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Abstract
In this article,wewill expandon the notions ofmaximal green and reddening sequences
for quivers associated with cluster algebras. The existence of these sequences has
been studied for a variety of applications related to Fomin and Zelevinsky’s cluster
algebras. Ahmad and Li considered a numerical measure of how close a quiver is to
admitting amaximal green sequence called a red number. In this paper, we generalized
this notion to what we call unrestricted red numbers which are related to reddening
sequences. In addition to establishing this more general framework, we completely
determine the red numbers and unrestricted red numbers for all finite mutation type
of quivers. Furthermore, we give conjectures on the possible values of red numbers
and unrestricted red numbers in general.

Keywords Reddening sequences · Maximal green sequences · Mutation sequence

Mathematics Subject Classification Primary 13F60

1 Introduction

Maximal green sequences were defined by Keller [15] and play a role in the theory of
Fomin and Zelevinsky’s cluster algebras [11]. They also arise in representation theory,
wall-crossing, and the computation of Donaldson–Thomas invariants. A survey of
many results, properties, and the history of maximal green sequences can be found
in [16]. While the primary focus of the study of maximal green sequences has been to
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determine when such a sequence exists, a natural question arises: if a quiver does not
admit a maximal green sequence, then how close is it?

Recently, Ahmad and Li have considered a numerical measure of how close a quiver
is to possessing a maximal green sequence [1]. This statistic is called the red number
of the quiver and measures how many of the vertices in the quiver can be turned
red via a sequence of green mutations. We further study this measure, as well as put
forth an analogous measure related to the more general notion of reddening sequences
(which are also referred to as green-to-red sequences). This more general concept of
unrestricted red numbersmeasures howmany of the vertices of a quiver can be turned
red via any sequence of mutations.

In this paper, we will present the background definitions for quiver mutations in
Sect. 2. In Sect. 3, we will establish the key concepts of this article: red numbers
and unrestricted red numbers of quivers. We will present some foundational results
regarding these new concepts as well as present a conjecture about the nature of
(unrestricted) red numbers for arbitrary quivers. In Sect. 4, we will explicitly find the
red numbers and unrestricted red numbers for quivers of finite mutation type, verifying
the conjecture for finite mutation type quivers. These quivers play a vital role in the
classification of cluster algebras, and the results will give definitive answers for this
important family of quivers. We conclude in Sect. 5, providing some analysis of red
number on quivers with few vertices and discussion of possible approaches to our
conjectures using scattering diagrams and universal quivers.

2 Quiver Mutation

A quiver is a pair Q = (V , E) where V is a set of vertices and E is mulitset of arrows
between two distinct vertices. That is, if i → j for i, j ∈ V is an arrow, then we
require that i �= j (i.e., no loops). Furthermore, we do not allow both i → j ∈ E and
j → i ∈ E (i.e., no 2-cycles). Let us point out that E is a multiset, meaning multiple
arrows between two particular vertices is permitted. Given a quiver Q = (V , E), the
corresponding framed quiver is Q̂ = (V � F, E � E ′), where F = {i ′ : i ∈ V } and
E ′ = {i → i ′ : i ∈ V }. In other words, the framed quiver is obtained by adding a new
vertex i ′ for each i ∈ V and then adding an arrow i → i ′. We retain the decomposition
of the vertex set V � F . All elements of V � F are vertices, but vertices in V are called
mutable, while vertices in F are called frozen. The notion of a framed quiver will be
essential for defining the red and green mutations.

We are now ready to define the process of quiver mutation which is a combinatorial
ingredient in Fomin and Zelevinsky’s cluster algebras [11]. The mutation of a quiver
Q (framed quiver Q̂) at a mutable vertex k is denoted μk(Q) (μk(Q̂)) and is obtained
by

(1) adding an arrow i → j for any 2-path of vertices i → k → j ,
(2) reversing all arrows incident to k,
(3) deleting a maximal collection of 2-cycles as well as any arrow between frozen

vertices.

An example of a quiver and mutation in shown in Fig. 1.
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Fig. 1 A framed quiver Q̂ on the left and μ1(Q̂) the result of a mutation on the right

Fig. 2 An ideal triangulation of the once punctured torus on the left and its adjacency quiver on the right

Let i be a mutable vertex inμ j� ◦ · · · ◦μ j2 ◦μ j1(Q̂) for any sequence j1, j2, . . . , j�
of mutable vertices. The vertex i is called green if there exists a frozen vertex j ′ and
arrow i → j ′. The vertex i is called red if there exists a frozen vertex j ′ and arrow
j ′ → i . By a property known as sign coherence, a vertex is always green or red and
never both. This is an important property in cluster algebra theory that was conjectured
by Fomin and Zelevinsky [12]. It was first proven to hold by Derksen, Weyman, and
Zelevinsky [7] (see [21] for another proof and [14] for a proof in a case of greater
generality).

A sequence of vertices (i1, i2, . . . , i�) of a quiver Q is called a reddening sequence
if all vertices of μ� ◦ · · · ◦ μi2 ◦ μi1(Q̂) are red. If in addition for all 1 ≤ j ≤ �,

the vertex i j is green in μ j−1 ◦ · · · ◦ μi2 ◦ μi1(Q̂), then the sequence (i1, i2, . . . , i�)
is called a maximal green sequence. The definition of a maximal green sequence is
due to Keller [15]. These sequences of mutations are purely combinatorial with the
definition above, but they have numerous applications in cluster algebra theory and
representation theory [16]. A sequence of vertices (i1, i2, . . . , i�) so that i j is green
in μ j−1 ◦ · · · ◦ μi2 ◦ μi1(Q̂) for all 1 ≤ j ≤ � is called a green sequence. With a
green sequence, there is no condition on the final color of the vertices after applying
the mutations.

A quiver Q is said to be of finite mutation type if the set of all quivers that can be
obtained from Q by iteratively applying a mutation is finite. A classification of quivers
of finitemutation typewas completed by Felikson et al. [8]. Themain source of quivers
of finite mutation type is adjacency quivers of ideal triangulations of bordered marked
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surfaces [10]. A triangulation of the once punctured torus and its adjacency quiver
that is known as the Markov quiver is shown in Fig. 2. The remaining quivers of
finite mutation type either have two vertices or come from 11 exceptional types. The
exceptional quiver of finite mutation type that will be of the most interest to us is X7,

which is shown in Fig. 4 and originally found by Derksen and Owen [6].

3 Red Sizes of Quivers

3.1 Red Sizes

We now give two definitions originally proposed by Ahmad and Li [1]. A general
maximal green sequence for a quiver Q is a green sequence (i1, i2, . . . , i�) of vertices
of Q, so thatμi� · · ·μi2μi1(

̂Q) has themaximal possible number of red vertices among
any possible applying green sequence of mutations. The red size of a quiver Q is the
number of red vertices in μi� ◦ · · · ◦ μi2 ◦ μi1(

̂Q) for any general maximal green
sequence (i1, i2, . . . , i�). We let Red(Q) denote the red size of Q.

Let us make the analogous definitions for reddening sequences. A general red-
dening sequence for a quiver Q is a sequence (i1, i2, . . . , i�) of vertices of Q, so
that μi� · · · μi2μi1(

̂Q) has that maximal possible number of red vertices obtainable
by applying mutations to Q. The unrestricted red size of a quiver Q is the number of
red vertices in μi� ◦ · · · ◦ μi2 ◦ μi1(

̂Q), where (i1, i2, . . . , i�) is a general reddening
sequence. We let uRed(Q) denote the unrestricted red size of Q.

We briefly discuss some basic facts which follow immediately from these defini-
tions. First, a quiver Q admits a maximal green sequence if and only if Red(Q) =
|V (Q)|. Similarly, a quiver Q admits a reddening sequence if and only if uRed(Q) =
|V (Q)|. Also, for any Q, we have that Red(Q) ≤ uRed(Q). Equality Red(Q) =
uRed(Q) can hold (e.g., any quiver which admits a maximal green sequence, take for
instance an acyclic quiver [2, Lemma 2.20]). Also, strict inequality is possible (e.g.,
any quiver which admits a reddening sequence but not a maximal green sequence,
take for instance Muller’s example [20, Fig. 1]).

3.2 Triangular Extension

For any two quivers Q1 and Q2, a triangular extension of Q1 by Q2 is any quiver Q
with

V (Q) = V (Q1) � V (Q2),

E(Q) = E(Q1) � E(Q2) � E,

where E is any set of arrows such that i → j ∈ E implies i ∈ Q1 and j ∈ Q2. The
triangular extension plays on important role in the existence and construction of both
maximal green and reddening sequences [3–5, 13]. These techniques can be adapted to
construct general maximal green sequences or at least bind the red number. However,
the case of general maximal green sequences behaves differently when compared with
the case where a maximal green sequence exists.
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Fig. 3 A triangular extension

Let Q be a triangular extension of Q1 by Q2. It is known that in this case, Red(Q) ≥
Red(Q1)+Red(Q2) [1, Theorem4.8]. Furthermore, it is true that Q admits amaximal
green sequence if and only if both Q1 and Q2 admit maximal green sequences [5,
Theorem 4.10]. It can be shown in a similar fashion that also uRed(Q) ≥ uRed(Q1)+
uRed(Q2) (cf. [5, Remark 4.6]). Ahmad and Li have asked if Red(Q) = Red(Q1) +
Red(Q2),when Q is a triangular extension of Q1 by Q2 [1, Question 4.9].We answer
this question, as well as the analogous question for uRed, in the negative.

Proposition 3.1 There exist quivers Q, Q1, and Q2 such that Q is a triangular exten-
sion of Q1 by Q2 and Red(Q) > Red(Q1) + Red(Q2). Similarly, there exist
quivers Q, Q1, and Q2 such that Q is a triangular extension of Q1 by Q2 and
uRed(Q) > uRed(Q1) + uRed(Q2).

Proof We will give one example which establishes the proposition for both Red and
uRed. Let Q be the quiver in Fig. 3 which is a triangular extension of Q1 = Q|A and
Q2 = Q|B for A = {1, 2, 3} and B = {4, 5, 6}. Here, we have that

Red(Q1) = uRed(Q1) = Red(Q2) = uRed(Q2) = 2,

since Q|A = Q|B is the Markov quiver which is known not to admit a reddening
sequence [17, Remark 3.4]. However, we find that Red(Q) = uRed(Q) = 5, since
any one of the general maximal green sequences in Table 1 produces 5 red vertices. 
�

We have found in Proposition 3.1 that red sizes do not respect triangular extensions
in the same way that maximal green sequences do. In the case of red sizes, we can
end up with more red vertices than one might expect. This observation leads directly
into the next subsection where we conjecture it is always possible to find a sequence
of mutations resulting in only 1 remaining green vertex for any connected quiver.

Table 1 General maximal green sequences for the quiver in Fig. 3

General maximal green sequence Remaining green vertex

(3, 4, 1, 2, 4, 6, 5) 1

(1, 4, 2, 3, 5, 4, 6, 5, 6, 2, 5) 2

(3, 2, 1, 4, 5, 3, 6, 5, 6, 3, 5, 3, 5, 6) 3

(3, 1, 4, 2, 6, 5) 4

(3, 1, 4, 2, 6, 5, 4) 5

(6, 5, 4, 2, 3, 1, 3, 4, 1, 6, 3, 4) 6
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3.3 Conjectures

Let us now make two conjectures. The first conjecture is in the spirit of Muller’s
result [20, Corollary 3.2.2.] and deals with the potential mutation invariance of the
unrestricted red number.

Conjecture 3.2 The unrestricted red size is mutation invariant. That is, uRed(Q) =
uRed(μk(Q)) for any k.

Since the existence of a maximal green sequence is not mutation invariant [20], the
above conjecture is false if uRed(Q) is replaced by Red(Q). We nowmake the second
conjecture (with multiple versions of varying strength), and establishing special cases
of this conjecture will be the focus of the rest of the paper. Even the weakest version
of the following conjecture implies Conjecture 3.2.

Conjecture 3.3 Q, which does not admit a reddening sequence:

(i) we have Red(Q) = |V (Q)| − 1;
(ii) we have Red(Q) = |V (Q)| − 1 and every vertex of Q can occur as the last

remaining green vertex after the application of some general maximal green
sequence;

(iii) we have uRed(Q) = |V (Q)| − 1;
(iv) we have uRed(Q) = |V (Q)| − 1 and every vertex of Q can occur as the last

remaining green vertex after the application of some general reddening sequence.

If Q is the disjoint union of two quivers which do no admit a reddening sequence,
then Red(Q) ≤ uRed(Q) ≤ |V (Q)|− 2. So, the connectedness hypothesis is needed
in Conjecture 3.3; otherwise, one must treat connected components of the quiver
individually.Also, as previously stated it is the case thatConjecture 3.3 impliesConjec-
ture 3.2. To see this, start by assuming part (iii) of Conjecture 3.3, which is the weakest
version of the conjecture, implying that uRed(Q) = |V (Q)|or uRed(Q) = |V (Q)|−1
for any connected quiver Q. Note for Conjecture 3.2 we can restrict to connected quiv-
ers with out loss of generality. So, the quiver Q either admits a reddening sequence
and has uRed(Q) = |V (Q)| or else does not admit a reddening sequence and has
uRed(Q) = |V (Q)| − 1. Since the existence of a reddening sequence is mutation
invariant, this would imply that the unrestricted red size is also mutation invariant.

From Table 1, we can verify that part (ii) of Conjecture 3.3, which is the strongest
version of the conjecture, holds for the quiver in Fig. 3. These general maximal green
sequences were found with ad hoc methods, but we believe this example is instructive.
One thing to observe about the quiver Q in Fig. 3 is that in Q\{v} contains the Markov
quiver as an induced subquiver for any vertex v. It then follows that Q \ {v} does not
have a maximal green sequence [20, Theorem 1.4.1]. So, to find a general maximal
green sequence leaving only the vertex v green, we must mutate at v at least once.

4 Finite Mutation Type and Red Size

It is known exactly which quivers of finite mutation type admit a maximal green
sequence, which turns out to be equivalent to admitting a reddening sequence for this
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Fig. 4 The quiver X7

class of quivers, by the classification completed byMills [18]. If a quiver Q is of finite
mutation type, then Red(Q) = |V (Q)| if and only if Q is not mutation equivalent to
X7 [23] or a quiver from a once punctured closed marked surface [17].

Lemma 4.1 If Q is mutation equivalent to X7, then

Red(Q) = uRed(Q) = 6 = |V (X7)| − 1

and every vertex of X7 is the last remaining green vertex after the application of some
general maximal green sequence.

Proof It is known that neither of the two quivers in the mutation class of X7 admit
a reddening sequence. This result can be found in [23]. Thus, it suffices to provide a
green sequence for each vertex v of both quivers in themutation class of X7 that results
in 6 red vertices with v being that last remaining red vertex. Let us consider X7 with
vertices as labeled in Fig. 4. General maximal green sequences each of which has only
one remaining green vertex are given in Table 2. After considering the automorphism
group of the quiver X7 we can conclude the lemma holds for X7. Mutating the quiver
X7 at vertex 1 gives the only other quiver in the mutation class of X7. For this other
quiver, general maximal green sequences are shown in Table 3. 
�

Table 2 General maximal green sequences for X7

General maximal green sequence Remaining green vertex

(2, 4, 6, 3, 5, 7) 1

(2, 4, 5, 3, 7, 1, 3, 5, 2, 1, 4, 3, 5, 1) 6

(1, 3, 2, 3, 5, 2, 3, 6, 4, 2, 6, 4, 3, 1, 2, 4, 5) 7

Table 3 General maximal green sequences for μ1(X7)

General maximal green sequence Remaining green vertex

(3, 5, 7, 2, 4, 6, 3, 5, 7) 1

(1, 2, 4, 5, 3, 7, 1, 3, 5, 2, 1, 4, 3, 5) 6

(3, 2, 3, 5, 2, 3, 6, 4, 2, 6, 4, 3, 1, 2, 4, 5, 2) 7
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Theorem 4.2 If Q is a quiver of finite mutation type which does not admit a reddening
sequence, then

Red(Q) = uRed(Q) = |V (Q)| − 1

and every vertex of Q is the last remaining green vertex after the application of some
general maximal green sequence.

Proof Theonly quivers of finitemutation typewhich do not admit reddening sequences
are X7 and quivers which arise from ideal triangulations of once punctured closed
surfaces. The case of X7 is handled by Lemma 4.1. So, it remains to take a quiver Q
such that Q is a adjacency quiver of an ideal triangulation of once punctured closed
surface.

Let (S, M) be amarked surface and T any triangulation of this surface. Now, let QT

denote the quiver associated with this triangulation. Let α be an arc in T , with vα the
associated vertex in QT . Since the surface S does not admit a reddening sequence, we
know that it must be a closed surface with exactly one marked point. Then consider the
surface obtained by cutting along α. The result is a new surface, with two additional
boundary components each with a single marked point. It is possible that this cutting
procedure disconnects the surface. In this case, note that each connected component
of the surface has one boundary component. We will denote this new marked surface
(Sα, Mα).

This also produces a triangulation of the surface (Sα, Mα), which we will denote
T α . Now,we consider the associated quiver QT α . This is exactly the induced subquiver
of QT obtained by deleting the vertex vα . Obtaining a quiver from a triangulation of
different surface by deleting in this way is a known process and can be constructed
in more generality when considering surfaces that have boundary components and
additional punctures (see e.g., [19, Lemma 9.10]).

Since QT α is a quiver associated with a triangulation of a surface with at least one
boundary component (the one created in the above procedure), it admits a maximal
green sequence by [18]. We will denote the composition of mutations corresponding
to this sequence by σ .

We will now apply σ to QT . This will be a sequence of green mutations, and
the resulting quiver, σ(QT ), will have exactly one green vertex namely vα . Hence,
uRed(QT ) ≥ Red(QT ) ≥ n − 1 and we have uRed(QT ) = Red(QT ) = n − 1.
Moreover, the vertex vα that remains green can be chosen arbitrarily, as this cutting
procedure can occur for any arc, α, in the triangulation T . Hence, the theorem is
proven. 
�

Remark 4.3 The general maximal green sequences constructed for X7 and adjacency
quivers of ideal triangulations of once punctured closed surfaces never mutate at the
one vertex that remains green. This means that every proper induced subquiver admits
a maximal green sequence. Therefore with respect to taking induced subquivers, finite
mutation type quivers not admitting maximal green sequence are minimal examples
of quivers not admitting maximal green sequences.
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Fig. 5 The McKay quiver which
has red size equal to 4

We have the following immediate corollary since we have now verified Con-
jecture 3.3 for quivers of finite mutation type and have already discussed how the
conjecture implies Conjecture 3.2.

Corollary 4.4 If Q is a quiver of finite mutation type, then

Red(Q) = uRed(Q) = uRed(μk(Q)) = Red(μk(Q))

for mutation in any direction k.

5 Conclusion

We have proven Conjecture 3.2 and the strongest version of Conjecture 3.3 for quivers
of finite mutation type. To conclude, we discuss a fewmore cases our conjectures hold
along with a few approaches to our conjectures in general. Also, we indicate where
some potential obstacles are encountered.

5.1 Quivers with FewVertices

Now, we verify that Red(Q) ≥ |V (Q)|− 1 for quivers with 1 ≤ |V (Q)| ≤ 4. In each
case, we are able to find a sufficiently large acyclic induced subquiver.

Proposition 5.1 If |V (Q)| ≤ 4, then Red(Q) ≥ |V (Q)| − 1.

Proof If |Q| = 1 or |Q| = 2, then Q is acyclic and has a maximal green sequence.
If |Q| = 3, then choosing a maximal green sequence in any induced subquiver on
2 vertices will demonstrate that Red(Q) ≥ 2. If |Q| = 4, then Q must contain an
induced acyclic subquiver on 3 vertices. A maximal green sequence for this induced
acyclic subquiver on 3 vertices will show Red(Q) ≥ 3. 
�

Let us give one more small example involving a quiver which does not have a
maximal green sequence, but for which we can verify we can mutate all but one vertex
to red.
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Fig. 6 A 3-universal quiver of Fomin et al. [9]

Example 5.2 In Fig. 5, we have the McKay quiver, which is a quiver that Brüstle,
Dupont, andPérotin have showndoes not admit amaximal green sequence [2, Example
8.2]. A general maximal green sequence for this quiver is

(1, 4, 2, 5, 3),

which results in only the vertex 2 remaining green. By the symmetry of the quiver, we
can conclude any vertex is the last remaining green vertex of some general maximal
green sequence.

5.2 Scattering Diagrams and Universal Quivers

The (cluster) scattering diagrams of Gross et al. are a powerful tool that have been
used to prove many important results in cluster algebra theory [14]. Using scattering
diagrams, Muller [20] was able to show if a quiver admits a maximal green (redden-
ing) sequence, then any induced subquiver also admits a maximal green (reddening)
sequence. Additionally, it was established byMuller using scattering diagrams that the
existence of a reddening sequences is a mutation invariant. The fact that the chamber
of the scattering diagram corresponding to the case when all the vertices are red is
distinguished as the all negative orthant was used in showing these results.

It would be desirable to show the mutation invariance in Conjecture 3.2 as well
as a statement of the form: if Red(Q) ≥ |V (Q)| − α for some constant α, then
Red(Q′) ≥ |V (Q′)|−α whenever Q′ is an induced subquiver of Q (or the analogous
statementwith uRed in place of Red).We have not been able to obtain such a result due
in part to the fact that without a reddening sequence, we do not end at the all negative
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orthant. Rather, the corresponding path ends in some chamber spanned by a collection
of g-vectors we have less control over. Moreover, what prevents a maximal green or
reddening sequence from existing are complicated regions of the scattering diagram
which contain infinitely many walls. Such regions are still not fully understood even
for quivers with few vertices (see e.g., [22, Sect. 6.7]).

Provided we had such a statement with α = 1, we could approach proving our
conjecture by attempting to verify it on a universal collection of quivers as defined
by Fomin, Igusa, and Lee [9]. A universal collection of quivers has the property that
every quiver is an induced subquiver of a quiver mutation equivalent to some quiver
in the collection. In any case, universal collections give a source of quivers which
necessarily do not admit reddening sequences. An example of a universal quiver in
given in Fig. 6.

We can produce general maximal green sequences for this quiver, leaving only one
vertex green, but we do not have a systematic approach. The resulting quiver after a
general maximal green sequence can be complicated unlike the case for a maximal
green sequence which is related to the initial quiver in a simple manner [2, Proposition
2.10]. In fact, it empirically appears that by iteratively performing mutation at random
green vertices will result in a single remaining green vertex.

References

1. Ahmad, D., Li, F.: Orbit-maximal green sequences and general maximal green sequences. Ital. J. Pure
Appl. Math. 44, 483–498 (2020)

2. Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. IMRN 16,
4547–4586 (2014). https://doi.org/10.1093/imrn/rnt075

3. Bucher, E., Machacek, J.: Reddening sequences for Banff quivers and the class P . SIGMA Symmetry
Integr. Geom. Methods Appl. 16, 11 (2020). https://doi.org/10.3842/SIGMA.2020.049

4. Bucher, E., Machacek, J., Runburg, E., Yeck, A., Zewde, E.: Building maximal green sequences
via component preserving mutations. Ars Math. Contemp. 19(2), 249–275 (2020). https://doi.org/10.
26493/1855-3974.2128.ccf

5. Cao, P., Li, F.: Uniform column sign-coherence and the existence of maximal green sequences. J.
Algebr. Combin. 50(4), 403–417 (2019). https://doi.org/10.1007/s10801-018-0861-z

6. Derksen, H., Owen, T.: New graphs of finite mutation type. Electron. J. Combin. 15(1), 139 (2008)
7. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: appli-

cations to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010). https://doi.org/10.1090/S0894-
0347-10-00662-4

8. Felikson, A., Shapiro, M., Tumarkin, P.: Skew-symmetric cluster algebras of finite mutation type. J.
Eur. Math. Soc. (JEMS) 14(4), 1135–1180 (2012). https://doi.org/10.4171/JEMS/329

9. Fomin, S., Igusa, K., Lee, K.: Universal quivers. Algebr. Comb. 4(4), 683–702 (2021). https://doi.org/
10.5802/alco.175

10. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes.
Acta Math. 201(1), 83–146 (2008). https://doi.org/10.1007/s11511-008-0030-7

11. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002).
https://doi.org/10.1090/S0894-0347-01-00385-X

12. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007).
https://doi.org/10.1112/S0010437X06002521

13. Garver, A., Musiker, G.: On maximal green sequences for type A quivers. J. Algebr. Combin. 45(2),
553–599 (2017). https://doi.org/10.1007/s10801-016-0716-4

14. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math.
Soc. 31(2), 497–608 (2018). https://doi.org/10.1090/jams/890

123

https://doi.org/10.1093/imrn/rnt075
https://doi.org/10.3842/SIGMA.2020.049
https://doi.org/10.26493/1855-3974.2128.ccf
https://doi.org/10.26493/1855-3974.2128.ccf
https://doi.org/10.1007/s10801-018-0861-z
https://doi.org/10.1090/S0894-0347-10-00662-4
https://doi.org/10.1090/S0894-0347-10-00662-4
https://doi.org/10.4171/JEMS/329
https://doi.org/10.5802/alco.175
https://doi.org/10.5802/alco.175
https://doi.org/10.1007/s11511-008-0030-7
https://doi.org/10.1090/S0894-0347-01-00385-X
https://doi.org/10.1112/S0010437X06002521
https://doi.org/10.1007/s10801-016-0716-4
https://doi.org/10.1090/jams/890


E. Bucher, J. Machacek

15. Keller, B.: On cluster theory and quantum dilogarithm identities. In: Representations of Algebras and
Related Topics. EMS Ser. Congr. Rep., pp. 85–116. Eur. Math. Soc., Zürich (2011)

16. Keller, B., Demonet, L.: A survey onmaximal green sequences. In: Representation Theory andBeyond,
vol. 758 of Contemp. Math., pp. 267-286. Amer. Math. Soc., Providence RI (2020)

17. Ladkani, S.: On cluster algebras from once punctured closed surfaces. arXiv:1310.4454
18. Mills, M.R.: Maximal green sequences for quivers of finite mutation type. Adv. Math. 319, 182–210

(2017). https://doi.org/10.1016/j.aim.2017.08.019
19. Muller, G.: Locally acyclic cluster algebras. Adv. Math. 233, 207–247 (2013). https://doi.org/10.1016/

j.aim.2012.10.002
20. Muller, G.: The existence of amaximal green sequence is not invariant under quivermutation. Electron.

J. Combin. 23(2), 23 (2016)
21. Nagao, K.: Donaldson–Thomas theory and cluster algebras. Duke Math. J. 162(7), 1313–1367 (2013).

https://doi.org/10.1215/00127094-2142753
22. Nakanishi, T.: Cluster Algebras and Scattering Diagrams, Part III. Cluster Scattering Diagrams.

arXiv:2111.00800
23. Seven, A.I.: Maximal green sequences of exceptional finite mutation type quivers. SIGMA Symmetry

Integr. Geom. Methods Appl. 10, 5 (2014). https://doi.org/10.3842/SIGMA.2014.089

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1310.4454
https://doi.org/10.1016/j.aim.2017.08.019
https://doi.org/10.1016/j.aim.2012.10.002
https://doi.org/10.1016/j.aim.2012.10.002
https://doi.org/10.1215/00127094-2142753
http://arxiv.org/abs/2111.00800
https://doi.org/10.3842/SIGMA.2014.089

	Red Sizes of Quivers
	Abstract
	1 Introduction
	2 Quiver Mutation
	3 Red Sizes of Quivers
	3.1 Red Sizes
	3.2 Triangular Extension
	3.3 Conjectures

	4 Finite Mutation Type and Red Size
	5 Conclusion
	5.1 Quivers with Few Vertices
	5.2 Scattering Diagrams and Universal Quivers

	References


