
Arnold Mathematical Journal (2023) 9:435–454
https://doi.org/10.1007/s40598-023-00224-7

RESEARCH CONTRIBUT ION

Sandpile Solitons in Higher Dimensions

Nikita Kalinin1

Received: 1 February 2022 / Revised: 1 November 2022 / Accepted: 15 January 2023 /
Published online: 30 January 2023
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2023

Abstract
Let p ∈ Z

n be a primitive vector and � : Zn → Z, z → min(p · z, 0). The theory
of husking allows us to prove that there exists a pointwise minimal function among
all integer-valued superharmonic functions equal to � “at infinity”. We apply this
result to sandpile models on Zn . We prove existence of so-called solitons in a sandpile
model, discovered in 2-dim setting by S. Caracciolo, G. Paoletti, and A. Sportiello and
studied by the author and M. Shkolnikov in previous papers. We prove that, similarly
to 2-dim case, sandpile states, defined using our husking procedure, move changeless
when we apply the sandpile wave operator (that is why we call them solitons). We
prove an analogous result for each lattice polytope A without lattice points except its
vertices. Namely, for each function

� : Zn → Z, z → min
p∈A∩Zn

(p · z + cp), cp ∈ Z

there exists a pointwise minimal function among all integer-valued superharmonic
functions coinciding with � “at infinity”. The Laplacian of the latter function corre-
sponds to what we observe when solitons, corresponding to the edges of A, intersect
(see Fig. 1).
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436 N. Kalinin

1 Introduction: Sandpile Patterns on Z
n

Consider Zn as a graph with vertices z ∈ Z
n . If the Euclidean distance between

z, z′ ∈ Z
n is one, we connect z, z′ by an edge and write z ∼ z′. A sandpile state

is a function φ : Zn → Z≥0; φ(z) can be thought of the number of sand grains in
z ∈ Z

n . We can topple a vertex z by sending 2n grains from z to its neighbors, i.e., we
subtract 2n grains from z and each neighbor z′ ∼ z gets one grain. If φ(z) ≥ 2n, such
a toppling is called legal. A relaxation is doing legal topplings while it is possible,
the result of the relaxation of φ is denoted by φ◦, it does not depend of the order of
topplings. The toppling function of a relaxation is the function Zn → Z≥0 which at a
vertex z is equal to the number of topplings performed at z during this relaxation. A
state φ is stable if φ ≤ 2n − 1 everywhere.

Definition 1.1 Let z, z′ ∈ Z
n be such that φ(z) = φ(z′) = 2n− 1, z ∼ z′. By sending

a wave from z we mean making a toppling at z, followed by the relaxation. We denote
the obtained state by Wzφ.

Note that after the first toppling the vertex z has −1 grain, and z′ has 2n grains, so
z′ subsequently topples and z has a non-negative number of grains again. If we start
with a stable state, then during a wave each vertex topples at most once, because it
has not enough grains to topple the second time if all its neighbors toppled only once.

Definition 1.2 Let q ∈ Z
n \ {0}. A state φ is called q-movable, if there exists z0 ∈ Z

n

such that Wz0φ(z) = φ(z + q) for all z ∈ Z
n and it is not true that φ(z) = φ(z + q)

for all z. For L being a rank n − 1 sublattice in Z
n , a state φ is called L-periodic if

φ(z) = φ(z + p) for each z ∈ Z
n, p ∈ L . A state φ is called hyperplane-shaped of

direction q ∈ Z
n\{0} if there exist constants c1, c2 such that the set {z|φ(z) 
= 2n−1}

is a subset of {z|c1 ≤ q · z ≤ c2}.
The first aim of this paper is to classify all periodic hyperplane-shaped movable

states on Z
n , we call them solitons. Recall that a vector q ∈ Z

n is called primitive if
there exists no k ∈ Z, k > 1, q ′ ∈ Z

n such that q = k · q ′.

Theorem 1 For each primitive vector q ∈ Z
n, there exists a unique (up to a translation

inZn)movable statewhich is hyperplane-shapedof directionq. Furthermore, this state
is q-movable.

Such periodic patterns for n = 2 in sandpiles were studied under the name “(p, q)-
webs” by S. Caracciolo, G. Paoletti, and A. Sportiello in their work [1], see also
Section 4.3 of [2] and Figure 3.1 in [9], Figure 9a in [12]. Experiments reveal that
these patterns appear in many sandpile pictures and are self-reproducing under the
action of waves. That is why we call these patterns solitons.

The fact that the solitons appear as “cutting the corners” of piece-wise linear func-
tions was predicted by T. Sadhu and D. Dhar in [13].We introduce a suitable definition
of a husking procedure (Definition 2.5). This paper is a generalization of [7] where
similar results were obtained for n = 2. The study of sandpiles in dimension more
than two often lacks generalizations of results known in two dimensions. For example,
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Sandpile Solitons in Higher Dimensions 437

Fig. 1 We consider a sandpile in Z3 on a graph defined by x + y + z ≤ 50, x + 2y ≤ 50, 0 ≤ x, y, z ≤ 25
where we start with 5 grains everywhere and added one grain to the point (4, 5, 6). On the first picture
the final result of a relaxation is presented. Red cells represent vertices with zero grains, orange—with one
grain, yellow—two grains, green—three grains, blue—four grains, and cells with five grains are transparent.
Other pictures show each color separately. Note that the visible part of the picture (cells with less than five
grains) is composed out of planar parts (we will call them solitons) and triples of solitons intersecting by
“edges” (the most visible edge is that containing cells with two grains, i.e., these colored in orange)
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438 N. Kalinin

there is no classification of patterns via quadratic forms similar to [8, 10] in dimensions
more than two.

An example of a soliton for n = 3 can be found in Fig. 1: solitons represent
planar “faces” in the picture. The soliton of direction (0, 0, 1), i.e., that parallel to
xy coordinate plane (can be visible on the top part of the picture), has width one and
composed of cells with four grains. The soliton of direction (1, 2, 0) (the right part
of the picture) is composed of cells with four, three, and two grains. The soliton of
direction (1, 1, 1) (the center of the picture) is composed of cells with four and two
grains.

The second aim of this paper is to describe interactions of solitons in higher dimen-
sions. Consider a lattice polytope A ⊂ R

n without lattice points except its vertices.
We prove that for each function

� : Zn → Z, z → min
p∈A∩Zn

(p · z + cp), cp ∈ Z

there exists a pointwise minimal function ψ among all integer-valued superharmonic
functions equal to � “at infinity”. Solitons correspond to the case when A is an
interval with lattice endpoints and without lattice points inside. The Laplacian of ψ

corresponds to what we observe when solitons, corresponding to the edges of A,
intersect. For example, in Fig. 1, we see intersections of three planar parts (solitons),
i.e., the “edge” where we have a repeating pattern which contains cells with two grains
(orange) among other cells. The set of orange cells is easy to distinguish, and it lives
along a one dimensional “edge”.

The plan of this paper is as follows. In order to construct solitons and to study their
interactions we define a “husking” operation diminishing an integer-valued discrete
superharmonic function � while preserving its values “at infinity”, i.e., we construct
a decreasing sequence of functions

� → (�)1 → (�)2 → . . . ,

where � = (�)k “at infinity”) and prove a number of properties of this procedure,
the most remarkable of which is that husking preserves monotonicity. Then, using
periodicity of the function

� : z → min(p · z, 0), p ∈ Z
n

along L = {v ∈ Z
n|v · p = 0} we descend � on Z

n/L . Then, we show that if
(�)k 
= (�)k+1 for a big k, then (�)k is harmonic on a large part of Zn/L , and it
should be linear on that part due an upper bound by a linear function. But then such
a linearity would contradict the monotonicity property. Thus, there exists N such that
(�)k = (�)N for all k > N . In this case we say that the sequence of huskings of �

stabilizes.
Stabilization of huskings is then used to prove Theorem 1, via the Least Action

principle for the toppling functions for waves. Namely, 2n−1+�(�)N is the unique
soliton in direction p.
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Then, we consider the case when A ⊂ R
n is a two-dimensional polygon and later

study three-dimensional A, while proving several rather technical lemmata. Finally,
the proof for a three-dimensional A does not differ very much from the general case
which we consider in the last chapter.

Let �(z) = minp∈A(p · z + cp), cp ∈ Z. If the intersection of the convex hull of
A in R

n with Z
n consist only of the vertices of this polytope, then the sequence of

huskings of � also stabilizes.
This results is proven for n = 2 in [7]. The main difficulty in generalizing our

proofs from [7] to higher dimensions can be seen in three dimensions. While for
solitons the proof is essentially the same, the case when the linear span of A is two
dimensional is analogous to the case of triads in [7], the case when the dimension of
the linear span of A has dimension three is substantially different. When we consider
a function � : Z3 → Z as above, it is not true that � − (�)1 has a finite support,
quite the contrary, � − (�)1 is not zero near all points where �(�) is not zero (and
this set is the corner locus of � seeing as a function R3 → R, the simplest example is
�(x, y, z) = min(x, y, z, 0)). Therefore, instead of � we consider a partial husking
�̃ of it, constructed using the husking of functions corresponding to the faces of the
convex hull of A. Then we need to prove that the support of

�̃ − (�̃)k

grows at most linearly in k. The proof of this fact requires more ideas than we used in
the two-dimensional setting.

The main motivation for this work is my desire to generalize the results of [6] to
higher dimensions. Namely, if we consider a large lattice polytope in Z

n , put 2n − 1
grain to every lattice point, add grains to the points p1, . . . , pl , and relax this state, then
the set of points with less than 2n− 1 grains in the final state φ is very close to certain
tropical hypersurface passing through p1, . . . pl . The solitons represent hyperplane-
like pictures of φ, while the stabilized huskings for generic A represent φ near vertices
of the corresponding tropical hypersurface. The corresponding work on the tropical
side is written in [5].

I thankMikhail Shkolnikov for discussions and an anonymous referee for questions
and suggestions.

2 Husking of Integer-Valued Superharmonic Functions

The discrete Laplacian � of a function F : Zn → R is defined as

�F(z) = −2nF(z) +
∑

z′∼z

F(z′).

A function F is called harmonic (resp., superharmonic) on A ⊂ Z
n if �F(z) = 0

(resp., �F(z) ≤ 0) for each z ∈ A.

Remark 2.1 Note that making a toppling at z0 ∈ Z
n in a state φ produces a state

φ′ = φ + �1z0 where 1z0(z) is equal to one if z0 = z and is equal to zero otherwise.
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440 N. Kalinin

In general, if H : Z
n → Z≥0 is the toppling function of a relaxation of φ then

φ◦ = φ + �H .

Lemma 2.2 (Least Action principle for waves, [4, 7]) Let φ be a stable state on Z
n

and Hz0 be the toppling function of the relaxation caused by sending a wave from
z0 ∈ Z

n. Then, Hz0 is the pointwise minimal function among the functions H such
that H ≥ 0, φ + �H ≤ 2n − 1 and H(z0) = 1.

Lemma 2.3 If F,G are two superharmonic functions on A ⊂ Z
n, then min(F,G) is

a superharmonic function on A.

Proof Let z ∈ A. Without loss of generality, F(z) ≤ G(z). Then, �min(F,G)(z) ≤
�F(z) ≤ 0. �

Definition 2.4 For a function F , the deviation set D(F) is the set of points where F
is not harmonic, i.e.,

D(F) = {z|�F(z) 
= 0}.

For A ⊂ Z
n,C > 0, we denote by BC (A) ⊂ Z

n the set of points whose Euclidean
distance to A is at most C .

Definition 2.5 For k ∈ N and a superharmonic function F : Zn → Z we define

�k(F) = {G : Zn → Z|�G ≤ 0, F − k ≤ G ≤ F, ∃C > 0, {F 
= G} ⊂ BC (D(F))}.

In plain words, �k(F) is the set of all integer-valued superharmonic functions
G ≤ F , coinciding with F outside a finite neighborhood of D(F), whose difference
with F is at most k. Define (F)k : Zn → Z to be the following function

(F)k(z) = min{G(z)|G ∈ �n(F)}.

We call (F)k the k-husking of F . Note that (F)k ≥ F − k. A priori (F)k does not
belong to �k(F).

We now call “husking” the process that we used to call “smoothing” in [7] because
of confusion: people expect that the result of smoothing is a smooth function, which
is not the case in our context, all our functions are from Z

n to Z.

Example 2.6 One can easily check that if all the coordinates of p ∈ Z
n are 0,±1, then

� = (�)1 and, therefore, husking procedure stabilizes on the first step. Next lemmas
in this section are technical, one can skip them while reading for the first time.

Lemma 2.7 Let F : Z
n → Z, z0 ∈ Z

n, F(z0) ≤ k and the Euclidean distance
between z0 and the set

{�F > 0} = {z|(�F)(z) > 0}

be at least k + 2. Let z1 ∼ z0 and F(z1) < F(z0). Then, there exists a point z′ ∈ Z
n

such that F(z′) < 0.
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Proof Indeed, (�F)(z1) ≤ 0 and F(z0) > F(z1) imply that for some neighbor z2
of z1 we have F(z2) < F(z1). Then, we repeat this argument for z2 and find its
neighbor z3 with F(z3) < F(z2), etc. Note that all z0, . . . , zk+1 do not belong to the
set {�F > 0}. Finally, we set z′ = zk+1, since F(zk+1) ≤ F(z0) − (k + 1) ≤ −1. �

Lemma 2.8 Let F : Z

n → Z, z0 ∼ z1 ∼ · · · ∼ zk be a path in Z
n and F be

harmonic at all zi , 0 ≤ i ≤ k − 1 and �F(zk) < 0. Then, there exists i ≥ 0 such that
F(z0) = F(zi ) and zi has a neighbor z′ such that F(zi ) > F(z′).

Proof If F(z0) = F(zk) then we may choose i = k and such a neighbor z′ ∼ zk exists
since (�F)(zk) < 0. If not, choose the first i such that F(z0) = F(zi ) 
= F(zi+1)

and then use the harmonicity of F at zi . �

Lemma 2.9 If two superharmonic functions satisfy F ′ ≥ F, then (F ′)k ≥ (F)k for
each k ∈ Z≥0.

Proof Pick any G ′ ∈ �k(F ′),G ∈ �k(F). In spite of notation we write {F > G}
instead of {z ∈ Z

n|F(z) > G(z)}. We have G ′ ≥ G on

{F ′ − F ≥ k} ∪ {(F ′)k = F ′}.

Let {G ′ 
= F ′} belong to BC0(D(F ′)).
Thus, it is enough to prove that G ′ ≥ (F)k on the set

A1 = {F ′ − F < k} ∩ BC0(D(F ′)).

Consider the set

A2 = {F ′ − F < k} ∩ {z|∃z′ ∼ z, (F ′ − F)(z) > (F ′ − F)(z′)}.

Note that F ′ −F is a superharmonic function outside of D(F). Since F ′ −F ≥ 0 it
follows fromLemma2.7 applied to F ′−F that A2 belongs to the (k+1)-neighborhood
of D(F).

Next we prove that A1 ⊂ BC0(A2 ∪ D(F)). Indeed, for each point z0 in A1 there
exists a path of length at most C0 to the set D(F ′). If this path intersects D(F), we
are done. If not, then Lemma 2.8 asserts that for a zi on this path for a certain z′ ∼ zi ,
we have

k > (F ′ − F)(z0) = (F ′ − F)(zi ) > (F ′ − F)(z′)

and thus zi ∈ A2 and we proved that A1 ⊂ BC0(A2 ∪ D(F)).
Summarizing, we obtained that for each G ′ ∈ �k(F ′),G ∈ �k(F), we have

G ′ ≥ G outside BC0(A2 ∪ D(F)) ⊂ BC0+k+1(D(F)). Thus, min(G,G ′) belongs
to �k(F), because it coincides with G outside a finite neighborhood of D(F), it
is superharmonic, and since F ′ − G ′ ≥ k, F − G ≥ k, F ′ ≥ F , we have that
F − min(G,G ′) ≥ k. Thus, G ′ ≥ (F)k and so (F ′)k ≥ (F)k . �
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442 N. Kalinin

Lemma 2.10 Suppose � : Zn → Z and �̃ belongs to �k(�) for some k. Then, the
sequence (�)k stabilizes if and only if the sequence (�̃)k stabilizes as k → ∞.

Proof Indeed, (�)k ≥ (�̃)k , thus, if (�̃)k stabilizes then so does the sequence (�)k .
On the other hand, �n(�̃) ⊂ �n+k(�), thus if (�)k stabilizes, so does the sequence
(�̃)k . �


3 Stabilization of Huskings and Its Corollaries

The following remark follows from the definition of husking.

Remark 3.1 Let F : Z
n → Z, q, c ∈ Z

n . Let G(z) = F(z) − q · z − c. Then,
(F)n(z) − q · z − c = (G)n(z).

Theorem 2 Pick a primitive vector p ∈ Z
n. Let

�(z) = min(0, p · z), z ∈ Z
n . (3.2)

The sequence of k-huskings (�)k stabilizes eventually as k → ∞, i.e., there exists
N > 0 such that (�)k ≡ (�)N for all k > N. Moreover, (�)N coincides with �

outside a finite neighborhood of D(�).

Definition 3.3 The pointwise minimal function in
⋃

�k(�), which exists by Theo-
rem 2, is called the canonical husking of � and is denoted by ψ .

Remark 3.4 Note that �ψ ≥ −2n + 1 because otherwise we could decrease ψ at
a point violating this condition, preserving superharmonicity of ψ , and this would
contradict to the pointwise minimality of ψ in

⋃
�k(�).

Let q ∈ Z
n be such that p · q = 1. Note that �(z + q) = min(0, p · z + 1) and

�(z − q) = min(0, p · z − 1) = −1 + min(1, p · z).

Consider the sandpile state φ = 2n − 1 + �ψ . By Remark 3.4, φ ≥ 0 and φ is a
stable state because ψ is superharmonic. Let z0 ∈ Z

n be a point far from D(ψ). The
following corollary says that sending a wave from z0 translates φ by the vector ±q
depending on the side from where we send the wave.

Proposition 3.5 In the above conditions,

(Wz0φ)(z) = 2n − 1 + �ψ(z ± q) = φ(z ± q)

where Wz0 is the sending wave from z0 (Definition 1.1) and we choose “+” ifψ(z0) <

0 and “−” if ψ(z0) = 0.
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Proof Let Hz0 be the toppling function of the wave from z0. Denote h(z) = ψ(z +
q) − ψ if ψ(z0) < 0 and h(z) = 1 + ψ(z − q) − ψ if φ(z0) = 0. Since

Wz0φ = φ + �Hz0 = 2n − 1 + �(� + Hz0),

it is enough to prove that Hz0(z) = h(z).
It follows from Lemma 2.9 that h(z) is non-negative.
2n−1+�φ(z±q) is a stable state. On the other hand, the functionψ +h coincides

with φ(z ± q) outside of a finite neighborhood of D(φ(z ± q)) and is superharmonic.
Therefore, by the definition of φ(z ± q), we see that h ≥ Hz0 and this finishes the
proof. �


4 Holeless Functions

We need the fact that the set {(F)1 
= F} belongs to a finite neighborhood of D(F) (in
particular, this fact implies a pleasurable property ((F)k)m = (F)m+k). Unfortunately,
this fact is not true for all superharmonic functions F , so we need to restrict the set
of functions F that we consider. Namely, we ask for the following technical property
prohibiting to have arbitrary large holes in the deviation set.

Definition 4.1 We say that a function F : Zn → Z is holeless if there exists C > 0
such that BC (D(F)) contains all the connected components of Zn \ D(F) which
belong to some finite neighborhood of D(F). When we want to specify the constant
C we write that F is C-holeless.

Example 4.2 � is a holeless function just because Z
n \ D(�) has no components

which belong to a finite neighborhood of D(F).

Lemma 4.3 If F is C-holeless, then for each G ∈ �k(F) the set {F 
= G} is contained
in Bmax(k,C)(D(F)).

Proof Let Ak = {v ∈ Z
n|G(v) = F(v) − k}. If v ∈ Ak\D(F) then from the

superharmonicity of G and harmonicity of F at v we deduce that all neighbors of v

belong to Ak . Therefore, the connected component of v ∈ Ak in Zn\D(F) belongs to
Ak , which, in turn, belongs to a finite neighborhood of D(F) because there belongs the
set {F 
= G}. Thus, Ak belongs to C-neighborhood of D(F). By the same arguments,
for Ak−1 = {G = F − k + 1}, each point in Ak−1 \ D(F) is contained in the 1-
neighborhood of D(F) ∩ Ak or, together with its connected component of Zn \ D(F)

belongs to Ak−1, i.e., is contained in BC (D(F)). Then, Ak−2 \ D(F) is contained
in the 2-neighborhood of D(F) ∩ Ak or in 1-neighborhood of D(F) ∩ Ak−1, or in
BC (D(F)), etc. �

Corollary 4.4 If F is C-holeless for some C > 0, then for each k ≥ 0 the function
(F)k belongs to �k(F).

Corollary 4.5 For each k ≥ 1, we have

dist
(
D(�),

{
� 
= (�)k

}) ≤ k,
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444 N. Kalinin

where the distance is the minimum among the Euclidean distances between pairs of
points in two sets.

5 Husking by Steps

Let F,G be two superharmonic integer-valued functions on Z
n . Suppose that H =

F − G is non-negative and bounded. Let m be the maximal value of H . Define the
functions Hk, k = 0, 1, . . . ,m as follows:

Hk(v) = χ(H ≥ k) =
{
1, if H(v) ≥ k,

0, otherwise.
(5.1)

Lemma 5.2 In the above settings, the function F − Hm is superharmonic.

Proof Indeed, F − Hm is superharmonic outside of the set {H = m}. Look at any
point v such that H(v) = m. Then, we conclude by

2n(F − Hm)(v) = 2nG(v) + 2n(m − 1) ≥
∑

w∼v

G(w) + 2n(m − 1) ≥
∑

w∼v

(F − Hm)(w).

�

We repeat this procedure for F − Hm , namely consider F − Hm − Hm−1, F −

Hm − Hm−1 − Hm−2, etc. We have

H = Hm + Hm−1 + Hm−2 + · · · + H1,

and it follows from subsequent applications of Lemma 5.2 that all the functions F −∑m−k+1
n=m Hn are superharmonic, for k = 1, 2, . . . ,m. In addition, it is clear that

0 ≤
(
F −

m−k+1∑

n=m

Hn

)
−

(
F −

m−k∑

n=m

Hn

)
= Hm−k ≤ 1

at all v ∈ �, k = 0, . . . ,m.
Consider a superharmonic function F . We are going to prove that two consecutive

huskings (see Definition 2.5) of F differ at most by one at every point of Zn .

Proposition 5.3 For all k ∈ N,

0 ≤ (F)k − (F)k+1 ≤ 1.

Proof By definition, (F)k ≥ (F)k+1 at every point of Zn . If the inequality (F)k −
(F)k+1 ≤ 1 does not hold, then the maximum M of the function H = (F)k − (F)k+1
is at least 2. We will prove that

(F)k − χ(H ≥ M) ≥ F − k.
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Namely, by Lemma 5.2, the function (F)k−χ(H ≥ M) is superharmonic. Suppose
that

(F)k − χ(H ≥ M) < F − k at a point v ∈ Z
n .

Since the set {H ≥ 1} contains the set {H ≥ M}, we arrive to a contradiction by
saying that, at v,

F − (k + 1) > (F)k − χ(H ≥ M) − χ(H ≥ 1) ≥ (F)k+1 ≥ F − (k + 1).

Therefore, (F)k −χ(H ≥ M) ∈ �k(F) which contradicts the minimality of (F)k .
�


Corollary 5.4 Proposition 5.3 and Lemma 4.3 imply that for C-holeless F the function
(F)k+1 can be characterized as the pointwiseminimum of all superharmonic functions
G such that (F)k − 1 ≤ G ≤ (F)k and (F)k − G vanishes outside some finite
neighborhood of D((F)k) (recall that the distance between D(F), D((F)k) is at most
max(C, k)). In other words, k-husking (F)k of F is the same as 1-husking of (k − 1)-
husking (F)k−1 of F.

Corollary 5.5 In the above assumptions, if (F)k 
= (F)k+1, then there exists z0 such
that (F)k+1(z0) = F(z0) − (k + 1).

Indeed, if there is no such a point, then (F)k+1 ≥ F−k and, therefore, (F)k+1 = (F)k .

6 Monotonicity while Husking

Definition 6.1 Let e ∈ Z
n \ {0}. We say that a function F : Zn → Z is e-increasing if

(1) F is a husking of a holeless function,
(2) F(z) ≤ F(z + e) holds for each z ∈ Z

n ,
(3) there exists a constant C > 0 such that for each z with F(z) = F(z − e), the

first vertex z − ke in the sequence z, z − e, z − 2e, . . . , satisfying F(z − ke) <

F(z − (k − 1)e), belongs to BC (D(F)).

Example 6.2 Note that � is e-increasing if and only if p · e > 0.

Lemma 6.3 If F is e-increasing, then (F)1, the 1-husking of F, is also e-increasing.

Proof Corollary 5.4 gives the property a) of Definition 6.1, because if F = (G)n , and
G is holeless, then (F)1 = (G)n+1. To prove that (F)1 satisfies b) in Definition 6.1,
we argue a contrario. Let H = F − (F)1. Suppose that the set

A = {z ∈ Z
n|F(z − e) = F(z), H(z − e) = 0, H(z) = 1}

is not empty. Since H |A = 1, we have A ⊂ BC (D(G)). Consider the set

B = {z|H(z) = 0, ∃k ∈ Z>0, z + k · e ∈ A, F(z) = F(z + k · e)}.
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Consider z ∈ B. Since z+ k · e ∈ A ⊂ BC (D(F)) and F(z) = F(z+ k · e), then c)
in Definition 6.1 impose an absolute bound on k and, therefore, B belongs to a finite
neighborhood of D(F). Consider the following function:

F̃ = (F)1 −
∑

z∈B
δz .

It is easy to verify that F̃(z) ≤ F̃(z + e) for each z. Note that

�F̃(z) ≤ �(F)1(z) ≤ 0

automatically for all z ∈ Z
n \B. Pick any z ∈ B. Since z+k ·e ∈ A for some k ∈ Z>0,

we have

2n · F̃(z) = 2n · (F)1(z + k · e) ≥
∑

z′∼z

(F)1(z
′ + k · e) ≥

∑

z′∼z

F̃(z′).

Therefore, F̃ is superharmonic, and satisfies F ≥ F̃ ≥ F − 1 by construction,
which contradicts to the minimality of (F)1 in �1(F).

Finally, by Corollary 4.4 the sets {F 
= (F)1} and D((F)1) belong to BC (D(F))

for some C > 0. Therefore, the fact that |(F)1 − F | ≤ 1 (Proposition 5.3) gives c)
with the constant C + |e| + 1. �

Corollary 6.4 Let e ∈ Z

n \ {0}. If � is e-increasing, then (�)k is also e-increasing.

7 Discrete Superharmonic Integer-Valued Functions

Lemma 7.1 ([3], Theorem 5) There is an absolute constant C with the following prop-
erty. Let R > 1, z ∈ Z

n, and F : BR(z) ∩ Z
n → R be a discrete non-negative

harmonic function. Let z′ ∼ z, then

|F(z′) − F(z)| ≤ C · maxw∈BR(z) F(w)

R
.

Morally, this lemma provides an estimate on a derivative of a discrete harmonic
function, for F(z′)− F(z) can be thought of a discrete derivative of F in the direction
z′ − z.

Lemma 7.2 (Integer-valued discrete harmonic functions of sublinear growth) Let z ∈
Z
n and μ > 0 be a constant. Let R > 4μC. For a discrete integer-valued harmonic

function F : B3R(z) ∩ Z
n → Z, the condition |F(z′)| ≤ μR for all z′ ∈ B3R(z)

implies that F is linear in BR(z) ∩ Z
n.

Proof Consider F which satisfies the hypothesis of the lemma. Note that 0 ≤ F(z′)+
μR ≤ 2μR for z′ ∈ B3R(z) and applying Lemma 7.1 for B2R(z) yields

|∂•F(z′)| ≤ C · 2μR

R
= 2μC, for all z′ ∈ B2R(z).
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By ∂• we denote any of the discrete partial derivatives, ∂i F(z) = F(z + ei ) − F(z)
where ei is the i-th coordinate vector. Then, applying it again for 0 ≤ ∂•F(z′)+2μC ≤
4μC yields

|∂•∂•F(z′)| ≤ 4μC

R
< 1, for z′ ∈ BR(z) if R > 4μC .

Since F is integer-valued, all the derivatives ∂•∂•F are also integer-valued. Therefore,
all the second derivatives of F are identically zero in BR(z), which implies that F is
linear in BR(v). �


Let A be a finite subset of Zn , ∂A be the set of points in A which have neighbors
in Zn \ A. Let F be any function A → Z.

Lemma 7.3 In the above hypothesis the following equality holds:

∑

z∈A\∂A
�F(z) =

∑

z∈∂A,
z′∈A\∂A,z∼z′

(
F(z) − F(z′)

)
.

Proof We develop left side by the definition of �F . All the terms F(z), except for the
vertices z near ∂A, cancel each other. Therefore, we conclude by a direct computation.

�


8 Proof of Theorem 2 via Reduction to a Cylinder

Recall that for a primitive vector p ∈ Z
n , we consider

�(z) = min(0, p · z), z ∈ Z
n . (8.1)

Our aim is to prove that the sequence of k-huskings (�)k stabilizes eventually as
k → ∞.

Let

L = {v ∈ Z
n|v · p = 0}.

Note that�(z) = �(z+v) for each v ∈ L . Translations by L preserve graph structure
on Z

n , therefore, the factor-graph Z
n/L (i.e., we say that z is equivalent to z′ if and

only if z − z′ ∈ L) is well-defined.
Note that if the images of z, z′ ∈ Z

n are different in Zn/L then p · z 
= p · z′.
Note that � is p-monotone, see Definition 6.1, so all (�)k are p-monotone.
The function � descends to Z

n/L and its deviation locus on Z
n/L is a finite set,

therefore,
∑

z∈Zn/L ��(z) = P is a finite number.

Lemma 8.2 For all k ∈ Z>0 huskings (�)k are L-periodic, i.e., for all v ∈ L, z ∈ Z
n

(�)k(z) = (�)k(z + v).
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Proof Suppose, to the contrary, that (�)k(z′) > (�)k(z′+v) for some z′ ∈ Z
n, v′ ∈ L .

It follows fromLemma2.3 that F(z) = min((�)k(z), (�)k(z+v′)) belongs to�k(�),
but F(z′) < (�)k(z′) which contradicts to the minimality of (�)k in �k(�). �

Therefore, all k-huskings are also L-periodic, so it makes sense to consider k-huskings
of (�)k on Z

n/L .

Proof of Theorem 2 Suppose that the sequence of k-huskings (�)k of� do not stabilize
as k → ∞. Then, the distance (inZn/L) between the deviation locus D((�)k) of (�)n
and D(�) grows as k → ∞, i.e., the lengths of the interval

Ik = [min(p · z)|z ∈ D((�)k)),max(p · z|z ∈ D((�)k))]

can be arbitrary large. Denote J0 = {z ∈ Z
n/L|p · z ∈ Ik}.

It follows from Lemma 7.3 that
∑

z∈Zn/L ��(z) = ∑
z∈Zn/L �(�)k(z) = P .

Hence, there exists a subinterval I ′ ⊂ Ik , of length at least |Ik |/P such that (�)k is
harmonic on the set J1 = {z|p · z ∈ I ′}. It follows from Lemma 7.2 that (�)k is linear
on J1, because (�)k on J1 cannot grow faster than p · z (because of −p monotonicity
of the function (�)k − p · z). Note that (�)k is L-periodic, therefore, (�)k is cp · z+d
for some constants c, d ∈ R. These constants c, d must be integer, because (�)k is
integer-valued.

We know that (�)k is p-monotone, and (�)k = p · z for {z|p · z << 0} and
(�)k = 0 · z for {z|p · z >> 0}, therefore, 0 ≤ c ≤ 1. Indeed, if c < 0 this would
contract the p-monotonicity, and c > 1 is prohibited by the same reasoning applied
to the function (�)k − p · z which is (−p)-monotone.

Therefore, c = 0 or c = 1. If c = 0, then (�)k ≡ d on J1. Next, d cannot be 0 since
in between of J1 and the region {z|p · z >> 0} there exists a point with�(�)k < 0. If
d < 0 then, again, this contradicts to the p-monotonicity of (�)k on the region from
J1 to {z|p · z >> 0}. The case c = 1 is analogous. Thus, we arrived to a contradiction,
therefore, there exists N such that for all k ∈ Z≥0, we have

(�)N = (�)N+k .

Note that (�)N coincides with � outside a finite neighborhood of D(�), because
it is so in Zn/L . �


9 Proof of Theorem 1

Proposition 3.5 implies that for each primitive non-zero p there exists a soliton. There-
fore, we need to only prove that all solitons can be obtained in this way. Our plan is as
follows: we send big number k ofwaves from a point far from a soliton and then deduce
that the toppling function of this process is essentially the husking of min(k, p · z+ c)
for suitable constants k, c.

Consider a movable hyperplane-shaped L-periodic state φ. Suppose that we are
sending waves from a point z0 ∈ Z

n . Choose a primitive vector p such that p · L = 0.
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Without loss of generality we may suppose that D(φ) ⊂ {z| − m < p · z < m} and
p · z0 >> m for somem ∈ Z≥0. As in the previous section, let us descend the sandpile
states and wave topplings functions to the cylinder Zn/L .

Lemma 9.1 In the above setting, sending a wave from a point z0 causes no topplings
in the set {z|p · z << 0}.
Proof Suppose that there is a toppling in the set {z|p · z << 0}. Then, the whole
region {z|p · z < −m} topples. For k big enough send k such waves from z0. Denote
the corresponding toppling function by Hkz0 . Then, Hkz0 is equal to k in the region
{z|p · z >> 0}, Hkz0 = k in {z|p · z < −m}, �Hkz0 ≥ 0 in {z| − m < p · z < m}
and �Hkz0 ≤ 0 everywhere else. Let the deviation set of (Wz0)kφ belong to the
set {z ∈ Z

n/L|p · z ∈ [Ck − m,Ck + m]}. Note that for each z ∈ Z
n/L , we

have Hkz0(z) ≥ k − C because, in the above assumptions, during a wave number
l < k a vertex does not topple only if it belongs to D((Wz0)l−1(φ)), and the latter
moves with some constant speed C (because it is periodic and movable). Take a point
z1 ∈ Z

n/L with �Hkz0(z1) < 0. It follows from Lemma 2.7 that there exists z with
Hkz0(z) < k − C − 1, because the set {z|�Hkz0(z) > 0} is far from z1. This is a
contradiction. �

Proof of Theorem 1 Using the notation of the previous lemma, let us send k waves from
z0. Then, the toppling function Hkz0 is a non-negative pointwise minimal function h
such that h(z0) = k and φ + �h ≤ 2n − 1 everywhere. Consider h as the function on
Z
n/L . It has an upper bound by min(n, p · z + m). Therefore, for big k the toppling

function Hkz0 is linear in between of D(φ) and D((Wz0)kφ), therefore, by the same
reasoning as in Theorem 2, Hkz0 is equal to p · z + c on one part of Zn/L and to k
on another, and is a pointwise minimal superharmonic function with these properties.
Hence, {z|�(Hkz0) < 2n−1 coincideswith a translation ofψ for�(z) = min(0, p·z).
This concludes the proof. �


10 The Case of Planar Polygon A

Consider a set A ⊂ Z
n whose linear span has dimension two. Without loss of

generality, 0 ∈ A. Suppose that the intersection of the convex hull of A with
Z
n is A. Denote �(z) = minp∈A(p · z + cp) for some constants cp ∈ Z. Let

L = {q ∈ Z
n|∀p ∈ Aq · p = 0}. Then, L is a lattice and �(z) is L-periodic.

Thus, we can consider the graph Zn/L . Since A is a convex polygon we can order its
vertices as p1, p2 . . . , pm, pm+1 = p1. Note that m = 3 or 4, since a convex polygon
A ⊂ Z

2 with bigger number of vertices in the lattice contains a lattice point except its
vertices.

For each two subsequent vertices pi , pi+1 of A, we know that a husking of

�i (z) = min(pi · z + cpi , pi+1 · z + cpi+1)

exists, we denote it by ψpi ,ci ,pi+1,ci+1 .
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Consider

�̃(z) = min
i=1,...,m

(ψpi ,ci ,pi+1,ci+1).

It follows from Lemma 2.10 that it is enough to prove that the sequence (�̃)k of
huskings stabilizes.

Lemma 10.1 The set D1 = {z|(�̃)(z) 
= (�̃)1(z)} is finite.
Proof Since all functions (�̃)k are periodic with respect to L , we can descend these
functions to the factor-graph G = Z

n/L . This graphG is essentially two dimensional,
in the sense that we can choose coordinates on it such that only two coordinates x1, x2
take any integer value and all other coordinates are bounded. Suppose D1 is not finite.
Note that the deviation set D(�̃) is contained in a finite neighborhood of the corner
locus of the function�(z) (seeing as a function� : Rn → R, the corner locus of such
a piece-wise linear function is the set of points where it is not smooth). In G this finite
neighborhood looks as a finite neighborhood of three or four rays Ri , i = 1, . . . ,m
in the plane x1, x2. The set D1 belongs to 1-neighborhood of D(�̃), so if it is infinite,
then D1 can be found arbitrary far from the origin. Each of ψpi ,ci ,pi+1,ci+1 is periodic,
so we can find two parts of ψpi ,ci ,pi+1,ci+1 where D1 looks identically. Then, similar
to Lemma 9.6 in [7], by taking (�̃)1(z) in between of these two parts and copying it
along ψpi ,ci ,pi+1,ci+1 we obtain a function which belongs to �1(ψpi ,ci ,pi+1,ci+1) and
not equal to it, which contradicts to the definition of ψpi ,ci ,pi+1,ci+1 . Therefore, D1
cannot be infinite. �

Theorem 3 Suppose that A is above. Then, the sequence of huskings (�̃)k stabilizes
as k → ∞.

Proof Suppose that the sequence (�̃)k does not stabilizes. We descend all objects to
G = Z

n/L as in Lemma 10.1. It follows from Corollary 5.5 that there exists a vertex
v0 such that (�̃)k(v0) = (�̃)(v0) − k for each k ≥ 1. Indeed, such vertex exists for
every k and to show that one can choose one vertex v0 suitable for all k it is enough to
show that the set {z|(�̃)(z) 
= (�̃)1(z)} is finite, which is so according to Lemma 10.1.
Then, we consider the sets Dm = {z|(�̃)(z) 
= (�̃)m(z)}.Wewill show that Dm grows
at least linearly and at most linearly by m.

Indeed, Lemma 10.1 implies that the difference between Dm, Dm+1 is at most
constant, since they propagate along the rays in Z

n/L , so Dm grows at most linearly
by m, so for some R, we have Dm ⊂ BRm(0) for all m. On the other hand, for
each direction w ∈ Z

n , we can find a linear function l(z) such that f (z) + l(z) is
monotone in the direction w. Adding a linear function does not change the process
of husking (Remark 3.1). But since (�̃)k(v0) = (�̃)(v0) − k, then (�̃)k(v0 + w) ≤
min(�̃(v0 + w), �̃(v0) − k). This proves that Dm grows at least linearly in m, for
some r > 0, we have Brm(0) ⊂ Dm .

Note that
∑

z∈BRk(0) �(�̃)k(z) = ∑
z∈BRk(0) �(�̃)(z) ≤ Ck for some k.

It follows from Lemma 7.3 that
∑

z∈Brk (0) |�(�̃)k(z)| ≤ Ck and so one can find

a large ball in Brk(0) where (�̃)k is harmonic and so is linear by Lemma 7.2. By

123



Sandpile Solitons in Higher Dimensions 451

repeating the arguments from the last part of the proof of Theorem 2, we see that from
the monotonicity it follows that the slope of this linear function must be in the convex
hull of A, but the latter contains no lattice points except the vertices of A. Therefore, we
arrived to a contradiction, hence the sequence of huskings (�̃)k eventually stabilizes.

�

Note that the soliton is periodicwith respect to L . Let us fix a fundamental domain of

the action of L on it, it looks as (1) on Fig. 2: a soliton belongs to a finite neighborhood
of a hyperplaneplane, and images of the fundamental domain under the action of L
tiles this neighborhood.

11 The Case of Three Dimensional A

Let n = 3. Suppose that the dimension of the linear span of A ⊂ Z
3 is three, so the

convex hull of A is a lattice polytope. Suppose that the convex hull of A contains no
lattice points except vertices of A.

Consider a function � : Z3 → Z,

�(z) = min
p∈A

(p · z + cp), cp ∈ Z.

For each face F of A, we may consider the function

�F (z) = min
p∈F(p · z + cp),

and from the previous section, we know that the sequence of its huskings stabilizes
on a function ψF (z).

Recall that a tropical hypersurface is the set of non-linearity of a function minp(p ·
z + cp) where p runs by a finite subset of Zn, cp ∈ R. Figure2 represents a typical
neighborhood of a vertex in a tropical hypersurface.

Define the function �̃(z) = minF (ψF ) where we F runs by all faces of the convex
hull of A. As in the previous section, in order to prove stabilization of huskings of �

it is enough to prove the stabilization of the huskings of �̃.

Theorem 4 The sequence of the huskings (�̃)k stabilized as k → ∞.

Proof The general schema of the proof is the same, except one new idea. First we need
to prove that Dm = {z|�̃(z) 
= (�̃)m(z)} grows at least linearly in m. A proof repeats
the beginning of the proof of Theorem 3: we find a vertex v0 such that (�̃)m(v0) =
�̃(z)−m and then use the fact that husking preserves monotonicity. Thus, there exists
r > 0 such that Brm(0) ⊂ Dm .

A fact that Dm grows at most linearly in m needs finer arguments as follows. As
we know, the deviation set of �̃ consists of solitons (corresponding to the edges of
the convex hull of A, they live near faces of the corresponding function, see Fig. 2).
Note that each of these solitons is periodic with respect to a two-dimensional lattice.
Thus, the fundamental domain with respect to this periodicity has a finite diameter.
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Fig. 2 Left: an example of a neighborhood of a vertex in a tropical hypersurface, courtesy of [11]. Right: a
schematic picture of periodic fundamental domains for solitons (1), fundamental domains along edges (2),
and an example of the support of �̃ − (�̃)k , which propagated from the vertex along the edges and faces
of a tropical hypersurface. The support of �̃ − (�̃)k is pictures as a blot

Let c be the maximum of these diameters for all solitons corresponding to the edges
of the convex hull of A.

Let X ⊂ Z
3 be the set of vertices where �̃ is not equal to none of ψp,cp,q,cq

where pq runs by all edges of the convex hull of A. Then, there exists a constant
C such that if v ∈ D1 then the distance between v and X is at most Cc. Indeed,
suppose the contrary. Consider the fundamental domain of the corresponding soliton
where v belongs to. Consider the neighboring copies the fundamental domains and
the restriction of (�̃)1 − �̃ on it. Then, we take their neighboring domains etc. Each
time we look at the restriction of (�̃)1 − �̃ on the new copies of the fundamental
domains (see (1) on Fig. 2), we call it f1, f2, f3, . . . . If at some step no new functions
appeared, i.e., the restriction of (�̃)1 − �̃ on the next belt of fundamental domains
coincide with previously constructed f1, . . . , fl , then we take min( fi ) and prolong it
periodically to a function f . Thus, we obtain a function ψp,cp,q,cq + f which belongs
to �1(ψp,cp,q,cq ) and less than ψp,cp,q,cq and this contradicts to the minimality of
ψp,cp,q,cq . Thus, the distance between X and v is a most c times “the number of
{−1, 0}-valued functions of the fundamental domain for this soliton”.

Note that X belongs to the finite neighborhood of the rays (corresponding to the
faces of the convex hull of A) of the corner locus of � : R3 → R. Therefore, if D1 is
infinite, then it prolongs in a finite neighborhood of X , so in a finite neighborhood of
these rays. Again, if we find two identical pieces of D1 (such as (2) in Fig. 2) along
such a ray (corresponding to a face F of the convex hull of A), we would decrease the
stabilized husking of �F , which is not possible. Therefore, D1 is finite and similarly
the distance between Dm and Dm+1 is a priory bounded and so Dm grows at most
linearly by m, so there exists R such that Dm ⊂ BRm(0).

Then, using the estimate for the Laplacian, we see that the number of vertices in
Brm(0), where (�̃)k is not harmonic, is linear by k, so one can find a large ball in it
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where (�̃)k is harmonic, and so linear. Finally, the slope (thought of a lattice point)
of that discovered linear function would belong to the convex hull of A because of
monotonicity properties of husking procedure, but we know that A contains no such
points in its convex hull. Therefore, we arrived to a contradiction and thus finished the
proof. �


12 General Case

Theorem 5 Let A ⊂ Z
n be a finite set. Suppose that A coincides with the set of vertices

of the convex hull of A in R
n. Suppose that the intersection of the convex hull of A

with Zn consists only of A. Define

�(z) = min
p∈A

(p · z + cp),

where cp are arbitrary integer numbers. Then, the sequence (�)k of huskings of �

eventually stabilizes, i.e., there exists N such that for all k > N,wehave (�)k = (�)N .

Proof Our proof combines ideas which we used in the partial cases above. Without
loss of generality we may suppose that 0 ∈ A. First, if the dimension of the linear
span of A is less than n, then instead of Zn we consider the graph Z

n/L where
L = {q ∈ Z

n|q · p = 0,∀p ∈ A}. Then, we choose coordinates in Z
n/L and the

number of coordinates which may be infinite is equal to the dimension of the linear
span of A (all the same as in our proof of Theorem 2). Therefore, for simplicity of
exposition we assume that the dimension of the linear span of A is n.

Then, we proceed by induction. We already proved stabilization of huskings for
n = 1, 2, 3 and now we describe the general case for arbitrary n. Let F be a face of
the convex hull of A. Let �F (z) = minp∈F (p · z + cp). We know that the sequence
of huskings of �F stabilizes on a function ψF by induction hypothesis. Define �̃ =
minF (ψF ) where F runs by all faces of the convex hull of A. It is enough to prove
stabilization of (�̃)k as k → ∞.

First, we show that the support of (�̃)1−�̃ is finite. Suppose not. As in the proof of
three-dimensional case,we can prove that the distance between the support of (�̃)1−�̃

and the codimension one faces of the corner locus of � is a priori bounded. Indeed,
we cut the corresponding soliton to copies of the fundamental domain of the periodic
action, consider the difference (�̃)1 − �̃ on each of them. Then, the distance between
any point in the support of (�̃)1 − �̃ and the codimension one faces of the corner
locus of � is estimated by the product of the diameter of the fundamental domain and
the total number of functions on the fundamental domain with the values 0 and −1.
Then, in a finite neighborhood of codimension, one faces of the corner locus of �, we
have similar procedure and establish that the distance from the support of (�̃)1− �̃ to
the codimension two faces is a priori bounded (otherwise we could decrease �̃ there
which contradicts the induction hypothesis).

Therefore, we proved that the support of (�̃)1 − �̃ is finite. Therefore, there exists
a vertex v such that �̃(v)−(�̃)k(v) = k, and so the growth of the support of �̃−(�̃)k
is at least linear in k (the argument is exactly the same as in three-dimensional case).
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Then, one shows that the support of �̃ − (�̃)k (shown in Fig. 2 near the vertex)
grows at most linear in k in the same way as above we have shown that the support
of �̃ − (�̃)1 is finite. Then, as in the three-dimensional case, we show that there is
a large ball in the support of �̃ − (�̃)k where (�̃)k is harmonic, and so it is linear.
But this contradicts to our hypothesis that the lattice points of the convex hull of A are
only the vertices of this convex hull. This finishes the proof. �
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