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Abstract

The aim of this paper is to study in details the regular holonomic D —module introduced
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1 Introduction
1.1.

There are several ways to define an interesting function. Of course, the simplest one
is to give its value at each point by an explicit finite formula or as a sum of an infinite
series (converging somewhere at least). Another way is to give a functional equation
which characterizes it. A third approach is to give a partial differential system which
has our function f as its unique solution (up to normalisation).

For instance, the function f(z) = ¢* may be defined as

L@ =05

2. fz+7) = f(2).f() with f(0) =1and f(1) =e.

3.3 = fand £(0) = 1.

In general, to increase our understanding of such a function it is useful to dispose of at
least two kinds of characterization as above. For instance, in the basic example of e*
the description 3. gives easily the formula 1 and also the functional equation 2. Note

that the third approach will often lead to a description of the first kind via the Taylor
expansion at least when we dispose of a regular holonomic system defining f which
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is enough simple and suitably described to allow an inductive explicite computation
of the coefficients of the Taylor expansion. However, this means that we are at least
able to well describe essentially all partial differential operators which annihilate f.

We shall consider, in this paper, the case of the multivalued function z(6)* on (Ck,
with o := (o1, ..., o) and A a complex parameter, where z(o') is defined as the root
of the universal monic B{olynomial of degree k:

P,(2) := Z(—l)hohzk_h with the convention oy = 1.
h=0

It is well-known that the description of this function with the first approach is quite
difficult (at least for k > 5). The definition given above of this multivalued function
may be seen as a description of the second kind.

The aim of this paper is to give a description of the third kind which characterizes
this multivalued function. More precisely we describe completely the structure of
the regular holonomic Dy-module! Dy / J where 7, is the left ideal in Dy which
annihilates z*(¢).

The case where A is in Z is of special interest (for A = 0 the left ideal Jy will be
defined in a natural way inside the annihilator of the function 1) and is less simple.

Let me explain how I come to study this question.

In the article [1], we characterize the trace functions F on N := C* as a solutions
of a sub-holonomic Dy-module M given by explicit generators in the Weyl algebra.
Recall that an entire function F on N is a trace function when there exists a entire
function f on C, such that

k
Fo)=)_ f(zj(0))

j=1

where z1(0), ...zj(0) are the roots of the polynomial P;(z) := 2+ Zﬁzl(—l)h
thkfh.

Then, adding the quasi-homogeneity condition Uy — A, where Uy := ZI;:] hopop
is the expression in oy, ..., o; of the Euler vector field ZI;:I Zj BZ_/., to the ideal
annihilating trace functions defines a (regular) holonomic Dy -module A; whose local
solutions are now given by linear combinations of the branches of the multi-valued
function z(o')*. Therefore, the goal of this article to understand the structure of theses
regular holonomic Dy-modules for each value of the parameter A € C.

We give the statements of the main results in detail in Sect. 1.2 below

As an application of the structure theorem for the D-module N} := Dy / J1 we
compute the Taylor series at the pointcr0 = (0,0, ..., —1)oftheholomorphic function
of o1, ..., ox which gives the root of the polynomial:

k
h=1

I N will be C¥ with coordinates s TR Ok.
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D. Barlet

which is near —1. The fact that the associated Dy-module corresponding to 1 = 1
is not simple make this computation quite complicate when we use the Dy-module
N itself. However, with the remark that z(o) — o1/k is a solution of the simple
part V; ID of this D-module deduced from the structure Theorem 4.1.9, we obtain a
complete explicit computation of the Taylor series at o, corresponding to the equation
zZF — (=1)* = 0, of the root which is near —1.

Of course, this method is valid to compute (with some more numerical compli-
cations, but without theoretical difficulty) the Taylor expansion of any (uni-valued)
holomorphic branch of the multivalued function z(¢')* near any point ¢” € N for any
given complex number A.

To conclude this introduction, let me remark that we produce in this article an
explicit description of the image via Riemann—Hilbert correspondence of the minimal
extension of a rather involved local system defined in the complement of a hyper-
surface with rather complicated singularities: the discriminant.

1.2 The Results

To make the statements clear we have to precise some notations which will be used
(and defined again) in the text.

Notations
1. The coordinates on M := C* are Z1, ..., 2k and their elementary symmetric
functions o1, . . ., oy are the coordinates on N ~ Ck. The corresponding quotient
map by the symmetric group is denoted by quot : M — N.
2. Dy is the sheaf of holomorphic differential operators on N and 91, . .., dy are the
partial derivative in o1, . . ., O%.
3. For each integer p > —1 we denote U, the image by the tangent map of the

p+1 KR
Joo0z;”
The vector fields U_y, Uy and U; on N are given by

quotient map guot of the vector field Z];: 12

k—1 k
Ut o= (=D = Wondhe1, Up =) hoydh,
h=0 h=1
k
Uy = Z(oloh — (h + Dops1)p.
h=1

with the convention g = 1 and o34+1 = 0.
4. For A a complex number, the Dy-module N, is the quotient of Dy by the left
ideal 7, generated by the following global sections of Dy:

® A;j:=0;0; —0i410;1 for ie€[l,k—1] and j € [2,k]
o 7™ :=2010,,_1 +0nE form € [2,k], where E := 22:1 0L
o Uy— A.
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5. We denote Oy (xo) the left Dy-module (’)N[ok_l].T he Dy-module quotient
On(x01) /O will be denoted H, _o(On).

. We define ./\/]* as the kernel of the map ¢; : N1 — Oy sending 1 to o7.

. We define NV as the kernel of the map ¢ : Ny — Oy sending 1 to 1.

8. We define N'*, as the kernel of the map ¢_; : N_; — Oy (x0%) sending 1 to

Ok—1/0k.

~N

1.2.1 TheCased € C\ Z

Theorem 1.2.1 Let & € C\ Z. Then, N,, is the minimal extension of the associated
meromorphic connection (see 3.3.11). Therefore, N, is a simple Dy-module.

Moreover, for each ). € C\ Z we have an isomorphism 511 := 0OU_1 : N;, —
Ni11 given by right multiplication by U_|.

See Theorem 3.3.11 for details.

1.2.2 TheCase A € N*

Theorem 1.2.2 The diagram below describes the structure of N1. The torsion © in N
is generated by the class of 0xU_1 and we have an isomorphism H [lak:()] On) — 0O
defined by sending 1/oy to [0 U_1].

The Dy -modules ©® =~ ﬂ[lgk:O](ON) and NID are simple Dy-modules.

The following commutative diagram of left Dy -modules has exact lines and columns
where the maps i and e are defined by i ([U—_1]) = [U—1] (so the map i induced by the
identity of N1) and e((U_1]) = k:

0 0
0 ® Im(F}) —— ON[U_1] —0
>~|e
0 N Ny ——— 0y 0
M*/GLNID
0 0

Moreover, for any p € N* the Dy-module N, is isomorphic to N\ via the map
Tpt1 :=0U_1 : Ny = N1 given by right multiplication by U_;.

See Theorems 4.1.5 and 4.1.9.
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1.2.3 TheCaseA =0

Theorem 1.2.3 Define NOD := DyU; C N. Then, J\/(‘):’ is simple and isomorphic
to NID via the map induced by the map QU : N1 — Ny, the quotient NO/NOD is
isomorphic to Oy (xoy) and the quotient No//\/(;‘ is isomorphic to Oy.

The structure of Ny is described by the exact sequences of Dy-modules:

0 N N Hl _4(On) —=0

0 N No Op (x0) —= 0

0= ND Ny N N0
See Theorem 4.2.4.

1.2.4 TheCase A € —N*

Theorem 1.2.4 We have the following commutative diagram of Dy -module with exact
lines and columns, where the Dy -linear map ¢_1 : N_1 — Oy (xoy) is defined by

p_1(1) = op—1/ox:

0 0 0
0 N*, N* @ OyU; - On 0
0 N*Zl N L On(xor) ——=0
0 Q L= Hl _(Oy) —=0

0 0

Therefore, x is an isomorphism. Moreover, the map 7 induces an isomorphism of
NZ*, onto the simple Dy -module /\/'(‘):| = DnU; C Nj. Therefore, N*| is simple.

Moreover, for each p € —N* we have an isomorphism 7, : QU_y : N,_1 — N,
given by right multiplication by U_.

See Theorem 4.3.8.
Section 2 is devoted to preliminaries, Sect. 3 concludes by the simplicity of A, for
A ¢ Z and Sect. 4 studies the cases where A is in Z.
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Section 5 gives the application and Sect. 6 is an appendix useful in the study of the
characteristic variety of the Dy-modules Nj.

2 The Dy-Modules V¥V and M

Notations We fix in the sequel and integer k > 2. Let C[o](d) be the Weyl algebra
in the variables o7, . . ., ox. We shall note N = C¥ which is the target of the quotient
map:

quot : M :=C — C" /&, = N ~ C*

by the natural action of the permutation group &; on C¥. We shall note Tyuor its
tangent map.

Then, Dy denotes the sheaf of holomorphic differential operators on N and we shall
use the same notations for modules on C[o'](d) and for the corresponding sheaves of
Dy-modules on N.

We denote A € C[o] the discriminant of the polynomial P,(z) := &~ +
Zlfl:] (—=D)opz"" and Ha := {0 € N / A(c) = 0} the corresponding hyper-
surface in N.

For basic results on D-modules the reader may consult, for instance, the books [5]
or [6].

2.1 The D—Module VWV

In this section, we shall consider the Dy-module WW := Dy / A where A is the left
ideal sheaf in Dy generated by

A ji=0;0j —0i410j1 for i€[l,k—1] and j €[2,k] (1)

Notations Let Dy (i) be the sub-sheaf of Dy of partial differential operators of order
at most equal to m. Then, let YW (m) be the sub-O-module in W of the classes induced
by germs in Dy (m).
Let W(m) be the sub—QOy-module in W of the classes induced by germs in Dy (m1).
As we have A(m) := Dy(m)N A = Zi’j Dy (m — 2)A; j for each m € N, the
quotient W(m) = Dy (m) / A(m) injects in W and we have

W = Umz()Wm.
Note that A(1) = 0so W(1) = Dy(1).
It is clear that the characteristic variety of the Dy-module WV is equal to N x S(k)
in the cotangent bundle Tﬁ ~ N x CK of N, where S(k) is the algebraic cone in Ck
defined by the equations

ninj —niv1nj—1 =0 Vie[l,k—1] and Vj € [2,k]. (2)
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We describe this two-dimensional cone and the corresponding ideal in the appendix
(see Sect. 6). We shall use in the present section the following results which are proved
in the appendix (Proposition 6.1.5 and Corollary 6.1.6).

Proposition 2.1.1 Ler L1 := {n; = 0} N S(k) and Ly := {nx = 0} N S(k). Then, L,
is the line directed by the vector (0, ..., 0, 1) and Ly the line directed by the vector

(1,0,...,0). The maps ¢y : S(k)\L| — C*x Cand ¢ : S(k)\Ly — C* x C which
are defined by the formulas

@1(n) := (n, —m2/n1) and  @r(n) = Ok, —nk—1/nk) 3
are isomorphisms. Therefore, S(k) \ {0} is smooth and connected surface.

Corollary 2.1.2 The ideal of C[n] defined by the equations in (2) is prime. Moreover,
S(k) is a normal surface.

Notation For « in N* define ¢ := |a| := ZI}(::I apand r = w(a) = Zl;(,zl hay,.

Definition 2.1.3 Let P be a germ of section of Dy . We say that P is bi-homogeneous
of type (g, r) if we may write

P = Z ay0°

la|=q, w(x)=r
where a,, are germs of holomorphic functions in N.

It is clear that any germ P of section of Dy has a unique decomposition:
P=Y P,
q.,r

where P, ; is a bi-homogeneous germ of section of Dy of type (g, ). Note that this
sum is finite because for a given order ¢ the corresponding type (g, r) has non zero
representative only when r is in [g, kq].

Lemma 2.1.4 Let P be a germ of section of Dy and write the decomposition of P in
its bi-homogeneous components as P = q.r Pa.r- Then, P is a germ of section in A
if and only if for each type (q,r) Py, is a germ of section in A.

Proof It is clear that P is in A when each P, , is in A. Conversely, assume that P is
in A. Then, we may write

P=>"BijAi; with ie[l.k—1] and j€[2.k]
i)

and where B; ; are germs of sections of Dy .
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Write B; j = }_, . (Bi j)g, the decomposition of B; ; in its bi-homogeneous
components; this gives

P=Y3"| > BijgrAi;

q.;r p=0 \i+j=p

where ZiJrj:P(B,-,j)q,,Ai,j is bi-homogeneous of type (¢ + 2,r + p) for each
(i, j), such that i + j = p. This implies that P, , is equal to the sum
ZH_J‘.H:r(Bi,j)q72,SAi,j‘ Therefore, each P, , is a germ of section in A. [ ]

Lemma 2.1.5 The class of 0% in VW only depends on q = |a| and r := w(w). It
will be denoted y, . Moreover, if Wy is the sub—QOy-module of VW generated by
the y, , for r € |q,kql, W, is a free Oy-module of rank kg — q + 1 with basis
V4,02 Ya,q+1s - - - » Yq.,kg and, as Oy-module, we have the direct decompositions:

W(m) = &y_¢W,; and W = Ggen W 4)
Remark that the action of Dy on W is defined by
9j(Yg,r) = Yg+1,r+j Vj €[l k] Vg €N and Vr € [g, kq] )

and that 9, )V, C W, 1.

Proof The fact that the class induced by 9% in WV depends only on |¢| and w(«) is a
direct consequence of the fact that the class induced by x¢ in Clxy, ..., xx] / 1S(k)
only depends on g := |«| and r := w(«) (see Proposition 6.1.1 in the appendix). Then,
it is clear that y; 4, Yg.g+1, .-+, Yg.kg 1S @ Oy —basis of W, looking at the symbols
and using the appendix (Sect. 6) over the sheaf of C—algebras Oy . |

The global polynomial solutions of the Dy-module W are described by our next
lemma.

Definition 2.1.6 For each ¢ € N and each r € [q, kq] define the polynomial

o

m@) = Y = (©)

lo|=q,w(a)=r

Lemma 2.1.7 Anymy , € Cloy, ..., oilis annihilated by the left ideal A in Dy and if
apolynomial P € Cloy, ..., oyl isannihilated by A, P is, in a unique way, a C—linear
combination of the my , for ¢ > 0 and r € |q, kq] which gives the bi-homogeneous
decomposition of P(01, ..., ) € C[d1, ..., 0] (see Lemma 2.1.4).

Proof First, we shall verify that each polynomial m{ is annihilated by each A i,j for
alli € [1,k— 1]andall j € [2, k]. We have for each (i, j) € [I, k]z:

obf
F = Mg=2,r—(i+j)(o)

00 (mg.r)(0) = >

|Bl=g—2,w(B)=r—(+))
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D. Barlet

because a;ja; = 0 implies 9;d;0% = 0. The right hand-side above only depends on
i + j for g and r fixed. This is enough to conclude our verification.

Note also that the uniqueness is obvious because of the uniqueness of the Taylor
expansion of a polynomial.

Letnow P := ), cqo ‘;—T apolynomial in C[o ] which is annihilated by the left ideal
Ain Dy. We want to show that if o and 8 satisfy || = |8| and w(«) = w(B) we have
¢q = cg. Itis enough to prove this equality when there existi € [1,k — 1], j € [2, k]
and y € N¥, such that 0% = ojo;jo” and of = 0410107 by definition of the
equivalence relation” given by |a| = || and w(a) = w(). In this case the coefficient
of 07 /y!in 0;0; P is ¢y and in 9; 4101 P is cg. Therefore, they are equal. [ |

It is easy to see that an entire holomorphic function ¥ : N — C is solution of W if
and only if its Taylor series at the origin may be written, for some choice of ¢, , € C:

F(o)= Z cq.rimg,r(0).
q.,r

In the same way, a holomorphic germ f : (N, ¢%) — (C, z%) is solution of W if and
only if its Taylor series may be written in the form

f(ao +0)= Zcq,rmq,r(a)
q.r

with 0,0 = ZO.

2.2 The Dy-Module M

Definition 2.2.1 Let m € [2, k] be an integer and define the second-order differential
operators in the Weyl algebra C[o](d)

k
T™" := 310p_1 + OmE form € [2,k], where E := Zohah @)
h=1
Then, define the left ideal Z in Dy as
k
IT:=A+) DyT" )
m=2
and let M be the Dy-module

M= DN/I )

2 Which is noted a8 in Sect. 6.
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We shall now recall and precise some results of [1].
Let Z be the complex (algebraic) subspace in N x CK (with coordinates

01, ...,0k, N1, ..., Ni) defined by the ideal of (2, 2) —minors of the matrix
nm o —ls(n)
n2 n
(10)
Nk Mk—1

where [, (n) 1= Z’ZZI onnp. We shall note Iz the ideal of Oy, generated by these
minors and by p, I its direct image by the projection p : N x CK — N. For each
integer ¢ > 0 the sub-sheaf p.1z(q) of sections of p,I7 which are homogeneous of
degree ¢ along the fibers of p is a coherent Oy -module.

Proposition 2.2.2 The complex subspace Z is reduced, globally irreducible and Z is
the characteristic cycle of the Dy-module M.

Proof Let |Z| be the support of the sub-space Z. The fact that Z is globally irreducible
is already proved in [1] Proposition 4.2.6 as Z is conic over N. This implies that Z is
reduced as a complex sub-space:

Assume that /7 is not equal to the reduced ideal /7| of the complex analytic subset
|Z]in N x Ck, By homogeneity in the variables i1, . . . , 1 there exists ¢ > 0, such that
the quotient Q(q) = I|z| (q)/lz (g) is not {0} and then the coherent sheaf p.(Q(q))
is not {0} on N. However, this contradicts the fact that any global section on N of
P+11z(q) is a global section on N of p. Iz (g) which is the content of Proposition 4.2.6
in loc. cit.

To complete the proof that Z is the characteristic cycle of M it is enough to see
that the symbol of any germ P of section in Z vanishes on |Z|. This is obvious by
definition of 1. [ |

The following proposition, which is a local version of Theorem 5.1.1 in [1], will
be useful. Recall that the Newton polynomial N,, € Cloy, ..., o] is the polyno-
mial corresponding (via the standard symmetric function Theorem) to the symmetric
polynomial 37" 2.

Proposition 2.2.3 Let 7 the left ideal in Dy of germs of differential operators P,
such that P(N,,) = 0 for each Newton polynomial N,,,,m € N. Then, I, =71

Proof Proposition 4.1.2 in [1] already proves the inclusion Z C Z . To prove the other
inclusion we shall argue by contradiction. Therefore, assume that at some point o°
in N we have Z, ;0\Z,0 # # and let P be in Z, ;o0 \ Z,0 with minimal order say ¢.
Thanks to Proposition 4.2.8 in loc. cit. we know? that the symbol s(P) is in p«(Iz)0
thanks to the equality /7 = I,z| proved above. Therefore, there exists a germ Pj in
Z,0 \ {0} with symbol s(P;) = s(P). Then, the order of P — P; is strictly less than
q. But then, P — Py is in Z ;o with order strictly less than ¢ and then it is in Zo.
Contradiction. Therefore, 7 = 7 . |

3 This proposition proves that the symbol of a non zero germ of section of Z vanishes on |Z|.
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Notations We note Z(m) the sub-Oy-module generated in Z by classes induced by
differential operators of order at most equal to m. Therefore, Z(m) = Z N Dy (m).

Then, we note M(m) := Dy (m)/I(m).

For any non zero germ of section P of Dy we note s(P) its symbol in
On[n1,...,nx]. For P =0, let s(P) be 0.

Recall that we note p : N x CX — N the projection.

Lemma 2.2.4 We have lim,, _, oo M(m) >~ M, where the maps M(m) — M(m + 1)
are induced by the obvious inclusions

Dy(m) — Dy(m+1) and Z(m) — Z(m + 1).

Therefore, M is equal to the inductive limit lim,,_, oo M (m).

Proof Beware that the maps M (m) — M(m + 1) are not a priori injective.

There is an obvious map lim,,— oo M(m) — M which is clearly surjective. The
point is to prove injectivity. Let P be a non zero germ at some o € N of order m, such
that its image in M, is 0. Then, by definition, there exists germs By, h € [2, k] and
Cp.q. (p.q) € [1,k]? in Dy 4, such that

k
P=>Y"BT"+) CpyApy.
h=2 P9

Let r be the maximal order of the germs By, and C,, ;. Then, the equality above shows
that P is in Z(r + 2). Therefore, the image of P in lim,,_, o, M(m) is zero, as it is
already 0 in M(r + 2). [ |

Lemma 2.2.5 Let P be a non zero germ of section of the sheaf L. Assume that P has
order at most 1. Then, P = 0.

Proof Let P = ag + Zﬁ:l apdy. Recall that for each i € [1, k] and each m € N we
have (see Proposition 5.2.1 in [1]):

0n N = (=1)""'m DNy (1D
where the polynomials
x1?1+k—1
DNy:= Y -
P, p=0 Fox7)

vanish form € [-k+ 1, —1] and DNy = 1.
Then, the equality Z = Z proved in Proposition 2.2.3 implies that for each integer
m, we have

k
aoNw + Y _an(=1)""'mDNy_ =0,YVm e N
h=1
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For m = 0 this gives agp = 0; if we have a9 = a1 = --- = a, = 0 for some
p € [0.k — 1] then P[Npy1] = 0 gives Yy, an(=1)(p + DDNp i1 =
ap+1(p +1)DNo = 0 and then a1 = 0. Therefore, P = 0. |

Notation Define the vector fields on N:

Uy = ZIZ:1 hopd, and U_; := Zl,‘l;(l)(k — h)oy, 0,41 with the convention
oy = 1.
Lemma 2.2.6 Let g > 2 be an integer, o € N¥, such that || = g — 2 and let m be an
integer in the interval [2, k). The class induced by 9*T™ in VW only depends on the
integers q and r := w(a) + m. This class is given by the formula (with the convention
op=1)

k

[09T™] =Y onyg.rsn + (@ — Dyg.r, (12)
h=0

where Y4 is the class induced by 0¥ in W for any y € NK, such that |y| = q and
w(y) =r (see Lemma 2.1.5).

Let A be a complex number and let B € N¥, such that |B| = g — 1 and w(B) = r.
The class induced by 3% (Ug — 1) in W only depends on . and on the integers q and
r. This class is given by

k

[0 (Wo = 1)) =Y howyg.rin + (- = Myg1.r. (13)
h=1

In addition, the class induced by 3PU_y in W, again for |f| = q — 1 and w(B) =r,
only depends on the integers q and r. This class is given by

k

[0PU_1] =) (k= m)onygrnir + k(g — 1) = r)yg—1,r+1 (14)
h=0

where, for r = k(q — 1), the last term in (14) is equal to 0 by convention.
Proof By definition 7" = 818,,—1 + Yy _; 0401 dm + d» which implies

k
04T = 80181 + )_ 0ndndud” + (g — 130y
h=1

as we have 9%03,9, = 0,0,0% + ;0% for any « € N¥ and any & € [1, k]. Now,

formula (12) follows from Lemma 2.1.5, proving our first assertion.
As Uy := Zlflzl hoy, 0, we have

k k
P (Uo— 1) =Y hdPoydy — 1.0 =) h.opdnd? + w(B) — 1P
h=1 h=1

@ Springer



D. Barlet

which gives Formula (13) using Lemma 2.1.5, and this proves our second assertion.
The third one is analogous using the fact that U_; = Zl,‘z;(l)(k — h)oj,dp+1 with the
convention oy = 1 and the equalities:

aﬂahahﬂ = ohaﬁahﬂ + ﬁhaﬂ+lh+|—1h
k—1

Z(k —mW)pBr =k((g—1) — Br) — (w(B) —kP) =k(g — 1) —r

h=0
with the convention By = 0 and the fact that 3#+14+1=1 induces Vg—1,r+1- |
Notations

1. Let V, C W, be the Oy —sub-module with basis y, , forr € [k(g — 1) + 1, kq].
Remark that Vo = Wy = W(0) = Oy and Vi = W) = &} _,On.0).

2. Let Ly : W; — M(q) be the map induced by restriction to WV, of the quotient
map W(q) — M(q) and [, : V; — M(q) its restriction to V.

Lemma 2.2.7 Fix an integer q > 0. Then, for any Y € W there exists X € V,, such
that Ly (Y — X) is in M(q — 1), with the convention M(—1) = {0}.

Proof Remark that for ¥ =y, , withr € [k(g — 1) + 1, kq] we may choose X =Y.
Therefore, it is enough to prove the lemma for Y in the sub-module with basis y; ,
with r € [g, k(g — 1)].

Note that for ¢ = 0 and for ¢ = 1 there is nothing more to prove.

For each ¢ > 2 and r € [g, k(g — 1)] there exists m € [2, k], such that r — m is
in [q — 2, k(g — 2)], because the addition map (s, m) — s + m is surjective4 from
lg —2,k.(g —2)] x [2, k] to [q, k(g — 1)]. Therefore, there exists @ € N¥, such that
l¢| =g — 2 and w(ew) = r — m. Then

k

%7 = Yg.r + (g — 1)yq—l,r + Zahyq,r+h
h=1

and the class induced by y, , in M(g) is, modulo M (g — 1), in the sub—O y-module
of M(q) induced by the images of classes of y, ,» with " > r. By a descending
induction on r € [g, k(g — 1)] we see that, modulo M (g — 1), the image of W, by
L, is equal to L, (V,). This implies our statement by induction on g. u

Note that the previous lemma shows that [, (V,) = L, (W,) for each g > 0.

Proposition 2.2.8 For any q € N, there is a natural isomorphism of O y-modules
Ay =& _olp @)y Vp — M(q) (15)

which is compatible with the natural map EB;I;:O Vp = 69([]);1) V), and the natural map
M(g) — M(g + 1).

4 Forr € [q,k(q —2)+2]takes =r —2andm = 2,forr = k(q —2)+ j with j € [2,k]takes =r — j
andm = j.
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Proof For g = 0 we have M(0) = Vy = Op.y0,0 where yp,0 = 1. Therefore, Ag is
an isomorphism. For ¢ = 1, Lemma 2.2.5 shows that the map A is injective. As it is
surjective (we have Vy = W)y and V| = W) the assertion is clear.

Assume that we have proved that A, is an isomorphism of Oy-modules for some
q > 2. We shall prove that A, is also an isomorphism.

Consider Y := Z(,I;:o Y, with Y;, € V,, for each p € [0, ¢], which is in the kernel
of A4. If Y, = 0O the induction hypothesis allows to conclude that ¥ = 0.

So assume that ¥, # 0. As Y, is induced® by a differential operator of the form

Zl;zl bj 8,?_18 ;, withb; € Oy for j € [1, k], we may choose a differential operator

P € T of order g which induces Y, such that its symbol is equal to nz_l lef:l bin;.
This symbol vanishes on Z, and, as n; does not vanish on any non empty open set
on Z, we conclude that ZI;-=1 bjn; vanishes on Z. The injectivity of A implies
that by = --- = by = 0 showing that ¥, = 0 and this contradicts our hypothesis.
Therefore, A, is injective.

We have already noticed that Lemma 2.2.7 implies the surjectivity of A, forg > 2.
Therefore, the proof is complete. ]

Corollary 2.2.9 The Dy-module M has no Oy -torsion.

Proof This an easy consequence of the previous proposition giving that each M(q)
is a free Oy-module, because for any o € N, a non zero torsion germ in M, has
to come from a non zero torsion element in M (q), for some ¢ large enough (may
be much more larger than the order of the germ in Dy , inducing this class in M)
thanks to Lemma 2.2.4. u

2.3 On Quotients of M

We shall use the description of the characteristic variety of M to examine the holo-
nomic quotients of M supported by an irreducible complex subset of N.

Proposition 2.3.1 Let Q be a holonomic quotient of M which is supported by an
analytic subset S of N with empty interior in N. Then, S is a hyper-surface and S is
contained in {oy, = 0} U {A(0) = 0}.

Proof Let Sy be an irreducible component of S, the support of a holonomic quotient
Q of M. Letd > 1 be the co-dimension of Sp. Then, near the generic point in Sy the
co-normal sheaf of Sy is a rank d vector bundle over Sy which is contained in Z. As
the fibres of Z over N have pure dimension 1 we have d < 1 and then d = 1 and Sy
is a hyper-surface in N. Then, S is also a hyper-surface in N.

Let now Sy be an irreducible component of S which is not contained in {A (o) = 0}.
Then, near the generic point in Sy the quotient map quot : M — N is an étale cover
and this shows that M locally is isomorphic to the quotient of D¢« by the let ideal

with generators 3za_82 for i # j in [1, k]. Therefore, the characteristic variety of
i0<j

M is locally isomorphic to C := U’;ZIN x {C.ej} where ¢; is the j—th vector in

5 Note that for each r € [k(q — 1) +1,kql,r = k(g — 1) + j, then yq , is induced in Wy by a,‘j‘laj.
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the canonical basis of C¥. If an irreducible hyper-surface has its co-normal bundle
contained in C, it has to be equal to the co-normal of one of the hyperplanes {z; = 0}.

This means that S is contained in {0} = 0}.
But any hyper-surface contained in {A = 0} is equal to {A = 0}. Therefore, the
only possible irreducible components of the support of Q are {0} = 0} or {A = 0}.
|

We shall use the following immediate corollary of this proposition:
Corollary 2.3.2 Let Q be a coherent holonomic quotient of M which is supported in a
closed analytic subset S in N with empty interior in N. If Q vanishes near the generic

points of {ox = 0} U{A = 0}, then Q = {0}. |

Let k > 2. We shall study the Dy-module M near the generic point of the hyper-
surface {A = 0}in N.

Let z(l), zg, R z,? be (k — 1) distinct points in C and let » > 0 a real number small
enough in order that the discs Dy, D3, ..., Dy with respective centers z(l), zg, el z,?

and radius r are two by two disjoint. Let Uy := D1 x D X ]_[];:3 D; and V (equal to
D1 x D; for k = 2) the image of Uy by the quotient map quot : C* — Ck/Gk =N.
Note U := q_l (V). Then, g induces an isomorphism of Z/{o/Gz onto V.

Remark that for each o € V we have exactly two roots z1 (o), z2 (o) distinct or not
which are in Dy and for each j € [3, k] we have exactly one (simple) root z; (o) in
D ;. We have the following holomorphic map on V:

1. Themapt = (11, 2) : V — C? given by t1(0) := z1(0) 4+ z2(0) and
7y := 71(0)z2(0) where z1 (o) and z» (o) are the roots of P, which are in D;.
2. Foreach j € [3, k] the map z; : V — D; given by the unique (simple) root of Py
in D;j.
To be completely clear, these holomorphic maps are defined on V' by the following
integral formulas:

71(0) ;=L ¢ Py (8)d¢
2i Jop, Po(8)

L[ PPNdE
2w Jap, Ps(Q)

B ¢P,(0)dg

2im oD; P(r(é—)

21y(0) = 112 — (o) where (o) =

and for j € [3,k] z;(0) :=

The following lemma is obvious:

Lemma 2.3.3 The holomorphic map ® : V — C? x ]_[";:3 D; given by (t1, 12, 23,

.., Zk), Is an isomorphism of V onto the open set V| := D13 X ]_[l;=3 D where we
define D1 := (D1 X D1)/62 as the image of D1 x D by the quotient map by the
action of the permutation group S». |
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In the sequel, we shall use the coordinate system on )V given by the holomorphic
functions 71, 1, 23, ..., Zx on V.

Defineon V >~ Vi = D1 X ]_[';=3 D; the following partial differential operators
in the coordinate system described above:

o T2:= 02 + 11 e, + 1202 + 0y
e Bij:= 32/32iBZj for3<i<j<k
o Cyj:=09%/0110z; for j € [3, k]

o Cyj:=03%/01,0z; for j € [3, k]

o Vo =110, + 2120, + Z’;=3 2jd,
o Voi =20 + 110, + 35 50,

Proposition 2.3.4 The isomorphism of change of coordinates ® on V given by o +—>
(11, 12, 23, . . . , 2k) has the following properties:

(1) The image of ideal I of Dy restricted to V by the isomorphism @ is the left ideal
generated by T?, B; j, C1,j and C3 j in Dy,.

(ii) The vector field Uy is sent to Vi and the vector field U_y is sent to V_1 by this
isomorphism.

Proof We shall use the local version of Theorem 5.1.1 in [1] which is given in Propo-
sition 2.2.3 above.

For Q2 C V it is easy to see that the Fréchet space of trace functions admits as a
dense subset the finite C—linear combinations of the Newton functions v,,, m € N of
z1(0), z2(0) and of the functions z;.” (0),m € N for each j € [3, k]. From the case
k = 2 for which the left ideal Z is generated by T2 and the fact that each B; ;, C1_;
and C ; kill each v,, and each zT, we conclude that 7 contains the left ideal generated
by T2, the B; j, the C ; and the C; ;.

Conversely, if P is in Z it has to kill any v,, and each z’j’?, Vj € [3, k]. Therefore,
P has no order 0 term. Modulo the ideal generated by the B; ;, the C; ; and the Cs ;
we may assume that we can write

N k
P=Po+) ) gind
m=1 j=3
where P is a differential operator in 71, 7, with no order O term, and with holomorphic

dependence in z3, ..., zx (but no derivation in these variables) and where g; ,, are
holomorphic functions on V. Applying P to zj.v , with j € [3, k], gives that

N

N! N—m
2 gy =i =0
m=1

and then g; ,, = 0 for each m € [1, N] and each j € [3, k], because the g; ,, are
holomorphic functions of (1, t2). Then, P = Py and P(v,) = 0 implies that Py is
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in the left ideal geperateq by 72 in thg Oy, -algebra generated by % and ditz Then,
Pp and also P are in our ideal and (i) is proved.
The verification of (i7) is easy and left to the reader. [ |

Lemma 2.3.5 For k = 2 we have for each n € N*
(T? = 2nd)) A" = A"T? +2n(2n + )AL, (16)

Proof Recall that we have E := 0101 + 020, and T2 = 312 + 02 E and that
A= 012 — 404. Therefore, we have

A = Ady + 201
(0101, A] = 207
3.A= A —4
[0202, A] = —403
[E, A] =207 — 40,

and

[02E, Al = 0,(AE + 20} — 402) — (1A +4).E = 2A0, — 4010; — 4
BFA = 31 (Ad; +201) = (Ad) +201)31 + 20191 +2 = Ad? + do1d; +2
72 8] =[02. A + 5. A]
T2 A =AT? +40101 +2+2A0 — 4010 —4=AT> + 20, A +8+2—4
(T? —23,)A = AT?> +6
which proves (16) forn = 1.
Assume now that we have proved the formula (16) for n > 1. Then, we have, using
that A9, = A" + 4nA"!
(T? = 2n3)) A" = A"T2A +2n(2n + A"
(T? = 2nd) A" = AT 4 A"205.A + 6A" +2n(2n + 1) A"
(T? = 2n3)) A" = A™1T2 4 20, A" 4 8n A" + 6A" + 2n(2n + 1) A"
(T? =2 + Da)A" T = A"IT2 41 2(n + )20 + 3) A"

because 2n(2n + 1) +8n+ 6 =2(n + 1)(2n + 3). [ |

Theorem 2.3.6 Let Q be a coherent Dy-module which is a quotient of M and which
is supported by {A = 0}. Then, Q = {0}. Moreover, any holonomic quotient of M
has no A—torsion.

Proof Thanks to Corollary 2.3.2 it is enough to prove that such a quotient Q is zero
near the generic points of {A = 0}. Therefore, assume that Q is such a non zero
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quotient. Using now the result of Proposition 2.3.4, the D-module Q is given near the
generic points of {A = 0} by the quotient of D by a left ideal K which contains 72.
Then, there exists an integer n > 0, such that A" belongs to K. Then, Lemma 2.3.5
implies that K contains A”~!. Then, by a descending induction on n we obtain that 1
is in /C and this contradicts the non vanishing of Q.

The characteristic variety of a holonomic quotient of M which is supported in
codimension > 1 in N is contained in the characterisc variety of M so is contained
in the union of N x {0} with the co-normal to {o; = 0} and {A = 0} thanks to
Proposition 2.3.1. However, Lemma 2.3.5 implies that near the generic point of {A =
0} a torsion element in such a quotient vanishes. Therefore, the torsion submodule of
a holonomic quotient of M cannot have the co-normal of {A = 0} in its characteristic
variety. Then, such a quotient has no A —torsion. ]

2.4 Action of sl,(C) on M

Let B be the sub-C—algebra of the Weyl algebra C[o](d) generated by the vector
fields U,, p > —1, where U, is the vector field on N defined as the image by the
differential T, of the quotient map:

quot : M :=CF — N :=C" /&, ~C*

of the vector field Zl;zl zf“ %
"]

Theorem 2.4.1 For each p > —1, we have ZU, C 1. Then, the right action of B
on Dy induces a morphism of algebras between B and the algebra of left Dy -linear
endomorphisms of M.

Moreover, the right action of B on M satisfies (U, Uyl = (g — p)Up1q. VP, q =
—1.

Proof It will be enough to show that for each integer p > —1 we have the inclusion

ZU, C I.Ifitis not difficult to prove such an inclusion for p = —lor p =0by a
direct computation of the commutators of U, with the generators of Z, it seems rather
difficult to do it for p large, because the coordinates of U, in the Clo]basis 9y, ..., o

of the polynomial vector fields on N seems more and more complicated. Therefore,
we shall use the local version of Theorem 5.1.1 in [1] given in Proposition 2.2.3.

Let P € Z, p > —1 aninteger and m € N. Using the formula U,[N;;] = mNy4p
which is easy to verify on M, we get

PlUp[Nm]] = P[mNpy4p] =0
when P annihilates any Newton polynomial. Then, P U, also annihilates any Newton
polynomial and thanks to Proposition 2.2.3 we conclude that PU ), belongs to Z proving

the first assertion.
The verification of the commutation formula

UpUq = UgUp = (@ = P)Up+q
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is easy and left to the reader. ]

Remark The commutation relations

[Uo, U~1] = =U-1, [Up,Uil=U; and [U;,U-1]=2Uo
which are easy to check in M, show that the Lie algebra £ generated by the U, (with
the commutators given by the formula (17)) contains a sub-Lie algebra isomorphic
to sl>(C). The formula (17) shows that £ acts on M and then induces a structure of
51> (C)—module on M.
3 The Dy-Modules N

3.1 Homothety and Translation

Notations Let 1 a complex number. We define the left ideal
Jn =T+ DyUo— 1)

in Dy and let \V;, be the quotient Dy / J;. We shall denote by g; : M — Nj, the
quotient map.

We shall denote, respectively, by 77, and .7 the endomorphisms of left D -modules
on M induced, respectively, by the right multiplications by Uy — A and U_; (see the
Theorem 2.4.1). They satisfy the commutation relation (see loc. cit.)

0T — T oy, =—-T
for each A € C and \V;, is, by definition, the co-kernel of .7;..

AsZ.U_; C I, writing this relation in the form J%, 1 o 7 = .7 o /% we see that
the right multiplication by U_ induces a left Dy-modules morphism

D No—1 = N,

for each A.

Proposition 3.1.1 For each ). € C we have an exact sequence of left Dy-modules on
N

0> M M2 N =0 17

where g, is the obvious quotient map.

Proof The quotient map g,, is surjective by definition, so the point is to prove that the
kernel of g, is isomorphic to M.
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This kernel is obviously given by
JnJI >~ (Z+ DnUo—1))/Z >~ DyUo—1)/ZNDyU— 1) (18)

The proof will be an easy consequence of the following lemma.

Lemma3.1.2 Let P be a germ in Dy  for some o € N such that P(Up — 1) is inZ,.
Then, P is in Iy. Therefore, s N Dy o (Uy — A) =I5 (Up — A).

Proof Assume that the lemma is wrong. Then, let Py in Dy , having minimal order
among germs P in Dy , satisfying the following properties

1. P(Up—M)isinZ,; N Dy o (Up — A);
2. PisnotinZ,.

Let 7 be the symbol of Py and let g be the symbol of Uy. We have mg € p.(Iz)s.
However, we know that g does not vanish on any non empty open set of Z, because
{g = 0}N Z has pure co-dimension 1 in Z (see Lemma 2.2.5 above). Then, 7 vanishes
on (V x CK) N Z where V is a neighborhood of o in N and, as we have proved that
Z is reduced and is the characteristic cycle of M, their exists a germ P; in Z, with
symbol equal to w. Then, (Py — P;)(Uyp — A) satisfies again the properties 1 and 2
and is of order strictly less than the order of Py. Therefore, Py — Pj is in Z, and this
contradicts the fact that we assumed that Py is not in Z. [ |

End of proof of 3.1.1 The previous lemma shows that for each A € C
INDyWUy—2r)=Z(Uy—1).

Therefore, the right multiplication by Uy — A induces an isomorphism of left Dy -
modules

M — Dyn(Uo — 1) /Z(Uy — 1)

and the kernel of ¢;, is isomorphic to M by the inverse of this isomorphism. ]

Definition 3.1.3 Define the Dy-module 1 as the quotient DN/(I + DyU_). For
each A € C then define .7, : N;, — N4 as the Dy-linear map induced by 7.

Lemma 3.1.4 For each ) € C the co-kernel of the Dy-linear map 5+ is naturally
isomorphic to the co-kernel of the Dy -linear map %ZM_ 12 N — Ninduced by ;11
and there is also a natural isomorphism of Dy -modules between the kernels of 76, +1
and F 41.
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Proof Consider the commutative diagram of left Dy-modules with exact lines and
columns:

0

0

0 —— Ker(Z41) N, e Nt N,\DH ——0
0 0

where ./\/Er1 is, by definition, the co-kernel of 71 : Ny — N,11. By a simple
diagram chasing it is easy to see that V, AD+1 is also the co-kernel of j{’jﬂ M- N

A elementary diagram chasing gives also the isomorphism between kernels of «%%»H
and 75 41. [ |

We shall prove now that for A # 0, 1 the map .7, is an isomorphism of left Dy-
modules. This implies N = {0} for A # 0, 1.

Lemma3.1.5 Let %, : Niy1 — N, the left Dy-linear map given by right multiplica-
tion by Uy. Then, we have for each A € C

Tio%_1=rr—1) on N, (A)

G—10T =rr—1) on Ny (B)

Therefore, for ). # 0, 1 the left Dy-linear map 9, is an isomorphism.

Proof We shall use the same argument than in the proof of Theorem 2.4.1 to prove
the formulas

UU_1 =Uyp(Up—1) modulo 7T and U_ Uy = Uy(Uyp+ 1) modulo T
(19)
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For each m € N we have:

UrU_{[Nn] = Ui[mNy—1] = m(m — 1) Ny,

Uo(Uy — D[N, ] = Upl(m — 1)Nyyl = m(m — 1)Ny, and also
U-1Ui[Nn] = U-1[mNpyy1] = (m + 1)m Ny,

Uo(Uop + D[Nl = Uol(m + )Nyl = m(@m + 1) Ny,

and this implies Formulas (19).
These give (A) and (B) and the conclusion follows. [ |

The following important result shows that adding to the ideal A the invariance
by translation and the homogeneity 1, that is to say considering the left ideal in Dy:
A+DyU_1+Dy(Ug—1), werecover theideal /1 +DyU_; and DN/(jl +DnU_1)
is the co-kernel of the map .7} : Ny — M. Therefore, as a corollary, we shall obtain
the equality

N =Dy /A+DyU_i +DyUp - 1). (20)

Proposition 3.1.6 For h € [2, k] we have the equality

k—1
(U — 1)+ 051Ut =kT" + > (k= q)ogAn—1.441 (En)
g=1
and for h = 1 the equality
k—1
—01(Uop— 1)+ EU_1 = Y _(k— q)o, T4 (E1)
qg=1

Proof Recall first that, if we put E := ZZ: 1 hoy 0y, then for any m € [2, k] we have
T™ = 010m—1 4+ O E = 010m—1 + E0y + 0.

For h € [2, k] we have

k k—1
U0+ 0h-1U_1 = Y qogdgdn +hip + Y _(k — )0 dg419n—1 + (k — h + 1),
q=1 q=0

k
= Z 040400 + Z(k —q)0gAp—1,4+1 + k310,
q g=1

k
q
=1
k
+ 3 (k= )0y 99 + (k + 1)d
g=1
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k—1
=kEO, +k010p—1 + ko + 0y + Z(k —q)0gAn—1,4+1
g=1
k—1
= kT + o + Z(k —q)04An—1,4+1
g=1
which is (Ep).
For h = 1 let us compute ZZ;{ (k — q).04. T
k—1 k—1
> k=)o T = (k= q)oy (9104 + 9g41 E)
g=1 g=1
k-1 k-1 k-1
D k= o T = | Y (k= q)ogdy | 91+ Yk — 9)0,04 11 E
q=1 g=1 g=1
k-1 k-1
D k= @)og T = (D "k — q)ogdy)d1 + (U-1 — kd))E
g=1 g=1

=k(E — 0x )01 — (Up — koydg)dy + (U-y —kdE
=kE0 — ko E — Uy + U_E
=FEU_1 —01(Uy— 1)

using the commutation relations [U_1, E] = k01, [E, 91] = —0d; and [Uy, 91]

—01. Therefore, we obtain the equality (E7).

Remarks

1. An interesting way to look at these relations is to compare them with the minors

of the (k + 1, 2) matrix

T ==
01 -&

02 01

Ok Ok—1

where, by definition, & is the right product by E in the Weyl algebra C[o ](n). The

relations (Ep), h € [1, k] may also be seen as the fact that

01 —FE

02 01
Up—1)+ ’ U_;

Ok k-1
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is a global section of ZF C D’[‘\,.
2. Let g and y be the symbols of Uy and U_1, respectively. Looking at the symbols
in formulas (Ep), h € [1, k], we obtain (recall that [, (1) is the symbol of E):

m —ls(n)
2 m

goom| ... | +tv,m| m =0 on Z (F)
Nk Nk—1

3. For A # 0 the sheaf of solutions® of N near the generic point in N is the rank
k local system with basis z;?. This is consequence of the the fact that any local

trace function’ F which satisfies (Uy — A)[F] = 0 is the trace of a homogeneous
function of degree A.
4. Thanks to Lemma 3.1.5, the map induced by 7, on solutions

Sol®(N;) — Sol®(N_1)

sends zj? to Azj?_l. This is clearly an isomorphism for A # 0, 1.

3.2 Characteristic Varieties

Recall that for a differential operator P € Dy we note s(P) its symbol which is a
section of the sheaf Oy[n] of homogeneous polynomials in 1 := (31, ..., Nk).

Proposition 3.2.1 Let T be a coherent left ideal in Dy such that its characteristic ideal
Iz is the reduced ideal of an analytic subset Z in N x Ck. Let U € '(N, Dy) be
a differential operator of order q, such that its symbol u does not vanish on any non
empty open set in Z. Assume that LU C L. Then, the characteristic ideal of T +DyU
is equal to I7 + Oy k.

Moreover, for any o € N and any germ at o of order ¢ +r: Q = P + BU where
P el;and B € Dy o, there exists P\ € L, of order at most ¢ +r and By € Dy
of order at most r such that Q = Py + B1U.

Proof First, assume that there exists P € Z, and B € Dy, such that the symbol
of Q := P+ BU isnotin Iz + (u). Then, consider such a couple (Py, Bg) with By
of order b minimal among all such couples. Then, Py and BoU have the same order,
because when their orders are different we have s(Q) = s(Pp) or s(Q) = s(Bo)u
contradicting the fact that s(Q) is notin Iz + (u).

In addition, if Py and BoU have equal orders which is the order of O, we have the
equality s(Q) = s(Pp) + s(Bo)u contradicting our assumption.

Therefore, the only case left is when Py and BoU have the same order by + g which
is strictly bigger than the order of Q. In this case we have s(Py) + s(Bo)u = 0 which

© We mean here Sol®(\;) := Homp, N, On).

7 See Introduction or [1].
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implies that s(Bg)u vanishes on Z. However, our hypothesis on # implies then that
s(Bg) vanishes on Z. As Iz is reduced and is the characteristic ideal of Z we may find
agerm B € Z,, such that s(B) = s(Bp). Then, write

Q=Py+ BoU = Py + BU + (Bp — B)U.

Since BisinZ, and ZU C Z we have P; = Py+ BU inZ, and the order of By — Bj is
strictly less than b. This contradicts the minimality of b and proves our first assertion.

Assume now that Q = P + BU has order g + r and that B has order r + s with
s > 1. If the order of P and BU are not equal then either P or BU is of order g + r
and P and BU have orders at most ¢ + r we are done.

So we may assume that P and BU have the same order ¢ + r + s with s > 1.
Then, the previous considerations will produce B’ € Z, with s(B’) = s(B) and then
Py := P+ B'U and B := B — B’ give that Q = P; + B1U with P, € Z, and
By € Dy of order at most g + r + s — 1. By a descending induction on s this
completes our proof, because when B has order at most  the order of Pj is at most
q + r, because we assume that Q has order g + r. |

The following two corollaries are immediate applications of the previous propo-
sition, using Proposition 2.2.2 and Theorem 2.4.1 which allow to verify that needed
hypotheses.

Corollary 3.2.2 The characteristic cycle of N, YA € C, is the cycle associated to the
ideal 17 + (g) in On[n] where g is the symbol of Uy.

Also the characteristic cycle of M is the cycle associated to the ideal 17 + (y) in
OnI[nl where y is the symbol of U_. |

Corollary 3.2.3 Let T the left ideal in Dy that we introduced in Definition 2.2.1 and
let U := Uy — M. Then, for any non zero germ Q € T + DyU of order q + 1 there
exist a germ P € 1T of order at most ¢ + 1 and a germ B € Dy of order at most q
such that Q = P + BU. [ |

Remark

1. We shall be interested mainly by the special case of Corollary 3.2.3.
Define for each g > 0

Jilg+1)=1(qg+ 1) +Dn(g)(Uo — 2).

Then, this corollary gives, for each A € C and for each ¢ € N* the equality
T N Dn(q) = Jr.(g). This implies that the natural map

Ni(q) — N, 21
is injective

2. Note that J,(0) := Z(0) = {0} as no non zero differential operator of order 0
annihilates the Newton polynomials (in fact Ny := k is enough !)
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3. Also the fact that Z(1) = {0} (see Lemma 2.2.5) implies the equality
Jn(1) = On(Up — A).

The irreducible component X. Let Hxr := {A(c) = 0} in N. At the generic
point o of this hyper-surface, the polynomial P, has exactly one double root ¢ (o)
and ¢ : Hp --» Cis a meromorphic function which is locally bounded on Ha. Then,
define the meromorphic map

O Hp - Py

by letting &, (c) = (—p(@)*" for h € [1,k] in homogeneous coordinates. Let
X C N x C* be the N —relative cone over the graph of the meromorphic map ®. This
is a k—dimensional irreducible subset in Hx x C* and its fiber at the generic point in
H\ is the line directed by the vector ®,(0), h € [1, k].

We shall consider the following sub-spaces in N x Px_; (where s(P) is the symbol
of P)

P(Z) :={(o.n) e N xPr_1 /s(P)(o,n) =0 VP eI\ {0}}

k—1
P(X) = {(0, n €P(2) [ y(o,n) =Y (k—h).opnui = 0}

h=0
k
P(Y) := {(a, n) € P(Z) [ go.m) =) hopm = 0} :
h=1

The next proposition will justify our notations in proving that P(X) is the graph of
the meromorphic map @ !

Proposition 3.2.4 The subspace P(Z) is a complex sub-manifold of dimension k which
is a k—branched covering of N via the natural projection N x Pr_1 — N. The sub-
space P(X) is reduced and equal to the irreducible component of

P(Z)N (HA X Pk—l)

which is the graph of the meromorphic map ® : Hx — Py_1 defined above, and P(Y)
is the sum (as a cycle) of P(X) with the reduced hyper-surface in P(Z) defined by
the (reduced) divisor {ny—1 = 0} in P(Z).

Proof Firstremark thatif (o, n) isin Z and satisfies n, = 0 then we have n = 0. There-
fore, P(Z) is contained in the open set i := {n; 7# 0} and, on this open set which is
isomorphic to N x CH1, we may use the coordinates o1, . .., ok, N11/Nks - - - » Nk—2/ Mk
and z 1= —ng—1/Mk-

Lemma 3.2.5 We have an isomorphism

ok P(Z) —> ck given by (o,n) — (01,...,0k—1,2)-
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Proof Remark first that the vanishing of the (2, 2) minors which give the equations of
Z (see Formula (10) before Proposition 2.2.2) implies, assuming 7 #~ 0, that:

m/mk = (=) forh e [1,k — 1]

and also, as the symbol of 7% is equal to nynx—1 + nily (1), that I, (n)/nx = —(—2)k.
But then,

k
lo(/mc =Y (=)o = (=1)*(Pr(2) — 2)

h=1

shows that P, (z) = 0 on P(Z).
Let us show that the holomorphic map ¥ : CK — P(Z) given by

k—1
= (=) forhe[l,k] and o == (=) oyt
h=0

with the convention op = 1 gives an inverse to ¢.
First, we shall verify that v takes its values in P(Z). Note that the definition of oy
implies Py (z) = 0. We have for (o, n) = ¥ (c’, z) the equality:

k k
lo(m) =Y onm =y (=) "oy = —(—)F
h=1 h=1

Then, we have to verify that the vectors (1, ..., nx—1, 1) and (=), Nlseees Mi—1)
are co-linear. This is clear as the second one is x| = (—z)ng-times the first one (see
again Formula (10)).

To complete the proof, it is enough to check that ¥ o ¢ and ¢ o Yy are the identity
maps. This is easy verification is left to the reader. ]

End of proof of 3.2.4. In this chart we have

k k
glo,m)/mk =Y _ howm/mc =Y (=1 "hay" "
h=1 h=1

k k
glo,m/m = (=D (Z(—l)h(k — o —k Z(—l)hahzk—h)
h=1

h=1

and this gives

g m/m = (=D (2P ) = ke = k(Py () = ) = (D12P @),

@ Springer



On Partial Differential Operators Which Annihilate...

We have also

k—1

yo,m/m =Y (D" 'k —mop " = (D P 2).
h=0

Therefore, g = zy in this chart,® and the ideal generated by g and y in P(Z) is
generated by y which defined the hyper-surface P(X).

However, on this hyper-surface we have Py (z) = 0 and P, (z) = 0, so z is a double
root of P,. This implies that A(o) = O for (o, n) in the analytic subset |P(X)]|.

On a Zariski dense open set in Ha the unique double root of P, is equal to ¢ (o)
which is given by z = —ng_1/nx when (o, ) € |P(X)|. Therefore, |P(X)| contains
the graph of the meromorphic map ®. Moreover, as the projection P(Z) — N is
clearly a branched covering (of degree k) and over the generic point in Ha there
exists an unique root of multiplicity 2 for P,, P(X) has generic degree 1 over Ha. In
addition,, because P,/ (z) does not vanish at the generic point in P(X) (which has to be
over the generic point of Hx ) implies that the hyper-surface P(X) of P(Z) is reduced.
This is enough to conclude that P(X) is equal to the graph of ®.

The previous computation shows also that P(Y) is the sum of P(X) with the divisor
defined by {z = 0} in P(Z) which is a smooth and reduced hyper-surface given by the
equation nx—1 = 01in P(2). [ |

The determination of the characteristic cycles of the holonomic Dy -modules 9t and
N, is an easy consequence of the previous proposition thanks to Proposition 2.2.3.

Corollary 3.2.6 The characteristic cycle of the Dy-module N is equal to P(X). For
each complex number M the characteristic cycle of the Dy-module N, is equal to
P(Y) = P(X) + (P(Z) N {1—1 = 0}). u

Remarks

1. The intersection P(Z) N {nx—1 = 0} is equal to N x [v] where v is the point
0,...,0,1) € Pr_; and this intersection is the projectivization of the co-normal
to the hyper-surface {0y = 0}.

2. At the set-theoretical level we have

ZN{y =0} =XU( x {0}) and
Zﬂ{g=0}=XU<{6k=0}><{m=n2=~-~=nk—1=0})U(N><{0})-

3. Despite the previous results, g(o, 1) does not belongs to the ideal of C[o, 1] gen-
erated by Iz and y (o, n) at the generic pointin N x {0}. This is consequence of the
fact that Iz does not contain a non zero element in C[o, 1] which is homogeneous
of degree 1 in n, using Corollary 3.2.3.

The following lemma will be useful later on

Lemma 3.2.7 Assume that f3;U_ isin [J) » for some [ € Oy o, some integern > 1
and some A € C. Then, f isin oxOn ¢.

8 Compare withe Formula (F) at the end of Paragraph 3.1.
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Proof The factthat f0;/U_1 isin J, , implies that fn) y vanishes on the characteristic
variety of the Dy-module N, . Therefore, thanks to Corollary 3.2.6 f.n]y vanishes
on C, the co-normal bundle of the hyper-surface {ox = 0}. However, n; and y do not
vanish on any non empty open set in C:

this is clear for 1 and the restriction of y to C is equal to o}_1n; and ox_ also
does not vanish on any non empty open set in C. Therefore, f € On » has to vanish
on C and we conclude that f is in 04 Op 4. |

3.3 TheCased ¢ N

Notation For each A € C and each g > 0 we shall note
Jilg+ 1) :=1(q + 1)+ Dn(g)(Uo — 1)
and
Ni(g+1) :=Dn(g+1)/Tn(g +1).

For ¢ = 0 we note 75(0) := Z(0) and \V;.(0) := Oy / J,(0).
The goal of this paragraph is to prove the following theorem.

Theorem 3.3.1 For A € C\ N* the Dy-module N has no Oy-torsion.

Proof This result is a direct consequence of Proposition 3.3.5, thanks to the injec-
tivity for each ¢ > 0 of the natural map N, (q) — N, (see Remark 1 following
Corollary 3.2.3). |

Definition 3.3.2 For any A € C \ N*, for any integer ¢ > 2 and for any integer
r € [q, k(g — 1)] define the following elements in W, (see Formulas (12) and (13)
in Lemma 2.2.6)

O = (r — IVT™] — (¢ — 1) [P Uy — )] (22)
k
0 Oy, =Y (r—A— (g — D)onygrin. (23)
h=0

where in Formula (23) we assume that « € Nf and m € [2, k] satisfy || = ¢ —2 and
w(e) = r —m, and that 8 € NF satisfies || = ¢ — 1 and w(B) = r.

Corollary 3.3.3 For any integer q > 1 the kernel of the quotient map
lg : W(gq) — Ni(@)

is equal to the sub-Oy-module generated by Uy — , € W(1) and the elements 0, .,
foreach p € (2, q), and for each r € [p, (k — 1)p].
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Proof We have to prove that if a non zero differential operator P of order p < g is
in 7, then it may be written as Q + B(Uy — A) with Q € 7 of order at most p (or
Q = 0) and B of order at most p — 1 (or B = 0). When p > 2 this is precisely the
statement proved in Proposition 3.2.1. For p < 1 the only P which are in 7, (1) are
in Oy (Up — A) thanks to Remarks 2 and 3 following Corollary 3.2.3. [ |

Lemma3.3.4 Let A be in C\ N*; for each integer g > 2 the elements 0, , and y, ,
withr € g, k(g — D] ands € [k(g — 1) + 1, kq] form a Oy —basis of W,,.

Proof Let W, , be the Oy-module of W, with basis the y, , for » > p + 1. Then,
we have for r € [¢q, k(g — 1)]

Qq,r [S (V - )\)yq,r + Wq,r+1

so the determinant of the k(¢ — 1) — g + 1+ k = kg — g + 1 vectors 0, ,, y4 s in
the basis (yq.. r € [q, kql) of W, is upper triangular and is equal to ]—[f(zqqfl)(r —1)
which is in C* as soon as A is not in the subset [¢, k(¢ — 1)] of N*.

Proposition 3.3.5 Let g > 1 be an integer and assume that X\ is not an integer in
[0,k(g—1)]. Let Ly : Wy — Ni.(q) be the restriction to Wy of quotient map l,. This
On-linear map is surjective and its kernel is the sub-module of VW, with basis the o
forr € lq, k(g — 1)]. Therefore, N;.(q) is a free Oy -module of rank k.

Proof Remark first that for ¢ = 1 the result is clear as for A # 0 we have
Na(1) = @},_; O dh

thanks to Remark 3 following Corollary 3.2.3 and W; = @2:10 ~N.Y1,n With
L1(y1,n) = [0n]. Therefore, we may assume that g > 2.
We shall prove first that \V; (¢) is equal to the image of L, by induction on g > 2.
Assume that ¢ = 2. Then, the image of

k

9j(Uo—n) = (j =3 =Y _honyrntj € Ws
h=1

by L is the class of —(j — A)d; in N. Therefore, the image of Ly contains the
classes of 91, ..., 0y as Aisnotin [1, k] and also contains the class of 1 as we assume
A # 0 and as the equality A = Zlfl:l hoy,dp, holds in ;. However, the image of Lj
contains obviously the classes of 3% for any multi-index o € N, || = 2. Therefore,
our assertion is proved for g = 2.

Assume now that ¢ > 3 and that our assertion is proved for ¢ — 1. Remark that the
image of L, contains obviously the classes of 9% for each o € NK, |a| = ¢g. We shall
use now the following easy formula:

e Foranyr € [¢ — 1,k(q — 1)] and any j € [1, k] we have in N, the equality

8qu—1(yq—l,r) = Lq(aqu—l,r) = Lq()’q,r+j)-
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For any 8 € NF\{0} with || < ¢ — 1 we may find j € [I,k] and y € N, such
that 3 = 9 ;07. By our inductive assumption there exists x € WW,_1, such that
Ly _1(x) = 9. Then, 9;x is in W, and thanks to the formula above we have

Ly(3;x) =8jLy—1(x) = 8;.0Y =" in M.

Again, we conclude that the class of 1 in N, (¢) is in the image of L, using A # 0 and
the equality A = Zﬁ:l hoy,dp, which holds in Ny (). This complete the proof of our
first statement.

However, it is clear that 8, , forr € [q, k(g —1)] are in the kernel of L. Therefore,
the Oy-free rank k module with basis (yg,r. r € [k(g — 1) + 1, kq]) is surjective via
L, onto N} (¢). The next lemma completes the proof, as we already know that \; (1)
is a Oy-free rank k sub-module of N\, (¢) with basis a1, ..., 9. [ |

Lemma 3.3.6 Let A be an integral commutative ring and let M be a A-module. Assume
that there exists a surjective A-linear map p : AX — M and an injective A-linear
map i : A¥ — M. Then, p is an isomorphism.

Proof Let j : AK — AF be a A—linear map, such that j o p = i. Therefore, j
is injective and the co-kernel C of j is a torsion module. Let ¢ : A¥ — C be the
quotient map and let K be the kernel of p. The restriction of ¢ to K is injective,
because if x € K satisfies g(x) = 0 then x = j(y) for some y € AF and then
i(y) = p(j(y)) = p(x) = 0, which implies y = 0 and x = 0. Therefore, K is a
sub-module of C and then K is a A—torsion module. However, as K C AX we have
K = 0and so p is an isomorphism. ]

Lemma 3.3.7 For A ¢ N we have oy A(0)N;(2) C N;.(1).

The proof will be a simple consequence of the following lemma.
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Lemma3.3.8 Let y := (ya, ..., yx) be in Clo1*~! and consider the C[o]1—linear

system (2k — 1,2k — 1) on C[o1*~! given by the following Clo |—linear forms:

k
Ly(y) =Y hopygsn for g € [1,k]
h=0
k

Ar(y) = onyrn for re([2,k]
h=0

Then, the determinant of this linear system is equal to o A(c) where A(o) is the
discriminant of the polynomial P, (z) ‘= &+ thl(—l)hohzk_h.

Proof Remark first that A(o) is also the discriminant of the polynomial (see the
computation below):

k
Py (2) = Z onz* M.
h=0

Then, remark also that the resultant of the polynomials P, () and kP, () — 2(Py) (2)
coincides with the determinant of the (2k — 1, 2k — 1) C[o]—linear system defined
in the statement of the lemma. Therefore, it is enough to compute this resultant. It is
given by

R(o) = 1_[ (kﬁg(Zj)_Zj(ﬁa)/(Zj))

Py (2/)=0

=or [[ DN'P(—zj) =okA(0)
Py (—zj)=0

as Py (—2) = (— ¥ P, () implies f’(/, (—2) = (= 1*=1 P/ (z). This conclude the proof
[ |

proof of 3.3.7 It is enough to prove that for each (p,q) € [I, k] there exist
polynomials af’ 4 (1) in Clo, A] (in fact affine in A), such that

k
ok A0)dpdg — Y _af () € T
h=1

For m € [2, k] we have
k
T" =yom + Zahyz,m+h +yim€ICT
h=1
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and for g € [1, k]

k
0y(Uo = 2) = D honyag+n + (q = Myiq € T
h=1

This gives (2k — 1) C[o ]—linear relations between the basis elements y» ,, ¥ € [2, 2k]
of W> modulo L; ! (N;.(1)). However, the determinant of these 2k — 1 vectors in the
basis yp , of W is equal to oy A(o) thanks to the previous lemma. The conclusion
follows, as we know that L, : W> — N3 (2) is surjective for A ¢ N. |

Lemma 3.3.9 Assume that on a Stein open set U in N the equality of the sheaves
N 2) v = Noa(D is true for some 1 € C. Then, we have

WNow =N

Proof 1t is enough to prove the equality N (¢)jy = N, (1) for any ¢ > 2, because
we know that N} = Ug>0 N, (q). As this is true for ¢ = 2 by assumption, we shall
prove this equality by induction on ¢ > 2. Therefore, assume that this equality is
proved for some g > 2 and we shall prove it for g + 1.

Leta € Nk,suchthat|a| = g+1and write 9% = 8,,8/3 forsome p € [1, k] and some
B € NF with |8| = ¢. By the inductive assumption we may write 9# = ZIZ=1 by oy,
in NV, (q) with b, € O(U), because we know that \V; (1) = @’,;zloNah on N. Then,
we obtain that 8,,8‘3 is in M3 (2)|y = N (1)jv, concluding our induction. [ ]

Corollary 3.3.10 For each A € C\ N there exists a meromorphic integrable connec-
tion V, : Ok == Ok ® Ql with a simple pole on the reduced hyper-surface
{ok A(o) = 0} C N, such that the restriction of N, to the Stein (mfact affine) open set

= {ox A(0) # 0} is isomorphic to the Dy -module defined by (ON, V,). Moreover,

this isomorphism is the restriction of an injective Dy -linear map
Ni — (Of (0 A(0)), V3).

Proof This is an easy consequence of the Oy isomorphism N; (1) — 69],‘,:1 0o, and
previous Lemmas 3.3.7 and 3.3.9. ]

We shall conclude this section by the following theorem.

Theorem 3.3.11 Let A € C\ Z. Then, N, is the minimal extension of the meromorphic
connection given by (N5.(1), V). Therefore, N, is a simple Dy-module.

Proof To see that N, is the minimal extension of the simple pole meromorphic con-
nection (N (1), V;L) it is enough to prove that A has no torsion, and this is given by
Proposition 3.3.5, and no co-forsion, that is to say that there is no non trivial coherent
left ideal /C in Dy containing 7, and generically equal to J, on N. Such an ideal
defines a holonomic quotient Q of A/, which is supported in a closed analytic subset S
of N with empty interiorin N. As NV, is a quotient of M, we may apply Corollary 2.3.2
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and so it is enough to show that near the generic points of {ox A(c) = 0} such an ideal
K is equal to J,, or to Dy.

Near the generic point of {oy = 0} we have A # 0 and we may use a local
isomorphism of N given by a holomorphic section of the quotient map

quot:M:(Ck—>(Ck/Gk=N.

Via such an isomorphism A}, is the quotient of D¢« by the left ideal generated by the
% fori # j € [1,k] and ZI;: 12 ]337] — A. The lemma below allows to conclude

this case. For the other case, that is to say near the generic point of {A = 0}, Theorem
2.3.6 completes the proof.

The fact that N, is a simple Dy-module is then consequence of the irreductibility
of the monodromy representation of its associated meromorphic connection. ]

Lemma3.3.12 Let J, for . ¢ —N* be the ideal in D¢r generated by the differential
operators #;z,' forl <i < j < kand Zl,izl zh.% — M. Let assume that Q is
a quotient of the Dox—module N, = Dgk / Jy. in a neighborhood U of the point

(z(l), el z,?) in C* where z(l) =0andz; # zjforl <i < j <k, with support in
{z1 = 0}. Then, Q = 0.

Proof Assume that Q # 0 Then Q = Dy / KC where K is a left ideal in Dy, such that
J. € K C D. Then, restricting the open neighborhood U of z° if necessary, there
exists a positive integer 7, such that z/f belongs’ to K. Then, we have

0 Bl . .
—z = nzﬁ‘_l +z]— € K so writing this as (@)
971 971

k

k
9 9
nz'll_l + 2111—1 ( E g A) +)».Z'1'_1 - ZT_I <E Zhg) € K and then
h=1 h h=2 "

k
d
(n +)»)Z7_1 - E thrll_l— ek
P 9zh

as Zﬁ:l zh% — A € Jy C Kon U. However, zf € K implies also, for each
j €[2,kl:

82 n n—1 0 2
—— ' =nT — 4+
dz19z; ! U9z Taziaz;

€ K which implies (b)

3
nz’f‘l5 e K Vjel2 k]
J

again as J, C K. Combining (a) and (b) we conclude that z'l'_l belongs to /C, as we
assume n > 0 and A ¢ N*,

9 The class of 1 in Q is of z1 —torsion!
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By a descending induction on n we conclude that 1 belongs to K which contradicts
our assumption that Q is not 0. |

Remark Note that the Dy -linear map
91 : Ny = Hiy _0/(On) = Onlo; '1/On

defined by ¢_1(1) := o}_1 /0% is surjective, because ¢_1(dx—1) = 1/0ok. This shows
that for p = —1 the sheaf V_1 has a non zero quotient supported by {0y = 0}. Then,
using the isomorphism .75 : N;_1 — N, for A € —N* to deduce the case A — 1
from the case X for each . € —N*, we see that the sheaf N_ p has anon zero quotient
supported by {oy = 0} for any p € N*,

4 The Dy-Modules N, p € Z
4.1 Structure of Np, p > 1

The first important remark is that, thanks to Lemma 3.1.5, it is enough to determine
the structure of V; as for each p > 2 the Dy-module NV, is isomorphic to \; via the

right multiplication by U7 ™",
4.1.1 Minimality of A/~

Recall that V. ID is the co-kernel of the left Dy-linear map .77 : Ny — N defined by
the right multiplication by U_.

Thanks to formulas Ej,, h € [2, k] (see Proposition 3.1.6) we obtain that ID is the
quotient of Dy by the left ideal A + Dy (Ug — 1) + Dy U—_, because these formulas
imply that the partial differential operators 7™, m € [2, k] are contained in the ideal
A+ DyUy — 1)+ DyU_; and we have J; = Z + Dy (Uy — 1) by definition (see
Formula (8) for the definition of 7 and the beginning of Paragraph 3.1 for the definition
of the ideal 7).

We shall note N (¢) := Dn(q)/(J1 N Dn(q)) for each integer g > 0.

Proposition 4.1.1 For each q the natural map NF (q) — NID is injective.

Proof The proof will use Proposition 3.2.1 two times: the first time for the left ideal
A and with U := U_; and the second time for the left ideal A + DyU_; and with
U := Uy — 1. This will give the equalities

(A+DyU-1) NDn(q) = A(g) + Dn(g — DU-1 and
(A+DyU-1 4+ Dy (Uo — 1)) N'Dn(q) = Alg) + Dnlg — DU-y
+Dn(g — Do — D).

This will conclude the proof.
To apply Proposition 3.2.1 we have to show that the following properties hold:
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(i) The coherence of A and of A+ DyU_;.
(ii) The fact that the characteristic ideals of A and of A 4+ Dy U_; are reduced.
(iii) The inclusions AU_; C Aand (A+ DyU_)(Up — 1)) C A+ DyU_;.
(iv) The symbol of U_1 does not vanish on any non empty open set of the characteristic
variety of Dy / A.
(v) The symbol of Uy — 1 does not vanish on any non empty open set of the charac-
teristic variety of Dy /A + DyU_;.
The point (i) is clear.

The characteristic ideal of A is the pull-back by the projection p, : N x Ck — Ck
of the ideal of the reduced ideal /S (k) of the surface S(k) (see Corollary 6.1.6 in the
appendix).

The point (i7) is completed by the following lemma:

Lemma4.1.2 Let y(o,n) = Y ,_otk — h)opnus1 and g(o,n) = Zﬁ:l hopnp.
Then, defined the following ideals in On[n], where I := (p2)*(IS(k)):

L:=1+(y) and I3:= 1D+ (g).

Then, I, is reduced and g does not vanish on any non empty open set of the analytic
subset (N x S(k)) N{y = 0}.

Proof To see that I, is reduced, as N x S(k) is normal, it is enough to prove that
{y = 0} defined a reduced and irreducible hyper-surface in N x S(k). Looking at
the chart on the dense open set n;y # 0 of N x S(k) which is given by the map
(o,n) — (0, —ng—1/nk, k) € N x C x C* (see Paragraph 3.2) we find that y is
given in this chart by

y(o,m = (=D""P (@m where z:=—m_1/m
using the fact that , = (—z)* 1 in this chart. This gives the fact that {y = 0} is

reduced and irreducible in N x S(k).
The computation of g in the same chart gives that

g(o,m) = (=D z2PL(@)nk — (=D k Py (2)1k.

and this proves that g does not vanishes identically on any non zero open set in
(N x S(k)) N{y = 0}, because

(N xSk Nfy =01nfg =0} CcZn{y =0}

which has dimension &, so co-dimension 2 in N x S(k). [ |

End of proof of 4.1.1 The pointiii) is consequence of the following easy formulas:

Ap Ui =U1Apy—k—p—DApr14—k—q)Apgt1
Ap,qUO = UOAp‘q —(p+ ‘Z)Ap,q
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U_1(Up—1)=0UpU_;.

The points (iv) and (v) are obvious, because a non zero germ of section of Oy[n]
which is homogeneous of degree 1 in 1 does not vanishes of N x S(k). [ |

Recall that in W(q) = @;17=0W17 we have, for each 8 € N¥ with |8| = g — 1 and
w(B) =r — 1 (compare with Formulas (13) and (14), but here w(8) =r — 1)

k
[0F (W0 — D] =D honygrin+ (0 = 2)yg-1.,-1. (24)
h=1
and
k
[PU1] =) (k= W)onyg.rin+ (kg — 1) = r + Dyg1r (25)
h=0

Now, note 87 a multi-index with |8+| = g —land w(8T) = r,whenr # k(g—1)+1
and Bt =0forr =k(qg — 1) + 1.
Then for r # k(¢ — 1) 4+ 1 we have

k
N
0 WU —1) =Y honygren+ = Dyg-1,
h=0

with the convention oy = 1 and 8’3+(U0 —1)=0forr =k(g—1)+ 1.
Then define for ¢ > 2 and r € [g, k(g — 1)] the following elements in W,;:

bg.r = (r — 1)PU_; — (k(q — D —r+ 1D Uy —1) (26)
This gives

O4r =k

M~

((V —1)—h(g— 1))Uhyq,r+h (27)

h=0

Remark that for » = k(g — 1) + 1 and i = k the vector y, .k is not defined in W,
and we cannot use the formula (27) to define éq,k(q_l)Jr 1. But with our convention
3B (Uy— 1) = 0 forr = k(g — 1) + 1, we define the vector

k—1
~ —1
Ogkig—11 :=kg — DI U1 = k(g — 1) Y_ (k= h)on.Yg k(g—1)+1+
h=0
(28)

which is in W,.
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Then, for g > 2, let éq C W, be the sub-Oy-module generated by the elements
éq,,, r € [q, k(g — 1]+ 1]. Of course éq is in the kernel of the Oy —linear map

Ly:W, — NID(q)

induced by the quotient map WW — N, ID
For ¢ = 1 define O := OyU_; and V; := EB';,=2(9N[8;,] (where y1 , := [d] in
Wh).

Lemma4.1.3 For each g > 1 we have a direct sum decomposition W, = (:)q eV
where V, is the Oy —sub-module with basis y, , withr € [k(q — 1) + 2, kq].

Proof For ¢ = 1 our assertion is clear. For ¢ > 2 ( and so r > 2) the difference
5,” — k(r — 1)yg4,r is a C[o]—linear combination of the y, ; for s > r 4 1, so the
matrix of the vectors 5%, forr € [q, k(g — 1)+ 1]and y, 5,5 € [k(g — 1) + 2, kq]
is triangular in the basis y; ;, t € [q, kq], of W, with determinant equal to

k(g—1D+1
KED@DH T (- 1) = k6D (k(g — 1)!
1 (g2

which is a positive integer. |
Lemma4.1.4 Foreachq > 1themapl, : V;, — ./\/'1D (q) induced by L is bijective.

Proof We shall prove this lemma by induction on g > 1. First remark that the map
L V] — ./\/'ID(I) is surjective (in fact an isomorphism of free rank (k — 1) Oy-
modules), because 1 = Y5 _, hoyd), and kdy = — Y F_} (k — h)oydp1 in N

So let ¢ > 2 and assume that l, 1 : V,—1 — ./\/ID(q — 1) is surjective. Then,
./\/1D (g — 1) is contained in the image of L, because for r € [k(g —2) +2, k(g — 1)]
the relation (26) shows that the image of y,—1, by [;—1 is in the image of L.

Then remark that L, induces a surjective map onto the quotient N, ID (@) / N 1D g—1
and that (:)q is in the kernel of L. Therefore, I, is surjective on N, ID (¢)- Therefore,
we have a surjective map [, of the rank k — 1 free Oy-module V, onto N, F (q)
and an injective map of the rank k — 1 free Oy-module N, ID(I) into V] ID (g)- Then,
Lemma 3.3.6 gives that /, is bijective. |

Theorem 4.1.5 The restriction of./\/ID (1) to the Zariski open set {A(o) # 0} is a rank
(k — 1) free'® On-module with a simple pole meromorphic connection along { A = 0}
given by the inclusion A(O‘)./\[ID 2) C NID(I) (see Lemma 4.1.6 below). Its sheaf
of horizontal sections is locally generated by z; — zj where zj, h € [1, k], are local
branches of the multivalued function z(o) defined by Py (z(0)) = 0. The Dy-module
N 1D is the minimal extension on N of this vector bundle with its integrable regular
meromorphic connection. Therefore, it is a simple Dy-module.

10 [somorphic to 69;;:2(’)1\/ .
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Proof Lemma 4.1.4 gives that the map [, : V, — NID (g) is a isomorphism of Oy-
modules for each ¢ > 1 and Proposition 4.1.1 implies that V] F is the union of the
sheaves N, ID (q), g > 1. Therefore, the Dy-module N, ID has no Oy -torsion.

Thanks to Lemma 4.1.6 below we have the inclusion AN/ ID 2) C J\/F( 1). This
implies that NV, ID(I) ~ (’)/]‘V_l has an integrable meromorphic connection Vi with a
simple pole along {A(c) = 0} on N. The fact that ; = J; + DyU—_; implies that
the horizontal sections of /\/ID(I) are trace functions (see [1]) which are homoge-
neous of degree 1 and killed by U_;. Therefore, they are C—linear combinations of
z1(0), ..., zk(0), the local branches of the multivalued function z(c) on N defined
by Py (2(c)) = 0.

The condition for Zﬁ:l apzn(o),ap € C, to be killed by U_| =~ Zﬁ:l % is

given by ZIZ:I ap = 0 and then the horizontal sections are linear combinations of the
differences z; — z;, i, j € [1, k]. A basis of horizontal sections is given, for instance,
by 22(0) — 01 /k. ..., 2k(0) — o1 /k (note that Y5 _, (z;(0) — o1 /k) = 0).

The Dy-module N, ID has neither Oy -torsion nor O y-co-torsion, because its char-
acteristic variety is the union of N x {0} and X (X is defined in Sect. 3.2) and, thanks
to Theorem 2.3.6, it has neither A-torsion nor A-co-torsion as a quotient of M. There-
fore, \V. 1D is the minimal extension of the meromorphic connection (./\/ ID(I), V]) and
it is a simple Dy -module, because the monodromy representation of the local system
of horizontal sections of (N 1‘:'(1), V1) is irreducible. [ |

Lemma 4.1.6 We have AND(2) € NP(1).

Proof In Wz/Wl the 2k — 1 vectors induced by 9;(Up—1), j € [2, k]and 9,U_1, h €
[1, k] are given in the basis y2 ,, 7 € [2, 2k] of this free Oy-module by the relations:

k
Aj=0;Ug—1) =Y popyrjip
p=1
k-1
By :=0,U_| = Z(k = P)OpY2.htp+l
p=0

with the convention og = 1.

Put P, (z) := Zl;:() opzk_p and y2x4p = k=P,

Then By = 13(; (z) and A = zﬁ(; (z) — kP, (z). Therefore, the resultant of Ay
and By is equal to (—k)*=1A(0). The determinant of the vectors Aj,jel2,k]and
Bp,h € [1,k] in the basis y2,,r € [2,2.k] of W, =~ W2/W1 is then equal to
(=) TA(0) (compare with Lemma 3.3.8). |

4.1.2 The Structure Theorem for N/p, p > 1

We first examine the case p = 1. As already explained in the beginning of this section
this will be enough to describe the structure of /), for any p € N*.
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The torsion sub-module of N is described by the following result. Remark that we
already know from Theorem 4.1.5 that the torsion sub-module of ] is contained in
the image of 7] : Ny — N as NID = N]/Im(%) has no torsion.

Proposition 4.1.7 There exists a injective Dy -linear map x : [IOk 0]((’)N) - M

which sends the class [1/oy] in H [6p=0] (On) to the class [0y U_1] in N7. Its image is
the torsion sub-module ® of N

Proof Note first that H1 —0)(On) is given by Dy /( DNah + Dyoy) as the
annihilator of [1/0y] is generated by op, h € [1,k — 1] and ok To show that y exists
it is enough to show that 95, h € [1,k — 1] and oy annihilate the class [d;U_{] in
N1. The fact that 0;[3;U_1] = 0in N] for i € [1, k — 1] is a direct consequence of
Formulas (Ej), h € [2, k] which give [0,U_] = 0 in V. Then, Formula (E) gives
the vanishing of the class of EU_| = th:l 0,0,U_1 in N7. Therefore we obtain
that o4 [0, U_1] vanishes in N] and yx is well defined. Moreover, as H _[Gk O]((’)) s a
Dy -module with support in {0} = 0}, its image is contained in the torsion sub-module
in V.

Note that we know that the torsion in V] is only oy —torsion thanks to Corollary 3.2.6
and Theorem 2.3.6.

To prove the injectivity of y, assume that the kernel of x is not O and consider
an element K := Z’;’Zl fpf),f[l/ak] in this kernel with f, € ON/(ok) and with

m minimal. Then, we have 0 = x(K) = [Z';’zl f,,a,f“U_]] in Nj. Therefore,

fm nm+] y is the symbol of an element in [J;. Then, Lemma 3.2.7 implies that f,, is
in 0x Oy contradicting the minimality of m. Therefore, x is injective.

To complete the proof we have to show that if P induces a torsion class in V] then
there exists Q € Dy, such that P — Q0o U_; is in J;. As we already know (because
NID has no torsion) that there exists P; € Dy, such that 7] (P;) = [PiU_1] = [P]in
N7 and as we know that 9,U_ = 0 foreach i € [1, k — 1] we may assume that P is
in Oy[0]. However, 3,:‘ U_, is torsion in V] for n > 1, because d; U_; is torsion (see
above). Therefore, the only point to prove is that if fU_; is torsion in A} for some
f € Oy then f = 0. This a consequence of the following lemma. |

Lemma 4.1.8 The class of U_y is not in the oy, —torsion of N.

Proof Assume that o;'U_ is in J; for some n € N. Then, choose n minimal with this
property and compute

8]((7]?U_1 = nU]:l_lU_l +U]?3kU_1 e Ji.

As 00 U_1 is in J; (see above) we obtain that n = 0 by minimality of n. However,
U_; is not in J7, because its symbol y (o, n) restricted to the co-normal C to the
hyper-surface {0y = 0} is equal to ox—; which does not vanish identically on C. In
addition, C is a component of the characteristic variety of A} (see Paragraph 3.2).
This concludes the proof. ]

Theorem 4.1.9 The diagram below describes the structure of N1, where © is the
torsion sub-module of N, where o1 : N1 — Oy is the Dy-linear map defined by
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¢1(1) = o1 and where the isomorphism x : Q[IUFO](ON) =~ O is defined by sending
1/oy to [0rU—_1].

The Dy-modules ® ~ ﬂ[lak=()](oN) and ./\/']D are simple Dy-modules.

Moreover, we have the direct sum decomposition of left Dy -modules:

NI/O = Im(F)|© ® N} /O = Oy[U_1] & N

The following commutative diagram of left Dy-modules has exact lines and columns
where the maps i and e are defined by i ([U-1]) = [U—-1] and e([lU-1]) = k:

0 0
0 &) Im(F}) —>= ON[U_] —0
0 NF N —2 ;N 0
Ni /6 ——NT
0 0

Proof Note first that the quotient by the torsion sub-module ® (which is the image
of DyorU_1 in N7; see Proposition 4.1.7) of the image of Ay (equal to DyU_1 in
N71) is isomorphic to Oy, because its generator [U_1] is killed by 9;,, Vi € [1, k]
(see Formulas (E}p), h € [1, k]) and this quotient has no torsion, because ® is also the
torsion sub-module of Im(.77). This gives the exactness of the first line. The exactness
of the second line and of the columns are clear.

Note alsothat o1 (U_1) = k, so the upper right square commutes. The commutations
of the other squares are obvious.

To show that the map 6 is well defined and is an isomorphism is a simple exercise
in diagram chasing which is left to the reader.

The direct sum decomposition of A/ / ® is given by the left Dy -linear map

r:M/®—> Im(%)/@

constructed as follows:
Note first that ¢ (U_1) = k. For [P] € N let f := ¢1([P]). Then, we define

r([P) == [(f/K)U-i] € Im(F1)/©.

As 0O is in the kernel of ¢, this map is well defined on /\/1/@) and [P] — r([P]) isin
ker(p1) = J\/]* and defines a class in y / ®. Remark that Lemma 4.1.8 shows that
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the kernel of r is equal to T / 0, because ¢ is injective on Oy [U_1]. This gives the
desired splitting, as r induces the identity on Im(.77) / . |

4.2 The Structure of Ay

Define N as the kernel of the Dy-linear map ¢o : Ny — Oy given by go(1) = 1.
The sub-module N is generated by 91, . .., 9. We shall show that it contains a copy
of ON.

Note that the Dy-module Ay has no O y-torsion thanks to Theorem 3.3.1.

Proposition 4.2.1 The kernel of the Dy -linear map 7, : Ny — N given by the right
multiplication by U_1 is Dy Uy which is contained in J\/Bk and the quotient N(;"/DN U
is isomorphic to the Dy-module EEUkIO] (On).

The proof of this proposition will used the following results from [1] Proposi-
tion 5.2.1.

Proposition4.2.2 For each m € Z,m > —k + 1 and for each ¢ € N, such that
A(o) # 0 define

m+k—1

DNp(0) = Y (29)

(x:)
Pap=0 Fo ()

Each DN,, is the restriction to the open set {A(c) # 0} of a polynomial of (pure)
weight m in Cloy, ..., ox] and the following properties are satisfied:

(i) Form e [—k+1,—1], DN,, = 0and DNy = 1.
(i) Foreachm > 1, Zlflzo(—l)hahDNm_h = 0 with the convention oy = 1.
(iii) For each h € [1, k] and each m > 0 we have
MNm = (=" "mDN,,_p. [}
We shall use also the following lemma.
Lemma4.2.3 Forany h € [2, k] we have
Ui +0p—1(Up+1) e Z. (Fp)
Moreover, we have also
Ui —EWUy+ 1) el (F1)
Therefore, we have 0,Uy = —0d, for h € [2, k] and Uy = E in /\/’6*.

Remark Note that Formulas (F},) for any h € [1, k] give that 9,U; = 0in N_;.
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Proof Thanks to the characterization of trace functions given in [1] it is enough to
prove that for each m € N we have 0, U [N,,] = —0p—1(Uy + 1)[Ny,] for h € [2, k]
and 01U (N,,) = E(Uyp+ 1)[N,,] for all m € N. This is consequence of the following
formulas which use the results of [1] recalled in Proposition 4.2.2 and the equality
Up|Ny) = mNy, 1 p which is valid for each m € N and each integer p > —1, because
U, is the image by the tangent map to the quotient map quot : M = Ck — C¥ /&, =
N of the vector field Z’;Zl z?“ a‘%:

WU Nw] = 3plm.Nps1] = (=1)"'m(m + )DNyy1—p Vh € [1,k] VYm eN
1o + D[Nyl = dh_1[(m + )Nl = (=D"m@m + 1)DN,y_p1 Vh € [2, k]

proving Formulas (Fy,) for h € [2, k].
Now 04,9, [N,,] = (—l)h_lmohDNm_h gives

k
E(Uo+ D[Nl = m(m +1) ) (=1)""'0y DNy = m(m + 1) DN,y
h=1

because for m > 1 we have Zfl:o(—l)hahDNm,h = 0 (see ii) above) and also
E[1] = 0 for m = 0. However, for & = 1 we have

01U [Np] = 01[mNy4+1] =m@m + 1)DN,, Ym € N.

This gives Formula (F7). |

Proof of Proposition 4.2.1 Remark first that U is in N(}k and, thanks to the previous
lemma, that Dy U; contains 9, ..., dx_1 and 04 0;. Define the sub-Dy-module § :=

ﬁ;ll Dy 9p,. Then, we have a natural surjective Dy-linear map « : S + Dy 0 / S+
Dnoydr) — NS‘/DN U,. However, we have

S+ DNk /(S + Dnowdr) =~ Dy /(S N Dyoxdr) =~ Dy /(S + Dyoy)
thanks to the equality S N Dyoydx = (S + Dyoy) k. Moreover, the Dy-module
Dy /(S + Dyox) = H{, _4;(Oy)

is simple, so @ must be an isomorphism. ]

Theorem 4.2.4 Define /\f(|):I :=DnU; C N Then, NOD is simple and isomorphic to
J\/ID via the map induced by the map QU1 : N1 — Ny, and the quotient /\fo/./\f(l)j is
isomorphic to Oy (xoy,).

Proof The only point which is not already proved above is the fact that right multipli-
cation by Uy, OU; : N1 — A has its image in NV and induces an isomorphism of
NID to N2 = DyU; C N However, Uy is in N so the first assertion is clear. This
map vanishes on the image of .77, because U_1U; = (Uy + 1)Uy modulo Z (and
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also ZU; C T see Theorem 2.4.1), so that right multiplication by U; induces a map
which is clearly surjective. As NV, ID is simple, this surjective map is an isomorphism.
We have the following exact sequences of Dy -modules which describe the structure

of Np and N

0 NG Ng Hl, _(On) —=0

0 NG No On (*0;) —=0

Ou_,

0 N()D No M ./\/ID 0

where the map 0JU; : N7 — AN given by right multiplication by U induces an
isomorphism N ID — N, showing that NOD is a simple Dy-module. [ |

Note that the local horizontal basis of J\f()[' on the open set { A (o )oy # 0} is (locally)
generated by the (Log z; — Log z;) and their images by the isomorphism induced by
U are the (z; — zj) which generates a local horizontal basis of NV ID on the open set
{A(o)or # 0}.

4.3 The Structure of N/, forp € —N*

Again it is enough, thanks to Lemma 3.1.5, to describe the structure of A/_;. Define
N*, as the kernel of the Dy-linear map

o—1: N_1 = Oy (x0y)

which is given by ¢_1(1) = 0% / o. This map is well defined, because the mero-

morphic function oy_ / ox = ZI;ZI 1 / z;j is a local trace function of the open set
{ox # 0} and so it is killed by Z everywhere as the Dy-module Oy (*xox) has no
torsion. Moreover, we have, still on the open set {0} 7# 0}:

Uo(ok—1/ox) = (k — Dog—1 for — kor—1 [ox = —ox—1 [ on.

So Uy + 1 is also in the annihilator of ak_l/crk in Oy (xoy). Therefore, the map ¢_
is well defined. It is surjective, because ¢_1(dx—1) = 1/0%.

Lemma 4.3.1 The symbol of Uy does not vanish identically on X for each integer
k> 2.

Proof Recall that X is defined in Sect. 3.2. We have n, = (—z)* "5 on X where
Z = —nk—1/nk is the double root of P, at the generic point of Ha (recall that X is
the closure of the graph of the meromorphic map Hx --+ C given by the double root
of P, at the generic point of Ha). As Uy = 22:1(010;, — (h + 1)op41)0, (with the
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convention o41 = 0), we obtain

k

sUD = (=D Y (@103 — (h + Do) (=)
h=1

k k
= (D' Y (=D o102 + (D Y (=P k= proyt TP+
h=1 !

k
— (=DM Y (1P ot
p=2
s(U) = (=Dmeot (P (2) — 25) + (=D (PL(2) — k27" + (k — Do1z"72)
- (—l)kknkz(Pg(z) — alzkfl)
= — (=D oz — (=D ke + (= DF(k — Do 2*
+ (= Dk — (= D)F ko 25
= —2(= Do 2t

as Py (z) = P.(z) =0on X. [ ]
So Uy is not zero in any N;, for any A € C.

Proposition 4.3.2 The kernel of the Dy-linear map Sy : N_1 — Ny given by right
multiplication by U_y is equal to DyUy = OnUj in N_1.

Proof Recall that Formulas (Fj), h € [1, k] show the equality DyU; = OnUj in
N_1 (see Remark following Lemma 4.2.3). Moreover, we know that N_; has no
Op-torsion, thanks to Theorem 3.3.1, so Dy Uj is a sub-module of N_; which is
isomorphic to Oy as U is not zero in N_1, because its symbol does not vanish on X
(see Lemma 4.3.1 above).

The end of the proof of this proposition will use the following lemmas:

Lemma 4.3.3 Let a and b be holomorphic function on an open set U in N, such that
the function ay — bg is a section on U x CK which vanishes on Z N (U x C). Then,
a and b vanishes identically on U

Proof The first remark is that we have ay = bg on U x CF, because the sheaf
Pp«(Iz) has no non zero section which homogeneous of degree 1 in ny, ..., nx (see
Lemma 2.2.5). Then, looking at the coefficients of 1 and 7, in the equality ay = bg
gives

ka =o01b and (k —1)oja =207b andso (k — 1)01217 = 2koy.b

which implies » = 0 and thena =0 on U. |

Lemma4.3.4 Let P € Dy, such that PU_1 = AUy + Q with A € Dy and Q € I.
Then, A is unique modulo I.
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Proof We have to show that AUy € 7 implies that A is in Z.

If this is not true, let A € Dy \ Z be of minimal order, such that AUy € Z. We
have s(A)g € Iz and, as g is generically # 0 on Z and Iz is prime (so reduced), there
exists A1 € Z with A — A of order strictly less than the order of A. Then, (A — A1)Up
isinZ.

This contradicts the minimality of A, since A — A cannot be in Z. [ |

Lemma 4.3.5 There exists a natural Dy-linear map  : Ker(%) — N given by
Y (P) = [A] when PU_1 = AUy modulo T.

Proof First recall that the right multiplication by U_; induces a Dy-linear map .7 :
N_1 — Ny, because we have ZU_1 C I and the relation (Uy + 1)U_1 = U_Uyp. If
P € Dy induces a germ of section of Ker () then the previous lemma shows that
if we write PU_1 = AUp + Q with Q € Z, the image of the germ A in DN/I is
well defined. Then, we have a Dy-linear map Ker (%) — Dy / 7 = M and after
composition by the quotient maps Dy / T — N we obtain the desired map. ]

End of proof of Proposition 4.3.2 First remark that U; is sent to 0 in \; by the
map ¥ because of the relation UyU_; = (Uy — 1)Uy modulo 7.
So ¥ composed with the quotient map Nj — N ID induces a map

v Ker(%)/OnU — NID.

We shall prove that this map is injective and not surjective. As N, ID is simple, this will
prove that Ker (%) = OnyU; completing the proof of Proposition 4.3.2.

We shall first prove the injectivity of ¥, so the fact that if [P] € Ker (%) satisfies
Y (P) =[A]with[A] =0in NID then [ P] is a germ of section of the sub-sheaf Dy U
of Ker(%).

Let P € Dy of minimal order, such that the class of [ P] in Ker(%)/DN U, is not
zero and satisfies &([P]) = 0. Then, we have

(P+XWUy+ 1)+ Qo)U_1 = AgUp+ Q1 with Qp, Q1 €Z and X € Dy.

Then, thanks to the relations (Ug + 1)U_; = U_1Up modulo Z we obtain

PU_1=AUp+ Q> with Q= Q01— QoU_1€Z and A= Ag— XU_;.

Then, our hypothesis implies that there exist R, S, Q3 € Dy with Q3 € Z, such that
A=RUy— 1)+ SU_1 + Q3. Therefore

(P—-SWUp+1)—RU)HU_1 = Q3Uy moduloZ
and Q3 Uy is again in Z. So looking at the symbols we find
s(P—SWUp+1)—RU))y € I7.
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As y is generically # 0 on Z and Iz is prime (then reduced) we conclude that there
exists P; € Z with symbol s(P;) = s(P — S(Up + 1) — RUy). Therefore, the order
of P — Py — S(Up + 1) — RUj is strictly less than the order of P but the class of
P—P —SWUy+1)—RU;in Ker(%)/DNUl is the same than the class induced
by P. This contradict the minimality of the order of P; so Ker(%)) = DyU; and the
map V¥ is injective.

To conclude it is now enough to prove that ¥ is not surjective, as explained above.
Therefore, assume that there exists P € Dy with PU_; = AUy + Q with Q € 7 and
[A—1]=0in /\/]D. This would implies that PU_; = (1 4+ T(Up — 1)+ YU_1)Uy
modulo 7 and so we obtain the equality

(P—-YWUy+1)—TU)U-1 = Uy modulo Z.
So looking at the symbols restricted to Z this gives:
s(P—YWo+1)—TU))y =¢

in Oz. By homogeneity in 7 this implies that f := s(P —-YWo+1) — TU1) is the
pull-back of a holomorphic function on an open set in N and this gives a contradiction
thanks to Lemma 4.3.3. u

Proposition 4.3.6 Let N_Dl be the sub-Dy-module of N*| which is generated by

01, ..., Ok—a. Then, T sends N_Dl onto NOD and induces an isomorphism between
theses two simple Dy -modules.

Proof As we know that ./\/0D isequalto DyU; C N, we first check that the generators
of ./\LD] have their images by % in Dy Uj.
For h € [1, k — 2] Formulas (Ej+2) and (Fj41) imply

op2Ur + 0p1(Ug+ 1) + 05 U1 + 01 (Ug— 1) € Z

which implies 8,U_; = —9;,42U; in Nj.

Note that, as V] ID is obviously generated!! by 9, ..., 9 _5 its image by the right
multiplication by U; in A/} is generated by 9, U1, h € [1, k — 2] giving a direct proof
of the surjectivity of 7 : /\/’_Dl — DyU; = NOD.

The injectivity of this map is clear thanks to Proposition 4.3.2 and the fact that
¢—_1(Uy) = —k which implies that the sub-modules DyU; = Oy U and K er (%) of
N_1 have an intersection reduced to {0}. |

Prcj)\r}osition 4.3.7 The sub-module N |_Z|1 defined in the previous proposition is equal
to N*,.

1 In fact knowing that it is simple, it is generated by any non zero element in it.
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Proof By definition N*, is the kernel of the map ¢_; : N_; — Oy (x0y) which sends
[1] to ox—1/0k. Then, Nfl is generated by the annihilator of ox_1 /oy in Oy (x0%).
Therefore, N*, is generated by the class in N of

A,y d2s O, Ok—1 0kt — 1, o + 1.

We already know that 9y, ..., ¢ are in./\/g’1 for h € [1, k —2] by definition ofN;D].
Moreover, we have 8,3_1 = 0rdr—> modulo Z gives that Blg_lU,] = Opdr_2U_1
belongs to /\/'OD. Then, Proposition 4.3.6 implies that 8,?_1 is in J\LD1 + Ker(%).
Therefore, write 8,?_1 =e+ fU; withe € J\LD1 and f € Oy using Proposition 4.3.2.

Then ¢_1(37_,) = 0 implies ¢(fU;) = —kf = 0, because e is in /\LD1 C N*,.
Therefore, f = 0and 37, isin /\LD1

So it is enough to prove that a := o}_10r—1 — 1 and b = 030 + 1 are in /\LD1 to
complete the proof.

Formula (E;) gives EU_; = —0d; in Ny and Formula (F,) gives d,U; = —9; in
Np. This implies that 7y (E) = ,U; € NOD. This implies that E is in ./\/;D1 +Ker(%).

So write E = e+ fU; withe € N_Dl and f € Oy using Proposition 4.3.2.

Now

¢_1(E) = Elox_1/ox] =0 and NT C V¥ =ker(p_).

Therefore, o_1(fU1) = fo_1(U;) = —kf = 0. This implies E = e is in ./\/'_‘:l1
Buta + b = E modulo N_Ell. Therefore, a + b belongs to N_Dl.
We have also in N_1:

0=Up+1=(k—1)(ok_10k—1 — 1) + k(oo + 1) modulo./\f_Dl

and this gives (k — 1)a + kb € N5, concluding the proof. [ |

Theorem 4.3.8 We have the following commutative diagram of Dy -module with exact
lines and columns, where the Dy -linear map ¢—1 : N_1 — Oy (xoy) is defined by

p_1(1) = op—1 /ox:
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0 0 0
0 N, N* @ OonU; On 0
0 /\f:1 Ny L Oy(xo) —— 0
0 Q “ > Hl, _)(On) —0

0 0

Therefore, x is an isomorphism. Moreover, the map 7 induces an isomorphism of
N, onto the simple Dy -module NH =DyU; NG

Proof The exactness of the first line is consequence of the equality ¢_(U1) = —k.
The exactness of the second line is consequence of the surjectivity of ¢_; which is
consequence of the equality ¢_1(0x—1) = 1/0%.

As Q is the obvious quotient the injectivity of the induced map y is easily obtained
by a diagram chasing. |

The local solutions of N_; are the 1/zj, j € [1, k] and the local solutions of./\/f1
are the 1/z; — 1/z, which generate the linear combinations of the 1/z; which are

killed by Uy = Y5 225

Conclusion For each integer p > 2 define
N3 =Dy /T +DyUo— p)+DnU’,

and N*, := ker(¢-p), where ¢_, : N, — On(x0y) is given by ¢_,(1) =

044 1_1 [ox—1/0%]. Then, we have the chain of isomorphisms:

Ouy Ouy Ou, Ou
< < P L
LNE NE, N*, NP N N
7 e 7
T T To T2
Ou, Ouy
~— O <“  — \O
S Np /\/p+1
T p-1 Tp

where .7, := [U_; is given by right multiplication by U_;.
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4.4 Some Higher Order Solutions of A/, forp € N

Let N := Ck with coordinates o1, . .., ox and note Dy the sheaf of (holomorphic)
differential operators on N and Dbﬁ’ ? the sheaf of (p, ¢)—currents on N.

Recall that Dbﬁ’q is a left Dy —module and that we have the following theorem
due to M. Kashiwara (see [7])

Theorem 4.4.1 For any regular holonomic Dy —module N and any integer j > 1 we
have

Ext}, (N.Dby") = 0.
Note that the case p > 1 is an obvious consequence of the case p = 0 as Db?\}p is

the direct sum of C,f copies of Db?\,’o as a left Dy —module.

Corollary 4.4.2 For any regular holonomic Dy —module N and any integer j > 0 we
have a natural isomorphism of sheaves of C—vector spaces

Sol! (N) := Ext}, (N.On) =~ HI((Homp, (N, Db3"). 5%)).

For instance, if V' := Dy / J is aregular holonomic system (where .7 is a coherent
left ideal in Dy ), we have a natural isomorphism of sheaves of complex vector spaces,
for each j:

Sol’(Dy /) =T € Db/ /T.T =0, 3T = O}/E_)({T e Dbyl 17T = 0)).

Proof As the Dolbeault—Grothendieck complex (Db0’°, 9°) is a resolution of Oy by
Dy —modules for which the functor

N+ Homp, (N, —)

is exact, thanks to the previous theorem, the conclusion follows by degeneracy of the
spectral sequence. ]

Proposition 4.4.3 Let o° be a point the hypersurface {ox = 0} in N and let d be the
multiplicity of the root 0 in P,o. Let U be a small open neighborhood of % in N on
which there exists a holomorphic map f : U — Sym“(C) whose value at o € U is
the d—tuple of roots of P, which are near by 0.1

Then define for q € N the distribution on U (given by a locally integrable function)

d
T,(0) =Y lLoglzj|* where[zi, ..., z4] = f(0) (30)
j=1

12 T be more precise, let D be an open disc with center 0 in C, such that D contains only the root 0 of
P_o. Then, choose U small enough, such that for all o € U the polynomial P has exactly d roots in D.
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Then, the current E_)Tq defines a section on U of the sheaf Sol' (Ny), such that its germ
at a point o is non zero in Sol! (Ng) 0.

Proof Let pr : H— Cand : H — N are the projections, where
H :={(0,z2) e N xC/ Ps(z) =0}

We may assume that the open set pr(m~1(U)) is the disjoint union of D with an
open set 2 in C. Then, if we define the locally integrable function f : D U Q as
f(z) = z9Log|z|> on D and f = 0 on Q we have T,(0) = (f)(o) = Z];:l fzp)
where z1, ..., z; are the roots of P;. It is then easy to verify that 7T, = 0 and that
(Uo — q)Ty = Ny (o) the g-th Newton function of the d—tuple d(o) of roots of Py
which are in D. Therefore, it is holomorphic on U. Then, the (0, 1)—current 97} is
d—closed and is killed by J,. Then, thanks to Corollary 4.4.2 it induces a section on
U of the sheaf Sol'(\;).

Fix now t € U and assume that the germ at T of the previous section vanishes.
Then, there exists on an open polydisc V with center t in U and a (0, 0)—current S
satisfying

IS=0, (Up—¢q)S=0 and 35S =aT.

Then, we may write S = T — F where F is holomorphic on V. However, then F
satisfiesalsoZF = Oand (Up—¢q).F(0) = N,(d(0)) forallo € V. The firstequation
implies that F is a global trace function on V (up to shrink V around t if necessary)
and using Lemma 3.1.2 in [1] we see that, up to a locally constant function on D U 2,
(Up — q).F is the trace of a holomorphic function 4 define by 4(z) = z7 on D and 0
on Q2. However, if F' = Trace(g) where g is holomorphic on D U €2 this implies

280 = h@) +¢0)
0z

where « is constant equal to k on D. Therefore, on D the meromorphic function
G = g/zq satisfies

G'(2) = 1)z +«/z9.

This is clearly impossible for ¢ > 1. For ¢ = 0 this gives that G = g is constant
and so is F = Trace(g). But then, UyF = d is impossible for d > 1. This shows
that at each point o© of the hyper-suface {o;y = 0} in N the germ induced by 5Tq in
Soll(Nq)(,o is not zero. Therefore, the support of the sheaf Soll(/\/'q) contains this
hyper-surface for each ¢ € N. |

Remark The exact sequence

0—>M(U0—;q)./\/l—>./\/'q—>0
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gives a long exact sequence

0 = Sol’(N;,) — Sol® (M) "7 So1%(M) > Sol' (N,)) — Sol' (M) — ...

and it is clear that the germ at the origin of the Newton polynomial N, in Sol®(M) is
not in the image of Uy — ¢g. Our computation above shows that the image of the germ
of Ny at the point 0 is mapped by the connector 9 to the germ in Sol ! (Ny)o which is
constructed above.

The reader will find the computation of the conjugate of the Dy-modules A for
each A € C in the article [4], so the computation of the sheaves:

Homp,, (N, DbY).

5 An Application
5.1 ATaylor Expansion

We shall consider now the universal monic degree k equation near the point o defined
by U]O =) =...= ‘71?—1 = 0 and o,? = —1. We shall denote by z(o) the root of
P04, (z) = 0 which is near the (simple) root —1, for o small enough, of the equation
Poo,,(2) = 7K — (=1)¥ = 0 when o is small enough. Define

F(0’+0):=z(0)—o01/k == Z Ca% 3D

aeNk

the Taylor expansion at the point 0 of z(¢) — o1 /k which a solution near o¥ of the
Dy-module ./\/1D (see the Theorem 4.1.5).

The reader may compare the computation below with [8].

An easy consequence of the results in the paragraph 4.1 is the following theorem.

Theorem 5.1.1 The following differential operators annihilate the function F in a
neighborhood of o, where we note 9, for the partial derivative relative to oy,.

2 2 . .
L Aij =57 — g Vi€l k—1]and Vj € [2,.k]
2. Up—1:=Yk_ hoyo, — kdy — 1.

3. U_; = Zl,‘l;g)(k — h)o, 0y with the convention og = 1

Proof This is consequence of the fact that F' is a solution in an open neighborhood
of ¥ of the regular holonomic system NID ~ DN/A 4+ DyUy — 1) + Dy (U—y).
Remark that the operator Uy is the expression of Uy in the coordinates centered at o',
The other operators have in these coordinates the same expression than in the usual
coordinates centered at the origin. |
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Corollary 5.1.2 The coefficients Cy, is the expansion (1) only depend on the integers
q = la| = Zﬁ:l o and w(w) = Zﬁ:l hay, so we may rewrite the expansion (1)
with the convention Cy , = 0 whenr ¢ [q, kq]:

Fo®+0)=) " Cyrmy,(0) (32)
q,r

whereforq € Nandr € |q, kq]we define the polynomial m , € Clo ] by the formula

mg.r(0) = Z Z—T

lo|l=q,w(a)=r

Proof This is obvious consequence of the description of the holomorphic functions
which are annihilated by the differential operators A; ; for all i € [1,k — 1] and
J € [2, k] (see the paragraph 2.1) which generate the left ideal .A in Dy. ]

Proposition 5.1.3 We have the following formulas, with the conventions m , = 0 for
r & lq, kq] (in particular for g < 0 orr < 0):

L. (Uo— D(mg,) = (r — Dmg, —kmg_1,— ¥q >0, ¥r € [q. kq]
2. U_y(mg,) = (kg —r+Dmg, 1 +kmy_1,-1 Yq=>0, Vr €[q, kq].

Proof The first formula is a direct consequence of the easy formulas
Up(0%/a!) = w(a)o®/a! and (c®/al) =aP /B!
when o > 1, with 8 + 1 = o and
(0% /a!) =0 when a; =0.

The second formula is little more tricky:
For h € [2, k — 1] we have

onons1(0®/al) = BroP /B! when ajpq > 1
with 8+ 1p41 = o + 1, and
opopr1(0®/al) =0 when ajy; =0.

Moreover, for any 8 with || = ¢ — 1 and w(8) = r — 1 and for each h € [2, k]
there exists exactly one « if 85, # 0 with 07,0541(c%/a!) = ,Bhoﬁ/,B!, and it satisfies

] = g and w(a) = r, and no such « exists if 8, = 0. This means that that
01, 0p+1(mg ) contains ol /B! with the coefficient Sj,.
For h = 1 the situation is simpler: 9;(c®/a!) = 0/3/,3! when «; > 1 with

B+ 1] =«a,and 01 (c*/a!) = 0 when oy = 0.
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Then for each B with || = ¢ — 1 and w(B) = r — 1 there exists a unique «,
such that 3; (0% /a!) = o# /B! and it satisfies || = ¢ and w(«) = r. Therefore, we
conclude that

k a
Uoing = Y Z(k—h)aham(%)

|a|=q,w(a)=r h=0

k B
= kmq—l,r—l + Z Z(k - h)ﬁhi;_‘

|Bl=q,w(B)=r—1h=1
= kmqfl,rfl + (k(q -1 —(r- 1))mq,r71

concluding the proof. |

Taking in account Eqs.2 and 3. of Theorem 5.1.1 ( Eq. 1. are used already in the
Corollary 5.1.2), we obtain:

Corollary 5.1.4 The coefficients Cy , of the Taylor expansion (1) satisfies the relations:

(r = 1)Cqr —kCys1,46 =0 Vg =1, Vr €lg,kq] (A)
(kg —r+1)Cq,+kCyy1,=0 Vg =1, Vrelqg+1,kql. B)
The formula (B) gives, for each r > 2 and each s € N, such that0 < s < (k_%
—-1)°C
Crosr = Hj‘-=1(r(— j)— ¢ =D/ (59
Formula (A) gives for eachr > 1:
k=2
Cratrik = O AT (4 p = = DG, (4%)
p=0
Moreover, we have
Cyr=0 Vg >2and Vr =1modulok, r € lq,kq] ©)

Proof Looking at the coefficient of m, , for ¢ > 1 and r € [q, kq] in the equality
(l70 — D[F] = 0 gives the gives (A). Looking at the coefficient of m, , | forg > 1
andr € [qg + 1, kq] in U_1[F] = 0 gives (B).

The formula (B*) is a direct consequence of the formula (B) with g := r — s by

an easy induction on s € [0, %].
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Using formula (B*) with 7’ = r + k and s = k — 1 we obtain

(=D itk
[16¢+p— 0 —D/k

Cr+l,r+k =

Combining this formula with the formula (A) with ¢ = r > 1 which gives

r—1

k

Cr+1,r+k = Cr,r
and we obtain the formula (A*).

Formula (C) is a direct consequence of (A*) for r = 1 with an inductionona > 1
when r = 1 + ak. |

We shall see below that the vanishing of Ci4 4k, 144k 1S also valid for a = 0 giving
Cy,1+ak = Oforany ¢ > 1 and any a, such thatg < 1+ ak < kq.

Remark It is enough to compute Cy ¢ and C; j, foreach i € [1, k] to determine all
coefficients Cy , in (1) with r € [q, kq]:

The formula (B) determines Cp 5, h € [2, k] from C; j, withr =hands =h — 1.
Then, the formulas (A*) and (C) gives C, , for any r > 1. Then, the formula (B)
completes the computation of Cy , for any ¢ > 0 and any r € [q, kq].

Lemma 5.1.5 We have the following values:
Coo=—1
Ci1=0
Cin=1/k forh e[2,k].

Proof The value of Cpq is F (69) which is —1 by definition of F. The values of
C1 p 1s the derivative 9, (F + al/k)(ao), because we have m; , = oy for h € [1, k].
Therefore, it is enough to make an order 1 expansion of F at o” to compute the values
of the Cy p,, h € [1, k]. This is given by the following computation at the first order of
P, ,(z(0)) = 0, where we define

k
20) = =14 cjoj +o(lo]l)
j=1
which gives ¢; = C1,) + 1/kand ¢; := Cy ; for j € [2, k] and then:

k=j

k kg k
<—1+ZChCTh) +Z(—1)j0j <—1+Zch0h> —(—1)k=0(||0||)
h=1 j=1 h=1
k k
(—D* 'k (Z Ch%) + Z(—l)kaj =o(||lo]]) and so

h=1 j=1
cj=1/k Vjellkl
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Then, C1;; =0and Cy; =c; = 1/k foreach j € [2, k]. [ |

6 Appendix: The Surface S(k)
6.1 Study of S(k)

For k > 2 an integer and o € N¥ define

o the length of « given by |a| := Z];l:l ans
o the weight of « given by w(«) := Zﬁ:l h.oy.

We shall say that & and 8 are equivalent, noted by «fi8, when |«| = | 8| and w(x) =
w(a).

Remark that for any y € N¥ we have (« + y)8(8 + y) if and only if af5.

Let A be a C—algebra which is commutative, unitary and integral. In the algebra

Alxy, ..., xi]let I§(k) be the ideal generated by the polynomials x,,.x; — X p41.X4—1
forall p e [1,k — 1]and g € [2, k].
We shall say that the two monomials x* and xPin A[xy, ..., xx] are equivalent

when « and 8 are equivalent. In this case we shall also write x®fx?.

Remark that for any p € [1,k — 1] and any g € [2, k] x,.x4 is equivalent to
Xp+1-Xg—1-

For a monomial m := x® we define its length by /(m) := |«| and its weight
w(m) = w(a).

Our first result is the following characterization of the elements in 7.5 (k).

Proposition 6.1.1 Two monomials x* and xPin Alxi, ..., x¢] are equivalent if and
only if x* — xP is in IS (k).

The proof of this proposition will need a preliminary lemma and the next definition.

Definition 6.1.2 We shall say that a monomial m in A[xy, ..., xt] is minimal when
it has one of the following forms:

1. there exists p, g in N, such that m = x{’x,{f;

2. there exists p,g inNand j € [2, k — 1] such that m = xf’xjx,f.

Remark Any monomial (minimal or not) is not in the ideal S (k), because the
point x; = xp = --- = x; = 1 is notin |S(k)| the common set of zeros in A¥ of the
generators of /S(k) and any monomial does not vanish at this point.

Lemma 6.1.3 For each o € N¥ there exists an unique minimal monomial x*©, such
that x*8x"*®) . Moreover, for each a x* — x*® is in 15(k)

Proof Let us begin by proving the uniqueness assertion.
We have to show that two minimal monomials which are equivalent are equal. If
bothareincase 1. (som := xlpx,‘f) this is obvious as the length isequal to [ (m) = p+q
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and the weight is w(m) = p + kq and then (k — 1).g = w(m) — [(m) proving the
uniqueness of g and then of p.

’ !
If both are in case 2. let m := xijxz and m’ = xf xj/xg then we have

Im)y=p+1+g=Im)y=p +1+¢q" and
w(m) =p+ j+kg=wim')=p +j +kq' whichimply
j—J =k—=1G" —q) with [j—j'| €[0,k—3].
So j=j andthen g=¢ and p=p'.
Ifm = xijxz and m’ = xf'/xZ, we have
(m)=p+1+qg=1m)=I1m)=p' +q and
w(m) = p+ j+kqg=wim') = p' +kq" which imply
j—1=((k—1)(q —¢q) with j e[2,k—1] and this is impossible.

The assertion of existence is clear for |e| = 0, 1. We shall prove the existence of ()
by an induction on the length || of «.

Assume that the lemma is proved for all 8 € N with length 1 < |B| < |«|. Then,
write x* = x,x# for some r € [1, k]. By the induction hypothesis we know that there
exists a minimal monomial x*® with x?#x*® . Then, we obtain that x*#x,x*® _If
xMB) = xPx], then x,x! x] is minimal for any choice of r € [1, k]. If x*F) = xPx ;x]
then remark that we have x,x;fx1x,4 ;1 forr + j — 1 < k and x,x j#fx;x,4 j—x for
r 4+ j > k + 1 and this allows to conclude the induction.

Remark that if, in the induction above, we assume that x? — x#® belongs to 1.S(k)

we obtain that x% — x*@ is also in 7 S(k); for instance in the case x*#) = xx;x]

X% — M@ = x, (xP — xH By 4 (xrxj —xlx,+j_1)x{7x£ for r+j<k+1,

x% — M@ = x, (xP — xH By 4 (xrxj — xerﬂ,k)xfxg for r+j>k+2.

The other cases are analogous. ]

Proof of the proposition 6.1.1 The previous lemma gives that x*#x? implies
x% — x*@ and xf — x* @ are in 1S(k), so also x* — xPB. Conversely, assume that
x% — xP is in I15(k). As the ideal 1S(k) is homogeneous (in the sense of length) if
[(a) # [(B) we conclude that both x* and xPareinI$ (k). This contradicts the remark
following Definition 6.1.2.

In a similar way the ideal /S (k) is quasi-homogeneous in the sense of the weight
w. Therefore, if w(a) # w(B) then x* and x# are in IS (k) which is again impossible.
Therefore, x* — xP is in 15(k) implies that «tS. |

Corollary 6.1.4 For any q € N and any r € [q, kq] there exists a minimal monomial
Wq,r (necessarily unique), such that |y r| = q and w(ug ) =r.

Proof The assertion is clear for ¢ = 0, 1. Therefore, let us prove it by induction on g.
Therefore, let ¢ > 2 and let r € [q, kq], and assume that we know that 1,/ ,» exists
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forany ¢’ < g — landanyr’' € [¢’,kq']. If risin [gq, k(g — 1) + 1], then r — 1 isin
l[g —1,k(g — 1] and g1 -1 exists. Therefore, gy := x1my_1,,—1 is the solution.

Ifrisin[k(g —1)+1, kgl thenr —kisin[g — 1, k(g — 1)]and, because for g > 2
we have kg —2k +1 >¢g —1landalsor —k < kq —k < k(g — 1), ug—1,r— is
defined and (g, := Xk ptg—1,r— is the solution. [ |

Proposition 6.1.5 Let L1 := {n] = 0} N S(k) and Ly := {nx = 0} N S(k). Then, L,
is the line directed by the vector (0, ..., 0, 1) and Ly the line directed by the vector
(1,0,...,0). The maps ¢ : S(k)\L| — C* x Cand ¢ : S(k)\L; — C* x C which
are defined by the formulas

@1(n) := (n, —m2/n1) and  @r(n) == Ok, —Mk—1/nk) (33)
are isomorphisms. Therefore, S(k) \ {0} is smooth and connected surface.

Proof of the proposition 6.1.5 Consider the holomorphic map
Y1 :C* = S (5o, &) = 2= So(—¢)" ! Yh € [1 k.

It induces the inverse to the map ¢ on ¢y # 0 and the map v defined by
xXp = (—Co)k_h.g“l Vh € [1, k] gives the inverse of ¢; on &1 # 0. |

Corollary 6.1.6 The ideal 1S (k) of C[x] is prime. Moreover, (S) is a normal surface.

Proof of the corollary 6.1.6 The only point which is not a direct consequence of the
previous proposition is the normality of S(k). However, as the blow-up of the maximal
ideal at the origin in S(k) gives a desingularization of S(k) with the rational curve!?
over the origin in S(k). Therefore, is a rational singular point and S(k) is normal. W
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