aa .

Lemma 4.7 For (ρ, t)B2 ∈ W, let {t1, t2} and {t3, t4} be the two pairs of arguments of
the rays contained in U0. Then we have λe(ti ) = α for i = 1, 2, 3, 4.

Proof We just prove the result forW1, the other cases are similar. Choose any (ρ, t)B2 ∈
W1. For this map we may take t1 = 1

8 , t2 = 3
8 , t3 = 2

8 , and t4 = 6
8 . From Theorem
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Fig. 6 The pairs of rays landing at α in each piece of the basilica escape region. Also labelled are the regions
Wi given in Definition 4.3

Fig. 7 The Julia set of the map at the center of the unique type D component of period two in W1. The
period two external rays which land together are marked
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Fig. 8 A Julia set from W1 showing the four rays landing at the fixed point α

2.3, we know that (ρ, t)B2 has the same period 2 orbit portrait as any other map which
belongs to the same component Fk of Tes2(S2) . In particular, we consider the unique
post-critically finite polynomial p in the period two hyperbolic component in Vi , as
in Fig. 7. For this map, the rays of arguments t1, t2, t3, and t4 all land together at a
common fixed point on the boundaries of the Fatou components containing themarked
critical point aF and its associated critical value vF . Therefore, we conclude that for
(ρ, t)B2 , λe(ti ) = α for i = 1, 2, 3, 4. �

We now observe that any pair of period two dynamic rays which land at the fixed
point α in the Julia set of a map 
(F) ∈ E B

2 corresponds with a pair of dynamical
external rays for the map F ∈ E1 which land at distinct points in a two cycle on the
boundary of the main disc component of the filled Julia set of F (Fig. 8).

Lemma 4.8 Given F = (ρ, t)1 ∈ E1 and {s, s̃} ∈ R/Z a two cycle under tripling for
which λ


(F)
e (s) = λ


(F)
e (s̃) = α in K (
(F)), we have λF

e (s) �= λF
e (s̃) form a two

cycle on ∂ ̂Aa ∈ K (F).

Proof There are two cases, depending on the number of rays landing on α. First,
suppose 
(F) ∈ E B

2 \ W , so that only two external rays for 
(F) land on α . Then
by Lemma 4.6 there is a unique period two cycle on ∂ ̂Aa for F and these points must
be λF

e (s) and λF
e (s̃), since no other period two rays belong to U0.

For the second case, suppose 
(F) ∈ W , so that four external rays for 
(F) land
on α. We will assume 
(F) ∈ W1; the other cases follow by a similar argument.

If 
(F) ∈ W1, then by Theorem 2.3, the period two orbit portrait of 
(F) is the
same as that for the map at the center of the unique period 2 type D component inW1.
The Julia set for this map is given in Fig. 7 - we observe in particular that the rays of
angles 1

8 ,
2
8 ,

3
8 and 6

8 all land together for this map. Thus the rays of angles 1
8 ,

2
8 ,

3
8

and 6
8 for 
(F) must all land together at the point α.

Again by Theorem 2.3, the period two orbit portrait of F is the same as that of any
other map in the period two decomposition of S1. In this component we have the 1

8 and
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Fig. 9 The Julia set of a map from the component of the period two decomposition of S1 which contains
the entire preimage under 
 of W1 ⊂ S2

2
8 rays landing at a common point, as well as the 3

8 and 6
8 rays as in Fig. 9. Therefore,

we have the two cycle

λF
e

(

1

8

)

= λF
e

(

2

8

)

←→ λF
e

(

3

8

)

= λF
e

(

6

8

)

∈ ∂ ̂Aa .

�
The following result provides a combinatorial description of the behavior of 
.

Informally, this can be thought of as taking each of the disc components of the filled
Julia set K (F) for a map F ∈ E1, and replacing them with copies of the basilica in
order to obtain a topological object which is homeomorphic to K (
(F)). Later on we
will extend this result to the boundary of E1 in order to describe the behavior of ̂
.

Lemma 4.9 Given F = (ρ, t)1 ∈ E1, K (
(F)) is homeomorphic to the quotient of
K (F) obtained by making the identifications from the lamination of the basilica along
the internal rays of each disc component of K (F).

Proof Consider a pair of period two rays re(t), re(t̃) in the same orbit landing together
at the point α ∈ K (
(F)). By Lemma 4.8, the corresponding external rays in F of
arguments t and t̃ must land at a two cycle on the boundary of themain disc component
of K (F). This two cycle corresponds to the landing points of the internal rays of angles
1
3 and 2

3 in the main disc component of K (F). Now observe that there are preimages
of re(t) and re(t̃) which land at the unique non-fixed preimage of α which belongs
to the main basilica component of K (
(F)). The corresponding rays must land at
points on the boundary of the main disc component of F whose internal arguments
are 1

6 and 5
6 . Continuing inductively, we see that the rays landing on preimages of α
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in the main basilica component of K (
(F)) correspond to rays landing on the main
disc component of F whose internal arguments are given by basilica angles. This
process corresponds exactly with that of applying the basilica lamination in the main
disc component of K (F).

The preimage components are tackled in the same way, by considering the preim-
ages of the main disc component. Since each non-trivial component of the filled Julia
set is hybrid equivalent to the basilica, it follows that there are no more identifications.

�
We now claim that the period q orbit portraits for the map F ∈ E1 and 
(F) ∈ E B

2
are the same, save for the well-understood case when q = 2. Given a parabolic
parameter p, if the orbit relation φ ∼ ψ is true for all maps in a neighborhood of
p, then we call this relation a background orbit relation. The following result can be
obtained from [4], but we give a proof using the above results here.

Lemma 4.10 Let q ∈ N and suppose that F lies in a face of Tesq(S1). Then the period
q orbit portrait for F is contained in the period q orbit portrait of
(F). In particular,
the orbit portraits are equal if q �= 2.

Proof The construction given in Lemma 4.9 can only make the portrait larger so the
orbit portrait of F must be contained in the orbit portrait of 
(F). Indeed, the only
periodic point which is the landing point of more than one ray produced by the process
is α, which is the landing point of (at least) two rays of period 2. So if q �= 2, the orbit
portraits must be the same. �

4.2 ̂9 is well-defined

We need the following result.

Theorem 4.11 Let θ and θ ′ be rational angles. If Re(θ) and Re(θ
′) land together on

∂E1, then they land together on ∂E B
2 .

The proof makes use of the results of Branner-Hubbard [4] and the (unpublished)
work of the first author andMilnor [2]. Indeed, the present authors have been informed
that this result can be obtained directly from [4], but we could not find the explicit
statement we needed in the literature. For completeness we prove the result here, under
the additional hypothesis of the Monotonicity Conjecture from [2] (see below).

First we prove the statement of Theorem 4.11 when θ and θ ′ are coperiodic. As a
consequence, this will allow us to conclude that the tessellations Tesq in E1 and E B

2
are essentially the same. By [2], we know that coperiodic rays in E1 and E B

2 always
have at least one partner ray. Indeed, in S1, all coperiodic rays land in pairs. In S2, the
only exception is when there are four rays landing on the parabolic points that lie on
the intersection of the boundary of the two escape regions. We will call a coperiod q
parameter ray a primary ray if, of all the parameter rays landing at the parabolic map
p, it is one of the two rays which are closest to the hyperbolic component Hp which
has p as its root point. All other rays landing at p will be called secondary rays. Note
that all coperiodic rays in E1 and E B

2 are primary rays.
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Following [2] (compare [7] for the quadratic case), we define a wake W ⊂ Sp to
be a simply connected subset of Sp which

(i) is bounded by a a pair of parameter rays which are in the same escape region and
which land at a common parabolic point p.

(ii) contains a hyperbolic component of Type D which has p as a boundary point.

In [2], the authors make the following conjecture.

Conjecture (Monotonicity Conjecture) As we cross any primary ray of co-period q
into the face which contains Hp, the period q orbit portrait is replaced by a strictly
larger orbit portrait.

As mentioned above, we will assume this conjecture in proving Theorem 4.11.

Lemma 4.12 Let θ and θ ′ be coperiodic angles. Then Re(θ) and Re(θ
′) land together

on ∂E1 if and only if they land together on ∂E B
2 .

Proof One may easily verify by inspection that the statement holds for coperiod 2
rays. We prove that if Re(θ) and Re(θ

′) land together on ∂E1 then they land together
on ∂E B

2 . The proof of the converse is similar.
Suppose the rays Re(θ) and Re(θ

′) of coperiodic angles θ and θ ′ of coperiod q �= 2
land at a common parabolic point p. Then these rays, along with p, form a wake W ,
where maps in E1 ∩W have parameter angle θ < t < θ ′. All maps F inside this wake
have a period q orbit portrait which contains the period q orbit portrait of the parabolic
map p. In particular, this holds for F ∈ E1 ∩W . By Lemma 4.10, since q �= 2, we see
that the map F ′ ∈ E B

2 has the same period q orbit portrait as F . Furthermore, sinceW
must be a primary wake, then if we cross the parameter ray of angle θ transversally
to enter W , then the period q orbit portrait will get strictly larger. The same holds if
we cross into W by passing through the parameter ray of angle θ ′.

To obtain a contradiction, we assume that Re(θ) and Re(θ
′) do not land together

on ∂E B
2 . Suppose instead that Re(θ) lands with Re(α) and Re(θ

′) lands with Re(β).
We split into cases depending on the relative circular ordering of θ , θ ′, α and β.

• α < θ < θ ′ < β or α < θ < β < θ ′. The rays Re(α) and Re(θ) bound a wake
W ′. But this means that if we cross Re(θ) by increasing the angle, we will leave
W ′ and so the orbit portrait will get strictly smaller. However, the same action
in E1 sees the orbit portrait grow strictly larger. This is a contradiction, since by
Lemma 4.10 the period q orbit portraits of F ∈ E1 and 
(F) ∈ E B

2 should be the
same.

• θ < α < β < θ ′ or θ < α < θ ′ < β. The rays Re(θ) and Re(α) bound a primary
wake W ′ which has a root point p′ which has the same period q orbit portrait as
that of p. Thus, as we cross the ray Re(α) to leave W ′, the orbit portrait will get
strictly smaller than that of p′, and thus it is strictly smaller than that of p. But if we
consider a map F ′ ∈ E B

2 obtained after crossing the ray Re(α), the map 
−1 ∈ E1
has parameter angle t that lies between θ and θ ′, and so has an orbit portrait which
contains the orbit portrait of p. This is a contradiction.

• θ < θ ′ < β < α or θ < β < θ ′ < α. In this case the wake ˜W bounded by Re(θ
′)

and Re(β) is a subwake of the wakeW ′ bounded by Re(θ) and Re(α). This means
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that as we cross Re(θ
′) and enter ˜W , we will obtain a orbit portrait strictly larger

than that which we obtain if we cross Re(θ) to enter W ′. But since the two rays
land together in S1, the two orbit portraits must be the same. Hence we have a
contradiction.

Thus all possibilities for when Re(θ) and Re(θ
′) don’t land together on ∂E B

2 lead
to a contradiction. Hence Reθ and Re(θ

′) must land together on ∂E B
2 . �

The above result implies there is a bijective correspondence between the faces of
the tessellation Tesq(S1) which intersect E1 and the faces of the tessellation Tesq(S2)

which intersect E B
2 .

Corollary 4.13 The parameter rays of angle θ and θ ′ belong to the same component of
Tes(2)q (S1) ∩ E1 if and only if they belong to the same component of Tes(2)q (S2) ∩ E B

2 .

Proof Again we prove only one direction, since the converse is very similar. Suppose
that Re(θ) and Re(θ

′) belong to the same componentFk of Tes
(2)
q (S1)∩E1, but Re(θ)

and Re(θ
′) do not belong to the same component of Tes(2)q (S2)∩ E B

2 . Then there exist
α and β, angles of coperiod q such that the parameter rays Re(α) and Re(β), together
with their common landing point, separate the rays Re(θ) and Re(θ

′) in E B
2 . But then

these rays would have to separate the rays Re(θ) and Re(θ
′) in S1, which is impossible

since they both belong to the same component Fk . �
By the corollary, we see that the map 
 induces a natural bijection between the

components of Tesq(S1) ∩ E1 and the components of Tesq(S2) ∩ E B
2 . We again use

the notation 
 for this induced map.
We now turn our attention to the non-coperiodic case. By [2], if θ is rational but not

coperiodic, then the parameter ray lands on a critically finite non-hyperbolic parameter.

Lemma 4.14 Suppose the rays Re(θ) and Re(θ
′) land at the same critically finite map

on ∂E1. Then rays Rθ and Rθ ′ land together on ∂E B
2 .

Proof Since Re(θ) and Re(θ
′) land together on ∂E1 at a parameter F1, then for any q

both these rays must belong to the same componentFk as each other inTesq(S1)∩E1.
Note that since we are in S1, there are no orbit relations coming from the quasiconfor-
mal copies of the disk in the filled Julia set of maps in Fk . The dynamical rays r F1e (θ)

and r F1e (θ ′) land at the cocritical point of F1, and this point eventually maps onto a
repelling cycle of some period n. Each point on the repelling cycle must be the landing
point of at least two rays, and thus this orbit appears in the period n orbit portrait for
all maps inFk . In particular, by taking preimages we see that the rays re(θ) and re(θ ′)
land together in the dynamical plane for all maps in Fk .

Since the landing points of the rays Re(θ) and Re(θ
′) are in the same faceFk of S1,

then Corollary 4.13 implies they must belong to the same component F ′
j = 
(Fk)

in Tesq(S2) ∩ E B
2 . Furthermore, the period n orbit portrait in Fk is a subset of that in

F ′
j (in fact, if n �= 2, the orbit portraits are equal). With the same argument as in the

previous paragraph, we see that the dynamical rays r F
′

e (θ) and r F
′

e (θ ′) land together
in the dynamical plane for all maps in F ′ ∈ F ′

j . In particular, for F
′
2, the landing point
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of Re(θ) in ∂E B
2 , the ray r

F ′
2

e (θ) lands on the cocritical point together with the ray

r
F ′
2

e (θ ′). But since r F
′
2

e (θ) and r
F ′
2

e (θ ′) land on the cocritical point of F ′
2, the parameter

rays Re(θ) and Re(θ
′) in E B

2 land on F2. �
Remark Note that, unlike with the previous results, the converse of the above is not
true (indeed, the exact cases of when it fails are discussed in the rest of the paper).
The reason for this is that the quasiconformal copies of the basilica for maps in E B

2
introduce extra orbit relations.

Proof of Theorem 4.11 The theorem follows from Lemmas 4.12 and 4.14. �
The following is immediate.

Corollary 4.15 The extension of 
 given by ̂
((1, t)1) = (1, t)B2 for t rational is
well-defined and continuous.

5 Main Results

We begin with our main results by extending the result of Lemma 4.9 to the boundary
to obtain a similar result describing how to obtain K (̂
(F)) topologically from K (F).
To begin, we show that the maps in ∂E B

2 which are landing points of parameter rays
have a distinguished fixed point. We first deal with the case where these rays are not
coperiodic of co-period two.

Lemma 5.1 Suppose t ∈ R/Z is not coperiodic of co-period two. The map (1, t)B2 ∈
∂E B

2 has a unique fixed point in J on the boundary of the Fatou components containing
the marked critical point a, and its associated critical value v. Furthermore, the rays
which land at this fixed point are exactly those which land at the fixed point α for any
map (ρ, t)B2 ∈ Re(t) ⊂ E B

2 .

Proof Suppose t is not coperiodic of co-period two. The landing point (1, t)B2 is in
the same component of the period two decomposition as the rest of the ray Re(t).
Therefore, by Theorem 2.3, the dynamic rays which land together at α for any map
along the parameter ray Re(t) still land together at a fixed point in the landing map
(1, t)B2 . �

We will continue to refer to this unique fixed point as α for maps on the boundary
just as we did for maps in the escape region.

The following result extends that of Lemma 4.9 to the boundary of E1. The first
part deals with landing points of parameter rays which are not coperiodic. For such
maps, the free critical point −a is in the Julia set, and every component of the filled
Julia set is a component of the basin of attraction of the marked critical point a. The
second part then deals with landing points of coperiodic parameter rays, which are
parabolic maps. For these maps, −a belongs to a parabolic basin, and the filled Julia
set consists of the basin of attraction of a as well as the parabolic basins.

Theorem 5.2 Given F = (1, t)1 ∈ ∂E1.
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(i) If Re(t) is not coperiodic, K (̂
(F)) = K ((1, t)B2 ) is homeomorphic to the quotient
of K (F) obtained by making the identifications from the lamination of the basilica
along the internal rays of every Fatou component of K (F).

(ii) If Re(t) is coperiodic, K (̂
(F)) = K ((1, t)B2 ) is homeomorphic to the quotient of
K (F) obtained by making the identifications from the lamination of the basilica
along the internal rays of the Fatou components of K (F) which make up the basin
of attraction AaF of the marked critical point aF for F.

Proof Let F = (1, t)1 ∈ ∂E1.
(i) Assume that Re(t) is not coperiodic. By Lemma 5.1 we have the fixed point

α ∈ K (̂
(F)). Similarly to Lemma 4.9, there are one or two pairs of period two
dynamic external rays landing together at α, for which the corresponding dynamic
rays for F do not land together. We describe this as an identification made by
̂
, and we find other identifications by taking preimages as we did previously
in Lemma 4.9. Thus we conclude that the identifications from the lamination of
the basilica along the internal rays of every Fatou component of K (F) exist in
K (̂
(F)). We want to show that these are the only identifications made by ̂
.
Since Re(t) is not coperiodic, neither map F, ̂
(F) is a parabolic map, see [2].
Therefore, the free critical point is in the Julia set for both of these maps. Since
each attracting cycle must attract a critical point, and the free critical point is in
the Julia set, the maps must each have one attracting cycle, namely that of the
marked critical point. It then follows that every bounded Fatou component of F
is a preimage of the main disc component, and every Fatou component of ̂
(F)

eventually maps to the two cycle of the Fatou components containing the marked
critical point and its associated critical value. Therefore, the only identifications
made by ̂
 are those which come from putting the lamination of the basilica in
every disc component of K (F).

(ii) Now, suppose that Re(t) is coperiodic. It follows that F and ̂
(F) are parabolic
maps, see [2]. We again have the identifications arising from preimages of α ∈
K (̂
(F)) which are described by putting the lamination of the basilica in each
component of K (F). Every other Fatou component of F is then a component of
the parabolic basin. In both K (F) and K (̂
(F)), we must have the rays re(t − 1

3 )

and re(t+ 1
3 ) landing at the parabolic point in the same component of the parabolic

basin as the free critical point−a. Since−a is the only critical pointwhich could be
attracted to the parabolic orbit because of the periodicity of a, this then determines
the period of the parabolic point, and we conclude that no further identifications
are made, i.e. the rays which land together on the boundary of the parabolic basin
in K (F) are exactly those which land together on the boundary of the parabolic
basin in K (̂
(F)).

�
We now look to apply the dynamical information of Theorem 5.2 to prove our main

results in parameter space. We will begin with the easier of our two cases, where we
consider a map on the boundary of a type C component of S1. The following result
describes where to find pairs of distinct maps on the boundary of a type C component
of S1 which will be mapped by ̂
 to the same image in S2.
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Theorem 5.3 Suppose F = �i (t) on the boundary of a type C component of S1.

(i) If t is a basilica angle with partner t̃ , let F̃ = �i (t̃) on the boundary of the same
type C component. Then we have ̂
(F) = ̂
(F̃).

(ii) If t is not a basilica angle, then F is the only preimage under ̂
 of ̂
(F).

In particular, ̂
 is not injective on the boundary of type C components precisely at
the points whose internal arguments are basilica angles.

Proof Let F be on the boundary of a type C component of S1 with internal argu-
ment t . Suppose there are n external parameter rays landing at F , with arguments
{t1, t2, ..., tn}2. Then in the dynamical plane, the n external rays of arguments {t1, ...tn}
all land at the cocritical point 2aF . The point 2aF is on the boundary of a Fatou com-
ponent of F , and the argument of the internal ray in this Fatou component landing
at this point is t . Now, for G := ̂
(F) ∈ S2, we still have the n external rays of
arguments {t1, ..., tn} landing at the cocritical point 2aG since 
 preserves arguments
of parameter rays, and by Corollary 4.15, ̂
 sends the landing point of the parameter
ray of argument t in S1 to the landing point of the parameter ray of argument t in S2.
If t is not a basilica angle, then it follows from Theorem 5.2 that these are the only
external arguments for rays landing at 2aG . Therefore, we conclude that these are the
only arguments for parameter rays landing at G, and ̂
−1(G) = {F}. However, if t is
a basilica angle with partner t̃ , then by Theorem 5.2 the arguments of the external rays
for F landing on the component whose boundary contains 2aF at internal argument t̃
will be arguments of external rays for G which also land at 2aG . This means that G is
the landing point of parameter rays of arguments t and t̃ in S2. We may then conclude
that ̂
−1(̂
(F)) = {F, F̃}. �

We will now focus on the principal hyperbolic component ̂H0 in S1, or in other
words, the unique typeA component. This case ismore difficult due to the double cover
of internal arguments in this component. It will be convenient to split this component
up into four quadrants, which will be separated by the four internal rays of arguments
1
3 and 2

3 . We will label them so that the first quadrant contains on its boundary the
landing map of the external ray of argument zero, and the rest will be labeled in the
counterclockwise direction as usual, see Fig. 10. We will refer to Quadrants I and III,
and similarly II and IV, as opposite quadrants. We will use these quadrants to give
a useful notation for internal rays in ̂H0. By RI

i (t), we will mean the internal ray of
argument t which lies in quadrant I. Note that we need to be sure that t ∈ ( 13 ,

2
3 ) for

RI
i (t) to exist. We will take care of the internal rays which bound the quadrants by

choosing the odd numbered quadrant which it bounds, i.e. RI
i (

1
3 ), R

I
i (

2
3 ), R

III
i ( 13 ), and

RIII
i ( 23 ) will denote these four internal rays in

̂H0.
Let ̂�i (t) denote the two element set containing the landing maps of both of the

internal rays in ̂H0 of argument t . The following result describes which maps on ∂ ̂H0
which are not landing points of a ray of argument 1

3 or 2
3 will share a common image

under ̂
 with another map from ∂ ̂H0.

Lemma 5.4 Suppose t /∈ { 13 , 2
3 }, and let F ∈ ̂�i (t) ⊂ ∂ ̂H0.

2 Conjecturally, there are at most two such parameter rays.
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Fig. 10 The principal hyperbolic
component of S1 split up into
four quadrants

(i) If t is a basilica angle with partner t̃ , then there is one map from ̂�i (t̃) in the same
quadrant of ̂H0 as F, and one in the opposite quadrant. For at least one of these
maps F̃ ∈ ̂�i (t̃), we have ̂
(F̃) = ̂
(F).

(ii) If t is not a basilica angle. Then F is the only preimage of ̂
(F).

Proof Suppose t /∈ { 13 , 2
3 } and F ∈ ̂�i (t) ⊂ ∂ ̂H0. First, let t be a basilica angle with

partner t̃ . Since leaves in the lamination of the basilica do not cross the minor leaf
connecting 1

3 and 2
3 , together with the fact that opposite quadrants contain rays of the

same range of arguments, we conclude that there is one map from ̂�i (t̃) in the same
quadrant of ̂H0 as F , and one in the opposite quadrant. The case for a basilica angle
follows similarly to the proof of Theorem 5.3. �

We conclude with the final results. Theorem 5.5 fully describes the action of ̂
 on
̂H0 ⊂ S1. Taking Theorem 5.5 together with Lemma 5.4, we establish for the unique
type A component ̂H0 what Theorem 5.3 established for each type C component of
S1, with the exception of the four parabolic maps on this boundary which are landing
points of co-period two external parameter rays. These parabolic maps are taken care
of in Theorem 5.6.

Theorem 5.5 Suppose t /∈ { 13 , 2
3 } is a basilica angle with partner t̃ , let F ∈ ̂�i (t),

and write ̂�i (t̃) = {F̃s, F̃o} where F̃s is in the same quadrant as F, and F̃o is in the
opposite quadrant. Then ̂
−1(̂
(F)) = {F, F̃s}.
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Fig. 11 An illustration of the contradiction from the proof of Theorem 5.5 when F is taken in the boundary
of quadrant I of ̂H0

Proof For a contradiction, suppose that F ∈ ̂�i (t) where t /∈ { 13 , 2
3 } is a basilica

angle with partner t̃ , and that ̂
−1(̂
(F)) = {F, F̃o}. Note that by Lemma 5.4,
only the two cases ̂
−1(̂
(F)) = {F, F̃s} or ̂
−1(̂
(F)) = {F, F̃o} are possible.
First, assume that F is on the boundary of quadrant I in S1. It then follows that
the argument s of the external parameter ray landing at F is in

( 23
24 ,

1
24

)

, and the

argument s̃ of the external parameter ray landing at F̃o is in
( 11
24 ,

13
24

)

. Now, define
G := ̂
(F) = ̂
(F̃o) ∈ S2. Then we know that λe(

2
8 ) = λe(

6
8 ) = αG ∈ K (G),

see Fig. 6. However, we must also have λe(s) = λe(s̃) = 2aG ∈ K (G). This is a
contradiction, since the crossing of rays would violate the injectivity of the Böttcher
coordinate (see Fig. 11). Therefore, we have ̂
−1(̂
(F)) = {F, F̃s}, as desired. The
remaining cases follow similarly, with λe(

5
8 ) = λe(

7
8 ) = αG ∈ K (G) when F is

assumed in quadrant II, and λe(
1
8 ) = λe(

3
8 ) = αG ∈ K (G) when F is assumed in

quadrant IV. �
We finally need to take into account those basilica angles for which the previous

theorem does not apply.

Theorem 5.6 Suppose t ∈ { 13 , 2
3 }, and let F ∈ ̂�i (t) ⊂ ∂ ̂H0, then F is a parabolic

map for which ̂
−1(̂
(F)) = {F}.
Proof The four landing points of internal rays of ̂H0 of arguments 1

3 and
2
3 are landing

points of coperiodic external rays of co-period two. From [2], we know that such
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landing points are necessarily parabolic maps. Since ̂
 sends the landing point of the
parameter ray of argument t inS1 to the landing point of the parameter ray of argument
t in S2 by Corollary 4.15, it follows that these four distinct parabolic maps correspond
bijectively under ̂
 with the four distinct parabolic maps in S2 on the boundaries of
both escape regions which are the landing points of the corresponding coperiodic rays
of co-period two. �

We now have all the ingredients we need to prove our main result.

Proof of Main TheoremA The case for Type C is taken care of in Theorem 5.3 and the
Type A component is dealt with in Theorems 5.5 and 5.6. �
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