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Abstract
We show that there are infinitely many nonisomorphic quandle structures on any
topogical space X of positive dimension. In particular, we disprove Conjecture 5.2 in
Cheng et al. (Topology Appl 248:64–74, 2018), asserting that there are no nontrivial
quandle structures on the closed unit interval [0, 1].
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1 Introduction

Quandles are generally non-associative algebraic structures (the exception being the
trivial quandles). They were introduced independently in the 1980’s by Joyce [10]
and Matveev [13] with the purpose of constructing invariants of knots in the three
space and knotted surfaces in four space. However, the notion of a quandle can be
traced back to the 1940’s in the work of Mituhisa Takasaki [15]. The three axioms of
a quandle algebraically encode the three Reidemeister moves in classical knot theory.
For a recent treatment of quandles see [8]. Joyce and Matveev introduced the notion
of the fundamental quandle of a knot and gave a theorem that translates the problem
of knot equivalence to the problem of isomorphism of their fundamental quandles.
Precisely, two knots K1 and K2 are equivalent (up to reverse and mirror image) if and
only if the fundamental quandles Q(K1) and Q(K2) are isomorphic.

Recently, there havebeen investigations of quandles from the algebraic point of view
and their relations to other algebraic structures such as Lie algebras [4, 5], Leibniz
algebras [11, 12], Frobenius algebras and Yang Baxter equation [3], Hopf algebras
[1], transitive groups [16], quasigroups and Moufang loops [9], ring theory [2, 7] etc.

The notion of topological quandles was introduced by Rubinsztein in [14]. A topo-
logical rack is a topological space X with a binary operation f (x, y) : X × X → X ,
s.t. f (x, y) is continuous with respect to the topological structure, the right multipli-
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cation Rx : X → X , y �→ f (y, x) is a homeomorphism for any x ∈ X , and which
satisfies the right distributivity f ( f (x, y), z) = f ( f (x, z), f (y, z)) ∀x, y, z ∈ X .
The initial paper contained plenty of examples of such structures (see examples
2.1 − 2.8 therein). Using the action of the braid group Bn on the cartesian prod-
uct of n copies of a topological quandle (Q, f ) defined on the generators σi ∈ Bn

via σi (x1, . . . xn) = (x1, . . . , xi , f (xi , xi+1), xi+2 . . . , xn), the author associates the
space J(Q, f )(L) of fixed points under the action of the braid σ ∈ Bn for the element σ
corresponding to the oriented link L . The main result of the paper was that for every
topological quandle Q, the space J(Q, f )(L) for an oriented link L depends only on
the isotopy class of L . (see Sections 3, 4 of Rubinsztein [14] for details).
The goal of this paper is to show how to produce topological quandle structures on
topological manifolds.
Our exposition is organized as follows. In Sect. 2 we recall the definition and basic
concepts of quandles with examples. The core of the paper is Sect. 3, where, after
recalling the generalities on topological quandles, we explain a construction, which
produces nontrivial topological quandle structures on topologicalmanifolds. Applying
this construction allows to obtain such structures on the closed interval [0, 1] and,
using that any two closed intervals are homeomorphic, on any closed interval [a, b].
In particular, this implies that the conjecture that the only quandle operation on a closed
interval is the trivial one was wrong (Conjecture 5.2 arisen in [6]). Furthermore, it is
shown that there are infinitely many nonisomorphic topological quandle structures on
the closed interval and, in general, on any topological manifold of dimension greater
than zero.
In Sect. 4, we make concluding remarks and propose possible directions for further
investigation of the subject.

2 Review of Quandles

We start this section by giving the basics of quandles with examples.

Definition 2.1 A quandle is a pair (X , �) consisting of a set X with a binary operation
(a, b) �→ a � b such that the following properties hold.

(1) For any a ∈ X , a � a = a.
(2) For any a, b ∈ X , there is a unique c ∈ X such that a = c � b.
(3) For any a, b, c ∈ X , we have (a � b) � c = (a � c) � (b � c).

A rack is a set with a binary operation that satisfies (2) and (3). Racks and quandles
have been studied extensively in, for example, [10, 13]. For more details on racks and
quandles see the book [8].

The following are typical examples of quandles:

• A group G with conjugation as the quandle operation: a � b = b−1ab, denoted by
X = Conj(G), is a quandle.

• Any subset of G that is closed under such conjugation is also a quandle. More
generally if G is a group, H is a subgroup, and σ is an automorphism that fixes
the elements of H (i.e. σ(h) = h ∀h ∈ H ), then G/H is a quandle with � defined
by Ha � Hb = Hσ(ab−1)b.
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• Any Z[t, t−1]-module M is a quandle with a � b = ta + (1 − t)b, for a, b ∈ M ,
and is called an Alexander quandle.

• Let n be a positive integer, and for elements i, j ∈ Zn , define i � j = 2 j − i
(mod n). Then � defines a quandle structure called the dihedral quandle, and
denoted by Rn , that coincides with the set of reflections in the dihedral group with
composition given by conjugation.

• Any group G with the quandle operation: a � b = ba−1b is a quandle called
Core(G).

The notions of quandle homomorphims and automorphisms are defined in a stan-
dard way. Let X be a quandle, thus the second axiom of Definition 2.1 makes any right
multiplication by an element of X , Rx : y �→ y � x , into a bijection. The third axiom
of Definition 2.1 makes Rx into a homomorphism and thus an automorphism. Let
Aut(X) denote the group of all automorphisms of X and let I nn(X) := 〈Rx , x ∈ X〉
denote the subgroup generated by right multiplications. The quandle X is connected
if the group I nn(X) acts transitively on X , that is, there is only one orbit.

3 Quandle Structures on Topological Manifolds

Definition 3.1 A topological rack X is a topological space X with a binary operation
f (x, y) : X × X → X , s.t. f (x, y) is continuous with respect to the topological
structure, the right multiplication Rx : X → X , y �→ f (y, x) is a homeomorphism
for any x ∈ X , and which satisfies the right distributivity:

f ( f (x, y), z) = f ( f (x, z), f (y, z)) ∀x, y, z ∈ X . (1)

If, in addition, f (x, x) = x for each x ∈ X , then we say that X is a topological
quandle (see examples 2.1 − 2.8 in Rubinsztein [14]).

Next we will present (nontrivial) topological quandle structures on the unit interval
[0, 1]. Let us explain one method how to construct such structures in general. Let X
be a topological space with two subspaces X1, X2 ⊂ X , such that X = X1 ∪ X2.
The quandle operation is trivial ( f (x, y) = x) if both points x, y are in X1 or in X2
or x ∈ X1 and y ∈ X2. Suppose there exists a map ϕ : X2 → Homeo(X1), s.t.
the image of ϕ is a nontrivial commutative subgroup under composition. In addition,
ϕ(y) = id, whenever y ∈ X1 ∩ X2 and the function Ry : X → X given by

Ry(x) =
{
x, for x ∈ X2

(ϕ(y))(x) for x ∈ X1
(2)

is continuous. Then the function ψ : X × X → X given by

ψ(x, y) :=
{
x, for x, y ∈ X1 or x, y ∈ X2 or y ∈ X1 and x ∈ X2

(ϕ(y))(x) for x ∈ X1 and y ∈ X2,
(3)
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Fig. 1 Graphs of f (x, y) as
functions of x for different
values of y

provided it is continuous, produces a nontrivial topological quandle structure on X .
Theorem 3.3 below is an instance of this construction for X = [0, 1]with X1 = [0, 1

2 ]
and X2 = [ 12 , 1]. Verification that a function, which has the properties described
above, satisfies the axioms of Definition 3.1 for general X is completely analogous
(Fig. 1).

Remark 3.2 Any quandle X can be made into a topological quandle using the discrete
topology on X .

Henceforth, by ε we understand a number between 0 and 1
2 (unless explicitly specified

otherwise).

Theorem 3.3 The function f : [0, 1] × [0, 1] → [0, 1] given by

f (x, y) :=
{
x, for y ≤ 1

2 and x ∈ [0, 1] or x ≥ 1
2 and y ∈ [0, 1]

1
2 (2x)

1+ε for y = 1
2 + ε and x ≤ 1

2

(4)

provides a topological quandle structure on the unit interval [0, 1].

Proof The properties that f (x, y) is continuous and the right multiplication by x is a
homeomorphism for any x ∈ [0, 1] are straightforward consequences of the definition
of f (x, y). Since ∀x ∈ [0, 1] one of the requirements x ≥ 1

2 or x ≤ 1
2 is satisfied, we

always have f (x, x) = x . Hence, it remains to check distributivity (1). Notice that
z ≤ 1

2 implies f ( f (x, y), z) = f (x, y) with f (x, z) = x and f (y, z) = y providing
f ( f (x, z), f (y, z)) = f (x, y), thus, confirming the equality (1). For z > 1

2 it is
convenient to do the case by case verification.

Case 1: both x, y ≥ 1
2 . Then f ( f (x, y), z) = f (x, z) = x and f ( f (x, z), f (y, z)) =

f (x, y) = x .

123



Nontrivial Topological... 539

Case 2: both x, y < 1
2 . Then, using that y < 1

2 , write f ( f (x, y), z) = f (x, z), while
f ( f (x, z), f (y, z)) = f (x, z), as f (y, z) ≤ y < 1

2 .
Case 3: x > 1

2 and y < 1
2 . Then f ( f (x, y), z) = f (x, z) = x , while

f ( f (x, z), f (y, z)) = f (x, f (y, z)) = x , where all equalities hold since
x > 1

2 .
Case 4: x < 1

2 and y > 1
2 . Using that y > 1

2 , we obtain the equality
f ( f (x, z), f (y, z)) = f ( f (x, z), y). This allows to rewrite (1) as

f ( f (x, y), z) = f ( f (x, z), y) ∀x, y, z ∈ X . (5)

We write y = 1
2 + ε′ for some 0 < ε′ ≤ 1

2 . Similarly, as z > 1
2 , we will write

z = 1
2 + ε for some 0 < ε ≤ 1

2 . We see that both sides of (5) are equal to
1
2 (2x)

(1+ε)(1+ε′). ��
Remark 3.4 Instead of 1 + ε one can use any continuous function h(ε) with the only
requirement that xh(ε) is a homeomorphism on the closed interval [0, 1

2 ] for any ε ∈
[0, 1

2 ]. Recall that every element of the group Homeo([0, 1]) either preserves the
endpoints 0 and 1 or switches them. The subgroup of homeomorphisms that preserve
the endpoints is denoted by Homeo+([0, 1]). For any quandle structure on the interval
[0, 1], one has Rx ∈ Homeo+([0, 1]) for every x ∈ [0, 1] (see Sect. 5.1 in [6]). This
implies that the endpoints of the interval, 0 and 1, are orbits.

Remark 3.5 The function f[a,b] : [a, b] × [a, b] → [a, b] given by

f[a,b](x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
x, for a ≤ y ≤ a + b−a

2 and x ∈ [a, b] or (a+b)
2

≤ x ≤ b and y ∈ [a, b]
a + b−a

2

(
2

b−a (x − a)
)1+ε

for y = a+b
2 + ε and a ≤ x ≤ a+b

2

(6)

provides a topological quandle structure on the closed interval [a, b]. We will also
need a slight modification of this function for an open interval (−1, 1) given by

g(−1,1)(x, y) :=

⎧⎪⎨
⎪⎩
x, for − 1 < y ≤ 0 and x ∈ (−1, 1) or 0

≤ x < 1 and y ∈ (−1, 1)

−1 + (x + 1)1+y(1−y) for y > 0, x ∈ (−1, 0),

(7)

and, more generally, for B◦ an open unit ball in Rn

�B◦(x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x, for − 1 < y1 ≤ 0 and x1 ∈ (−1, 1) or 0

≤ x1 < 1 and y1 ∈ (−1, 1)(
−1 + (x1 + 1)1+y1

(
1−∑n

i=1 y
2
i

)(
1−∑n

i=1 x
2
i

)
, x2, . . . , xn

)
for y1 > 0, x1 ∈ (−1, 0)

(8)

yields a topological quandle structure with f (x, y) → x as x or y approach the
boundary of the unit ball ∂B◦. Furthermore, choosing a homeomorphism B◦ → B◦

p,r
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yields a topological quandle structure on an open ball B◦
p,r of radius r centered at

p with f (x, y) → x as x or y approach the boundary ∂B◦
p,r . We will denote the

corresponding topological quandle by (B◦
p,r ,�B◦

p,r
(x, y)).

Theorem 3.6 There are infinitely many nontrivial nonisomorphic topological quandle
structures on a closed interval [a, b] and on the open unit ball B◦.

Proof For any n ∈ N consider the points xk := a + k(b−a)
n for k ∈ {0, 1, . . . , n − 1}.

Enhance each of the intervals [xk, xk+1] with the quandle operation provided by the
function f[xk ,xk+1]. Complete this to a quandle operation on [a, b] via

Fn(x, y) :=
{
f[xk ,xk+1](x, y), if x, y ∈ [xk, xk+1] for some k ∈ {1, . . . , n − 1}
x, otherwise.

(9)

Notice that the set of points Xn
triv := {x ∈ [a, b]|Fn(x, y) = x ∀y ∈ [a, b]} consists

of the points xk+xk+1
2 ≤ x ≤ xk+1, i.e., is a disjoint union of n closed intervals. It is

clear that for a quandle isomorphism ϕ : ([a, b], Fs) → ([a, b], Fk), one must have
ϕ(Xs

triv) = Xk
triv , which is impossible if k �= s, since the map ϕ is a homeomorphism.

Next we verify the assertion for the open unit ball B◦. For any n ∈ N consider the
points pk := (−1 + 2k

n , 0, . . . , 0) for k ∈ {1, . . . , n − 1} and enhance each of the
open balls B◦

pk ,
1
n
with the quandle operation provided by the function �B◦

pk , 1n

(x, y).

Complete this to �n(x, y), a quandle operation on B◦ as above for [a, b] (define
the function to be the identity away from the union of the open balls B◦

pk ,
1
n
). The

set of points Bn
nontriv := {x ∈ B◦|�n(x, y) �= x for some y ∈ B◦} is a disjoint

union of n − 1 open halves of B◦
pk ,

1
n
’s bounded by the western hemispheres. This

number is invariant under quandle isomorphisms, hence all members of the family
(B◦,�n(x, y)) are pairwise nonisomorphic. ��
Corollary 3.7 There are infinitely many nontrivial nonisomorphic topological quandle
structures on any topological manifold X of positive dimension.

Proof Let X be a topological manifold of dimension n > 0 and let U be an open
subset homeomorphic to the open unit ball B◦ in R

n . The homeomorphism will be
denoted by ϕ. The function

G(x, y) :=
{

ϕ−1(�B◦(ϕ(x), ϕ(y))), for x, y ∈ U

x, otherwise,
(10)

where �B◦ is the function from Remark 3.5, endows X with a topological quan-
dle structure. Using the construction from Theorem 3.6, we provide infinitely many
nonisomorphic topological quandle structures on X . ��
Example 3.8 We illustrate how to apply the preceding construction to produce a
topological quandle structure on the real line R. Consider the homeomorphism
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ϕ : R → (−π
2 , π

2

)
given by the inverse tangent function ϕ(x) = arctan(x). Then

the function

G(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
x, for y ∈ (−∞, 0] and x ∈ R or x ∈ [0,∞) and y ∈ R

tan
(
−π

2 + π
2

( 2
π
arctan(x) + 1

)1+arctan(y)( π
2 −arctan(y))

)
,

y ∈ (0,∞), x ∈ (−∞, 0).

(11)

gives a nontrivial topological quandle structure on the real line.

The following definition appeared in [6].

Definition 3.9 The group of inner automorphisms of a topological quandle I nn(X)

is the subgroup of Homeo(X) generated by the elements Rx for x ∈ X . If the group
I nn(X) acts transitively on X then we say that X is indecomposable.

Remark 3.10 In Sect. 3 of [6] the authors considered affine quandles on R. This
is a family of quandles (R, ft ) with the quandle structures given by the functions
ft (x, y) = t x + (1 − t)y for a fixed 0 �= t ∈ R. An affine quandle does not contain
any nontrivial subquandles. On the other hand, any quandle (R, ft ) with t /∈ {0, 1}
induces a nontrivial indecomposable topological quandle structure on an open interval
(a, b).

Notice that the real line with topological quandle structure from Example 3.8 con-
tains a trivial subquandle (−∞, 0). Therefore, it is not isomorphic to any of the
quandles (R, ft ).

The following proposition appeared as Lemma 5.3 in [6]. Here we present an alterna-
tive proof.

Proposition 3.11 There are no nontrivial quandle structures on the closed unit interval
[0, 1] with f (x, y) a polynomial.

Proof Assume that f (x, y) = ∑
i, j ai j x

i y j is a polynomial function, satisfy-
ing the requirements of Definition 3.1. Using that f (x, y) = f ( f (x, x), y) =
f ( f (x, y), f (x, y)), we get that the degree of f (x, y) is either 0 or 1. Next,
f (0, 0) = 0 implies the constant term vanishes and it follows that f (x, y) = ax +by.
Recall that f (0, y) = by = 0 ∀y ∈ [0, 1], hence, b = 0 and f (x, y) = ax (see
Remark 3.4). The fact that f (x, x) = x for any x ∈ [0, 1] concludes the proof. ��
Acknowledgements I would like to thankMohamed Elhamdadi for introducing me to the subject, bringing
my attention to Conjecture 5.2 in [6] and warm hospitality duringmy stay at the University of South Florida.
I thank Mohamed Elbehiry for stimulating discussions and helpful suggestions on the improvement of the
exposition. I am grateful to the reviewer for useful comments and corrections.

References

1. Andruskiewitsch, N.: Graña,Matías, From racks to pointedHopf algebras. Adv.Math. 178(2), 177–243
(2003)

123



542 B. Tsvelikhovskiy

2. Bardakov, V.G., Passi, I.B.S., Singh, M.: Quandle rings. J. Algebra Appl. 1950157, 23 (2019)
3. Carter, J., Crans, A., Elhamdadi, M., Karadayi, E., Saito, M.: Cohomology of Frobenius algebras and

the Yang-Baxter equation. Commun. Contemp. Math. 10(suppl. 1), 791–814 (2008)
4. Carter, J., Crans, A., Elhamdadi,M., Saito,M.: Cohomology of categorical self-distributivity. J. Homo-

topy Relat. Struct. 3(1), 13–63 (2008)
5. Carter, J., Crans, A., Elhamdadi, M.: Saito, Masahico, Cohomology of the adjoint of Hopf algebras. J.

Gen. Lie Theory Appl. 2(1), 19–34 (2008)
6. Cheng, Z., Elhamdadi, M., Shekhtman, B.: On the classification of topological quandles. Topology

Appl. 248, 64–74 (2018)
7. Elhamdadi, M., Fernando, N., Tsvelikhovskiy, B.: Ring theoretic aspects of quandles. J. Algebra 526,

166–187 (2019)
8. Elhamdadi, M., Nelson, S.: Quandles–an introduction to the algebra of knots, Student Mathematical

Library. American Mathematical Society, Providence, RI (2015)
9. Elhamdadi, M.: Distributivity in quandles and quasigroups, conference= Algebra, geometry and math-

ematical physics, Springer Proc. Math. Stat., pp. 325–340. Springer, Heidelberg (2014)
10. Joyce, D.: A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23, 37–65 (1982)
11. Kinyon, M.: Leibniz algebras, Lie racks, and digroups. J. Lie Theory 17(1), 99–114 (2007)
12. Krähmer, U., Wagemann, F.: Racks, Leibniz algebras and Yetter-Drinfel’d modules. Georgian Math.

J. 22(4), 529–542 (2015)
13. Matveev, S.V.: Distributive groupoids in knot theory. Mat. Sb. (N.S.) 119(161), 78–88 (1982)
14. Rubinsztein, R.L.: Topological quandles and invariants of links. J. Knot Theory Ramifications 16,

789–808 (2007)
15. Takasaki, M.: Abstraction of symmetric transformations, Japanese. Tôhoku Math. J. 49, 145–207

(1943)
16. Vendramin, L.: Doubly transitive groups and cyclic quandles. J. Math. Soc. Japan 69(3), 1051–1057

(2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Nontrivial Topological Quandles
	Abstract
	1 Introduction
	2 Review of Quandles
	3 Quandle Structures on Topological Manifolds
	Acknowledgements
	References




