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Abstract
Let λ be a partition of an integer n and Fq be a finite field of order q. Let Pλ(q)

be the number of strictly upper triangular n × n matrices of the Jordan type λ. It is
known that the polynomial Pλ has a tendency to be divisible by high powers of q and
Q = q − 1, and we put Pλ(q) = qd(λ)Qe(λ)Rλ(q), where Rλ(0) �= 0 and Rλ(1) �= 0.
In this article, we study the polynomials Pλ(q) and Rλ(q). Ourmain results: an explicit
formula for d(λ) (an explicit formula for e(λ) is known, see Proposition 3.3 below),
a recursive formula for Rλ(q) (a similar formula for Pλ(q) is known, see Proposition
3.1 below), the stabilization of Rλ with respect to extending λ by adding strings of
1’s, and an explicit formula for the limit series Rλ1∞ . Our studies are motivated by
projected applications to the orbit method in the representation theory of nilpotent
algebraic groups over finite fields.

Keywords Jordan types · Nipotent matrices · Finite fields

1 Introduction

This paper is a part of a bigger program of the application of the orbit method to the
representation theory of triangular matrix group. There are several reasons for this
endeavour.

It is known (see, e.g. [4]) that for a wide class of Lie groups G the explicit and
transparent answer to the main questions of the representation theory may be formu-
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lated, and in some cases proved, in terms of “coadjoint orbits," that is, orbits of the
natural action of G in the dual space g∗ of the Lie algebra g = LieG.

There is a hope that some modification of the orbit method will work also for the
group Nn(Fq)of unitriangularn×nmatrices over thefinite fieldFq .A simple argument
shows that the number of coadjoint orbits of the group Nn(Fq) is equal to the number
of adjoint orbits of this group in the Lie algebra n+(n) of strictly upper triangular
n × n matrices over Fq . (Namely, the Fourier transform establishes an isomorphism
between the space of functions on n+(n) constant on adjoint orbits and the space of
functions on n+(n)∗ constant on coadjoint orbits.) But this number is the same as
the number conjugacy classes of the group Nn(Fq), that is the number of irreducible
representations of this group. However, no explicit constriction of a representation,
corresponding to a coadjoint orbit, is known, and even the sufficient information of
the number of this orbits does not exist.

Along with the partition of the algebra n+(n) into the adjoint orbits, there exists
a more rough partition into Jordan types, which correspond to partitions of n; we
denote the set of these partition by P(n). For a partition λ = (λ1, λ2, . . . , λN ), λ1 ≥
λ2 ≥ . . . ≥ λN of n we use also the “symbolic notation" 1α12α2 . . . NαN where
α j = card{i | λi = j}; usually (but not always) factors with α j = 0 as well as the
exponent α j = 1, are omitted.

Notice that for a matrix A ∈ n+(n) the sequence α1, α2, α3, . . . of exponents in
the symbolic notation of its Jordan type λ = 1α12α23α3 . . . (with zeroes not removed)
can be calculated as the sequence of second differences of the rank sequence {rk(A) =
rankAk | k = 0, 1, 2, . . . }, that is

αk = rk−1(A) − 2rk(A) + rk+1(A)

2
.

Let Pλ(q) be the number of matrices from nn(Fq) of Jordan type λ ∈ P(n). Thus,

∑

λ∈P(n)

Pλ(q) = q
n(n−1)

2 .

It is well known (and explained in Sect. 3 below) that Pλ is a polynomial of the
variable q. This polynomials were studied in many works (a survey of known results
is contained in [5]). It is known, in particular that these polynomials have a tendency
to be divisible by high degrees of q and Q = q − 1. There arises a polynomial Rλ

defined by the formula

Pλ(q) = qd(λ)Qe(λ)Rλ(q), where Rλ(0) �= 0, Rλ(1) �= 0.

This article is our contribution to the study of polynomials Pλ and Rλ. Our main
results: an explicit formula for d(λ); stabilization for k → ∞ of polynomials Rλ1k

where λ1k is a partition of n+k obtained from λ ∈ P(n) by adding k ones; an explicit
formula for the limit series Rλ1∞ .

The plan of the article is the following. Section 2 contains the traditional material
concerning partitions andYoung diagrams; ourmain goal there is to establish notations
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Fig. 1 Young diagram of the partition (5, 5, 3, 3, 3, 2, 2, 1, 1) of 25

used in the rest of the article. Section 3 contains results, which we consider as known,
namely, a recursive formula for Pλ and explicit formulas for deg Pλ and for e(λ). For
the last two, we prefer to provide short proofs. Section 4 is devoted to computing d(λ).
In Sect. 5 we derive some immediate corollaries for Rλ. Section 6 is devoted to the
stabilization phenomenon for Rλ. In Appendix, we provide a table for polynomials Pλ

and Rλ for all λ ∈ P(n), n ≤ 10; in a slightly different form, this table was compiled
by D. Golubenko.

2 Partitions and Young Diagrams

A partition λ of a positive integer n is a sequence λ1, λ2, . . . , λN of integers such that
λ1 ≥ λ2 ≥ . . . ≥ λN > 0 and λ1 + λ2 + · · · + λN = n. The set of all partition of n
is denoted as P(n). Graphically, a partition λ = (λ1, λ2, . . . , λN ) of n is represented
by Young diagrams like the one shown in Fig. 1 below.

The number n (25 in Fig. 1) is the number of square cells of the diagram. The
“parts” λ1, λ2, . . . , λN are the lengths of rows (counted from the top to the bottom).
Associated with the partition λ, there is the dual partition λ′ of the same n. Its parts
λ′
1, λ

′
2, . . . , λ

′
N ′ are the heights of the columns of the same diagram. In the language

of formulas, it can be said that λ′
j = card{i | λi ≥ j}. Also, we can say that the

Young diagram of the partition λ′ can be obtained from the Young diagram of λ by
the reflection in the bisector.

Notice that N = λ′
1 and N ′ = λ1.

Every cell of a Young diagram has “coordinates” (i, i ′), which are, respectively the
numbers of the row and the column to which this cell belongs.

A cell of a Young diagram is called removable, if after its removing the Young
diagram remains a Young diagram. Geometrically, removable cells correspond to
the outer angles of the polygonal line, which bounds the diagram from the right
(or from the bottom). The Young diagram in Fig. 1 has 4 removable cells; they are
shadowed in the picture. If there are s removable cells, thenwe denote their coordinates
as (i1, i ′1), (i2, i ′2), . . . , (is, i ′s) in such a way that i1 < i2 < . . . < is (= N ) and
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(N ′ =) i ′1 > i ′2 > . . . > i ′s (= 1). In Fig. 1, s = 4 and coordinates of the removable
cells are (2, 5), (5, 3), (7, 2), (9, 1).

The partition λ in Fig. 1 may be described as 12223352, while the partition λ′ is
described as 22517191 or 22579. Certainly, it is also possible to order the terms in
the sequence iα11 iα22 . . . iαss in the order of descending ik . For example, there are 11
partitions of n = 6:

6; 51; 42; 412; 32; 321; 313; 23; 2212; 214; 16;
6′ = 16; (51)′ = 214; (42)′ = 2212; (412)′ = 313; (32)′ = 23; (321)′ = 321

The non-zero numbers αk , as well as the similar non-zero numbers α′
k for the dual

partition λ′, also have a clear geometric sense. Namely, the Young diagram of the
patition may be subdivided into horizontal strips composed of rows of equal lengths
and into vertical strips composed of columns of equal heights. Both these subdivision
are shown in Fig. 1. (Notice that every horizontal strip, as well as every vertical strip,
contains precisely one removable cell, which shows that the number of horizontal
strips, as well as the number of vertical strips, coincides with the number of removable
cells, so these two numbers are equal to each other.) And it is clear that αk is the height
of the horizontal strips composed of rows of the length k, while α′

k is the width of the
vertical strip composed of columns of the height k. By the way, this creates a simple
way to deduce the last description of the partitions λ and λ′ from the coordinates of
removable cells. Namely,

λ = (i ′1)is−is−1(i ′2)is−1−is−2 . . . (i ′s−1)
i2−i1(i ′s)i1 ,

λ′ = (i1)i
′
1−i ′2(i2)i

′
2−i ′3 . . . (is−1)

i ′s−1−i ′s (is)i
′
s−1; (1)

in particular, such presentation of partitions dual to each other have equal lengths (the
number of “factors”).

There are two more formulas, which are worth mentioning (in these formulas we
do not omit zero α and α′):

λk = α′
k + α′

k+1 + α′
k+2 + . . . and λ′

k = αk + αk+1 + αk+2 + . . . . (2)

In conclusion, remind that partition and Young diagrams play very special role
in the theory of representations of symmetric groups. First of all, in the symmetric
group Sn , the conjugacy classes are labelled by partitions of n: a conjugacy class
corresponds to the partition of n into the sum of lengths of cycles of permutations from
this class. Furthermore, according to the classical theorem of Frobenius, the number
of (isomorphism classes of) irreducible representations of a finite group is equal to
the number of conjugacy classes in this group. However, in the case of the symmetric
group Sn , there exists a canonical bijection between the set of conjugacy classes
(which is the same asP(n)) and the set of classes of irreducible representations. Thus,
the irreducible representations of Sn may be labelled as Vλ where λ is a partition of
n. There are multiple explicit construction of Vλ, as well as multiple explicit formulas
for dim Vλ (the details can be found in Representation Theory textbooks, like [3] or
[6]). We will mention here a theorem from the representation theory, which we will
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need below. Let the Young diagram of the partition λ of n has s removable cells, and
let λ ↓ j (1 ≤ j ≤ s) be partition of n − 1 whose Young diagrams are obtained
from the Young diagram of λ by removing the removable cell (i j , i ′j ). (Notice that the
operation of removing the cell (i j , i ′j ) makes the following change in the sequence
{αk}: α j �= 0 looses 1, and α j−1, which could be zero, gains 1.) Then Vλ regarded as

a representation of Sn−1 ⊂ Sn (the standard notation is ResSn
Sn−1

Vλ) is the sum of s

irreducible representation of Sn−1: Res
Sn
Sn−1

Vλ = Vλ↓1 ⊕ . . . ⊕ Vλ↓s . Hence,

dim Vλ = dim Vλ↓1 + · · · + dim Vλ↓s . (3)

It is worth mentioning, although we do not need it in the current article, that for
Young diagrams there exists an operation, in some sense “dual" to removing removable
cells, namely attaching attachable cells. A cell attachable to the Young diagram is a
cell not in this diagram, such that after attaching this cell the Young diagram remains
a Young diagram. It is easy to understand that the number of attachable cells for
a Young diagram is one more than the number of removable cells. The partitions
whose Young diagrams are obtained from the Young diagram of λ by attaching one
attachable cell are denoted as λ ↑1, λ ↑2, . . . λ ↑s+1. There is a well-known formula
for the representation ofSn+1 induced by the representation Vλ ofSn : IndS

n+1

Sn
Vλ =

Vλ↑1 ⊕ · · · ⊕ Vλ↑s+1 . The similarity of this formula to the formula for ResSn−1 given
above, reflects duality between the operations Res and Ind (which can be expressed
in terms of adjoint functors).

3 Known Results

The results stated in three propositions below have been considered well known for
a long time (see, for example, [5]). The first one is contained (and called “Division
theorem”) in the articles [1, 2] by A. Borodin. For the last two we prefer to give brief
proofs.

Let λ = (λ1, . . . , λN ), λ1 ≥ · · · ≥ λN > 0, λ1 + · · · + λN = n be a partition
of n. We use the notations of Sect. 2: λ′ = (λ′

1, . . . , λ
′
N ′) is a partition dual to λ, the

number of removable cells in the Young diagram of λ is s, and their coordinates are
(i j , i ′j ), j = 1, . . . , s, the partition whose Young diagram is obtained from Young
diagram of λ be removing the cell (i j , i ′j ) is λλ↓ j . In addition to this, we use the
notation λ′

0 = ∞. When necessary, we extend notations n and N to n(λ) and N (λ).

Proposition 3.1

Pλ(q) =
s∑

j=1

(
q
n−λ′

i ′j − q
n−1−λ′

i ′j−1

)
Pλ↓ j (q). (4)

For example, let λ = (2, 1). Then λ′ = λ = (2, 1), s = 2, the removable cells
are (1, 2) and (2, 1), λ ↓1= (1, 1), λ ↓2= (2). Obviously, P(1,1)(q) = 1, and
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P(2) = Q. By (4), P(2,1)(q) = (q3−1−q3−1−2)P(1,1)(q)+(q3−2−q3−1−∞)P(2)(q) =
(q2 − 1) · 1 + qQ = Q(1 + 2q).

Proposition 3.2 (a)

deg Pλ(q) =
∑

i< j

λ′
iλ

′
j . (5)

(b) The leading coefficient of the polynomial Pλ(q) is equal to dim Vλ.

Proof Induction with respect to n. For n = 2 the statement follows from the compu-
tations after Proposition 3.1.

Put D(λ) = ∑
i< j λ

′
iλ

′
j . We want to prove that deg Pλ(q) = D(λ) and we assume

known that deg Pλ↓ j (q) = D(λ ↓ j ) for every j and that the leading coefficient of
every Pλ↓ j (q) is dim Vλ↓ j . When we pass from λ to λ ↓ j , all λ′

i stay unchanged,
except λ′

i ′j
, which looses 1. Hence, D(λ) − D(λ ↓ j ) is the sum of all λ′

i , except λ′
i ′j
,

in other words, D(λ) − D(λ ↓ j ) = N − λ′
i ′j
. This shows that all the summands in

the right hand part of (4) have the same degree D(λ). Moreover, by the induction
hypothesis, the leading coefficients of these summands are dimensions of Vλ↓ j . Thus
Pλ has the degree D(λ) and the leading coefficient

∑
j dim Vλ↓ j , which is, by (3),

dim Vλ.

Proposition 3.3 (a) e(λ) = n(λ) − N (λ).
(b) All the coefficients of the polynomial Q−e(λ)Pλ(q) (and hence of the polynomial

Rλ(q)) are positive integers.

Proof Again, the induction with respect to n. For n = 2 the statement again follows
from the computations after Proposition 3.1.

We assume that the statement is true for λ ↓ j . Obviously, n(λ ↓ j ) = n(λ)− 1 and

N (λ ↓ j ) =
{
N (λ), if λN �= 1,
N (λ) − 1 if λN = 1.

Hence,

e(λ ↓ j ) =
{
n(λ) − N (λ) − 1, if λN �= 1,
n(λ) − N (λ), if λN = 1.

On the other hand, for the multiple in (4) we have:

q
N−λ′

i ′j − q
N−1−λ′

i ′j−1 =

⎧
⎪⎨

⎪⎩

q
N−1−λ′

i ′j−1 · Q
(
1 + q + · · · + q

λ′
i ′j

−λ′
i ′j−1

)
, if i ′j > 1,

q
N−λ′

i ′j , if i ′j = 1

=
{
Q · polynomial with positive integer coefficients, if i ′j > 1,
polynomial with positive integer coefficients, if i ′j = 1.

��
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Fig. 2 The case i ′j = 1

Notice that λN = 1 and i ′j = 1 are the same event: it means that the bottom cel in the
right column of the Young diagram is removable, that is, the Young diagram has the
shape as shown in Fig. 2. Also, in this case, j = s.

Thus, in all cases, Pλ(q) is Qn(λ)−N (λ) times a polynomial with positive integer
coefficients. Since a polynomial with positive integer coefficients cannot be divisible
by Q, this is what we had to prove.

Corollary 3.4

e(λ ↓ j ) =
{
e(λ) − 1, if i ′j > 1,
e(λ), if i ′j = 1.

4 Computation of d(�)

We keep all the notation from Sect. 3; in addition to that, we put λ′
N ′+1 = 0.

Theorem 4.1

d(λ) =
(
n(λ)

2

)
−

(
N (λ)

2

)
− λ′

1λ
′
2 − λ′

2λ
′
3 − · · · − λ′

N ′−1λ
′
N ′ (6)

Proof Until we have finished the proof, we denote the right hand side of (6) as d ′(λ).
(Sometimes, we will append to the expression for d ′(λ) the zero term −λ′

N ′λ′
N ′+1.)

Thus, we are proving that d(λ) = d ′(λ).
We use the induction with respect to n. For n = 2 the statement is true. Indeed,

P(2) = Q, P(11) = 1, (see remark after Proposition 3.1), hence d(2) = d(11) = 0.
Also, (2)′ = (11), (11)′ = (2), hence
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d ′(2)=
(
2

2

)
−

(
1

2

)
− 1 · 1 = 1 − 0 − 1 = 0 = d(2);

d ′(11)=
(
2

2

)
−

(
2

2

)
− 2 · 0 = 1 − 1 − 0 = 0 = d(11).

By the induction hypothesis, (6) holds for all λ ↓ j . Let us compare d(λ ↓ j ) with
d ′(λ).

First, n(λ ↓ j ) = n(λ) − 1. Hence,

(
n

2

)
in d ′(λ) becomes

(
n − 1

2

)
, that is, looses

n − 1 in d(λ ↓ j ). Second, N (λ ↓ j ) =
{
N if i ′j �= 1,
N − 1 if i ′j = 1.

Hence, −
(
N

2

)
becomes

−
(
N − 1

2

)
, hence, gains N − 1, if i ′j = 1. Third, when we pass from λ to λ j , all

λ′
i ’s remain the same, with the exception of λ′

i ′j
, which becomes one less. Hence,

−λ′
i ′j−1λ

′
i ′j

− λ′
i ′j
λ′
i ′j+1 gains λ′

i ′j−1 + λ′
i ′j+1 except the cases i

′
j = 1, when it gains just

λ′
2, and i

′
j = N ′ when it gains just λ′

N ′−1. Thus,

d(λ ↓1) = d ′(λ) − (n − 1) + λ′
i ′1−1,

d(λ ↓ j ) = d ′(λ) − (n − 1) + λ′
i ′j−1 + λ′

i ′j+1, if j > 1 and i ′j �= 1,

d(λ ↓s) = d ′(λ) − (n − 1) + (N ′ − 1) + λ′
2, if i

′
s = 1.

(7)

Remind that d(λ ↓ j ) is the lowest exponent at q in the polynomial Pλ↓ j . According
to Proposition 3.1, Pλ is the sum of the polynomials Pλ↓ j multiplied, respectively, by

q
n−λ′

i ′j −q
n−1−λ′

i ′j−1 . This multiplication increases the lowest exponent at q in Pλ↓ j by
n − 1− λ′

i ′j−1, if i
′
j �= 1 and increases it by n − λ′

1 = n − N , if i ′j = 1. This increased

exponent is d ′(λ), if j = 1 and d ′(λ) + λ′
i ′j+1 in all other cases. Thus, Pλ is the sum

of polynomials, one of which has the lowest exponent at q equal to d ′(λ), while all
the rest have this lowest exponent greater than d ′(λ). Hence the lowest exponent at q
in Pλ, that is d(λ), is equal to d ′(λ), which completes the proof. ��

5 Corollaries for R�

Results of Sects. 3 and 4 may be used to calculate the degree of the polynomial Rλ:

Theorem 5.1

deg Rλ =
N ′−1∑

i=1

λ′
iλ

′
i+1 −

N ′∑

i=2

(
λ′
i + 1

2

)
. (8)
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Proof First, we need to transform the expression (4) for deg Pλ:

deg Pλ =
∑

i< j

λ′
iλ

′
j =

(∑
i λ

′
i

)2 − ∑
i

(
λ′
i

)2

2

=
(∑

i λ
′
i

)2 − ∑
i λ

′
i

(
λ′
i − 1

) − ∑
i λ

′
i

2

= n2 − n

2
−

N ′∑

i=1

λ′
i (λ

′
i − 1)

2
=

(
n

2

)
−

N ′∑

i−1

(
λ′
i

2

)
.

Using this and expressions for d(λ) and e(λ) fromTheorem 4.1 and Proposition 3.3(a),
we obtain:

deg Rλ = deg Pλ − d(λ) − e(λ)

=
⎡

⎣
(
n

2

)
−

N ′∑

i=1

(
λ′
i

2

)⎤

⎦ −
⎡

⎣
(
n

2

)
−

(
N

2

)
−

N ′−1∑

i−1

λ′
iλ

′
i+1

⎤

⎦ − (n − N )

=
N ′−1∑

i=1

λ′
iλ

′
i+1 +

(
N

2

)
+ N −

N ′∑

i=1

(
λ′
i

2

)
− n

=
N ′−1∑

i=1

λ′
iλ

′
i+1 +

(
N

2

)
+ N −

N ′∑

i=1

(
λ′
i

2

)
−

N ′∑

i=1

λ′
i

=
N ′−1∑

i=1

λ′
iλ

′
i+1 +

(
N + 1

2

)
−

N ′∑

i=1

(
λ′
i + 1

2

)

=
N ′−1∑

i=1

λ′
iλ

′
i+1 +

(
λ′
1 + 1

2

)
−

N ′∑

i=1

(
λ′
i + 1

2

)
=

N ′−1∑

i=1

λ′
iλ

′
i+1 −

N ′∑

i=2

(
λ′
i + 1

2

)

Next, we can derive a formula similar to (4) for Rλ:

Theorem 5.2

Rλ =
s∑

j=1

q
λ′
i ′j+1

(
1 + q + · · · + q

αi ′j−1
)
Rλ↓ j =

s∑

j=1

q
λ′
i ′j+1

(
1 − q

αi ′j−1+1
)

1 − q
Rλ↓ j

(9)

(if j = 1, then i ′j = N ′, and λ′
i ′j+1 = λ′

N ′+1 = 0; if i ′j = 1, then the sum in parentheses

in the first formula is 1).

Example: R2α1β = qαR2α1β−1 + (
1 + q + · · · + qβ

)
R2α−11β−1 .

Proof of Theorem 5.2. Replace in formula (4) Pλ and Pλ↓ j by, respectively, q
d(λ)Qe(λ)

Rλ and qd(λ↓ j )Qe(λ↓ j )Rλ↓ j , and then divide the equality by qd(λ)Qe(λ). We get:
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Rλ(q) =
s∑

j=1

(
q
n−λ′

i ′j − q
n−1−λ′

i ′j−1

)
qd(λ↓ j )−d(λ)Qe(λ↓ j )−e(λ)Rλ↓ j (q).

By Corollary in Sect. 3, Qe(λ↓ j )−e(λ) =
{
Q−1 if i ′j �= 1,
1 if i ′j = 1.

The difference

d
(
λ ↓ j

) − d(λ) is described in formulas (7) (in which d ′(λ) should be replaced
by d(λ)).

If i ′j �= 1, then

q
n−λ′

i ′j − q
n−1−λ′

i ′j−1 = q
n−1−λ′

i ′j−1

(
q

λ′
i ′j−1

−λ′
i ′j

+1
− 1

)
= q

n−1−λ′
i ′j−1

(
q

αi ′j−1+1 − 1

)
.

Hence

(
q
n−λ′

i ′j − q
n−1−λ′

i ′j−1

)
qd(λ↓ j )−d(λ)Qe(λ↓ j )−e(λ)

= q
n−1−λ′

i ′j−1 q
αi ′j−1+1 − 1

Q
q

−(n−1)+λ′
i ′j−1

+λ′
i ′j+1 = q

λ′
i ′j+1

(
1 + q + · · · + q

αi ′j−1
)

If i ′j = 1, then j = s, λ′
i ′j

= N , and

(
q
n−λ′

i ′j − q
n−1−λ′

i ′j−1

)
qd(λ↓ j )−d(λ)Qe(λ↓ j )−e(λ) = qn−Nq−(n−1)+n′−1+λ′

2 = qλ′
2

(
= q

λ′
i ′j+1

)
.

This completes the proof. ��
Corollary 5.3 The constant term of the polynomial Rλ is 1.

This follows from (9): the only summand in this equality, which can have a non-zero
constant term is that with j = 1, and this constant term is that of Rλ↓s . Our statement
follows by induction.

6 Stabilization of R˘

For λ = . . . 3α32α21α1 put λ+ = . . . 3α32α21α1+1.

Theorem 6.1 The polynomials Rλ+ and Rλ have equal coefficients at 1, q, . . . , qα1 .
In other words, the polynomial Rλ+ − Rλ is divisible by qα1+1.

Proof If α1 = 0, then we need to prove only that the polynomials Rλ+ and Rλ have
equal constant terms, but we know this from Corollary 5.3. Thus, we can assume that
α1 > 0. In this case it is obvious that λ+ ↓ j= (λ ↓ j )

+, so we can use the notation
λ ↓+

j .

One more trivial case: if λ = 1n , then λ+ = 1n+1 and Rλ = Rλ+ = 1, so our
statements trivially holds. Thus, we can assume that s > 1.

123



Jordan Types of Triangular Matrices over a Finite Field 553

We use the induction with respect to n (for small values of n our statement is
obviously true). Thus, we can assume that the statement is true for all λ ↓ j ’s. For all
partitions λ ↓ j with j < s the number of ones is (at least) α1. For λ ↓s , it is one less:
α1 − 1.

Now let us compare expressions (9) for Rλ and Rλ+ . The number s of summands

will be the same. The factors q
λ′
i ′j+1

(
1 + q + · · · + q

αi ′j−1
)
for the summands with

j < s will also be the same. As to Rλ↓ j and Rλ↓+
j
, their difference is divisible by

qα1+1. Thus, it remains to compare the terms with j = 1. The polynomials Rλ↓1

and Rλ↓+
1
, but this is compensated by the multiplication by q

λ′
i ′j+1 , which is a positive

power of q. This completes the proof of Theorem 6.1. ��
Theorem 6.1 shows that the coefficients at every fixed degree of q in the sequence

Rλ, Rλ+ , Rλ++ , Rλ+++ , . . .

stabilize, and in the limit we get a power series. This series does not depend on 1’s in
λ, so we can assume that λ has zero α1. For the limit series we will use the notation
Rλ1∞ . We will add to removable cells (i1, i ′1), . . . , (is, i ′s) of the Young diagram of λ

an imaginary “removable cell" (is+1, i ′s+1) = (∞, 1). There arise s + 1 “partitions"
λ1∞ ↓ j , which are λ ↓1 1∞, . . . , λ ↓s 1∞, and λ1∞ ↓s+1= λ1∞. (It is possible that
the partition λ ↓s has a non-zero α1, but we still use the notation λ ↓s 1∞.)

Ifλ = (N ′)α′
N (N ′−1)αN ′−1 . . . 3α32α2 , thenλ1∞ = (N ′)αN ′ (N ′−1)αN ′−1 . . . 3α32α2

1∞ and the “partition" (λ1∞)′ of ∞ is (∞, λ′
2, . . . , λ

′
N ′), where λ′

i = αi + αi+1 +
· · · + αN ′ . Thus for i > 1, (λ1∞)′i = λ′

i .
In the statement below, we use the following notation: Sk = (1−q)(1−q2) . . . (1−

qk); in particular, S0 = 1.

Theorem 6.2 For λ = 2α23α3 . . . (N ′)αN ′ ,

Rλ1∞ = 1

(1 − q)n−N Sαi ′1
. . . Sαi ′s

= 1

(1 − q)n−N Sα2 . . . SαN ′
(10)

(the two expressions for Rλ1∞ are the same, since the only non-zero αi ’s (for λ) are
αi ′j ’s – see formula (1) in Sect. 2).

Proof Again, the inductionwith respect to N . Thus, we assume that formula (10) holds
for Rλ↓ j . Let us look, howmuch the (lower) expression (10) changes when we replace
λ by λ ↓ j . First, N stays unchanged, but n becomes 1 less, so n − N becomes 1 less.
Second, αi ′j becomes 1 less, so Sαi ′j

in the denominator looses (that is, the numerator

gains) the factor 1− qi
′
j . Third, αi ′j−1 (which could be zero) becomes 1 bigger, so the

denominator gains the factor 1 − qαi j−1+1. Let us summarize:

Rλ↓ j1∞ = 1

(1 − q)n−N Sαi ′1
. . . Sαi ′s

·
(1 − q)

(
1 − q

αi ′j
)

1 − qαi j−1+1 . (11)
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Now let us apply the formula (9) to the “partition" λ1∞ (that is, apply it to the
partition λ1K with a very large K and take the limit for K → ∞). Since for λ1∞ the
number s becomes s + 1, we get the following:

Rλ∞ =
s+1∑

j=1

q
(λ1∞)′

i ′j+1

(
1 − q

αi ′j−1+1
)

1 − q
R(λ1∞)↓ j . (12)

First, let us consider a summand in the last sum for a j ≤ s; wewill take into account
the equalities (λ1∞) ↓ j= λ ↓ j 1∞ and (λ1∞)′i = λ′

i (see above), and formula (11).
We have:

q
(λ1∞)′

i ′j+1

(
1 − q

αi ′j−1+1
)

1 − q
R(λ1∞)↓ j =

q
λ′
i ′j+1

(
(1 − q

αi ′j−1+1
)

)

1 − q
Rλ↓ j1∞

=
q

λ′
i ′j+1

(
1 − q

αi ′j−1+1
)

1 − q
·
(1 − q)

(
1 − q

αi ′j
)

1 − qαi j−1+1 · 1

(1 − q)n−N Sαi ′1
. . . Sαi ′s

=
q

λ′
i ′j+1

(
1 − q

αi ′j
)

(1 − q)n−N Sαi ′1
. . . Sαi ′s

= q
λ′
i ′j+1 − q

λ′
i ′j+1

+αi ′j

(1 − q)n−N Sαi ′1
. . . Sαi ′s

= q
λ′
i ′j+1 − q

λ′
i ′j

(1 − q)n−N Sαi ′1
. . . Sαi ′s

(for the last equality, we used the relation λ′
i ′j

= λ′
i ′j+1 + αi ′j .

Now, let us turn to the summand in the formula (12),which corresponds to j = s+1.
Since i ′s+1 = 1, α0 = 0, and R(λ1∞)↓s+1 = Rλ1∞ , this term is

qλ′
1+1(1 − q)

1 − q
Rλ1∞ = qλ′

2 Rλ1∞ .

The final result is:

Rλ1∞ = q
λ′
i ′1+1 − q

λ′
i ′1 + q

λ′
i ′2+1 − q

λ′
i ′2 + · · · + q

λ′
i ′s+1 − q

λ′
i ′s

(1 − q)n−N Sαi ′1
. . . Sαi ′s

+ qλ′
2 Rλ1∞ . (13)

Notice that λ′
i ′j

= λ′
i ′j+1+1. Indeed,

λ′
i ′j+1+1 = αi ′j+1+1 + · · · + αi ′j−1 + αi ′j + · · · + αN ′

︸ ︷︷ ︸
λ′
i ′j

and αi ′j+1+1 = · · · = αi ′j−1 = 0.
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Therefore, in the numerator in the fraction in (13) everything, except the first and the

last term, cancels. As to these two terms, q
λ′
i ′1+1 = q0 = 1, and q

λ′
i ′s = q

λ′
i ′s+1+1 = qλ′2.

Thus, we have:

Rλ1∞ = 1 − qλ′
2

(1 − q)n−N Sαi ′1
. . . Sαi ′s

+ qλ′
2 Rλ1∞ �⇒ Rλ1∞ = 1

(1 − q)n−N Sα2 . . . SαN ′
,

which is what we had to prove. ��
Examples

• If i1 > i2 > · · · > ik > 1, then R(i1,i2,...,ik ,1∞) = 1

(1 − q)i1+i2+···+ik
.

• RNk1∞ = 1

(1 − q)N (k−1)+1(1 − q2)(1 − q3) . . . (1 − qk)

• RN2(N−1)2...32221∞ = 1

(1 − q)N
2−1(1 − q2)N−1

.
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Appendix: Table for P�, n(�) ≤ 10.

The table below is presented in two columns on the next page and in one column in
subsequent pages. In every line, the first entry is the notation for the partition λ, the
second entry is the part qd(λ)Qe(λ) of the polynomial Pλ and the sequence in square
brackets is the sequence of coefficients of the polynomial R(λ) (starting with the
constant term. For example, the line

31 q2Q2 [1, 3]

means P31 = q2Q2(1 + 3q), and the line

513 q15Q4 [1, 5, 15, 35]
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means P513 = q15Q4(1 + 5q + 15q2 + 35q3).

2 Q [1]
12 1 [1]
3 qQ2 [1]
21 Q [1, 2]
13 1 [1]
4 q3Q3 [1]
31 q2Q2 [1, 3]
22 qQ2 [1, 2]
212 Q [1, 2, 3]
14 1 [1]
5 q6Q4 [1]
41 q5Q3 [1, 4]
32 q3Q3 [1, 4, 5]
312 q3Q2 [1, 3, 6]
221 qQ2 [1, 3, 6, 5]
213 Q [1, 2, 3, 4]
15 1 [1]
6 q10Q5 [1]
51 q9Q4 [1, 5]
42 q7Q4 [1, 5, 9]
412 q7Q3 [1, 4, 10]
32 q6Q4 [1, 4, 5]
321 q4Q3 [1, 5, 14, 24, 16]
313 q4Q2 [1, 3, 6, 10]
23 q3Q3 [1, 3, 6, 5]
2212 qQ2 [1, 3, 7, 12, 13, 9]
214 Q [1, 2, 3, 4, 5]
16 1 [1]
7 q15Q6 [1]
61 q14Q5 [1, 6]
52 q12Q5 [1, 6, 14]
512 q12Q4 [1, 5, 15]
43 q10Q5 [1, 6, 14, 14]
421 q9Q4 [1, 6, 20, 43, 35]
413 q9Q3 [1, 4, 10, 20]
321 q8Q4 [1, 5, 15, 28, 21]
322 q6Q4 [1, 5, 15, 28, 35, 21]
3212 q5Q3 [1, 5, 15, 34, 58, 62, 35]
314 q5Q2 [1, 3, 6, 10, 15]
231 q3Q3 [1, 4, 10, 20, 28, 28, 14]
2213 qQ2 [1, 3, 7, 13, 21, 24, 22, 14]
215 Q [1, 2, 3, 4, 5, 6]
17 1 [1]
8 q21Q7 [1]
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71 q20Q6 [1, 7]
62 q18Q6 [1, 7, 20]
612 q18Q5 [1, 6, 21]
53 q16Q6 [1, 7, 20, 28]
521 q15Q5 [1, 7, 27, 69, 64]
513 q15Q4 1, 5, 15, 35]
42 q15Q6 [1, 6, 14, 14]
431 q13Q5 [1, 7, 27, 69, 106, 70]
422 q12Q5 [1, 6, 21, 48, 78, 56]
4212 q11Q4 [1, 6, 21, 55, 112, 135, 90]
414 q11Q3 [1, 4, 10, 20, 35]
322 q10Q5 1, 6, 21, 48, 78, 84, 42]
3212 q10Q4 [1, 5, 16, 39, 73, 90, 56]
3221 q7Q4 [1, 6, 21, 55, 112, 183, 218, 174, 70]
3213 q6Q3 [1, 5, 15, 35, 69, 113, 135, 123, 64]
315 q6Q2 [1, 3, 6, 10, 15, 21]
24 q6Q4 1, 4, 10, 20, 28, 28, 14]
2312 q3Q3 [1, 4, 11, 24, 45, 68, 87, 88, 64, 28]
2214 qQ2 [1, 3, 7, 13, 22, 33, 39, 39, 33, 20]
216 Q [1, 2, 3, 4, 5, 6, 7]
18 1 [1]
9 q28Q8 [1]
81 q27Q7 [1, 8]
72 q25Q7 [1, 8, 27]
712 q25Q6 [1, 7, 28]
63 q23Q7 [1, 8, 27, 48]
621 q22Q6 [1, 8, 35, 103, 105]
613 q22Q5 [1, 6, 21, 56]
54 q21Q7 [1, 8, 27, 48, 42]
531 q20Q6 [1, 8, 35, 103, 195, 162]
522 q19Q6 [1, 7, 28, 75, 147, 120]
5212 q18Q5 [1, 7, 28, 83, 194, 254, 189]
514 q18Q4 [1, 5, 15, 35, 70]
421 q19Q6 [1, 7, 28, 75, 120, 84]
432 q16Q6 [1, 8, 35, 103, 222, 329, 366, 168]
4312 q16Q5 [1, 7, 28, 83, 194, 344, 387, 216]
4221 q14Q5 [1, 7, 28, 83, 194, 371, 513, 477, 216]
4213 q13Q4 [1, 6, 21, 56, 125, 237, 312, 313, 189]
415 q13Q3 [1, 4, 10, 20, 35, 56]
33 q15Q6 [1, 6, 21, 48, 78, 84, 42]
3221 q12Q5 [1, 7, 28, 83, 194, 371, 561, 633, 474, 168]
3213 q12Q4 [1, 5, 16, 40, 85, 152, 208, 213, 120]
323 q10Q5 [1, 6, 21, 56, 117, 198, 273, 288, 216, 84]
32212 q8Q4 [1, 6, 22, 61, 141, 277, 472, 672, 793, 720, 453, 162]

123



558 D. Fuchs, A. Kirillov sr

3214 q7Q3 [1, 5, 15, 35, 70, 125, 196, 243, 253, 212, 105]
316 q7Q2 [1, 3, 6, 10, 15, 21, 28]
241 q6Q4 [1, 5, 15, 35, 70, 117, 165, 195, 180, 120, 42]
2313 q3Q3 [1, 4, 11, 25, 49, 86, 131, 178, 212, 218, 180, 117, 48]
2215 qQ2 [1, 3, 7, 13, 22, 34, 49, 58, 61, 57, 46, 27]
217 Q [1, 2, 3, 4, 5, 6, 7, 8]
19 1 [1]
10 q36Q9 [1]
91 q35Q8 [1, 9]
82 q33Q8 [1, 9, 35]
812 q33Q7 [1, 8, 36]
73 q31Q8 [1, 9, 35, 75]
721 q30Q7 [1, 9, 44, 136, 160]
713 q30Q6 [1, 7, 28, 84]
64 q29Q8 [1, 9, 35, 75, 90]
631 q28Q7 [1, 9, 44, 146, 325, 315]
622 q27Q7 [1, 8, 36, 110, 250, 225]
6212 q26Q6 [1, 8, 36, 119, 312, 434, 350]
614 q26Q5 [1, 6, 21, 56, 126]
52 q28Q8 [1, 8, 27, 48, 42]
541 q26Q7 [1, 9, 44, 146, 325, 447, 288]
532 q24Q7 [1, 9, 44, 146, 360, 654, 828, 450]
5312 q24Q6 [1, 8, 36, 119, 312, 641, 836, 567]
5221 q22Q6 [1, 8, 36, 119, 312, 676, 1036, 1067, 525]
5213 q21Q5 [1, 7, 28, 84, 209, 445, 626, 672, 448]
515 q21Q4 [1, 5, 15, 35, 70, 126]
422 q23Q7 [1, 8, 36, 110, 250, 404, 486, 252]
4212 q23Q6 [1, 7, 29, 90, 222, 419, 507, 300]
432 q21Q7 [1, 8, 36, 110, 250, 432, 533, 492, 210]
4321 q19Q6 [1, 9, 44, 154, 431, 988, 1877, 2838, 3217, 2304, 768]
4313 q19Q5 [1, 7, 28, 84, 209, 445, 791, 1077, 1033, 525]
423 q18Q6 [1, 7, 28, 84, 200, 392, 644, 801, 693, 300]
42212 q16Q5 [1, 7, 29, 90, 231, 507, 973, 1540, 2026, 2047, 1432, 567]
4214 q15Q4 [1, 6, 21, 56, 126, 251, 446, 601, 676, 616, 350]
416 q15Q3 [1, 4, 10, 20, 35, 56, 84]
331 q18Q6 [1, 7, 28, 84, 200, 392, 609, 711, 558, 210]
3222 q15Q6 [1, 7, 29, 90, 222, 454, 782, 1130, 1338, 1221, 774, 252]
32212 q14Q5 [1, 7, 29, 90, 231, 507, 973, 1615, 2281, 2647, 2347, 1422, 450]
3214 q14Q4 [1, 5, 16, 40, 86, 165, 281, 395, 461, 425, 225]
3231 q11Q5 [1, 7, 28, 84, 209, 445, 826, 1352, 1918, 2323, 2323, 1803, 993, 288]
32213 q9Q4 [1, 6, 22, 62, 147, 307, 572, 962, 1432, 1897, 2186, 2121, 1635, 935, 315]
3215 q8Q3 [1, 5, 15, 35, 70, 126, 209, 315, 395, 435, 420, 334, 160]
317 q8Q2 [1, 3, 6, 10, 15, 21, 28, 36]
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25 q10Q5 [1, 5, 15, 35, 70, 117, 165, 195, 180, 120, 42]
2412 q6Q4 [1, 5, 16, 40, 86, 165, 281, 430, 591, 725, 775, 710, 525, 285, 90]
2314 q3Q3 [1, 4, 11, 25, 50, 90, 150, 225, 310, 390, 449, 461, 409, 310, 190, 75]
2216 qQ2 [1, 3, 7, 13, 22, 34, 50, 69, 82, 88, 87, 78, 61, 35]
218 Q [1, 2, 3, 4, 5, 6, 7, 8, 9]
110 1 [1]
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