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Abstract
We design a homotopy continuation algorithm, that is based on Viro’s patchworking
method, for finding real zeros of sparse polynomial systems. The algorithm is targeted
for polynomial systems with coefficients that satisfy certain concavity conditions,
it tracks optimal number of solution paths, and it operates entirely over the reals.
In more technical terms, we design an algorithm that correctly counts and finds the
real zeros of polynomial systems that are located in the unbounded components of
the complement of the underlying A-discriminant amoeba. We provide a detailed
exposition of connections between Viro’s patchworking method, convex geometry of
A-discriminant amoeba complements, and computational real algebraic geometry.
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1 Introduction

Let p = (p1, p2, . . . , pn) be a system of sparse polynomials inC[x] = C[x1, . . . , xn]
with support sets A1, A2, . . . , An ⊆ Z

n . More precisely, let

pi :=
∑

α∈Ai

c(i)
α xα , for i = 1, 2, . . . , n,

where xα := xα1
1 xα2

2 . . . xαn
n . Bernstein’s theorem from 1975 [3] shows that for generic

choice of coefficients of pi , the number of zeros of p on (C∗)n equals to the mixed
volume M(Q1, Q2, Q3, . . . , Qn) of the Newton polytopes Qi := conv(Ai ).

In the early 90s, the polyhedral homotopy method was developed as an algorithmic
counterpart of Bernstein’s theorem [18]. The main idea of the polyhedral homotopy
method is to continuously deform a given polynomial system to another “easy” system,
that can be solved by pure combinatorics, and then trace back the change in the solution
set with numerical path trackers. This geometric idea is colloquially referred to as toric
deformation, and the “easy” systems with combinatorial structure are referred to as
the systems at the toric limit. Polyhedral homotopy method is currently implemented
in PHCPack [46], Hom4ps- 3 [10], pss5 [33], and HomotopyContinuation.jl [8],
and it is practically successful.

For most applications of polynomial system solving, and for certain questions
in theoretical computer science, one needs to count and find zeros of polynomial
equations over real numbers, e.g., see [23, 28]. No general and efficient algorithm that
counts real zeros of arbitrary sparse polynomial systems is known, and there are good
complexity theoretic reasons to believe that at this level of generality the problem is
intractable. Our aim is to locate a sufficiently general and tractable sub-case of real
zero finding problem: Suppose support sets A1, A2, . . . , An ⊆ Z

n are given, can we
find effectively checkable conditions on the coefficients of the equations that guarantee
tractable solving over the reals? In otherwords:Where are the “easy” equations located
in space of sparse real polynomial systems with n equations and n unknowns?

An important observation from real algebraic geometry suggests a map for “easy”
polynomial systems: one can count real zeros by pure combinatorics if the polynomial
system is at the “toric limit”. We informally state this result (Viro’s Patchworking
Method for Complete Intersections) to motivate our discussion; see Sect. 2.2 for a
precise statement.

Theorem 1.1 (Viro’s PatchworkingMethod for Finitely Many Zeros) Let A1, . . . , An

⊆ Z
n, let ωi : Ai → R be lifting functions, and consider the following family of

equations parametrized by t ≥ 1:

pi (t, x) :=
∑

α∈Ai

c(i)
α tωi (α)xα i = 1, 2, . . . , n.

Let εi : Ai → {−1,+1} be the sign functions defined by signs of the coeffi-
cients c(i)

α ∈ R. Then, for sufficiently large t � 1, the set of common zeros of

123



Real Polyhedral Homotopy 307

p1(t, x), p2(t, x), . . . , pn(t, x) on R
n+ is homeomorphic to

Trop(A1, ω1, ε1) ∩ Trop(A2, ω2, ε2) ∩ · · · ∩ Trop(An, ωn, εn),

where Trop(Ai , ωi , εi ) are the positive part of tropical varieties Trop(Ai , ωi ) as
defined in Sect. 2.2.

Theorem 1.1 yields a polyhedral object that is homeomorphic to the common zero
set of p1(t, x), . . . , pn(t, x) on R

n+ for sufficiently large t , and it can also be used to
handle the set of common zeros on (R∗)n . We have three immediate questions:

(1) How can we quantify precisely when t is “sufficiently large”?
(2) Given a polynomial system p1(t, x), . . . , pn(t, x) with support sets A1, . . . , An

and coefficients ci
α for α ∈ Ai (as in the theorem statement), can we guarantee

that the number of common real zeros does not change as t goes from 1 to ∞?
(3) Can we use the technique in Theorem 1.1 for polynomial systems that are not

necessarily at the “toric limit”?

The first two questions are interrelated, and they form the main difficulty with
respect to developing an algorithmic version of Theorem 1.1. These questions were
asked since 90s [45]; to the best of our knowledge, the current paper provides the first
progress. We provide an explicit criterion to answer the second question (stated in
Sect. 3). The criterion also furnishes a homotopy algorithm that operates entirely over
the reals, which we call real polyhedral homotopy algorithm (RPH).

The third question is due to Itenberg andRoy; they conjecturedViro’s patchworking
method provides an upper bound for the number of real zeros regardless of the polyno-
mial systembeing at the toric limit or not [20]. Li andWang provided a counterexample
to the Itenberg–Roy Conjecture [30].

1.1 Effective Patchworking

Our development is based on an observation from the book [16] byGelfand, Kapranov,
and Zelevinsky (henceforth GKZ) which provides a link between Viro’s patchwork-
ing method and A-discriminants. Using the GKZ observation for an algorithm is not
straightforward. It requires to locate a query point against the A-discriminant variety,
and this may be intractable: The defining equation of the discriminant locus is known
to be extremely complicated; it obstructs the use of computational algebra methods.
However, it is no obstruction against the use of amoeba theory. Discriminantal amoe-
bas are proven to admit a certain parametric description, and it is easy to compute
normal directions on their boundary; see Sect. 2.9. We exploit these special differen-
tial geometric properties of A-discriminant amoebas to develop an effective criterion
for checking whether a given polynomial system is “easy”. Note that RPH relies on
notions from discrete and tropical geometry, and on further notions from GKZ. Fur-
thermore, we use an algorithm calledTropical Homotopy due to Jensen [22]. So, before
reading the main statement in Sect. 3 we encourage the reader to check familiarity
with the content of Sects. 2.1, 2.2, 2.3, 2.7, and 2.9.
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308 A. A. Ergür et al.

1.2 Complexity Aspects

Our work is inspired by the practical efficiency of complex polyhedral homotopy
algorithm. Complexity aspects of polyhedral homotopy have been elusive for more
than two decades; early papers did not include any complexity analysis, later different
authors approached the issue [31, 32, 36], certain technical obstacles still remain; see
Sect. 5.4.

A complete complexity analysis of RPH will only become possible when the sci-
entific community fully understands the complexity of numerical path tracking for
sparse polynomial systems. We present our thoughts on the complexity of discrete
computations, and touch upon the complexity of the numerical part of RPH in Sect. 5.

We point out here that the main parameters governing the complexity of RPH
are different than its complex cousin: the overall complexity of RPH is controlled
by the number of mixed cells (a combinatorial quantity), the complexity of complex
polyhedral homotopy is, in contrast, controlled by the mixed volume (a geometric
invariant).

1.3 Connections to Fewnomial Theory

A system of polynomials p = (p1, p2, . . . , pn) is called a patchworked polynomial
system if the real zero set of p is homeomorphic to a simplicial complex created by
Viro’s combinatorial patchworking technique. For instance, every polynomial system
that passes our test in Sect. 3 is a patchworked system. In Sect. 5.3, we observe
the following result that is reminiscent to a conjecture from fewnomial theory [27]
attributed to Kushnirenko [29].

Theorem 1.2 Let p = (p1, p2, . . . , pn) be a patchworked polynomial system where
every polynomial pi has at most t terms. Then p can have at most 2n+1

(n(t−1)
n

)
many

common zeros on (R∗)n.

Note that 2n+1
(n(t−1)

n

) ≤ 2n+1en(t − 1)n where the right hand side resembles
Kushnirenko’s conjecture. To illustrate the difference between the number of paths
tracked in RPH and the number of paths in complex polyhedral homotopy, we provide
a very simple example.

Example 1.3 Let A = {(0, 0, 0), (0, 0, d), (0, d, 0), (d, 0, 0)}, and let p = (p1, p2,
p3)where pi = a(i)

0 +a(i)
1 xd

3+a(i)
2 xd

2+a(i)
3 xd

1 are real polynomialswith three variables.
Further assume that the coefficients of p is generic in the sense of Bernstein’s theorem,
this implies p has d3 many zeros on (C∗)3. If p is a patchworked polynomial system,
by Theorem 1.2 it has at most 1344 zeros in (R∗)3. We should note that 1344 is very
much an over estimation (correct bound in this specific example is at most 8) where
else d3, with d being arbitrarily large, is the exact number of zeros in (C∗)3.

Theorem 1.2 is a direct application of McMullen’s upper bound theorem. Things
become geometrically more interesting when one tries to bound the number of mixed
cells for support sets Ai with different cardinalities (mixed supports). In [4], it is
claimed that a patchworked polynomial system p = (p1, p2, . . . , pn), where pi has
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at most ti many terms, can have at most
∏n

i=1(ti − 1) many zeros on R
n+. We have

learned from Bihan that the proof of this result is not correct, but the result still holds
true. Bihan informed us that a new proof and an erratum will appear soon ( [5]).

1.4 Structure of the Paper

Our aim is to write this paper as self contained as possible. The preliminaries section
contains background information and results from discrete geometry, the theory of
A-discriminants, symbolic computation, and numerical path trackers. Jensen’s trop-
ical homotopy algorithm and mixed cell cones are also introduced in this section.
In the third section, we transform asymptotic and qualitative results from [16] to a
more quantitative and checkable condition. In the fourth section we present our real
polyhedral homotopy algorithm and an example. The fifth section is concerned with
the complexity aspects. The last section contains a discussion of questions that were
brought to our attention after the initial version of this paper appeared on ArXiv.

2 Preliminaries

We denote [n] := {1, . . . , n}, C∗ := C\{0}, and R
∗ := R\{0}. Let e j denote the j-th

coordinate vector in R
n . To avoid redundancies later in the articles we set e0 := 0.

For a given convex setC , we denote its boundary by ∂C . For a convex cone K ∈ R
n ,

the dual cone K ◦ is defined as

K ◦ := {y ∈ R
n : 〈x, y〉 ≥ 0 for all x ∈ K }.

For a given polytope P , we denote its vertex set as Vert (P). For v ∈ Vert (P) the
normal cone is the collection of linear functional that achieves its maxima over P at
v and is denoted with NC (v). Entire collection of all normal cones NC (v) form a fan
called normal fan and denoted with NF (P).

In what follows we consider finite sets A := {a1, . . . , am} ⊂ Z
n and

A1, A2, . . . , Ak ⊂ Z
n , which are support sets of polynomials. We denote the

Minkowski sum of the Ai as
∑k

i=1 Ai . Note that

conv

(
k∑

i=1

Ai

)
=

k∑

i=1

conv(Ai ).

For a polynomial p ∈ C[x] with support A, the Newton polytope is given by
New(p) := conv(A). We denote the variety, i.e., the common solutions of a system of
polynomials p on complex numbers as V ( p), the real locus as VR ( p) := V ( p)∩R

n ,
and positive / nonzero real locus as VR>0 ( p) and VR∗ ( p).

123



310 A. A. Ergür et al.

2.1 Polyhedral Subdivisions, Secondary Polytope, and Cayley Configuration

In this section, we introduce polyhedral subdivisions, secondary polytopes and Cayley
configurations; for further details, we refer the reader to [11].

Let A ⊂ Z
n be a set of lattice points and let ω : A → R be a function. The lifting

of A induced by ω is defined as:

Aω := {(x, ω(x)) : x ∈ A} .

We call a face F of conv(Aω) an upper face if it is given by

F = {x ∈ conv(Aω) : 〈c, x〉 ≥ 〈c, y〉 for all y ∈ conv(Aω)},

where c is a vector with a positive last entry. Intuitively, upper faces are the faces that
are “visible” from (0, . . . , 0,∞). We project upper faces of conv(Aω) on the point set
A:

�ω := {
x ∈ A : (x, ω(x)) belongs to an upper face of conv(Aω)

}
.

�ω is a polyhedral subdivision of A. Polyhedral subdivisions obtained this way are
called coherent or regular. Note that�ω is a triangulation (i.e. a subdivision using only
simplices) unless the lifted points Aω have certain affine dependencies [11, Remark
5.2.3].

Now, we define the secondary polytope of A, which encodes all coherent triangu-
lations of A, and discuss its key properties; see [11, Section 5].

Definition 2.1 Let T be a triangulation of A = {a1, a2, . . . , am}, and let σ1, . . . , σs

be the simplices in T . We define

�A(T ) :=
m∑

j=1

⎛

⎝
∑

{σ∈T : a j ∈σ }
vol(σ )

⎞

⎠ e j .

We define the secondary polytope of A as:

	(A) := conv {�A(T ) : T is a triangulation of A} .

The corresponding normal fan NF (	(A)) is called the secondary fan. For its cones,
the secondary cones, we use the abbreviated notation NC (T ) := NC (�A(T )).

Theorem 2.2 [11, Section 5] The secondary polytope has the following properties:

(1) The vertices of 	(A) are in one to one correspondence to the coherent triangula-
tions of A.

(2) The face lattice of 	(A) is isomorphic to a refinement poset of the coherent poly-
hedral subdivisions of A.
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(3) A lifting function ω : A → R induces the triangulation T if and only if ω ∈
int (NC (T )).

(4) Consider the support set A as a n × m integer matrix. Then every secondary cone
NC (T ) includes the n + 1 dimensional linear space spanned by rows of A and
all ones vector (1, 1, . . . , 1). As a consequence, the secondary polytope 	(A) is
m − n − 1 dimensional.

For later use, we need to have a better understanding of the description of secondary
cones NC (T ). We first define a circuit.

Definition 2.3 An affine dependence among lattice points of a set A ⊆ Z
n is the

relation given by
∑

α∈A aαα = 0, where
∑

α∈A aα = 0. A circuit Z is a collection of
affinely dependent lattice pointswhere everyproper subset of Z is affinely independent.
Consequently, circuit represents a unique (up to scaling) affine relation

∑
α∈Z λαα = 0

and
∑

α∈Z λα = 0

A rhombus in the plane is a nice example of a circuit. The following is a basic fact
about circuits, see, e.g., Lemma 2.4.2 [11].

Lemma 2.4 Let Z be a circuit, then Z can be decomposed into a disjoint union of two
sets Z = Z+ ∪ Z− with the following property:

Z+ = {Z − {α} : α ∈ Z+} , Z− = {Z − {α} : α ∈ Z−}

are the two triangulations of Z.

The volume of the simplex Z −{α} is equal to absolute value of a determinant. Let us
denote this determinant with σα . A standard argument, see, e.g., Remark 4.1.8 in [11],
shows that σαs determine the unique affine relation supported by Z . That is, using the
terminology in Definition 2.3, we have σα = λα (up to swapping Z− and Z+).

Now consider a regular triangulation T and suppose ω is a lifting function that
induces T . Then, for a simplex conv{a1, a2, . . . , an+1} in T , and an+2 ∈ A with
an+2 /∈ conv{a1, a2, . . . , an+1}, we must have that (an+2, ω(an+2)) lies ‘above’ the
affine spane of (a1, ω(a1)), . . . , (an+1, ω(an+1))). Suppose

∑n+2
i=1 λi ai = 0 is the

unique affine relation of the circuit {a1, a2, . . . , an+2}, if we have ∑n+2
i=1 λiω(ai ) =

0, then we know that (an+2, ω(an+2)) is in the affine span of the vectors
{(a1, ω(a1)), . . . , (an+1, ω(an+1)}. To have (an+2, ω(an+2)) ‘above’ simply corre-
sponds to

∑
λiω(ai ) > 0. In conclusion, the secondary cone NC (T ) is described by

inequalities supportedoncircuits, and these inequalities are of the form
∑

λiω(ai ) > 0
where λα are signed volumes of simplices in the triangulation of the circuit (up to scal-
ing).

Now, we consider polyhedral subdivision of a set A where A = ∑k
i=1 Ai . Let F be

a cell in coherent polyhedral subdivision of
∑k

i=1 Ai introduced by a lifting function
ω. Then, F corresponds to a face in

∑n
i=1 conv(Ai )

ω. Let F = ∑k
i=i Fi where Fi are

the corresponding faces on conv(Ai )
ω.

Definition 2.5 A coherent polyhedral subdivision �ω of A1 + A2 + · · · + Ak for
Ai ⊂ Z

n is called fine mixed if it satisfies the following conditions:

123



312 A. A. Ergür et al.

(1) For all cells F in the subdivision, we have
∑k

i=1 dim(Fi ) = n, and
(2) for all cells F in the subdivision we have

∑k
i=1(#Fi − 1) = n,

where #Fi denotes the number of vertices of Fi .

We also need to define Cayley configuration of point sets A1, A2, . . . , Ak and the
corresponding Cayley polytope.

Definition 2.6 We define the Cayley configuration of A1, A2, . . . , Ak as

A = A1 ∗ A2 ∗ · · · ∗ Ak := {(x, ei−1) : x ∈ Ai } ⊆ R
n+k−1.

The Cayley polytope is defined as conv(A), denoted by Cay(A).

The followingobservation is implicit inmost papers in literature:Anatural slicing of
the Cayley polytope Cay(A) is equivalent to

∑n
i=1 conv(Ai ). More precisely, consider

the following set defined by the intersection of Cay(A) with several hyperplanes:

C̃ay(A) :=
{
x ∈ Cay(A) : xn+1 = xn+2 = · · · = xn+k−1 = 1

k

}
.

Observe that a k-scaling of C̃ay(A), i.e., k · C̃ay(A), is equal to
∑n

i=1 conv(Ai ).
For a detailed explanation and a picture-proof, see [17].

Suppose that T is a coherent triangulation of the Cayley configurationA. First, note
that T ∩ C̃ay(A) creates a polyhedral subdivision of C̃ay(A). Via the equivalence, this
gives a polyhedral subdivision of

∑n
i=1 conv(Ai ). Let σ be a simplex in T , then σ has

n +k vertices which split into sets of vertices σi that are induced by Ai . None of the σi

are empty since otherwise σ can not be full-dimensional. Then, up to an isomorphism,
Fσ = conv(σ1)+conv(σ2)+· · ·+conv(σk) yields a cell in the polyhedral subdivision
of
∑n

i=1 conv(Ai ), and all such cells yield a finemixed subdivision of
∑n

i=1 conv(Ai ).
This correspondence gives a bijection between coherent triangulations of the Cayley
polytope and coherent finemixed subdivisions of theMinkowski sum

∑k
i=1 conv(Ai );

see [43, Theorem 5.1].
In summary, coherent fine mixed subdivisions of

∑k
i=1 conv(Ai ) are encoded by

the vertices of the secondary polytope 	(A) and the corresponding secondary cones.

Remark 2.7 At various parts of this article (in our theorem statements and algorithms),
we work with triangulations. For a generic lifting function ω, the induced polyhedral
subdivision �ω is a triangulation. The proof of [11, Proposition 2.2.4] suggests an
algorithm, albeit an inefficient one, to check whether a given lifting is generic. The
question of finding an efficient algorithm to checkgenericity of a lifting is an interesting
question, but it lies beyond the scope of our paper.

2.2 Viro’s PatchworkingMethod

In this section, we introduce Viro’s patchworking method for complete intersections.
For further details and relations to Hilbert’s 16th problem, we kindly refer the reader
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to Viro’s survey [47]. For further background information on tropical geometry, see,
e.g., [19, 37, 38]. For implementations of patchworking technique please see [39] and
[24].

Definition 2.8 Let A = {a1, a2, . . . , am} ⊂ Z
n and �ω be a coherent triangulation of

A given by a lifting function ω : A → R. We define the associated tropical variety as

Trop(A, ω) := {x ∈ R
n : max

i
{〈x, ai 〉 + ω(ai )} is attained at least twice}.

Since we are interested in real varieties, we need to distinguish a positive and a
negative part of Trop(A, ω). Observe that Trop(A, ω) together with its complement
creates a polyhedral decomposition of R

n . Also, by definition, every full-dimensional
cell in the complement of Trop(A, ω) corresponds to a unique a j ∈ A as it is given
by the set:

{
x ∈ R

n : 〈x, a j 〉 + ω(a j ) > 〈x, ai 〉 + ω(ai ) for all i ∈ [n] \ { j}} .

We define the sign of this cell as ε(a j ). For every (n − 1)-dimensional cell in
Trop(A, ω), there exist two adjacent n-dimensional cells with signs assigned by ε.
This motivates the definition of the positive part of a tropical variety.

Definition 2.9 The positive part Trop(A, ω, ε) of a given tropical variety Trop(A, ω)

is the subcomplex consisting of those (n − 1)-dimensional cells that are adjacent to
two n-cells with different signs.

Theorem 2.10 (Viro’s Patchworking for Complete Intersections [44]) Let A1, . . . , Ak

⊂ Z
n, let ω : A1 ∗ A2 ∗ · · · ∗ Ak → R be a lifting function. Consider a system of

polynomials p = (p1, p2, . . . , pk) defined as follows:

pi (t, x) :=
∑

α∈Ai

cαtω(α) xα

with cα ∈ R. Let ε : A1 ∗ A2 ∗ · · · ∗ Ak → {−1,+1} be the sign function defined by
coefficients of p. Then, for sufficiently large t >> 1, the real algebraic set VR>0 ( p)
is homeomorphic to

Trop(A1, ω1, ε1) ∩ Trop(A2, ω2, ε2) ∩ · · · ∩ Trop(Ak, ωk, εk),

where ωi and εi are restrictions of ω and ε to Ai .

Remark 2.11 For readers who are familiar with non-Archimedian tropical geometry
the theorem statement here might look confusing. The only difference is that in non-
Archimedian tropical geometry, it is customary to use min notation, lower facets, and
t tends to zero. In amoeba theory, however, it is customary to use max notation, upper
facets, and t tends to ∞. We follow the amoeba theory convention.
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Theorem 2.10 generalizes to the set of zeros on the appropriate toric variety by
applying the theorem on every one of the 2n orthants separately and then gluing them
together; see [44, Theorem 5].We illustrate Theorem 2.10 on themost simple example
possible.

Example 2.12 The set A := {e0, e1, . . . , en} represents the support set for linear forms
(and hence its convex hull is the standard simplex). We consider positive solutions of
an affine linear form f = u0 + ∑n

i=1 ui xi , i.e., the solutions with xi > 0. We use a
variant of moment the from symplectic geometry called algebraic moment map:

μA : R
n+ → conv(A) x �→

∑
i xi ei

1 + ∑
i xi

.

This map is a homeomorphism. The image of VR>0

(
u0 + ∑n

i=1 ui xi
)
under μA is

given by:

μA(VR>0 ( f ))=
{

(y1, y2, . . . , yn) ∈ conv(A) : u0

(
1 −

n∑

i=1

yi

)
+

n∑

i=1

ui yi = 0

}
.

Hence, μA(VR>0 ( f )) is defined by the linear form u0 + u1x1 + · · · + un xn on the
simplex conv(A), and it separates those ei with ui > 0 from those e j with u j < 0.

To prove Theorem 2.10 above, one replaces the simplex with the triangulation, and
the moment map with the moment map corresponding to the toric variety defined by
A1 + A2 + · · · + Ak as explained in of [16, Chapter 11, Section 5, Subsections C and
D]. We provide another example, first considered by Sturmfels [43, Page 382].

Example 2.13 Consider the two polynomials

ft = x32 − t x1x22 − t5x21 x2 + t12x31 − t x22 + t4x1x2 − t9x21 − t5x2 − t9x1 + t12,

gt = t8x22 − t6x1x2 + t6x21 − t3x2 − t2x1 + 1.

We consider the lifting function ω introduced by the exponents of t , the sign function
ε introduced by the coefficients of ft and gt , and compute the corresponding patch-
working. We present the outcome in Figure 1. The computation was already carried
out by Sturmfels in the original article [43] in ’94. Here, we generate a plot using the
Viro.sage package by O’Neill, Kwaakwah, and the second author [39].

2.3 Mixed-Cell Cones and Jensen’s Tropical Homotopy Algorithm

In this article, we are concerned with zero dimensional systems, that is we have n
support sets A1, A2, . . . , An ⊂ Z

n . For this case, some cells in the regular triangulation
�ω (introduced by a lifting ω) of A = A1 ∗ A2 ∗ · · · ∗ An are of particular interest.
These cells are called mixed cells. Formally, a cell σ ∈ �ω that has 2 elements from
each Ai is called a mixed cell. Equivalently, after identification as explained Sect. 2.1,
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Real Polyhedral Homotopy 315

Fig. 1 Viro Patchworking of ft and the complete intersection of ft and gt for ft , gt defined as in Example
2.13

in a fine mixed subdivision of A1 + A2 + · · · + An , mixed cells σ are the cells that
are given by the Minkowski sum of n edges.

On the dual side, when we consider the finite set of points in the intersection

Trop(A1, ω1, ε1) ∩ Trop(A2, ω2, ε2) ∩ · · · ∩ Trop(An, ωn, εn),

each of these points correspond to a mixed cell in the triangulation of A = A1 ∗ A2 ∗
· · · ∗ An , where every two vertices from each Ai have opposite signs. In the current
literature, such a simplex is called an alternating mixed cell [22].

The main observation here is that Theorem 2.10 depend only on the mixed cells in
a triangulation ofA = A1 ∗ A2 ∗ · · · ∗ An ; we do not need to differentiate between two
triangulations that have same collection of mixed cells. We formalize this as follows.

Definition 2.14 (Mixed-Cell Cone of a Triangulation) Let T be a triangulation of
A = A1 ∗ A2 ∗ · · · ∗ An , and let σ ∈ T be a mixed cell. For every lifting function
ω : A → R (represented by a vector in R

A) we denote the induced subdivision as �ω.
We define the mixed cell cone of σ as:

M(σ ) := {ω ∈ R
A : σ is a mixed-cell in �ω}.

Moreover, we define the mixed cell cone of T as:

M(T ) :=
⋂

{σ : σ is mixed cell of T }
M(σ ).

To clarify the difference between the mixed cell cone and the secondary cone, we
make a definition and state a lemma.

Definition 2.15 Let A1, A2, . . . , An ⊂ Z
n and set A = A1 ∗ A2 ∗ · · · ∗ An ⊂ Z

2n−1.
If � is a facet of A defined by � = {x ∈ A : xn+i = 0} for some 1 ≤ i ≤ n − 1, or
� = {x ∈ A : ∃ i such that 1 ≤ i ≤ n − 1 and xn+i = 1} then we call � an irrelevant
facet. If � is a face included in an irrelevant facet, we call � an irrelevant face.
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Lemma 2.16 Let T = �ω for a lifting function ω, and assume that ω ∈ NC (v) where
v is a vertex of the Newton polytope of the A-discriminant and NC (v) is its normal
cone. Then, we have

NC (v)◦ ⊆ M(T )◦ ⊆ NC (T )◦.

Moreover, if τ ∈ NC (T )◦ − M(T )◦ then τ is supported on a set that is included in
the union of irrelevant faces of A.

Proof Inclusion of the cones follow directly from definition, for further structural
information we refer to D-equivalence notion in Chapter 11, Section 3, subsection B
of [16].

We prove “moreover” part of the claim. Let τ ∈ NC (T )◦ − M(T )◦ be an inequality
supported on a circuit Z . We claim in Z there exist an i ∈ [n] such that |Z ∩ Ai | = 1.
Assume otherwise, then we have that for some j : |Z ∩ Ai | = 2 for all i �= j , and∣∣Z ∩ A j

∣∣ = 3. Then, passing from one triangulation of Z to another involves a mixed
cell change which contradicts with the assumption τ ∈ NC (T )◦ − M(T )◦. Now
without loss of generality assume Z ∩ A1 = α. Then Z −α lies in an irrelevant face of
A, and the lattice distance from α to affine hull of Z − α is 1. One can easily observe
that the simplex σα corresponding to α in Z is not full-dimensional and hence has
volume zero. Thus, the inequality τ is supported on Z −α. In general, any element of
NC (T )◦−M(T )◦ is a conic combination of circuit inequalities τ ∈ NC (T )◦−M(T )◦
and we showed that such τ are supported on irrelevant faces. ��
In the rest of this paper,wewill use themixed-cell cone M(T ) and itwill be represented
by circuit inequalities generating the cone, that is we work with M(T )◦. Luckily for
us, there is already an efficient algorithm for computing M(T )◦: Jensen’s tropical
homotopy algorithm, see [22], computes for a given (generic) lifting function ω, and
point configurations A1, A2, . . . , An , the triangulation T = �ω of A = A1 ∗ A2 ∗
· · · ∗ An and M(T )◦. The idea of Jensen’s algorithm is to start from a lifting function
β yielding only one mixed cell. Then, one keeps track of the changes in the mixed-
cell cone as one changes the lifting function linearly from β to a target lifting ω.
The algorithm updates the mixed-cell cone with the violated circuit inequalities, and
halts whenever it arrives at a triangulation T with ω ∈ M(T ). The correctness of
the algorithm follows from the fact that changes in the regular triangulations always
happen by a change between two triangulations of a circuit, and every such change
corresponds to one circuit inequality added to the mixed-cell cone.

2.4 Solving Binomial Systems Over the Reals

Since we repeat the Viro construction in every orthant of (R∗)n , the sign vector ε

changes. However, the lifting function ω and the corresponding triangulation remains
the same for all orthants. So, to count the number of real zeros with Viro’s method, one
needs to investigate themixed cells and check howmany times amixed cell becomes an
alternating one.Algorithmically, instead of going throughViro’s construction 2n times,
it is more convenient to use binomial systems, i.e., systems of polynomials where every
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polynomial has only two terms. Every mixed cell corresponds to a binomial system,
and solving that binomial systemon (R∗)n corresponds to countinghowmany times the
mixed cell becomes and alternating mixed cell. This approach is much more effective.

Now we outline how to solve binomial systems over the reals. Consider the follow-
ing system of binomials:

c11 xa11 = c12 xa12 , c21 xa21 = c22 xa22 , . . . , cn1 xan1 = cn2 xan2 ,

where ci j ∈ R
∗ and ai j ∈ Z

n . This system is equivalent to the following system of
equations:

xa11−a12 = c12
c11

, xa21−a22 = c22
c21

, . . . , xan1−an2 = cn2

cn1
. (2.1)

Set di = ai1 − ai2, and D = [d1d2 · · · dn]. To solve the system (2.1) over (R∗)n , it
suffices to perform the elementary integer operations that reduce D into its Hermite
normal form. This operations can be done in strong polynomial time [26]. The result
is a system of equations in the following format:

xh111 = λ1, xh211 xh222 = λ2, . . . , xhn1
1 . . . xhnn

n = λn, (2.2)

where hi j ∈ Z and λi ∈ R
∗. The solutions of (2.2) are completely determined by the

signs of λi and hi j being even or odd. Hence, (2.2) either has no solution in (R∗)n , or
there exist solutions differing only by their signs.

There is also a recent paper focusing on probabilistic analysis of numerical methods
for binomial system solving [40].

2.5 A-Discriminants

Given a set of lattice points A = {a1, a2, . . . , am} ⊂ Z
n , we define

C
A :=

{
∑

α∈A

cαxα ∈ C[x] : cα ∈ C for all α ∈ A

}

as the space of polynomials supported on A. Note that C
A is isomorphic to C

m with
m = #A. We define (C∗)A analogously with cα ∈ C

∗. Now, we define our protagonist
the A-discriminant variety:

∇A := {
f ∈ (C∗)A : f has a singularity on (C∗)n

}
.

∇A is a cone over a projective variety, to get a better sense of this we need to introduce
projective toric variety corresponding to A:

X A := {[xa1 : xa2 : · · · : xam ] : x ∈ (C∗)n}.

123



318 A. A. Ergür et al.

One can observe that X A is essentially Zariski closure of a torus orbit. A polynomial
f supported on A can be considered as a linear form on the toric variety X A. Dis-
criminant variety corresponds to the hyperplanes that intersect the toric variety X A

non-transversally. This means if f /∈ ∇A then the zero set of f has no singularity
on X A. This also means ∇A is the cone over the projective dual of X A. Thus, except
for specific degenerate configurations A, ∇A is an irreducible hypersurface given by a
polynomial with integral coefficients; [16, Chapter 9].We denote the defining equation
of ∇A with �A. We are interested in the real part of the discriminant variety

∇A(R) := ∇A ∩ R[x].

The hypersurface ∇A(R) partitions the coefficient space R
A into connected com-

ponents. If two polynomials f , g ∈ R
A lie in the same connected component of

R
A − ∇A(R) and X A is smooth then the zero sets of f and g on are isotopic on X A

[16, pg 380].
For the purposes of homotopy continuation we want to have zero sets of f , g ∈ R

A

be isotopic in the torus orbit X◦
A instead of the compactification X A. The nice fact is

that X A admits a decomposition into a disjoint union of torus orbits:

X A = �� X◦
�,

where � are faces of the polytope conv(A) and X◦
� denotes the torus orbit for which

the toric variety X� is the closure. So to have VR∗ ( f ) and VR∗ (g) isotopic, we will
require two conditions: f and g both does not have a zero on X◦

� for any proper face
� of conv(A), and f and g are isotopic on X A. Since singularities of toric variety X A

are known to be on X◦
� for co-dimension two or higher faces, once the first condition

is guaranteed the second condition boils down to f and g being in the same connected
component in R

A − ∇A(R).
At this point, we need to introduce sparse resultant. We summarize basic properties

in the following proposition-definition.

Proposition 2.17 [16, Chapter 8] Let A1, A2, . . . , Ak ⊂ Z
k−1 be a collection of k

finite sets. Then there exists a polynomial RA1,A2,...,Ak with the following properties:

• RA1,A2,...,Ak has integral coefficients and it is irreducible.
• If f = ( f1, f2, . . . , fk) is a polynomial system with fi ∈ C

Ai and f has a zero in
(C∗)k−1, then RA1,A2,...,Ak ( f ) = 0.

An exposition for sparse resultants with a computational focus can be found in [9].
A nice trick referred to as “Cayley trick" relates A-discriminants and sparse resultants.

Lemma 2.18 [16, Chapter 9, Prop 1.7] Using the notation of Proposition 2.17 and
letting A := A1 ∗ A2 ∗ · · · ∗ Ak, we have

RA1,A2,...,Ak ( f (x)) = �A( f1(x) +
k∑

i=2

yi fi (x)),

where yi denotes the new variables added in the construction of A.
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Nowwewould like to think about singular zeros of a sparse polynomial system. For
a tuple of coefficient vectors C = (C1,C2, . . . ,Ck) with C i ∈ C

#Ai , let pC be the
polynomial system pC = (p1, p2, . . . , pk) with pi = ∑

ai j ∈Ai
C i j xai j . We define

the discriminantal locus for systems of equations as follows:

∇A1,A2,...,Ak

:= {
(C1,C2, . . . ,Ck) ∈ CA1 × · · · × CAk : pC posses a singularity on (C∗)n

}
.

The toric variety that is dual to ∇A1,A2,...,Ak may not be clear at first sight, but it is
isomorphic to X A1+A2+···+Ak ; we refer the reader to [16, Chapter 8, Proposition 1.4]
for a nice explanation.

The discriminantal locus corresponding to hypersurfaces supported by the Cayley
configuration A = A1 ∗ A2 ∗ · · · ∗ Ak is then given by

∇A :=
{
C ∈ CA :

∑

a∈A
ca xa posses a singularity on (C∗)n

}
.

IfA = A1∗A2∗· · ·∗Ak is not degenerate, then∇A is an irreducible hypersurface.Also,
using the definition of singularity with the Jacobianmatrix, it immediately follows that
∇A ⊆ ∇A1,A2,...,An . The following result of Esterov, proved by a simple perturbation
argument, relates ∇A and ∇A1,A2,...,Ak ; see of [15, Lemma 3.36], and note that in
Esterov’s notation ∇A1,A2,...,Ak is denoted by 	A0,A1,...,A�

.

Theorem 2.19 (Esterov) IfA = A1∗A2∗· · ·∗Ak is not defect, and dim(conv(Ai )) = n
for i = 1, 2, . . . , k, then ∇A1,A2,...,Ak is irreducible of codimension one.

Hence, if the assumptions of Esterov’s theorem are satisfied, then ∇A and
∇A1,A2,...,Ak coincide. So, in order to control the changes in the topology for sys-
tems of equations supported with A1, A2, . . . , Ak , we use the hypersurface ∇A(R).

2.6 Basics of Amoeba Theory

In this section, we introduce the notion of amoeba following Gelfand, Kapranov, and
Zelevinsky [16]. For an overview of amoeba theory, please see [35, 42].

Definition 2.20 We define the Log-absolute value map as

Log : (C∗)n → R
n, (z1, z2, . . . , zn) → (log |z1| , log |z2| , . . . , log |zn|).

For a Laurent polynomial f ∈ C
[
z±1

]
and variety V ( f ) ⊂ (C∗)n we define the

amoeba of f as A( f ) := Log |V ( f ) | ⊆ R
n .

Lemma 2.21 Let f = ∑
i ci xai be a polynomial with support A = {a1, a2, . . . , am}.

Let v be a vertex of New( f ). Suppose that b ∈ NC (v) with

〈b, v − ai 〉 > log

(
m · |ci |

|cv|
)

for all ai �= v. Then, A( f ) ∩ (b + NC (v)) = ∅.
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Fig. 2 Amoebae for x1 + x2 − 1 and −1 + 5x1 − 15x2 + 10x1x2 + 3x21 + 5x22

The statement is well known; see [16, Prop. 1.5, Page 195]. Here, we provide the
main argument of the proof for the convenience of the reader.

Proof We have

f (x) = cv xv

⎛

⎝1 +
∑

ai �=v

ci

cv
xai −v

⎞

⎠ .

Set g(x) = ∑
ai �=v

ci
cv

xai −v . Then for a given x ∈ (C∗)n if |g(x)| < 1, this imme-
diately implies f (x) �= 0 and hence Log | x | /∈ A( f ). The rest of the proof is
straightforward. ��
Lemma 2.21 shows that for every v of the New( f ), there is an unbounded connected
component in the complement of the amoebaA( f ) that includes a copy of the normal
coneNC (b). The following are the basic facts: these connected components are distinct
for every v, these connected components exhaust the list of unbounded components
in the complement of A( f ), and these connected components are convex [41, 42].

2.7 Real Toric Deformation

This section is to set up the real homotopy starting from combinatorial patchworking
to our target system. We will require the deformation path to lie outside of a region
given by a union discriminant amoebas. This will ensure there are no root paths that
visit toric infinity and that the deformation preserves the geometry of the real zero set.

Proposition 2.22 Let A1, A2, . . . , An ⊂ Z
n be point configurations with dim(Ai ) = n

for all i ∈ [n], and letA = A1∗ A2∗· · ·∗ An be the Cayley configuration. Suppose that
v = (va){a∈Ai : 1≤i≤n} ∈ R

A and C ∈ R
A are vectors with the following properties:

(1) v is not on the boundary of any secondary cone of the point configuration A.
(2) For every face � of A, except for the irrelevant faces, the ray Log |C| + λv for

λ ∈ [0,∞) does not intersect the amoeba of ��(R).
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We consider a system of equations pC(t, x) = (p1, p2, . . . , pn):

pi (t, x) =
∑

a∈Ai

cαt−va xa for i = 1, 2, . . . , n. (2.3)

Then, the real Puiseux series

x(t) = (x1tζ1, x2tζ2 , . . . , xntζn ) + higher-order terms (2.4)

is a solution to the system pC only if (ζ , 1) is an outer normal to a lower facet of

conv(Av
1 + Av

2 + · · · + Av
n),

where Av
i stands for the lifting of Ai with respect to v ∈ R

A. Moreover, VR∗ (pi (t, x))

are isotopic for all t ∈ (0, 1].
Remark 2.23 We note that in the statement we have Log |C| + λv for λ ∈ [0,∞),
and also cαt−vα for t ∈ (0, 1]; these two represent the same parameter regime as
log

∣∣cαt−vα
∣∣ = log |cα| + vα log 1

t .

Proof The statement about the Puiseux series follows the same proof as [18, Lemma
3.1], sowe just list themain steps: Put (2.4) into (2.3), divide by the lowest degree term,
and set t = 0. The system of equations obtained this way will have at most 2n terms
in total, and it can have a common zero only if it is a system of binomial equations. On
can observe that under Log-map, the solutions of these binomial equations correspond
to the finite number points given by Viro’s method. We had already discussed in Sects.
2.3 and 2.4 that these points given by Viro’s method identify alternating mixed cells.

Now we consider the statement about isotopy. Let S := {x ∈ R
2n−1 : xn+1 =

xn+2 = · · · = x2n−1 = 1
n−1 }. We recall that Cay(A) ∩ S and A1 + A2 + · · · + An

are equivalent up to scaling, see Sect. 2.1. Let � be a proper face of A that is not
irrelevant, let �̃ be the face of A1 + A2 + · · · + An equivalent to � ∩ S, and suppose
�̃ = �̃1+ �̃2+· · ·+ �̃n , where �̃i is a face of Ai . Observe that � = �̃1 ∗ �̃2 ∗ · · ·∗ �̃n .
By Lemma 2.18, if a polynomial system f |� satisfies ��( f |�) �= 0 then f has no
zero on X◦

�̃
. Thus if��( f |�) �= 0 for all proper faces, except the irrelevant ones, then

f has no zero on X A1+A2+···+An − X◦
A1+A2+···+An

.
The ray Log |C| + λv does not intersect the amoeba of ��(R) for any λ ∈ [0,∞).

This implies ��( pC(t)) �= 0 for all faces �, except irrelevant ones, and also
�A( pC(t)) �= 0 for all t ∈ (0, 1]. So the condition ��( pC(t)) �= 0 guarantees non-
existence of zeros on X A1+A2+···+An − X◦

A1+A2+···+An
, and since �A( pC(t)) �= 0 we

have that the zero sets are isotopic on X◦
A1+A2+···+An

. Thus, VR∗ (pi (t, x)) are isotopic
for all t ∈ (0, 1]. ��
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2.8 Numerically Tracking a Solution fromToric Infinity

The numerical part of our algorithm tracks real zeros of pC(t, x), as in Proposition
2.22, from pC(0, x) to pC(1, x). There are several technicalities to be careful about:
(1) we are not able to start the homotopy continuation precisely at pC(0, x) since all
its zeros lie at toric infinity, (2) we need to design an algorithm to track the solution
paths x(t), as in Proposition 2.22, from t ∼ 0 to t = 1.

The first issue is theoretically handled by an analytic continuation argument on
toric compactification, and it is practically handled by predictor–corrector methods in
numerical analysis. The second part, tracking the solution paths, can be done in two
ways:

(1) trace the solution curves x(t) numerically, or
(2) start a homotopy from pC(0, x) with zeros given by alternating mixed cells and

track the solution path from t = 0 to t = 1.

Explaining details of these numerical schemes have the potential of doubling the size
of our paper and the techniques are now folklore, so we prefer to have a brief account.
An established reference for curve tracing approach, i.e., the first method, is [1].
The curve tracing approach is often fast, and it is a standard technique in numerical
analysis that is deployed in many applications. However, to the best of our knowledge,
the safeguards to control precision issues for standard path trackers only exist for
specific cases. The second approach has a well-developed theory to control precision
issues and conduct rigorous complexity analysis in the case of dense polynomials [2].
For sparse polynomials, Malajovich recently developed a theory that allows to express
complexity of numerical tracking with certain integrals of condition numbers [31].We
briefly explain Malajovich’s approach in Sect. 5.4. Our algorithm can be implemented
using any of the two ways depending on the preferred trade-off between rigor and
speed. For a nice exposition on comparing the two alternatives we suggest [6, Section
2.3 and 2.4].

2.9 An Entropy Type Formula for the Discriminant Locus

In this section, we introduce useful facts about A-discriminants, mostly relying on
[16, Chapter 9, Section 3, subsection C] and works of Passare and Tsikh [42].

Theorem 2.24 (Horn–Kapranov Uniformization) Let A = [a1, a2, . . . , am] be a col-
lection of lattice points in Z

n, let ∇A be the corresponding A-discriminant variety. We
consider A as a n × m matrix, and define

�A(u, x) := [
u1 xa1 : u2 xa2 : · · · : um xam

]
.

Then ∇A admits the following parametrization:

∇A =
{

�A(u, x) : Au = 0,
m∑

i=1

ui = 0, x ∈ (C∗)n

}
.
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Now consider the amoeba of ∇A:

Log |∇A| = Log

∣∣∣∣∣

{
u : Au = 0,

m∑

i=1

ui = 0

}∣∣∣∣∣ + (Log | x |)T A,

where + denotes the Minkowski sum.
It is easy to observe that (Log | x |)T A corresponds to the row span of A. Moreover,

for any u with Au = 0,
∑m

i=1 ui = 0 any scalar multiple of u satisfies the same
equations. This n-dimensional row span and one-dimensional linear space represents
n+1 homogeneities that are present in the discriminant variety; the variety is invariant
under torus action and scaling.

For a given hypersurface V ( f ) ⊆ (C∗)n , consider all points which are critical
under the Log | · | map. The Log | · |-image of these points is called the contour of
the corresponding amoeba A( f ); see e.g., [42]. It is straightforward to show that the
contour contains the boundary ∂A( f ), but does not coincide with it in general; see,
e.g., [42]. Moreover, for a real polynomial f , the contour contains the amoeba of the
smooth part of the real variety, i.e., A(VR∗ ( f )) [42].

Let B be a Gale dual of A, i.e, an m × (m − n − 1) integer matrix that has all
column sums to be 0 and satisfies AB = 0. Then, for any u ∈ (R∗)m with Au = 0
and

∑
i ui = 0 one can find a ζ ∈ (R∗)m−n−1 with u = Bζ .

It follows from the discussion in [42] (see the section titled Discriminants and Real
Contours, and specifically Theorem 4), that the parametrization of the contour of the
reduced A-discriminant amoeba BTA(∇A(C)) is given as follows:

BT Log

∣∣∣∣∣

{
u : u ∈ (R∗)m, Au = 0,

∑

i

ui = 0

}∣∣∣∣∣ . (2.5)

Using (2.5) and the fact that contour includes the amoeba of the real part of the variety,
one can concisely write

BTA(∇A(R)) ⊆
{

BT Log |u| : u ∈ (R∗)m, Au = 0,
m∑

i=1

ui = 0

}
. (2.6)

Using the row space of B to parameterize the set {u ∈ (R∗)m, Au = 0,
∑m

i=1 ui =
0}, this can also be written as follows:

BTA(∇A(R)) ⊆
{

m∑

i=1

b(i) log |〈b(i), ζ 〉| : ζ ∈ (R∗)m−n−1

}
, (2.7)

where the b(i) denote the rows of B. As a next step, we define the following map:

φA : (R∗)m−n−1 → (R∗)m−n−1 , φA(ζ ) =
m∑

i=1

b(i) log |〈b(i), ζ 〉| .
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The facts listed follows from [16, Chapter 9, Section 3, subsection C]:

(1) The map φA is 0-homogeneous, that is for every λ ∈ (0,∞) and ζ ∈ (R∗)m−n−1

we have

φA(λζ ) = φA(ζ ).

(2) The image of the map φA is a hypersurface, and if the Gauss map γ is defined at
φA(ζ ) then we have

γ (φA(ζ )) = ζ .

The first property follows since the column sums of B equals 0. The second property
is proved by Kapranov [25]. Now assume that we have a ζ ∈ (R∗)m−n−1, and we
would like to write down the equation of the tangent hyperplane Hζ at φA(ζ ).

Since we know the image under the Gauss map (i.e., the normal direction), we
obtain:

Hζ =
{
x ∈ R

m−n−1 : 〈x, ζ 〉 = 〈φA(ζ ), ζ 〉
}

.

One can rewrite this as follows:

Hζ =
{
x ∈ R

m−n−1 : 〈ζ , x〉 =
m∑

i=1

〈b(i), ζ 〉 log |〈b(i), ζ 〉|
}

. (2.8)

3 Effective Viro’s Patchworking

Consider a polynomial system p = (p1, p2, . . . , pn)with support sets A1, A2, . . . , An

and the coefficient vector C = (C1,C2, . . . ,Cn). How do we decide if the common
real zero set of p (up to continuous deformation) can be described by Viro’s patch-
working method? Here we present a way to certify if this is the case for a given system
p: We search for a ray Log |C| + λv that does not intersect the discriminant amoebae
for all faces � ofA, except the irrelevant ones. This represents a real toric deformation
starting from p as in Proposition 2.22.

3.1 Statement of Main Result and an Example

We keep the notation from Sect. 2.9, what follows is the main result of this section.

Proposition 3.1 Let pC be a system of sparse polynomials with coefficient vector C
and support sets A1, A2, . . . , An ⊂ Z

n where dim(Ai ) = n for all 1 ≤ i ≤ n. Let T be
the triangulation of the Cayley configuration A = A1 ∗ A2 ∗· · ·∗ An that is introduced
using LogC as a lifting function. Let M(T ) be the corresponding mixed cell cone,
and suppose that the dual cone M(T )◦ is generated by vectors ζ(1), . . . , ζ(L). Then,
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if

〈LogC, ζ(i)〉 > log(#A) ‖ζ(i)‖1 (3.1)

for all i = 1, 2, . . . , L, the system pC is a patchworked polynomial system. Further-
more, for any v ∈ M(T ) the ray LogC + λv for λ ∈ [0,∞) does not intersect the
amoeba of �� for all faces � of A except for the irrelevant ones.

Note that, for any coefficient vector C with corresponding triangulation T , if the
generators of the dual mixed cell cone M(T )◦ are ζ(i) for i = 1, 2, . . . , L , then, by
definition,

〈ζ(i),LogC〉 > 0

for all i = 1, 2, . . . , L . To apply Proposition 3.1, we need

〈ζ(i),LogC〉 > log(#A) ‖ζ(i)‖1 .

Here, ‖ζ(i)‖1 is a normalization; one can just use normalized generators with unit
�1-norm. So the loss in our relaxation is represented by the logarithmic term log(#A).

Let us illustrate Proposition 3.1 on the simplest case: univariate polynomials. Let
A = {0, a1, a2, . . . , a2d} ⊂ Z, and let p(x) = c0+c1xa1+c2xa2+· · ·+c2d xa2d .Here a
triangulation is subdivision of the interval [0, a2d ] into a union of smaller sub-intervals
[ai , a j ]. Suppose the lifting function LogC = (log |c0| , log |c1| , . . . , log |c2d |) intro-
duces the triangulation T = {[0, a2], [a2, a4], . . . , [a2(d−1), a2d ]}. The first “simplex”
being [0, a2]means for every ai with i �= 2 we must have (ai , log |ci |) lying above the
line segment {(0, log |c0|), (a2, log |c2|)}. In terms of circuit inequalities, this means
the following

log |c2| − log |c0|
a2

<
log |ci | − log |c0|

ai
for i = 1, 3, 4, 5, . . . , d.

Or, equivalently

log |c0| (ai − a2) − log |c2| ai + log |ci | a2 > 0 for i = 1, 3, 4, 5, . . . , d.

The hypothesis of Proposition 3.1 amounts to

log |c0| (ai − a2) − log |c2| ai + log |ci | a2 > log(d + 1)(|ai − a2| + ai + a2).

If the hypothesis of Proposition 3.1 is satisfied for all the circuit inequalities of the
triangulation T (that is all generators of M(T )◦), then the number of real zeros of p(x)

can be counted as follows: Let sgn ci represent the signs of ci , set

sgnC := (sgn c0, sgn c2, sgn c4, . . . , sgn c2d),
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and let k be the number of sign changes in the vector sgnC . The vector sgnC represents
the signs relevant to the triangulation T , and due to nature of T we have the same
sign vector on“negative orthant" (−∞, 0). Then, Proposition 2.22 combined with
Proposition 3.1 says p has 2k many real zeros.

3.2 Some Basic Results on the Complement of A-Discriminant Amobea

For simplicity, we let m = #A. Note that A ⊂ Z
2n−1. Here, we assume the reader is

familiar with the basic facts from Sect. 2.6 and start with the following lemma.

Lemma 3.2 Let η be a vertex of the Newton polytope of �A, and let Kη be the corre-
sponding connected component in the complement of the A-discriminant amoeba.

(1) Let u ∈ Kη and let v ∈ NC (η) then the ray u + λv for λ ∈ [0,∞) does not
intersect the A-discriminant amoeba.

(2) Let �A and B, respectively, be the map and the matrix defined in Sect. 2.9. Suppose
ζ ∈ R

m−2n with �A(ζ ) ∈ ∂(BT Kζ ), then ζ ∈ (
BT NC (η)

)◦
.

Proof As Kη is a component of the complement of an amoeba, it is a convex set.
Moreover, by Lemma 2.21, it includes a shifted copy of NC (η). Now let Hw :=
{〈w, x〉 = c} be a supporting hyperplane of Kη (i.e., for every y ∈ Kη we have
〈w, y〉 ≥ c). We claim w ∈ NC (η)◦: otherwise the shifted copy of the cone NC (η),
that is included in Kη, would intersect the supporting hyperplane Hw, which is a
contradiction.

Let u ∈ Kη and v ∈ NC (η). Then we have for any w ∈ NC (η)◦ and λ > 0

〈w, u〉 ≤ 〈w, u + λv〉.

Hence, the ray u + λv does not intersect any supporting hyperplane of Kη, and in
consequence does not intersect the boundary of the convex set Kη.

Now suppose that we have a ζ ∈ R
m−2n with �A(ζ ) ∈ ∂(BT Kζ ), then by the

second property in Sect. 2.9 the supporting hyperplane at �A(ζ ) will be

Hζ :=
{
x ∈ R

m−2n : 〈ζ , x〉 =
m∑

i

〈b(i), ζ 〉 log |〈b(i), ζ 〉|
}

.

Since there is a shifted copy of BT NC (η) inside the convex set BT Kη, this shows
that ζ ∈ (

BT NC (η)
)◦
. ��

The Gale dual matrix B in Lemma 3.2 is of size m × (m − 2n). Thus, BT Kζ is a
projection of Kη from R

m to R
m−2n . The kernel of the matrix BT is included in every

connected component Kη of the complement of the A-discriminant amoeba and this
projection creates no loss of generality. There are two ways to see this: Formally, the
kernel of BT is the span of rows of A and (1, 1, . . . , 1) vector, and in Theorem 2.2 it
was noted that this space is included in every secondary cone and hence also in NC (η)

by Lemma 2.16. Geometrically, the kernel of BT represents the homogeneities present
in the A-discriminant variety as explained in Sect. 2.9.
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Given a point Log |C|, testing if Log |C| ∈ Kη is equivalent to testing if
BT Log |C| ∈ BT Kη; the kernel of BT is included in all Kη. One can test whether
BT Log |C| ∈ BT Kη by checking all the supporting hyperplanes of BT Kη due to con-
vexity. By Lemma 3.2 and the discussion in Sect. 2.9, we know that these supporting
hyperplanes are of the form

Hζ :=
{
x ∈ R

m−2n : 〈ζ , x〉 =
m∑

i

〈b(i), ζ 〉 log |〈b(i), ζ 〉|
}

for some ζ ∈ (
BT NC (η)

)◦
. Now let T be a triangulation of A, and let η be a vertex

in the Newton polytope of �A with the property

NC (T ) ⊆ M(T ) ⊆ NC (η),

see Lemma 2.16. By linearity, this means

BT NC (T ) ⊆ BT M(T ) ⊆ BT NC (η), and
(

BT NC (η)
)◦ ⊆

(
BT M(T )

)◦ ⊆
(

BT NC (T )
)◦

.

Instead of checking hyperplanes defined by ζ ∈ (
BT NC (η)

)◦
we check the inequal-

ities given by the larger cone
(
BT M(T )

)◦
. Before we explain the reason for this, we

make an observation: B(BT M(T ))◦ ⊆ M(T )◦ as follows:

x ∈ (BT M(T ))◦ ⇒ 〈B x, y〉 ≥ 0 for all y ∈ M(T ).

Also note that by definition we have

〈ζ , BT LogC〉 = 〈Bζ ,LogC〉.

So instead of using 〈ζ , BT LogC〉 > 0 for ζ ∈ (
BT NC (η)

)◦
as our criterion, we will

use τ,LogC〉 > 0 for all τ ∈ M(T )◦. There are two reasons for this: First reason is
that to ensure the criterion in Proposition 2.22 is satisfied, we indeed have to check
with all circuit inequalities in M(T )◦. Proposition 2.22 involves amoebae of all ��

for all faces ofA, except the irrelavant ones, and checking with the dual cones coming
from all such � is equivalent to checking all inequalities in M(T )◦. This first reason
will become more clear in Sect. 3.4. The second reason is algorithmic efficiency: we
had already computed the generators of M(T )◦ along the way, these are the circuit
inequalities computed by Jensen’s tropical homotopy algorithm Hence using M(T )◦
does not yield a significant computational cost.
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3.3 Quantitative Estimates

Lemma 3.3 Let T be a triangulation of A, please keep the notation from Lemma 3.2
for Kη and B. If a given vector Log |C| satisfies

〈
ζ , BT LogC

〉
> log(m) ‖Bζ‖1

for all ζ ∈ (BT M(T ))◦, then we have Log |C| ∈ Kη for a vertex η of �A which
satisfies M(T ) ⊆ NC (η).

The proof of Lemma 3.3 will follow after we make some observations. We first
note a basic observation on entropy type sums.

Lemma 3.4 Let x ∈ R
d≥0 be a vector with nonnegative entries. Then, we have

‖x‖1 log ‖x‖1 − log(d) ‖x‖1 ≤
d∑

i=1

xi log(xi ) ≤ ‖x‖1 log ‖x‖1 ,

where ‖x‖1 = ∑d
i=1 |xi | represents the �1-norm of the vector x.

Proof Let y := x
‖x‖1 . Since ‖ y‖1 = 1, and it has nonnegative entries, we can see

y as a discrete probability distribution supported on d strings. As usual H( y) =∑d
i=1 −yi log(yi ) is the entropy of y, and it is well known that H( y) ≤ log(d) [48].

So, we have

H( y) = 1

‖x‖1

(
d∑

i=1

xi log ‖x‖1 − xi log(xi )

)
≤ log(d).

This gives us the following inequality

log ‖x‖1
d∑

i=1

xi ≤ log(d) ‖x‖1 +
d∑

i=1

xi log(xi ),

which proves the left-hand side inequality in the claim. The right-hand side is obvious.
��

Now we derive the following useful estimate based on Lemma 3.4.

Lemma 3.5 Let A be the support set, and let B be the m × (m − 2n) Gale dual. Then,
for every ζ ∈ R

m−2n we have

−1

2
‖Bζ‖1 log(m) ≤

m∑

i=1

〈b(i), ζ 〉 log |〈b(i), ζ 〉| ≤ 1

2
‖Bζ‖1 log(m).
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Proof By construction, every element in the column space of B has the sum of its
coordinates equal to zero. So, for every ζ ∈ R

m−2n the sum of the entries of Bζ is
zero. That is,

m∑

i=1

〈b(i), ζ 〉 = 0,

where b(i) represents rows of the matrix B. We write Bζ = (x,− y) for some x and
y that are nonnegative in all coordinates, so we have ‖x‖1 = ‖ y‖1 = 1

2 ‖Bζ‖1. We
also observe

m∑

i=1

〈b(i), ζ 〉 log |〈b(i), ζ 〉| =
m1∑

i=1

xi log(xi ) −
m2∑

i=1

yi log(yi ).

Note that m1 and m2 in the above expression are both less than m. Using Lemma 3.4
and ‖x‖1 = ‖ y‖1 = 1

2 ‖Bζ‖1 gives us the following estimate:

− 1

2
‖Bζ‖1 log(m) ≤

m∑

i=1

〈b(i), ζ 〉 log |〈b(i), ζ 〉| ≤ 1

2
‖Bζ‖1 log(m). (3.2)

��
Proof of Lemma 3.3 Using Lemma 3.5 and the hypothesis of Lemma 3.3 we have

〈ζ , BT Log |C|〉 > log(m) ‖Bζ‖1 >

m∑

i=1

〈b(i), ζ 〉 log |〈b(i), ζ 〉|

for all ζ ∈ (BT M(T ))◦. (Note that (BT NC (η))◦ ⊂ (BT M(T ))◦.) By Lemma 3.2,
we know that the supporting hyperplanes of Kη are of the form

Hζ :=
{
x ∈ R

m−2n : 〈ζ , x〉 =
m∑

i

〈b(i), ζ 〉 log |〈b(i), ζ 〉|
}

for some ζ ∈ (BT NC (η))◦. So, these two facts together imply that BT Log |C| and
the shifted copy of NC (η) are not separated by any supporting hyperplane of BT Kη.
This means BT Log |C| ∈ BT Kη. Since the kernel of BT is included in Kη this also
implies Log |C| ∈ Kη. ��

3.4 Putting Things Together

Now,we complete the proof of Proposition 3.1. Recall that by definition 〈τ, BT LogC〉
= 〈Bτ,LogC〉, and B(BT M(T ))◦ ⊆ M(T )◦. So, if a given vector Log |C| satisfies

〈ζ ,LogC〉 > log(m) ‖ζ‖1 (3.3)
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for all ζ ∈ M(T )◦, then by Lemma 3.3 we have that Log |C| ∈ Kη for a vertex η of
�A which satisfies M(T ) ⊆ NC (η).

Suppose M(T )◦ is generated by ζ(1), . . . , ζ(L), and assume for a given vector
Log |C| we have

〈ζ(i),LogC〉 > log(m) ‖ζ(i)‖1

for all i = 1, 2, . . . , L . Then for any x ∈ M(T )◦ with x = ∑
tiζ(i) with ti ≥ 0 one

has the following inequality

〈LogC, x〉 > log(m)
∑

ti ‖ζ(i)‖1 ≥ log(m) ‖x‖1 .

where the last inequality follows from the triangle inequality. Hence, checking the
condition in Proposition 3.1 only for the generators of M(T )◦ suffices to guarantee
〈Log |C|, x〉 > log(m) ‖x‖1 for all x ∈ M(T )◦. At this point we proved that the
following: If the hypothesis of Proposition 3.1 is satisfied, then Lemma 3.3 andLemma
3.2 show that for all v ∈ M(T ) the ray λv +Log |C | for λ ∈ [0.∞) does not intersect
the amoeba of �A.

Now let� be a face ofA that is not an irrelevant face. Let T |� be the restriction of the
triangulation of T on �. By Lemma 2.16 the circuit inequalities generating M(T |�)◦
are included in M(T )◦. We also observe that log(#A) ≥ log(#�). This implies that
the criterion of Proposition 3.1 also ensures the ray v + λLog |C | does not intersect
the amoeba of �� . Using Proposition 2.22 completes the proof.

4 Real Polyhedral Homotopy

In this section, we summarize the main steps of our real polyhedral homotopy
algorithm. The algorithm follows the common thread of homotopy continuation algo-
rithms, but it operates entirely over the real numbers.

The idea of the algorithm is as follows: Given a polynomial system p =
(p1, p2, . . . , pn) with support sets A1, A2, . . . , An ⊆ Z

n and coefficient vectors
C i ∈ R

#Ai for i = 1, 2, . . . , n, we concatenate the support set and coefficient vectors
as A = A1 ∗ A2 ∗ · · · ∗ An , C = (C1,C2, . . . ,Cn). Then, we compute triangulation
T of A with respect to lifting function LogC . This step is performed using Jensen’s
tropical homotopy algorithm as explained Sect. 2.3. Using Jensen’s algorithm makes
the generators of the cone M(T )◦ readily available. Then, we check if the criterion of
Proposition 3.1 is satisfied by the vector LogC . If the criterion is not satisfied, algo-
rithms halts and prints “Input system is not certifiably patchworked". If the criterion
is satisfied, we then find real zeros of binomial systems that correspond to mixed cells
of T as explained in Sect. 2.4. After that, we pick a vector v ∈ M(T ) − ∂ M(T ), this
can be done in a multitude of ways e.g. availing to multiplicative updates method, or
one can simply set v = LogC since the fact LogC ∈ M(T ) − ∂ M(T ) is already
certified. Then, we track the solution paths x(t) corresponding to v as in Proposition
2.22 from t = 0 to t = 1. This numerical tracking step is discussed in Sect. 2.8. The
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Algorithm 1 Real Polyhedral Homotopy

1: Input A1, A2, . . . , An ⊆ Z
n , Ci ∈ R

Ai for i = 1, 2, . . . , n
p = (p1, p2, . . . , pn) and pi = ∑

α∈Ai
Ci,αxα .

2: Initialize A = A1 ∗ A2 ∗ · · · ∗ An , C = (C1,C2, . . . ,Cn)

3: Set T to be the triangulation of A that is induced by the lifting function LogC
Compute mixed cells of T

4: List generators of M(T )◦
5: if For all τ ∈ M(T )◦,

〈LogC, τ 〉 > log(#A) ‖τ‖1
then

6: Compute real zeros of binomial systems given by mixed cells of T
7: Pick a vector v ∈ M(T ) − ∂ M(T ) or set v = LogC
8: Track solution paths x(t) for v as in Proposition 2.22 from t = 0 to t = 1
9: Output VR∗ ( p)
10: else
11: Print “Input system is not certifiably patchworked"
12: end if

correctness of the algorithm follows from Proposition 3.1 and Proposition 2.22. We
give an example showing how the algorithm performs in practice.

Example 4.1 We reconsider the polynomials presented in Example 2.13, but this time
we fix the coefficients to be real numbers instead of using coefficients that are Puiseux
series.

f = x32 − (0.45)x1x22 − (0.45)5x21 x2 + (0.45)12x31 − (0.45)x22 + (0.45)4x1x2

− (0.45)9x21 − (0.45)5x2 − (0.45)9x1 + (0.45)12,

g = (0.45)8x22 − (0.45)6x1x2 + (0.45)6x21 − (0.45)3x2 − (0.45)2x1 + 1.

This leads to the following support and, using log-absolute values of the coefficients,
the following lifting vectors:

Support f:2 × 10Array{Int64,2} :
[
0 1 2 3 0 1 2 0 1 0
3 2 1 0 2 1 0 1 0 0

]

Lifting f:
[
0 1 5 12 1 4 9 5 9 12

]

Support g:2 × 6Array{Int64,2} :
[
0 1 2 0 1 0
2 1 0 1 0 0

]

Lifting g:
[
8 6 6 3 2 0

]
.

What we did so far corresponds to initialization step of the algorithm (step 2). Now
we need to compute mixed cells, and list generators of the dual mixed-cell cone (step
3 and step 4). There are six mixed cells and corresponding circuit inequalities. These
mixed cells are depicted in the right picture of Figure 1. After verifying our system is
patchworked (this is step 5 in the algorithm), we pass to step 6: For every one of these
mixed cells, we obtain a binomial system, which we then solve using Hermite normal
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form, e.g., the first mixed-cell is represented by

volume:1indices:Tuple{Int64,Int64}[(2, 1), (5, 6)]normal:[−2.0, −1.0]

with a solution for the corresponding binomial system given by

[4.938271604938272, 2.2222222222222223].

Similarly, we obtain five further solutions for the five other binomial systems corre-
sponding to the other mixed cells.

[4.938271604938272,−0.20249999999999999] [4.938271604938272,−0.041006249999999994]
[24.386526444139612, 10.973936899862824] [24.386526444139612,−1.0]
[24.386526444139612, 0.09112500000000004].

For step 7, we simply pick v = LogC . We perform step 8 using the polyhedral
homotopy continuation in Homotopy.JL. After a total runtime of roughly 0.0001
seconds1, we arrive to step 9. Here are the six real solutions for the original system:

[4.20818, 2.41707] [7.12063,−0.138875] [6.94337,−0.0383256]
[49.3211, 24.3919] [15.9697,−0.517115] [17.5735, 0.0244792].

5 Remarks on Complexity

In this section, we discuss complexity aspects of the real polyhedral homotopy algo-
rithm.Our goal in this section is to identify key parameters that governs the complexity
of the RPH algorithm. Our main finding is that the complexity of the real polyhedral
homotopy algorithm is controlled by the number of mixed cells in triangulation of the
Cayley configuration A = A1 ∗ A2 ∗ · · · ∗ An that is introduced using the coefficients
as a lifting function. We also show that the number of mixed cells admits an O(tn)

upper bound where t is the maximal number of terms in Ai for 1 ≤ i ≤ n. So if the
number of variables n is considered to be fixed, and the number of terms t is a variable,
the discrete computations in RPH takes polynomial time.

In general, the discrete part of the RPH corresponds to computing mixed cells of a
polyhedral subdivision that is induced by a fixed lifting; without worrying about the
volumes the mixed cells. Hence, any complexity theoretic upper and lower bounds
for computing mixed cells (without volumes) applies to discrete computations in our
algorithm. For the numerical part; the number of paths tracked by RPH is dramatically
smaller than of complex homotopy algorithms. However, as noted in the introduction
we are not able to provide a rigorous complexity analysis for the numerical part of the
algorithm for the time being.

1 Carried out on a MacBook Pro, Intel i5-5257U, 2.70GHz, 8GB RAM.
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5.1 Tropical Homotopy Algorithm

We start this section with bounding the number of inequalities needed to describe a
mixed cell.

Lemma 5.1 Let A1, A2, . . . , An be point configurations with at most t elements, and
let T be a triangulation of A = A1 ∗ A2 ∗ · · · ∗ An. Then, a mixed-cell σ ∈ T is
determined in the mixed-cell cone M(σ ) by at most n(t − 2) inequalities.

Proof (Proof sketch) The mixed-cell cone describes the case where the simplex cor-
responding to the mixed cell is a facet of the lifted Cayley polytope. So, for every
element α ∈ A we get a circuit inequality given by 2n many vertices of the mixed cell
and α that determines whether α is contained in the mixed cell. In total, we have at
most n(t − 2) many such α, and at most that many corresponding circuit inequalities.

��
This immediately yields the following corollary.

Corollary 5.2 Let A1, A2, . . . , An be point configurations with at most t elements, and
let T be a triangulation of A = A1 ∗ A2 ∗ · · · ∗ An with k mixed cells. Then, the mixed-
cell cone M(T ) can be described by at most kn(t − 2) many linear inequalities all
supported on circuits.

The proof of Proposition 5.6 gives us an upper bound the number of mixed cells.
Using this rough upper bound, we derive the following corollary.

Corollary 5.3 Let A1, A2, . . . , An be point configurations with at most t elements, and
let T be a triangulation of A = A1 ∗ A2 ∗ · · · ∗ An. Then, the mixed-cell cone M(T )

can be described by at most 2nen(t − 1)n+1 many linear inequalities all supported on
circuits.

Corollary 5.3 gives an upper bound to the number of updates in the tropical homo-
topy algorithm: For a fixed number of variables n, it is polynomial in t . This shows
that the complexity of a mixed-cell cone computation is controlled by the cardinality
of the support sets; this aligns well with Kushnirenko’s fewnomial philosophy.

Jensen wrote a paper on implementation details of his algorithm for the purpose of
mixed volume computation [21]. Thanks to real geometry, we do not need volumes, but
only the mixed cells. So Jensen’s current implementation does not output precisely
what we need in this paper. A new implementation that outputs our needs in this
paper is currently worked on by Timme. Real polyhedral homotopy is planned to be
incorporated into Homotopy.JL [8].

5.2 Effective Viro’s Patchworking

As explained in Jensen’s paper [22] and [11, Lemma 5.1.13], every circuit inequality
is written by a vector with n + 2 non-zero entries and every entry is given by the
volume of a simplex. Since we can compute the volume of a simplex in O(n3) cost,
we can compute each generator of a circuit inequality by O(n4) cost. This gives us
the following basic complexity estimate as a corollary of Lemma 5.1 and Corollary
5.2.
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Corollary 5.4 Let A1, A2, . . . , An be point configurations with at most t elements, and
let T be a triangulation ofA = A1∗ A2∗· · ·∗ An with k mixed cells. Then, the criterion
in Lemma 3.3 can be checked by O(kn5(t − 2)) many arithmetic operations.

Using Proposition 5.6 one can provide upper bound for k and hence deduce a
O(enn5tn+1) upper bound for the number of arithmetic operations.

5.3 A Fewnomial Bound for Patchworked Polynomial Systems

We start this section by stating a special case of McMullen’s Upper Bound Theorem
[49].

Theorem 5.5 (Upper Bound Theorem; special case) Let Q ⊂ R
2n be a polytope with

t vertices. Then the number of facets of Q is bounded by 2
(t−n

n

)
.

In the case of zero-dimensional systems, Viro’s method counts the number of com-
mon zeros in (R∗)n . The discussions in Sects. 2.2 and 2.7 show that for a patchworked
polynomial system supported with point sets A1, A2, . . . , An ⊂ Z

n , the number zeros
in the positive orthant is bounded by the number of mixed cells in the corresponding
coherent polyhedral subdivision of A1 + A2 + · · · + An . This yields the following
statement.

Proposition 5.6 (Few Zeros for Patchworked Systems) Let A1, A2, . . . , An ⊂ Z
n,

and let |A1 ∗ A2 ∗ · · · ∗ An| ≤ tn. Then for a patchworked polynomial system p =
(p1, p2, . . . , pn) supported with A1, A2, . . . , An, the number of common zeros of p
in (R∗)n is at most

2n+1
(

tn − n

n

)
.

Proof Let ω be a lifting function and let �ω be the corresponding coherent fine mixed
subdivision of A1+ A2+· · ·+ An . The number ofmixed cells in�ω is equivalent to the
number of corresponding simplices in the triangulation of the Cayley configuration
A = A1 ∗ A2 ∗ · · · ∗ An ; see Sect. 2.1. The simplices that correspond to mixed
cells are the simplices with two vertices from each Ai . The number of all simplices
in the triangulation is less than the number of facets in the lifted Cayley polytope
Cay(Aω) = conv(Aω). Cay(Aω) is contained in R

2n , and it has the same number of
vertices as A. So, the number of facets of Cay(Aω) is bounded by Theorem 5.5. We
multiply this bound with 2n to cover all orthants of (R∗)n , and obtain the following
upper bound

2n+1
(

tn − n

n

)
≤ 2n+1en(t − 1)n,

where the last inequality follows from Stirling’s estimate. ��
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5.4 Complexity of Numerical Path Tracking

Homotopy continuation theory of polynomials uses condition numbers to give bounds
for the complexity of numerical iterative solvers [2]. Malajovich noticed that the
current theory, which considers solutions of homogeneous polynomials over the pro-
jective space, fails to address subtleties of sparse polynomial systems. He developed
a theory of sparse Newton iterations [31]: For a given sparse polynomial system f ,
Malajovich’s theory uses two condition numbers μ( f , x) and v(x) at a given point
x ∈ (C∗)n , and it provides tools to analyze the accuracy and complexity of sparse
Newton iterations. Let us state the main result of Malajovich below.

Theorem 5.7 (Malajovich, [31]) As in Proposition 2.22, let pC(t, x)be the polynomial
system. Assume that we track a solution path from pC(ε, x) to p(C)(1, x) where ε > 0
is a sufficiently small real number. Then, there exists an algorithm which takes

∫ 1

ε

μ( pC(t, x), zs) v(zs)
(∥∥ ṗC,s

∥∥2
pC,s

+ ‖ żs‖2zs

) 1
2

ds

many iteration steps where zs represents the solution path, and‖·‖x represents the local
norms defined as pull-back of the classical Fubini–Study metric under the Veronese
map.

It is customary in the theory of homotopy continuation to go from an integral
representation as above to a more comprehensible complexity estimate by considering
average or smoothed analysis of the iteration process. This amounts to introduce
a probability measure on pC , the input space of polynomials, and to compute the
expectation of the integral estimate over the input space. Malajovich notes in his
paper [31] that the non-existence of a unitary group action on the space of sparse
polynomials makes the probabilistic analysis harder. In our opinion, μ( pC(t, x)) can
be analyzed for general measures without group invariance [13, 14]. However, the
second condition number v(x) seems hard to analyze; therefore, we refrain from a
probabilistic analysis for the moment.

Remark 5.8 Gregorio Malajovich authored a 90 pages Arxiv paper that improves the
state of the art [34]. Our hope is that these new results will pave the way for a rigorous
complexity analysis of RPH, but until then what is written here represents our views.

6 Discussion and Outlook

We discuss some open questions related to this work that are brought to our attention
after the initial submission of the article on ArXiv:

(1) How successful is RPH on practical problems? For instance, howwould it perform
in problems concerning real polynomial systems coming from chemical reaction
networks?

(2) Imagine the support sets A1, A2, . . . , An are fixed, and we use i.i.d Gaussian
coefficients with unit variance to create a random polynomial system. Can one
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prove that with high probability the random Gaussian polynomial system would
pass your effective patchworking test?

(3) Is our algorithm better than the (complex) polyhedral homotopy algorithm?
(4) How is the comparison of real polyhedral homotopy with Khovanskii–Rolle con-

tinuation algorithm of Bates and Sottile?

Regarding the first question: So far, we have only done a preliminary implementa-
tion and computed a few examples. The purpose of this article is to provide theoretical
foundations for real polyhedral homotopy. We believe that a rigorous implementation
and practical testing of the algorithm is crucial, but, given the magnitude of the task,
it requires a second, separate article.

Regarding the second question: In a special case there are explicit estimates that
shows indeed with high probability a random polynomial system is a patchworked
system [12]. In general, this is a very intriguing question with far reaching conse-
quences: A high probability positive answer would show that Viro’s patchworking
method captures an essential combinatorial structure that force patterns on randomly
generated systems of polynomial equations.

Regarding the third question: This question was brought to our attention by some
colleagues, but the comparison between our algorithm and the polyhedral homotopy
algorithmdoes not seem to bemeaningful. The goal of the two algorithms are different;
RPH tracks only real zero paths, and polyhedral homotopy tracks all complex zeros.
If one is interested in real roots only, then the advantage of our algorithm is to track
correct number of real zero paths (sometimes called optimal path tracking), where
most algorithms in the literature find all complex zeros and then filter the real ones.

For the last question, we first need to explain a notable algorithm of Bates and
Sottile called Khovanskii–Rolle Continuation Algorithm (KR) [6]. KR admits a sparse
polynomial system where every polynomial has at most t terms, and traces at most

e4 + 3

4
2(

(t−2)n
2 )

(
(t − 2)n

t − 2, t − 2, . . . , t − 2

)
∼ exp

(
t2n2

)

many solution curves that can lead to real solutions [6, 7]. The number of paths is
given by the best fewnomial bound in the literature, and to the best of our knowledge
for mixed support, the best bounds are in [7].

On the one hand, RPH algorithm tracks polynomially many solution paths with
respect to t , whereas the KR algorithm traces exponentially many solution curves.
For instance, if one needs to solve a system of two bivariate polynomials both with 8
different terms, the KR algorithm traces more than 276 many curves, and RPH tracks
less than 212 many paths. On the other hand, we stress that the KR algorithm can solve
all input instances where RPH can only solve polynomials that are located against
the discriminant variety. So, in our view, these two algorithms are complementary to
each other: for a given sparse systems one should use KR when RPH fails to admit
the input.
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