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Abstract
The aimof this paper is to study in details the regular holonomic D−module introduced
in Barlet (Math Z 302 n03: 1627–1655, 2022 arXiv:1911.09347 [math]) whose local
solutions outside the polar hyper-surface {�(σ).σk = 0} are given by the local system
generated by the power λ of the local branches of the multivalued function which is the
root of the universal degree k equation zk +∑k

h=1(−1)hσhzk−h = 0.We show that for
λ ∈ C\Z this D-module is the minimal extension of the holomorphic vector bundle
with an integrable meromorphic connection with a simple pole which is its restriction
on the open set {σk�(σ) �= 0}. We then study the structure of these D-modules in the
cases where λ = 0, 1,−1 which are a little more complicated, but which are sufficient
to determine the structure of all these D-modules when λ is in Z.
As an application we show how these results allow to compute, for instance, the Taylor
expansion of the root near −1 of the equation:

zk +
k∑

h=−1

(−1)hσhzk−h − (−1)k = 0.

near zk − (−1)k = 0.
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1 Introduction

1.1 .

There are several ways to define an interesting function. Of course, the simplest one
is to give its value at each point by an explicit finite formula or as a sum of an infinite
series (converging somewhere at least). Another way is to give a functional equation
which characterizes it. A third approach is to give a partial differential system which
has our function f as its unique solution (up to normalisation).

For instance, the function f (z) = ez may be defined as

1. f (z) = ∑∞
n=0

zn

n! .
2. f (z + z′) = f (z). f (z′) with f (0) = 1 and f (1) = e.

3. ∂ f
∂z = f and f (0) = 1.

In general, to increase our understanding of such a function it is useful to dispose of at
least two kinds of characterization as above. For instance, in the basic example of ez

the description 3. gives easily the formula 1 and also the functional equation 2. Note
that the third approach will often lead to a description of the first kind via the Taylor
expansion at least when we dispose of a regular holonomic system defining f which
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On Partial Differential Operators Which Annihilate…

is enough simple and suitably described to allow an inductive explicite computation
of the coefficients of the Taylor expansion. However, this means that we are at least
able to well describe essentially all partial differential operators which annihilate f .

We shall consider, in this paper, the case of the multivalued function z(σ )λ on C
k ,

with σ := (σ1, . . . , σk) and λ a complex parameter, where z(σ ) is defined as the root
of the universal monic polynomial of degree k:

Pσ (z) :=
k∑

h=0

(−1)hσhzk−h with the convention σ0 ≡ 1.

It is well-known that the description of this function with the first approach is quite
difficult (at least for k ≥ 5). The definition given above of this multivalued function
may be seen as a description of the second kind.

The aim of this paper is to give a description of the third kind which characterizes
this multivalued function. More precisely we describe completely the structure of
the regular holonomic DN -module1 DN

/
Jλ where Jλ is the left ideal in DN which

annihilates zλ(σ ).
The case where λ is in Z is of special interest (for λ = 0 the left ideal J0 will be

defined in a natural way inside the annihilator of the function 1) and is less simple.
Let me explain how I come to study this question.
In the article [1], we characterize the trace functions F on N := C

k as a solutions
of a sub-holonomic DN -module M given by explicit generators in the Weyl algebra.
Recall that an entire function F on N is a trace function when there exists a entire
function f on C, such that

F(σ ) =
k∑

j=1

f (z j (σ ))

where z1(σ ), . . . z j (σ ) are the roots of the polynomial Pσ (z) := zk + ∑k
h=1(−1)h

σhzk−h .
Then, adding the quasi-homogeneity condition U0 − λ, where U0 := ∑k

h=1 hσh∂h

is the expression in σ1, . . . , σk of the Euler vector field
∑k

j=1 z j∂z j , to the ideal
annihilating trace functions defines a (regular) holonomicDN -moduleNλ whose local
solutions are now given by linear combinations of the branches of the multi-valued
function z(σ )λ. Therefore, the goal of this article to understand the structure of theses
regular holonomic DN -modules for each value of the parameter λ ∈ C.

We give the statements of the main results in detail in Sect. 1.2 below
As an application of the structure theorem for the D-module N1 := DN

/
J1 we

compute theTaylor series at the pointσ 0 = (0, 0, . . . ,−1)of theholomorphic function
of σ1, . . . , σk which gives the root of the polynomial:

zk +
k∑

h=1

(−1)hσhzk−h − (−1)k = 0

1 N will be C
k with coordinates σ1, . . . , σk .
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D. Barlet

which is near −1. The fact that the associated DN -module corresponding to λ = 1
is not simple make this computation quite complicate when we use the DN -module
N1 itself. However, with the remark that z(σ ) − σ1/k is a solution of the simple
part N�

1 of this D-module deduced from the structure Theorem 4.1.9, we obtain a
complete explicit computation of the Taylor series at σ 0, corresponding to the equation
zk − (−1)k = 0, of the root which is near −1.

Of course, this method is valid to compute (with some more numerical compli-
cations, but without theoretical difficulty) the Taylor expansion of any (uni-valued)
holomorphic branch of the multivalued function z(σ )λ near any point σ 0 ∈ N for any
given complex number λ.

To conclude this introduction, let me remark that we produce in this article an
explicit description of the image via Riemann–Hilbert correspondence of the minimal
extension of a rather involved local system defined in the complement of a hyper-
surface with rather complicated singularities: the discriminant.

1.2 The Results

To make the statements clear we have to precise some notations which will be used
(and defined again) in the text.

Notations

1. The coordinates on M := C
k are z1, . . . , zk and their elementary symmetric

functions σ1, . . . , σk are the coordinates on N 	 C
k . The corresponding quotient

map by the symmetric group is denoted by quot : M → N .
2. DN is the sheaf of holomorphic differential operators on N and ∂1, . . . , ∂k are the

partial derivative in σ1, . . . , σk .
3. For each integer p ≥ −1 we denote Up the image by the tangent map of the

quotient map quot of the vector field
∑k

j=1 z p+1
j

∂
∂z j

.
The vector fields U−1, U0 and U1 on N are given by

U−1 :=
k−1∑

h=0

(−1)h(k − h)σh∂h+1, U0 :=
k∑

h=1

hσh∂h,

U1 :=
k∑

h=1

(σ1σh − (h + 1)σh+1)∂h .

with the convention σ0 ≡ 1 and σk+1 = 0.
4. For λ a complex number, the DN -module Nλ is the quotient of DN by the left

ideal Jλ generated by the following global sections of DN :

• Ai, j := ∂i∂ j − ∂i+1∂ j−1 for i ∈ [1, k − 1] and j ∈ [2, k]
• T m := ∂1∂m−1 + ∂m E for m ∈ [2, k], where E := ∑k

h=1 σh∂h

• U0 − λ.
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5. We denote ON (�σk) the left DN -module ON [σ−1
k ].The DN -module quotient

ON (�σk)
/
ON will be denoted H1[σk=0](ON ).

6. We define N ∗
1 as the kernel of the map ϕ1 : N1 → ON sending 1 to σ1.

7. We define N ∗
0 as the kernel of the map ϕ0 : N0 → ON sending 1 to 1.

8. We define N ∗−1 as the kernel of the map ϕ−1 : N−1 → ON (�σk) sending 1 to
σk−1/σk .

1.2.1 The Case � ∈ C \ Z

Theorem 1.2.1 Let λ ∈ C \ Z. Then, Nλ is the minimal extension of the associated
meromorphic connection (see 3.3.11). Therefore, Nλ is a simple DN -module.

Moreover, for each λ ∈ C \ Z we have an isomorphism Tλ+1 := �U−1 : Nλ →
Nλ+1 given by right multiplication by U−1.

See Theorem 3.3.11 for details.

1.2.2 The Case � ∈ N
∗

Theorem 1.2.2 The diagram below describes the structure of N1. The torsion � in N1
is generated by the class of ∂kU−1 and we have an isomorphism H1[σk=0](ON ) → �

defined by sending 1/σk to [∂kU−1].
The DN -modules � 	 H1[σk=0](ON ) and N�

1 are simple DN -modules.
The following commutative diagram of leftDN -modules has exact lines and columns

where the maps i and e are defined by i([U−1]) = [U−1] (so the map i induced by the
identity of N1) and e([U−1]) = k:

0 0

0 � I m(T1)
i ON [U−1]

e	

0

0 N ∗
1 N1

ϕ1 ON 0

N ∗
1

/
�

θ N�
1

0 0

Moreover, for any p ∈ N
∗ the DN -module Np is isomorphic to Np+1 via the map

Tp+1 := �U−1 : Np → Np+1 given by right multiplication by U−1.

See Theorems 4.1.5 and 4.1.9.
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1.2.3 The Case � = 0

Theorem 1.2.3 Define N�
0 := DN U1 ⊂ N ∗

0 . Then, N�
0 is simple and isomorphic

to N�
1 via the map induced by the map �U1 : N1 → N0, the quotient N0

/
N�

0 is
isomorphic to ON (�σk) and the quotient N0

/
N ∗

0 is isomorphic to ON .
The structure of N0 is described by the exact sequences of DN -modules:

0 N�
0 N ∗

0 H1[σk=0](ON ) 0

0 N�
0 N0 ON (�σk) 0

0 N�
0 N0

�U−1 N1 N�
1 0

See Theorem 4.2.4.

1.2.4 The Case � ∈ −N
∗

Theorem 1.2.4 We have the following commutative diagram of DN -module with exact
lines and columns, where the DN -linear map ϕ−1 : N−1 → ON (�σk) is defined by
ϕ−1(1) = σk−1

/
σk:

0 0 0

0 N ∗−1

=

N ∗−1 ⊕ ON U1
ϕ−1 ON 0

0 N ∗−1 N−1
ϕ−1 ON (�σk) 0

0 Q χ
H1[σk=0](ON ) 0

0 0

Therefore, χ is an isomorphism. Moreover, the map T0 induces an isomorphism of
N ∗−1 onto the simple DN -module N�

0 = DN U1 ⊂ N ∗
0 . Therefore, N ∗−1 is simple.

Moreover, for each p ∈ −N
∗ we have an isomorphism Tp : �U−1 : Np−1 → Np

given by right multiplication by U−1.

See Theorem 4.3.8.
Section 2 is devoted to preliminaries, Sect. 3 concludes by the simplicity ofNλ for

λ /∈ Z and Sect. 4 studies the cases where λ is in Z.
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Section 5 gives the application and Sect. 6 is an appendix useful in the study of the
characteristic variety of the DN -modules Nλ.

2 TheDN-ModulesW andM
Notations We fix in the sequel and integer k ≥ 2. Let C[σ ]〈∂〉 be the Weyl algebra
in the variables σ1, . . . , σk . We shall note N = C

k which is the target of the quotient
map:

quot : M := C
k → C

k/Sk = N 	 C
k

by the natural action of the permutation group Sk on C
k . We shall note Tquot its

tangent map.
Then,DN denotes the sheaf of holomorphic differential operators on N andwe shall

use the same notations for modules on C[σ ]〈∂〉 and for the corresponding sheaves of
DN -modules on N .

We denote � ∈ C[σ ] the discriminant of the polynomial Pσ (z) := zk +∑k
h=1(−1)hσhzk−h and H� := {σ ∈ N / �(σ) = 0} the corresponding hyper-

surface in N .
For basic results on D-modules the reader may consult, for instance, the books [5]

or [6].

2.1 The D−ModuleW

In this section, we shall consider the DN -module W := DN
/
A where A is the left

ideal sheaf in DN generated by

Ai, j := ∂i∂ j − ∂i+1∂ j−1 for i ∈ [1, k − 1] and j ∈ [2, k] (1)

Notations LetDN (m) be the sub-sheaf ofDN of partial differential operators of order
at most equal tom. Then, letW(m) be the sub-ON -module inW of the classes induced
by germs in DN (m).

LetW(m) be the sub−ON -module inW of the classes induced by germs inDN (m).
As we have A(m) := DN (m) ∩ A = ∑

i, j DN (m − 2)Ai, j for each m ∈ N, the
quotient W(m) = DN (m)

/
A(m) injects inW and we have

W = ∪m≥0Wm .

Note that A(1) = 0 soW(1) = DN (1).
It is clear that the characteristic variety of the DN -moduleW is equal to N × S(k)

in the cotangent bundle T ∗
N 	 N × C

k of N , where S(k) is the algebraic cone in C
k

defined by the equations

ηiη j − ηi+1η j−1 = 0 ∀i ∈ [1, k − 1] and ∀ j ∈ [2, k]. (2)
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We describe this two-dimensional cone and the corresponding ideal in the appendix
(see Sect. 6). We shall use in the present section the following results which are proved
in the appendix (Proposition 6.1.5 and Corollary 6.1.6).

Proposition 2.1.1 Let L1 := {η1 = 0} ∩ S(k) and Lk := {ηk = 0} ∩ S(k). Then, L1
is the line directed by the vector (0, . . . , 0, 1) and Lk the line directed by the vector
(1, 0, . . . , 0). The maps ϕ1 : S(k)\L1 → C

∗ ×C and ϕk : S(k)\Lk → C
∗ ×C which

are defined by the formulas

ϕ1(η) := (η1,−η2/η1) and ϕk(η) := (ηk,−ηk−1/ηk) (3)

are isomorphisms. Therefore, S(k) \ {0} is smooth and connected surface.

Corollary 2.1.2 The ideal of C[η] defined by the equations in (2) is prime. Moreover,
S(k) is a normal surface.

Notation For α in N
k define q := |α| := ∑k

h=1 αh and r := w(α) = ∑k
h=1 hαh .

Definition 2.1.3 Let P be a germ of section ofDN . We say that P is bi-homogeneous
of type (q, r) if we may write

P =
∑

|α|=q,w(α)=r

aα∂α

where aα are germs of holomorphic functions in N .

It is clear that any germ P of section of DN has a unique decomposition:

P =
∑

q,r

Pq,r

where Pq,r is a bi-homogeneous germ of section of DN of type (q, r). Note that this
sum is finite because for a given order q the corresponding type (q, r) has non zero
representative only when r is in [q, kq].
Lemma 2.1.4 Let P be a germ of section of DN and write the decomposition of P in
its bi-homogeneous components as P = ∑

q,r Pq,r . Then, P is a germ of section in A
if and only if for each type (q, r) Pq,r is a germ of section in A.

Proof It is clear that P is in A when each Pq,r is in A. Conversely, assume that P is
in A. Then, we may write

P =
∑

(i, j)

Bi, j Ai, j with i ∈ [1, k − 1] and j ∈ [2, k]

and where Bi, j are germs of sections of DN .
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Write Bi, j = ∑
q,r (Bi, j )q,r the decomposition of Bi, j in its bi-homogeneous

components; this gives

P =
∑

q,r

∑

p≥0

⎛

⎝
∑

i+ j=p

(Bi, j )q,r Ai, j

⎞

⎠

where
∑

i+ j=p(Bi, j )q,r Ai, j is bi-homogeneous of type (q + 2, r + p) for each
(i, j), such that i + j = p. This implies that Pq,r is equal to the sum∑

i+ j+s=r (Bi, j )q−2,s Ai, j . Therefore, each Pq,r is a germ of section in A. �

Lemma 2.1.5 The class of ∂α in W only depends on q := |α| and r := w(α). It
will be denoted yq,r . Moreover, if Wq is the sub−ON -module of W generated by
the yq,r for r ∈ [q, kq], Wq is a free ON -module of rank kq − q + 1 with basis
yq,q , yq,q+1, . . . , yq,kq and, as ON -module, we have the direct decompositions:

W(m) = ⊕m
q=0Wq and W = ⊕q∈N Wq . (4)

Remark that the action of DN on W is defined by

∂ j (yq,r ) = yq+1,r+ j ∀ j ∈ [1, k] ∀q ∈ N and ∀r ∈ [q, kq] (5)

and that ∂ jWq ⊂ Wq+1.

Proof The fact that the class induced by ∂α in W depends only on |α| and w(α) is a
direct consequence of the fact that the class induced by xα in C[x1, . . . , xk]

/
I S(k)

only depends on q := |α| and r := w(α) (see Proposition 6.1.1 in the appendix). Then,
it is clear that yq,q , yq,q+1, . . . , yq,kq is a ON −basis of Wq looking at the symbols
and using the appendix (Sect. 6) over the sheaf of C−algebras ON . �

The global polynomial solutions of the DN -module W are described by our next
lemma.

Definition 2.1.6 For each q ∈ N and each r ∈ [q, kq] define the polynomial

mq,r (σ ) :=
∑

|α|=q,w(α)=r

σα

α! (6)

Lemma 2.1.7 Any mq,r ∈ C[σ1, . . . , σk] is annihilated by the left idealA inDN and if
a polynomial P ∈ C[σ1, . . . , σk] is annihilated byA, P is, in a unique way, a C−linear
combination of the mq,r for q ≥ 0 and r ∈ [q, kq] which gives the bi-homogeneous
decomposition of P(∂1, . . . , ∂k) ∈ C[∂1, . . . , ∂k] (see Lemma 2.1.4).

Proof First, we shall verify that each polynomial mq
r is annihilated by each Ai, j for

all i ∈ [1, k − 1] and all j ∈ [2, k]. We have for each (i, j) ∈ [1, k]2:

∂i∂ j (mq,r )(σ ) =
∑

|β|=q−2,w(β)=r−(i+ j)

σ β

β! = mq−2,r−(i+ j)(σ )
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because αiα j = 0 implies ∂i∂ jσ
α = 0. The right hand-side above only depends on

i + j for q and r fixed. This is enough to conclude our verification.
Note also that the uniqueness is obvious because of the uniqueness of the Taylor

expansion of a polynomial.
Let now P := ∑

α cα
σα

α! a polynomial inC[σ ]which is annihilated by the left ideal
A inDN . We want to show that if α and β satisfy |α| = |β| andw(α) = w(β)we have
cα = cβ . It is enough to prove this equality when there exist i ∈ [1, k − 1], j ∈ [2, k]
and γ ∈ N

k , such that σα = σiσ jσ
γ and σβ = σi+1σ j−1σ

γ by definition of the
equivalence relation2 given by |α| = |β| andw(α) = w(β). In this case the coefficient
of σγ /γ ! in ∂i∂ j P is cα and in ∂i+1∂ j−1P is cβ . Therefore, they are equal. �

It is easy to see that an entire holomorphic function F : N → C is solution ofW if
and only if its Taylor series at the origin may be written, for some choice of cq,r ∈ C:

F(σ ) =
∑

q,r

cq,r mq,r (σ ).

In the same way, a holomorphic germ f : (N , σ 0) → (C, z0) is solution ofW if and
only if its Taylor series may be written in the form

f (σ 0 + σ) =
∑

q,r

cq,r mq,r (σ )

with c0,0 = z0.

2.2 TheDN-ModuleM

Definition 2.2.1 Let m ∈ [2, k] be an integer and define the second-order differential
operators in the Weyl algebra C[σ ]〈∂〉

T m := ∂1∂m−1 + ∂m E for m ∈ [2, k], where E :=
k∑

h=1

σh∂h (7)

Then, define the left ideal I in DN as

I := A +
k∑

m=2

DNT m (8)

and let M be the DN -module

M := DN
/
I (9)

2 Which is noted α�β in Sect. 6.
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We shall now recall and precise some results of [1].
Let Z be the complex (algebraic) subspace in N × C

k (with coordinates
σ1, . . . , σk, η1, . . . , ηk) defined by the ideal of (2, 2)−minors of the matrix

⎛

⎜
⎜
⎜
⎜
⎝

η1 −lσ (η)

η2 η1
. .

. .

ηk ηk−1

⎞

⎟
⎟
⎟
⎟
⎠

(10)

where lσ (η) := ∑k
h=1 σhηh . We shall note IZ the ideal of ON×Ck generated by these

minors and by p∗ IZ its direct image by the projection p : N × C
k → N . For each

integer q ≥ 0 the sub-sheaf p∗ IZ (q) of sections of p∗ IZ which are homogeneous of
degree q along the fibers of p is a coherent ON -module.

Proposition 2.2.2 The complex subspace Z is reduced, globally irreducible and Z is
the characteristic cycle of the DN -module M.

Proof Let |Z | be the support of the sub-space Z . The fact that Z is globally irreducible
is already proved in [1] Proposition 4.2.6 as Z is conic over N . This implies that Z is
reduced as a complex sub-space:

Assume that IZ is not equal to the reduced ideal I|Z | of the complex analytic subset
|Z | in N ×C

k . By homogeneity in the variables η1, . . . , ηk there exists q ≥ 0, such that
the quotient Q(q) := I|Z |(q)

/
IZ (q) is not {0} and then the coherent sheaf p∗(Q(q))

is not {0} on N . However, this contradicts the fact that any global section on N of
p∗ I|Z |(q) is a global section on N of p∗ IZ (q)which is the content of Proposition 4.2.6
in loc. cit.

To complete the proof that Z is the characteristic cycle of M it is enough to see
that the symbol of any germ P of section in I vanishes on |Z |. This is obvious by
definition of IZ . �

The following proposition, which is a local version of Theorem 5.1.1 in [1], will
be useful. Recall that the Newton polynomial Nm ∈ C[σ1, . . . , σk] is the polyno-
mial corresponding (via the standard symmetric function Theorem) to the symmetric
polynomial

∑m
j=1 zm

j .

Proposition 2.2.3 Let I+ the left ideal in DN of germs of differential operators P,
such that P(Nm) = 0 for each Newton polynomial Nm, m ∈ N. Then, I+ = I
Proof Proposition 4.1.2 in [1] already proves the inclusion I ⊂ I+. To prove the other
inclusion we shall argue by contradiction. Therefore, assume that at some point σ 0

in N we have I+,σ 0\Iσ 0 �= ∅ and let P be in I+,σ 0 \ Iσ 0 with minimal order say q.
Thanks to Proposition 4.2.8 in loc. cit. we know3 that the symbol s(P) is in p∗(IZ )σ 0

thanks to the equality IZ = I|Z | proved above. Therefore, there exists a germ P1 in
Iσ 0 \ {0} with symbol s(P1) = s(P). Then, the order of P − P1 is strictly less than
q. But then, P − P1 is in I+,σ 0 with order strictly less than q and then it is in Iσ 0 .
Contradiction. Therefore, I = I+. �
3 This proposition proves that the symbol of a non zero germ of section of I+ vanishes on |Z |.

123



D. Barlet

Notations We note I(m) the sub-ON -module generated in I by classes induced by
differential operators of order at most equal to m. Therefore, I(m) = I ∩ DN (m).

Then, we note M(m) := DN (m)
/
I(m).

For any non zero germ of section P of DN we note s(P) its symbol in
ON [η1, . . . , ηk]. For P = 0, let s(P) be 0.

Recall that we note p : N × C
k → N the projection.

Lemma 2.2.4 We have limm→∞ M(m) 	 M, where the maps M(m) → M(m + 1)
are induced by the obvious inclusions

DN (m) ↪→ DN (m + 1) and I(m) ↪→ I(m + 1).

Therefore, M is equal to the inductive limit limm→∞ M(m).

Proof Beware that the maps M(m) → M(m + 1) are not a priori injective.
There is an obvious map limm→∞ M(m) → M which is clearly surjective. The

point is to prove injectivity. Let P be a non zero germ at some σ ∈ N of order m, such
that its image in Mσ is 0. Then, by definition, there exists germs Bh, h ∈ [2, k] and
C p,q , (p, q) ∈ [1, k]2 in DN ,σ , such that

P =
k∑

h=2

BhT h +
∑

p,q

C p,q Ap,q .

Let r be the maximal order of the germs Bh and C p,q . Then, the equality above shows
that P is in I(r + 2). Therefore, the image of P in limm→∞ M(m) is zero, as it is
already 0 inM(r + 2). �

Lemma 2.2.5 Let P be a non zero germ of section of the sheaf I. Assume that P has
order at most 1. Then, P = 0.

Proof Let P = a0 + ∑k
h=1 ah∂h . Recall that for each h ∈ [1, k] and each m ∈ N we

have (see Proposition 5.2.1 in [1]):

∂h Nm = (−1)h−1m DNm−h (11)

where the polynomials

DNm :=
∑

Pσ (x j )=0

xm+k−1
j

P ′
σ (x j )

vanish for m ∈ [−k + 1,−1] and DN0 = 1.
Then, the equality I+ = I proved in Proposition 2.2.3 implies that for each integer

m, we have

a0Nm +
k∑

h=1

ah(−1)h−1m DNm−h = 0,∀m ∈ N
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For m = 0 this gives a0 = 0; if we have a0 = a1 = · · · = ap = 0 for some
p ∈ [0, k − 1] then P[Np+1] = 0 gives

∑k
h=p+1 ah(−1)h(p + 1)DNp+1−h =

ap+1(p + 1)DN0 = 0 and then ap+1 = 0. Therefore, P = 0. �

Notation Define the vector fields on N :
U0 := ∑k

h=1 hσh∂h and U−1 := ∑k−1
h=0(k − h)σh∂h+1 with the convention

σ0 ≡ 1.

Lemma 2.2.6 Let q ≥ 2 be an integer, α ∈ N
k , such that |α| = q − 2 and let m be an

integer in the interval [2, k]. The class induced by ∂αT m in W only depends on the
integers q and r := w(α)+ m. This class is given by the formula (with the convention
σ0 ≡ 1)

[
∂αT m] =

k∑

h=0

σh yq,r+h + (q − 1)yq,r , (12)

where yq,r is the class induced by ∂γ in W for any γ ∈ N
k , such that |γ | = q and

w(γ ) = r (see Lemma 2.1.5).
Let λ be a complex number and let β ∈ N

k , such that |β| = q − 1 and w(β) = r .
The class induced by ∂β(U0 − λ) in W only depends on λ and on the integers q and
r. This class is given by

[
∂β(U0 − λ)

] =
k∑

h=1

hσh yq,r+h + (r − λ)yq−1,r . (13)

In addition, the class induced by ∂βU−1 in W , again for |β| = q − 1 and w(β) = r ,
only depends on the integers q and r. This class is given by

[
∂βU−1

] =
k∑

h=0

(k − h)σh yq,r+h+1 + (k(q − 1) − r)yq−1,r+1 (14)

where, for r = k(q − 1), the last term in (14) is equal to 0 by convention.

Proof By definition T m = ∂1∂m−1 + ∑k
h=1 σh∂h∂m + ∂m which implies

∂αT m = ∂α∂1∂m−1 +
k∑

h=1

σh∂h∂m∂α + (q − 1)∂α∂m

as we have ∂ασh∂h = σh∂h∂α + αh∂α for any α ∈ N
k and any h ∈ [1, k]. Now,

formula (12) follows from Lemma 2.1.5, proving our first assertion.
As U0 := ∑k

h=1 hσh∂h we have

∂β(U0 − λ) =
k∑

h=1

h∂βσh∂h − λ.∂β =
k∑

h=1

h.σh∂h∂β + (w(β) − λ)∂β
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which gives Formula (13) using Lemma 2.1.5, and this proves our second assertion.
The third one is analogous using the fact that U−1 = ∑k−1

h=0(k − h)σh∂h+1 with the
convention σ0 ≡ 1 and the equalities:

∂βσh∂h+1 = σh∂β∂h+1 + βh∂β+1h+1−1h

k−1∑

h=0

(k − h)βh = k((q − 1) − βk) − (w(β) − kβk) = k(q − 1) − r

with the convention β0 = 0 and the fact that ∂β+1h+1−1h induces yq−1,r+1. �
Notations

1. Let Vq ⊂ Wq be theON −sub-module with basis yq,r for r ∈ [k(q − 1) + 1, kq].
Remark that V0 = W0 = W(0) = ON and V1 = W1 = ⊕k

h=1ON .∂h .
2. Let Lq : Wq → M(q) be the map induced by restriction to Wq of the quotient

map W(q) → M(q) and lq : Vq → M(q) its restriction to Vq .

Lemma 2.2.7 Fix an integer q ≥ 0. Then, for any Y ∈ Wq there exists X ∈ Vq, such
that Lq(Y − X) is in M(q − 1), with the convention M(−1) = {0}.
Proof Remark that for Y = yq,r with r ∈ [k(q − 1) + 1, kq] we may choose X = Y .
Therefore, it is enough to prove the lemma for Y in the sub-module with basis yq,r

with r ∈ [q, k(q − 1)].
Note that for q = 0 and for q = 1 there is nothing more to prove.
For each q ≥ 2 and r ∈ [q, k(q − 1)] there exists m ∈ [2, k], such that r − m is

in [q − 2, k(q − 2)], because the addition map (s, m) → s + m is surjective4 from
[q − 2, k.(q − 2)] × [2, k] to [q, k(q − 1)]. Therefore, there exists α ∈ N

k , such that
|α| = q − 2 and w(α) = r − m. Then

∂αT m = yq,r + (q − 1)yq−1,r +
k∑

h=1

σh yq,r+h

and the class induced by yq,r inM(q) is, moduloM(q − 1), in the sub−ON -module
of M(q) induced by the images of classes of yq,r ′ with r ′ > r . By a descending
induction on r ∈ [q, k(q − 1)] we see that, modulo M(q − 1), the image of Wq by
Lq is equal to Lq(Vq). This implies our statement by induction on q. �

Note that the previous lemma shows that lq(Vq) = Lq(Wq) for each q ≥ 0.

Proposition 2.2.8 For any q ∈ N, there is a natural isomorphism of ON -modules

�q := ⊕q
p=0l p : ⊕q

p=0 Vp −→ M(q) (15)

which is compatible with the natural map ⊕q
p=0 Vp ↪→ ⊕q+1

p=0 Vp and the natural map
M(q) → M(q + 1).

4 For r ∈ [q, k(q − 2) + 2] take s = r − 2 and m = 2, for r = k(q − 2) + j with j ∈ [2, k] take s = r − j
and m = j .
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Proof For q = 0 we have M(0) = V0 = ON .y0,0 where y0,0 = 1. Therefore, �0 is
an isomorphism. For q = 1, Lemma 2.2.5 shows that the map �1 is injective. As it is
surjective (we have V0 = W0 and V1 = W1) the assertion is clear.

Assume that we have proved that�q−1 is an isomorphism ofON -modules for some
q ≥ 2. We shall prove that �q is also an isomorphism.

Consider Y := ∑q
p=0 Yp with Yp ∈ Vp for each p ∈ [0, q], which is in the kernel

of �q . If Yq = 0 the induction hypothesis allows to conclude that Y = 0.
So assume that Yq �= 0. As Yq is induced5 by a differential operator of the form

∑k
j=1 b j∂

q−1
k ∂ j , with b j ∈ ON for j ∈ [1, k], we may choose a differential operator

P ∈ I of order q which induces Y , such that its symbol is equal to η
q−1
k

∑k
j=1 b jη j .

This symbol vanishes on Z , and, as ηk does not vanish on any non empty open set
on Z , we conclude that

∑k
j=1 b jη j vanishes on Z . The injectivity of �1 implies

that b1 = · · · = bk = 0 showing that Yq = 0 and this contradicts our hypothesis.
Therefore, �q is injective.

We have already noticed that Lemma 2.2.7 implies the surjectivity of�q for q ≥ 2.
Therefore, the proof is complete. �

Corollary 2.2.9 The DN -module M has no ON -torsion.

Proof This an easy consequence of the previous proposition giving that each M(q)

is a free ON -module, because for any σ ∈ N , a non zero torsion germ in Mσ has
to come from a non zero torsion element in M(q)σ for some q large enough (may
be much more larger than the order of the germ in DN ,σ inducing this class in Mσ )
thanks to Lemma 2.2.4. �

2.3 On Quotients ofM

We shall use the description of the characteristic variety of M to examine the holo-
nomic quotients of M supported by an irreducible complex subset of N .

Proposition 2.3.1 Let Q be a holonomic quotient of M which is supported by an
analytic subset S of N with empty interior in N. Then, S is a hyper-surface and S is
contained in {σk = 0} ∪ {�(σ) = 0}.
Proof Let S0 be an irreducible component of S, the support of a holonomic quotient
Q ofM. Let d ≥ 1 be the co-dimension of S0. Then, near the generic point in S0 the
co-normal sheaf of S0 is a rank d vector bundle over S0 which is contained in Z . As
the fibres of Z over N have pure dimension 1 we have d ≤ 1 and then d = 1 and S0
is a hyper-surface in N . Then, S is also a hyper-surface in N .

Let now S0 be an irreducible component of S which is not contained in {�(σ) = 0}.
Then, near the generic point in S0 the quotient map quot : M → N is an étale cover
and this shows that M locally is isomorphic to the quotient of DCk by the let ideal

with generators ∂2

∂zi ∂z j
for i �= j in [1, k]. Therefore, the characteristic variety of

M is locally isomorphic to C := ∪k
j=1N × {C.e j } where e j is the j−th vector in

5 Note that for each r ∈ [k(q − 1) + 1, kq], r = k(q − 1) + j , then yq,r is induced in Wq by ∂
q−1
k ∂ j .
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the canonical basis of C
k . If an irreducible hyper-surface has its co-normal bundle

contained in C , it has to be equal to the co-normal of one of the hyperplanes {z j = 0}.
This means that S is contained in {σk = 0}.

But any hyper-surface contained in {� = 0} is equal to {� = 0}. Therefore, the
only possible irreducible components of the support of Q are {σk = 0} or {� = 0}.

�

We shall use the following immediate corollary of this proposition:

Corollary 2.3.2 Let Q be a coherent holonomic quotient of M which is supported in a
closed analytic subset S in N with empty interior in N. If Q vanishes near the generic
points of {σk = 0} ∪ {� = 0}, then Q = {0}. �

Let k ≥ 2. We shall study the DN -module M near the generic point of the hyper-
surface {� = 0} in N .

Let z01, z03, . . . , z0k be (k − 1) distinct points in C and let r > 0 a real number small
enough in order that the discs D1, D3, . . . , Dk with respective centers z01, z03, . . . , z0k
and radius r are two by two disjoint. Let U0 := D1 × D1 × ∏k

j=3 D j and V (equal to

D1 × D2 for k = 2) the image of U0 by the quotient map quot : C
k → C

k
/
Sk = N .

Note U := q−1(V). Then, q induces an isomorphism of U0
/
S2 onto V .

Remark that for each σ ∈ V we have exactly two roots z1(σ ), z2(σ ) distinct or not
which are in D1 and for each j ∈ [3, k] we have exactly one (simple) root z j (σ ) in
D j . We have the following holomorphic map on V:

1. The map τ = (τ1, τ2) : V → C
2 given by τ1(σ ) := z1(σ ) + z2(σ ) and

τ2 := z1(σ )z2(σ ) where z1(σ ) and z2(σ ) are the roots of Pσ which are in D1.
2. For each j ∈ [3, k] the map z j : V → D j given by the unique (simple) root of Pσ

in D j .

To be completely clear, these holomorphic maps are defined on V by the following
integral formulas:

τ1(σ ) := 1

2iπ

∫

∂ D1

ζ P ′
σ (ζ )dζ

Pσ (ζ )

2τ2(σ ) = τ 21 − ν2(σ ) where ν2(σ ) := 1

2iπ

∫

∂ D1

ζ 2P ′
σ (ζ )dζ

Pσ (ζ )

and for j ∈ [3, k] z j (σ ) := 1

2iπ

∫

∂ D j

ζ P ′
σ (ζ )dζ

Pσ (ζ )

The following lemma is obvious:

Lemma 2.3.3 The holomorphic map � : V → C
2 × ∏k

j=3 D j given by (τ1, τ2, z3,

. . . , zk), is an isomorphism of V onto the open set V1 := D1,2 × ∏k
j=3 D j where we

define D1,2 := (D1 × D1)
/
S2 as the image of D1 × D1 by the quotient map by the

action of the permutation group S2. �
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In the sequel, we shall use the coordinate system on V given by the holomorphic
functions τ1, τ2, z3, . . . , zk on V .

Define on V 	 V1 = D1,2 × ∏k
j=3 D j the following partial differential operators

in the coordinate system described above:

• T 2 := ∂2τ1 + τ1∂τ1∂τ2 + τ2∂
2
τ2

+ ∂τ2

• Bi, j := ∂2
/
∂zi∂z j for 3 ≤ i < j ≤ k

• C1, j := ∂2
/
∂τ1∂z j for j ∈ [3, k]

• C2, j := ∂2
/
∂τ2∂z j for j ∈ [3, k]

• V0 := τ1∂τ1 + 2τ2∂τ2 + ∑k
j=3 z j∂z j

• V−1 := 2∂τ1 + τ1.∂τ2 + ∑k
j=3 ∂z j .

Proposition 2.3.4 The isomorphism of change of coordinates � on V given by σ �→
(τ1, τ2, z3, . . . , zk) has the following properties:

(i) The image of ideal I of DN restricted to V by the isomorphism � is the left ideal
generated by T 2, Bi, j , C1, j and C2, j in DV1 .

(ii) The vector field U0 is sent to V0 and the vector field U−1 is sent to V−1 by this
isomorphism.

Proof We shall use the local version of Theorem 5.1.1 in [1] which is given in Propo-
sition 2.2.3 above.

For � ⊂ V it is easy to see that the Fréchet space of trace functions admits as a
dense subset the finite C−linear combinations of the Newton functions νm, m ∈ N of
z1(σ ), z2(σ ) and of the functions zm

j (σ ), m ∈ N for each j ∈ [3, k]. From the case

k = 2 for which the left ideal I is generated by T 2 and the fact that each Bi, j , C1, j

and C2, j kill each νm and each zm
j , we conclude that I contains the left ideal generated

by T 2, the Bi, j , the C1, j and the C2, j .
Conversely, if P is in I it has to kill any νm and each zm

j ,∀ j ∈ [3, k]. Therefore,
P has no order 0 term. Modulo the ideal generated by the Bi, j , the C1, j and the C2, j

we may assume that we can write

P = P0 +
N∑

m=1

k∑

j=3

g j,m∂m
z j

where P0 is a differential operator in τ1, τ2 with no order 0 term, andwith holomorphic
dependence in z3, . . . , zk (but no derivation in these variables) and where g j,m are
holomorphic functions on V . Applying P to zN

j , with j ∈ [3, k], gives that

N∑

m=1

g j,m
N !

(N − m)! zN−m
j = 0

and then g j,m = 0 for each m ∈ [1, N ] and each j ∈ [3, k], because the g j,m are
holomorphic functions of (τ1, τ2). Then, P = P0 and P(νm) = 0 implies that P0 is
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in the left ideal generated by T 2 in the OV1 -algebra generated by ∂
∂τ1

and ∂
∂τ2

. Then,
P0 and also P are in our ideal and (i) is proved.

The verification of (i i) is easy and left to the reader. �

Lemma 2.3.5 For k = 2 we have for each n ∈ N
∗

(T 2 − 2n∂2)�
n = �nT 2 + 2n(2n + 1)�n−1. (16)

Proof Recall that we have E := σ1∂1 + σ2∂2 and T 2 = ∂21 + ∂2E and that
� = σ 2

1 − 4σ2. Therefore, we have

∂1� = �∂1 + 2σ1

[σ1∂1,�] = 2σ 2
1

∂2.� = �∂2 − 4

[σ2∂2,�] = −4σ2

[E,�] = 2σ 2
1 − 4σ2

and

[∂2E,�] = ∂2(�E + 2σ 2
1 − 4σ2) − (∂2� + 4).E = 2�∂2 − 4σ1∂1 − 4

∂21� = ∂1(�∂1 + 2σ1) = (�∂1 + 2σ1)∂1 + 2σ1∂1 + 2 = �∂21 + 4σ1∂1 + 2
[
T 2,�

]
=

[
∂21 ,�

]
+ [∂2E,�]

T 2.� = �T 2 + 4σ1∂1 + 2 + 2�∂2 − 4σ1∂1 − 4 = �T 2 + 2∂2� + 8 + 2 − 4

(T 2 − 2∂2)� = �T 2 + 6

which proves (16) for n = 1.
Assume now that we have proved the formula (16) for n ≥ 1. Then, we have, using

that �n∂2 = ∂2�
n + 4n�n−1

(T 2 − 2n∂2)�
n+1 = �nT 2� + 2n(2n + 1)�n

(T 2 − 2n∂2)�
n+1 = �n+1T 2 + �n2∂2.� + 6�n + 2n(2n + 1)�n

(T 2 − 2n∂2)�
n+1 = �n+1T 2 + 2∂2�

n+1 + 8n�n + 6�n + 2n(2n + 1)�n

(T 2 − 2(n + 1)∂2)�
n+1 = �n+1T 2 + 2(n + 1)(2n + 3)�n

because 2n(2n + 1) + 8n + 6 = 2(n + 1)(2n + 3). �

Theorem 2.3.6 Let Q be a coherent DN -module which is a quotient of M and which
is supported by {� = 0}. Then, Q = {0}. Moreover, any holonomic quotient of M
has no �−torsion.

Proof Thanks to Corollary 2.3.2 it is enough to prove that such a quotient Q is zero
near the generic points of {� = 0}. Therefore, assume that Q is such a non zero
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quotient. Using now the result of Proposition 2.3.4, theD-module Q is given near the
generic points of {� = 0} by the quotient of D by a left ideal K which contains T 2.
Then, there exists an integer n > 0, such that �n belongs to K. Then, Lemma 2.3.5
implies that K contains �n−1. Then, by a descending induction on n we obtain that 1
is in K and this contradicts the non vanishing of Q.

The characteristic variety of a holonomic quotient of M which is supported in
codimension ≥ 1 in N is contained in the characterisc variety of M so is contained
in the union of N × {0} with the co-normal to {σk = 0} and {� = 0} thanks to
Proposition 2.3.1. However, Lemma 2.3.5 implies that near the generic point of {� =
0} a torsion element in such a quotient vanishes. Therefore, the torsion submodule of
a holonomic quotient ofM cannot have the co-normal of {� = 0} in its characteristic
variety. Then, such a quotient has no �−torsion. �

2.4 Action of sl2(C) onM

Let B be the sub-C−algebra of the Weyl algebra C[σ ]〈∂〉 generated by the vector
fields Up, p ≥ −1, where Up is the vector field on N defined as the image by the
differential Tquot of the quotient map:

quot : M := C
k −→ N := C

k/Sk 	 C
k

of the vector field
∑k

j=1 z p+1
j

∂
∂z j

.

Theorem 2.4.1 For each p ≥ −1, we have IUp ⊂ I. Then, the right action of B
on DN induces a morphism of algebras between B and the algebra of left DN -linear
endomorphisms of M.

Moreover, the right action of B on M satisfies [Up, Uq ] = (q − p)Up+q ,∀p, q ≥
−1.

Proof It will be enough to show that for each integer p ≥ −1 we have the inclusion
IUp ⊂ I. If it is not difficult to prove such an inclusion for p = −1 or p = 0 by a
direct computation of the commutators of Up with the generators of I, it seems rather
difficult to do it for p large, because the coordinates ofUp in theC[σ ] basis ∂1, . . . , ∂k

of the polynomial vector fields on N seems more and more complicated. Therefore,
we shall use the local version of Theorem 5.1.1 in [1] given in Proposition 2.2.3.

Let P ∈ I, p ≥ −1 an integer and m ∈ N. Using the formula Up[Nm] = m Nm+p

which is easy to verify on M , we get

P[Up[Nm]] = P[m Nm+p] = 0

when P annihilates any Newton polynomial. Then, PUp also annihilates any Newton
polynomial and thanks to Proposition 2.2.3we conclude that PUp belongs toI proving
the first assertion.

The verification of the commutation formula

UpUq − UqUp = (q − p)Up+q
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is easy and left to the reader. �

Remark The commutation relations

[U0, U−1] = −U−1, [U0, U1] = U1 and [U1, U−1] = 2U0

which are easy to check in M , show that the Lie algebra L generated by the Up (with
the commutators given by the formula (17)) contains a sub-Lie algebra isomorphic
to sl2(C). The formula (17) shows that L acts on M and then induces a structure of
sl2(C)−module on M.

3 TheDN-ModulesN�

3.1 Homothety and Translation

Notations Let λ a complex number. We define the left ideal

Jλ := I + DN (U0 − λ)

in DN and let Nλ be the quotient DN
/
Jλ. We shall denote by qλ : M → Nλ the

quotient map.
We shall denote, respectively, byHλ andT the endomorphismsof leftDN -modules

onM induced, respectively, by the right multiplications by U0 − λ and U−1 (see the
Theorem 2.4.1). They satisfy the commutation relation (see loc. cit.)

Hλ ◦ T − T ◦ Hλ = −T

for each λ ∈ C and Nλ is, by definition, the co-kernel of Hλ.
As I.U−1 ⊂ I, writing this relation in the formHλ−1 ◦T = T ◦Hλ we see that

the right multiplication by U−1 induces a left DN -modules morphism

Tλ : Nλ−1 → Nλ

for each λ.

Proposition 3.1.1 For each λ ∈ C we have an exact sequence of left DN -modules on
N

0 → M Hλ−→ M qλ−→ Nλ → 0 (17)

where qλ is the obvious quotient map.

Proof The quotient map qλ is surjective by definition, so the point is to prove that the
kernel of qλ is isomorphic toM.
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This kernel is obviously given by

Jλ

/
I 	 (

I + DN (U0 − λ)
)/

I 	 DN (U0 − λ)
/
I ∩ DN (U0 − λ) (18)

The proof will be an easy consequence of the following lemma.

Lemma 3.1.2 Let P be a germ in DN ,σ for some σ ∈ N such that P(U0 −λ) is in Iσ .
Then, P is in Iσ . Therefore, Iσ ∩ DN ,σ (U0 − λ) = Iσ (U0 − λ).

Proof Assume that the lemma is wrong. Then, let P0 in DN ,σ having minimal order
among germs P in DN ,σ satisfying the following properties

1. P(U0 − λ) is in Iσ ∩ DN ,σ (U0 − λ);
2. P is not in Iσ .

Let π be the symbol of P0 and let g be the symbol of U0. We have πg ∈ p∗(IZ )σ .
However, we know that g does not vanish on any non empty open set of Z , because
{g = 0}∩ Z has pure co-dimension 1 in Z (see Lemma 2.2.5 above). Then, π vanishes
on (V × C

k) ∩ Z where V is a neighborhood of σ in N and, as we have proved that
Z is reduced and is the characteristic cycle of M, their exists a germ P1 in Iσ with
symbol equal to π . Then, (P0 − P1)(U0 − λ) satisfies again the properties 1 and 2
and is of order strictly less than the order of P0. Therefore, P0 − P1 is in Iσ and this
contradicts the fact that we assumed that P0 is not in Iσ . �

End of proof of 3.1.1 The previous lemma shows that for each λ ∈ C

I ∩ DN (U0 − λ) = I(U0 − λ).

Therefore, the right multiplication by U0 − λ induces an isomorphism of left DN -
modules

M → DN (U0 − λ)
/
I(U0 − λ)

and the kernel of qλ is isomorphic toM by the inverse of this isomorphism. �

Definition 3.1.3 Define the DN -module N as the quotient DN
/
(I + DN U−1). For

each λ ∈ C then define Tλ : Nλ → Nλ+1 as the DN -linear map induced by T .

Lemma 3.1.4 For each λ ∈ C the co-kernel of the DN -linear map Tλ+1 is naturally
isomorphic to the co-kernel of the DN -linear map H̃λ+1 : N → N induced by Hλ+1
and there is also a natural isomorphism of DN -modules between the kernels of H̃λ+1
and Tλ+1.

123



D. Barlet

Proof Consider the commutative diagram of left DN -modules with exact lines and
columns:

0

K er(H̃λ+1)

M
Hλ

T M
Hλ+1

N

H̃λ+1

0

M T M N 0

0 K er(Tλ+1) Nλ

Tλ+1 Nλ+1 N�
λ+1 0

0 0

where N�
λ+1 is, by definition, the co-kernel of Tλ+1 : Nλ → Nλ+1. By a simple

diagram chasing it is easy to see that N�
λ+1 is also the co-kernel of H̃λ+1 : N → N.

A elementary diagramchasing gives also the isomorphismbetween kernels of H̃λ+1
and Tλ+1. �

We shall prove now that for λ �= 0, 1 the map Tλ is an isomorphism of left DN -
modules. This implies N�

λ = {0} for λ �= 0, 1.

Lemma 3.1.5 Let Gλ : Nλ+1 → Nλ the left DN -linear map given by right multiplica-
tion by U1. Then, we have for each λ ∈ C

Tλ ◦ Gλ−1 = λ(λ − 1) on Nλ (A)

Gλ−1 ◦ Tλ = λ(λ − 1) on Nλ−1 (B)

Therefore, for λ �= 0, 1 the left DN -linear map Tλ is an isomorphism.

Proof We shall use the same argument than in the proof of Theorem 2.4.1 to prove
the formulas

U1U−1 = U0(U0 − 1) modulo I and U−1U1 = U0(U0 + 1) modulo I
(19)
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For each m ∈ N we have:

U1U−1[Nm] = U1[m Nm−1] = m(m − 1)Nm

U0(U0 − 1)[Nm] = U0[(m − 1)Nm] = m(m − 1)Nm and also

U−1U1[Nm] = U−1[m Nm+1] = (m + 1)m Nm

U0(U0 + 1)[Nm] = U0[(m + 1)Nm] = m(m + 1)Nm

and this implies Formulas (19).
These give (A) and (B) and the conclusion follows. �

The following important result shows that adding to the ideal A the invariance
by translation and the homogeneity 1, that is to say considering the left ideal in DN :
A+DN U−1+DN (U0−1), we recover the idealJ1+DN U−1 andDN

/
(J1+DN U−1)

is the co-kernel of the map T1 : N0 → N1. Therefore, as a corollary, we shall obtain
the equality

N�
1 = DN

/
A + DN U−1 + DN (U0 − 1). (20)

Proposition 3.1.6 For h ∈ [2, k] we have the equality

∂h(U0 − 1) + ∂h−1U−1 = kT h +
k−1∑

q=1

(k − q)σq Ah−1,q+1 (Eh)

and for h = 1 the equality

−∂1(U0 − 1) + EU−1 =
k−1∑

q=1

(k − q)σqT q+1. (E1)

Proof Recall first that, if we put E := ∑k
h=1 hσh∂h then for any m ∈ [2, k] we have

T m = ∂1∂m−1 + ∂m E = ∂1∂m−1 + E∂m + ∂m .

For h ∈ [2, k] we have

∂hU0 + ∂h−1U−1 =
k∑

q=1

qσq∂q∂h + h∂h +
k−1∑

q=0

(k − q)σq∂q+1∂h−1 + (k − h + 1)∂h

=
k∑

q=1

qσq∂q∂h +
k∑

q=1

(k − q)σq Ah−1,q+1 + k∂1∂h−1

+
k∑

q=1

(k − q)σq∂q∂h + (k + 1)∂h
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= k E∂h + k∂1∂h−1 + k∂h + ∂h +
k−1∑

q=1

(k − q)σq Ah−1,q+1

= kT h + ∂h +
k−1∑

q=1

(k − q)σq Ah−1,q+1

which is (Eh).
For h = 1 let us compute

∑k−1
q=1(k − q).σq .T q+1:

k−1∑

q=1

(k − q)σqT q+1 =
k−1∑

q=1

(k − q)σq
(
∂1∂q + ∂q+1E

)

k−1∑

q=1

(k − q)σqT q+1 =
⎛

⎝
k−1∑

q=1

(k − q)σq∂q

⎞

⎠ ∂1 +
k−1∑

q=1

(k − q)σq∂q+1E

k−1∑

q=1

(k − q)σqT q+1 = ( k−1∑

q=1

(k − q)σq∂q
)
∂1 + (U−1 − k∂1)E

= k(E − σk∂k)∂1 − (U0 − kσk∂k)∂1 + (U−1 − k∂1)E

= k E∂1 − k∂1E − U0∂1 + U−1E

= EU−1 − ∂1(U0 − 1)
using the commutation relations [U−1, E] = k∂1, [E, ∂1] = −∂1 and [U0, ∂1] =

−∂1. Therefore, we obtain the equality (E1). �
Remarks

1. An interesting way to look at these relations is to compare them with the minors
of the (k + 1, 2) matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T −(H0 − 1)
∂1 −E
∂2 ∂1
. .

. .

. .

∂k ∂k−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where, by definition, E is the right product by E in the Weyl algebra C[σ ]〈η〉. The
relations (Eh), h ∈ [1, k] may also be seen as the fact that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂1
∂2
.

.

.

∂k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(U0 − 1) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−E
∂1
.

.

.

∂k−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

U−1
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is a global section of Ik ⊂ Dk
N .

2. Let g and γ be the symbols of U0 and U−1, respectively. Looking at the symbols
in formulas (Eh), h ∈ [1, k], we obtain (recall that lσ (η) is the symbol of E):

g(σ, η)

⎛

⎜
⎜
⎜
⎜
⎝

η1
η2
. . .

. . .

ηk

⎞

⎟
⎟
⎟
⎟
⎠

+ γ (σ, η)

⎛

⎜
⎜
⎜
⎜
⎝

−lσ (η)

η1
η2
. . .

ηk−1

⎞

⎟
⎟
⎟
⎟
⎠

= 0 on Z (F)

3. For λ �= 0 the sheaf of solutions6 of Nλ near the generic point in N is the rank
k local system with basis zλ

j . This is consequence of the the fact that any local

trace function7 F which satisfies (U0 − λ)[F] = 0 is the trace of a homogeneous
function of degree λ.

4. Thanks to Lemma 3.1.5, the map induced by Tλ on solutions

Sol0(Nλ) → Sol0(Nλ−1)

sends zλ
j to λzλ−1

j . This is clearly an isomorphism for λ �= 0, 1.

3.2 Characteristic Varieties

Recall that for a differential operator P ∈ DN we note s(P) its symbol which is a
section of the sheaf ON [η] of homogeneous polynomials in η := (η1, . . . , ηk).

Proposition 3.2.1 Let I be a coherent left ideal inDN such that its characteristic ideal
IZ is the reduced ideal of an analytic subset Z in N × C

k . Let U ∈ �(N ,DN ) be
a differential operator of order q, such that its symbol u does not vanish on any non
empty open set in Z. Assume that IU ⊂ I. Then, the characteristic ideal of I+DN U
is equal to IZ + ON×Ck u.

Moreover, for any σ ∈ N and any germ at σ of order q + r: Q = P + BU where
P ∈ Iσ and B ∈ DN ,σ , there exists P1 ∈ Iσ of order at most q + r and B1 ∈ DN ,σ

of order at most r such that Q = P1 + B1U.

Proof First, assume that there exists P ∈ Iσ and B ∈ DN ,σ , such that the symbol
of Q := P + BU is not in IZ + (u). Then, consider such a couple (P0, B0) with B0
of order b minimal among all such couples. Then, P0 and B0U have the same order,
because when their orders are different we have s(Q) = s(P0) or s(Q) = s(B0)u
contradicting the fact that s(Q) is not in IZ + (u).

In addition, if P0 and B0U have equal orders which is the order of Q, we have the
equality s(Q) = s(P0) + s(B0)u contradicting our assumption.

Therefore, the only case left is when P0 and B0U have the same order b0+q which
is strictly bigger than the order of Q. In this case we have s(P0) + s(B0)u = 0 which

6 We mean here Sol0(Nλ) := HomDN
(Nλ,ON ).

7 See Introduction or [1].

123



D. Barlet

implies that s(B0)u vanishes on Z . However, our hypothesis on u implies then that
s(B0) vanishes on Z . As IZ is reduced and is the characteristic ideal of I we may find
a germ B ∈ Iσ , such that s(B) = s(B0). Then, write

Q = P0 + B0U = P0 + BU + (B0 − B)U .

Since B is in Iσ and IU ⊂ I we have P1 = P0+ BU in Iσ and the order of B0− B1 is
strictly less than b. This contradicts the minimality of b and proves our first assertion.

Assume now that Q = P + BU has order q + r and that B has order r + s with
s ≥ 1. If the order of P and BU are not equal then either P or BU is of order q + r
and P and BU have orders at most q + r we are done.

So we may assume that P and BU have the same order q + r + s with s ≥ 1.
Then, the previous considerations will produce B ′ ∈ Iσ with s(B ′) = s(B) and then
P1 := P + B ′U and B1 := B − B ′ give that Q = P1 + B1U with P1 ∈ Iσ and
B1 ∈ DN ,σ of order at most q + r + s − 1. By a descending induction on s this
completes our proof, because when B1 has order at most r the order of P1 is at most
q + r , because we assume that Q has order q + r . �

The following two corollaries are immediate applications of the previous propo-
sition, using Proposition 2.2.2 and Theorem 2.4.1 which allow to verify that needed
hypotheses.

Corollary 3.2.2 The characteristic cycle of Nλ,∀λ ∈ C, is the cycle associated to the
ideal IZ + (g) in ON [η] where g is the symbol of U0.

Also the characteristic cycle of M̃ is the cycle associated to the ideal IZ + (γ ) in
ON [η] where γ is the symbol of U−1. �

Corollary 3.2.3 Let I the left ideal in DN that we introduced in Definition 2.2.1 and
let U := U0 − λ. Then, for any non zero germ Q ∈ I + DN U of order q + 1 there
exist a germ P ∈ I of order at most q + 1 and a germ B ∈ DN of order at most q
such that Q = P + BU. �

Remark

1. We shall be interested mainly by the special case of Corollary 3.2.3.
Define for each q ≥ 0

Jλ(q + 1) = I(q + 1) + DN (q)(U0 − λ).

Then, this corollary gives, for each λ ∈ C and for each q ∈ N
∗ the equality

Jλ ∩ DN (q) = Jλ(q). This implies that the natural map

Nλ(q) → Nλ (21)

is injective
2. Note that Jλ(0) := I(0) = {0} as no non zero differential operator of order 0

annihilates the Newton polynomials (in fact N0 := k is enough !)
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3. Also the fact that I(1) = {0} (see Lemma 2.2.5) implies the equality

Jλ(1) = ON (U0 − λ).

The irreducible component X . Let H� := {�(σ) = 0} in N . At the generic
point σ of this hyper-surface, the polynomial Pσ has exactly one double root ϕ(σ)

and ϕ : H� ��� C is a meromorphic function which is locally bounded on H�. Then,
define the meromorphic map

� : H� ��� Pk−1

by letting �h(σ ) = (−ϕ(σ))k−h for h ∈ [1, k] in homogeneous coordinates. Let
X ⊂ N ×C

k be the N−relative cone over the graph of the meromorphic map �. This
is a k−dimensional irreducible subset in H� × C

k and its fiber at the generic point in
H� is the line directed by the vector �h(σ ), h ∈ [1, k].

We shall consider the following sub-spaces in N ×Pk−1 (where s(P) is the symbol
of P)

P(Z) := {(σ, η) ∈ N × Pk−1 / s(P)(σ, η) = 0 ∀P ∈ I \ {0}}

P(X) :=
{

(σ, η) ∈ P(Z) / γ (σ, η) :=
k−1∑

h=0

(k − h).σh .ηh+1 = 0

}

P(Y ) :=
{

(σ, η) ∈ P(Z) / g(σ, η) :=
k∑

h=1

h.σh .ηh = 0

}

.

The next proposition will justify our notations in proving that P(X) is the graph of
the meromorphic map � !

Proposition 3.2.4 The subspace P(Z) is a complex sub-manifold of dimension k which
is a k−branched covering of N via the natural projection N × Pk−1 → N. The sub-
space P(X) is reduced and equal to the irreducible component of

P(Z) ∩ (
H� × Pk−1

)

which is the graph of the meromorphic map � : H� → Pk−1 defined above, and P(Y )

is the sum (as a cycle) of P(X) with the reduced hyper-surface in P(Z) defined by
the (reduced) divisor {ηk−1 = 0} in P(Z).

Proof First remark that if (σ, η) is in Z and satisfies ηk = 0 thenwe have η = 0. There-
fore, P(Z) is contained in the open set �k := {ηk �= 0} and, on this open set which is
isomorphic to N ×C

k−1, we may use the coordinates σ1, . . . , σk, η1/ηk, . . . , ηk−2/ηk

and z := −ηk−1/ηk .

Lemma 3.2.5 We have an isomorphism

ϕk : P(Z) → C
k given by (σ, η) �→ (σ1, . . . , σk−1, z).
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Proof Remark first that the vanishing of the (2, 2) minors which give the equations of
Z (see Formula (10) before Proposition 2.2.2) implies, assuming ηk �= 0, that:

ηh/ηk = (−z)k−h for h ∈ [1, k − 1]

and also, as the symbol of T k is equal to η1ηk−1 + ηklσ (η), that lσ (η)/ηk = −(−z)k .
But then,

lσ (η)/ηk =
k∑

h=1

(−1)k−hσhzk−h = (−1)k(Pσ (z) − zk)

shows that Pσ (z) = 0 on P(Z).
Let us show that the holomorphic map ψk : C

k → P(Z) given by

ηh = (−z)k−h for h ∈ [1, k] and σk = −
k−1∑

h=0

(−1)k−hσhzk−h

with the convention σ0 ≡ 1 gives an inverse to ϕk .
First, we shall verify that ψk takes its values in P(Z). Note that the definition of σk

implies Pσ (z) = 0. We have for (σ, η) = ψk(σ
′, z) the equality:

lσ (η) =
k∑

h=1

σhηh =
k∑

h=1

(−1)k−hσhzk−h = −(−z)k

Then, we have to verify that the vectors (η1, . . . , ηk−1, 1) and ((−z)k, η1, . . . , ηk−1)

are co-linear. This is clear as the second one is ηk−1 = (−z)ηk-times the first one (see
again Formula (10)).

To complete the proof, it is enough to check thatψk ◦ϕk and ϕk ◦ψk are the identity
maps. This is easy verification is left to the reader. �

End of proof of 3.2.4. In this chart we have

g(σ, η)/ηk =
k∑

h=1

hσhηh/ηk =
k∑

h=1

(−1)k−hhσhzk−h

g(σ, η)/ηk = (−1)k+1

(
k∑

h=1

(−1)h(k − h)σhzk−h − k
k∑

h=1

(−1)hσhzk−h

)

and this gives

g(σ, η)/ηk = (−1)k+1
(

z P ′
σ (z) − kzk − k(Pσ (z) − zk)

)
= (−1)k+1z P ′

σ (z).
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We have also

γ (σ, η)/ηk =
k−1∑

h=0

(−1)k−h−1(k − h)σhzk−h−1 = (−1)k+1P ′
σ (z).

Therefore, g = zγ in this chart,8 and the ideal generated by g and γ in P(Z) is
generated by γ which defined the hyper-surface P(X).

However, on this hyper-surface we have Pσ (z) = 0 and P ′
σ (z) = 0, so z is a double

root of Pσ . This implies that �(σ) = 0 for (σ, η) in the analytic subset |P(X)|.
On a Zariski dense open set in H� the unique double root of Pσ is equal to ϕ(σ)

which is given by z = −ηk−1/ηk when (σ, η) ∈ |P(X)|. Therefore, |P(X)| contains
the graph of the meromorphic map �. Moreover, as the projection P(Z) → N is
clearly a branched covering (of degree k) and over the generic point in H� there
exists an unique root of multiplicity 2 for Pσ , P(X) has generic degree 1 over H�. In
addition„ because P ′′

σ (z) does not vanish at the generic point in P(X) (which has to be
over the generic point of H�) implies that the hyper-surface P(X) of P(Z) is reduced.
This is enough to conclude that P(X) is equal to the graph of �.

The previous computation shows also that P(Y ) is the sum of P(X)with the divisor
defined by {z = 0} in P(Z) which is a smooth and reduced hyper-surface given by the
equation ηk−1 = 0 in P(Z). �

The determination of the characteristic cycles of the holonomicDN -modulesN and
Nλ is an easy consequence of the previous proposition thanks to Proposition 2.2.3.

Corollary 3.2.6 The characteristic cycle of the DN -module N is equal to P(X). For
each complex number λ the characteristic cycle of the DN -module Nλ is equal to
P(Y ) = P(X) + (

P(Z) ∩ {ηk−1 = 0}). �
Remarks

1. The intersection P(Z) ∩ {ηk−1 = 0} is equal to N × [v] where v is the point
(0, . . . , 0, 1) ∈ Pk−1 and this intersection is the projectivization of the co-normal
to the hyper-surface {σk = 0}.

2. At the set-theoretical level we have

Z ∩ {γ = 0} = X ∪ (N × {0}) and

Z ∩ {g = 0} = X ∪
(
{σk = 0} × {η1 = η2 = · · · = ηk−1 = 0}

)
∪ (N × {0}).

3. Despite the previous results, g(σ, η) does not belongs to the ideal of C[σ, η] gen-
erated by IZ and γ (σ, η) at the generic point in N ×{0}. This is consequence of the
fact that IZ does not contain a non zero element in C[σ, η] which is homogeneous
of degree 1 in η, using Corollary 3.2.3.

The following lemma will be useful later on

Lemma 3.2.7 Assume that f ∂n
k U−1 is inJλ,σ for some f ∈ ON ,σ , some integer n ≥ 1

and some λ ∈ C. Then, f is in σkON ,σ .

8 Compare withe Formula (F) at the end of Paragraph 3.1.
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Proof The fact that f ∂n
k U−1 is inJλ,σ implies that f ηn

k γ vanishes on the characteristic
variety of the DN -module Nλ. Therefore, thanks to Corollary 3.2.6 f .ηn

k γ vanishes
on C , the co-normal bundle of the hyper-surface {σk = 0}. However, ηk and γ do not
vanish on any non empty open set in C :

this is clear for ηk and the restriction of γ to C is equal to σk−1ηk and σk−1 also
does not vanish on any non empty open set in C . Therefore, f ∈ ON ,σ has to vanish
on C and we conclude that f is in σkON ,σ . �

3.3 The Case � /∈ N

Notation For each λ ∈ C and each q ≥ 0 we shall note

Jλ(q + 1) := I(q + 1) + DN (q)(U0 − λ)

and

Nλ(q + 1) := DN (q + 1)
/
Jλ(q + 1).

For q = 0 we note Jλ(0) := I(0) and Nλ(0) := ON
/
Jλ(0).

The goal of this paragraph is to prove the following theorem.

Theorem 3.3.1 For λ ∈ C \ N
∗ the DN -module Nλ has no ON -torsion.

Proof This result is a direct consequence of Proposition 3.3.5, thanks to the injec-
tivity for each q ≥ 0 of the natural map Nλ(q) → Nλ (see Remark 1 following
Corollary 3.2.3). �

Definition 3.3.2 For any λ ∈ C \ N
∗, for any integer q ≥ 2 and for any integer

r ∈ [q, k(q − 1)] define the following elements in Wq (see Formulas (12) and (13)
in Lemma 2.2.6)

θq,r := (r − λ)∂αT m] − (q − 1)
[
∂β(U0 − λ)

]
(22)

so θq,r =
k∑

h=0

(r − λ − (q − 1)h)σh yq,r+h . (23)

where in Formula (23) we assume that α ∈ N
k and m ∈ [2, k] satisfy |α| = q − 2 and

w(α) = r − m, and that β ∈ N
k satisfies |β| = q − 1 and w(β) = r .

Corollary 3.3.3 For any integer q ≥ 1 the kernel of the quotient map

lq : W(q) → Nλ(q)

is equal to the sub-ON -module generated by U0 − λ ∈ W(1) and the elements θp,r ,
for each p ∈ [2, q], and for each r ∈ [p, (k − 1)p].
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Proof We have to prove that if a non zero differential operator P of order p ≤ q is
in Jλ then it may be written as Q + B(U0 − λ) with Q ∈ I of order at most p (or
Q = 0) and B of order at most p − 1 (or B = 0). When p ≥ 2 this is precisely the
statement proved in Proposition 3.2.1. For p ≤ 1 the only P which are in Jλ(1) are
in ON (U0 − λ) thanks to Remarks 2 and 3 following Corollary 3.2.3. �

Lemma 3.3.4 Let λ be in C \ N
∗; for each integer q ≥ 2 the elements θq,r and yq,s ,

with r ∈ [q, k(q − 1)] and s ∈ [k(q − 1) + 1, kq] form a ON −basis of Wq .

Proof Let Wq,p be the ON -module of Wq with basis the yq,r for r ≥ p + 1. Then,
we have for r ∈ [q, k(q − 1)]

θq,r ∈ (r − λ)yq,r + Wq,r+1

so the determinant of the k(q − 1) − q + 1 + k = kq − q + 1 vectors θq,r , yq,s in
the basis

(
yq,r , r ∈ [q, kq]) ofWq is upper triangular and is equal to

∏k(q−1)
r=q (r − λ)

which is in C
∗ as soon as λ is not in the subset [q, k(q − 1)] of N

∗. �

Proposition 3.3.5 Let q ≥ 1 be an integer and assume that λ is not an integer in
[0, k(q −1)]. Let Lq : Wq → Nλ(q) be the restriction to Wq of quotient map lq . This
ON -linear map is surjective and its kernel is the sub-module of Wq with basis the θ

q
r

for r ∈ [q, k(q − 1)]. Therefore, Nλ(q) is a free ON -module of rank k.

Proof Remark first that for q = 1 the result is clear as for λ �= 0 we have

Nλ(1) = ⊕k
h=1ON ∂h

thanks to Remark 3 following Corollary 3.2.3 and W1 = ⊕k
h=1ON .y1,h with

L1(y1,h) = [∂h]. Therefore, we may assume that q ≥ 2.
We shall prove first thatNλ(q) is equal to the image of Lq by induction on q ≥ 2.
Assume that q = 2. Then, the image of

∂ j (U0 − λ) − ( j − λ)∂ j =
k∑

h=1

hσh y2,h+ j ∈ W2

by L2 is the class of −( j − λ)∂ j in Nλ. Therefore, the image of L2 contains the
classes of ∂1, . . . , ∂k as λ is not in [1, k] and also contains the class of 1 as we assume
λ �= 0 and as the equality λ = ∑k

h=1 hσh∂h holds in Nλ. However, the image of L2
contains obviously the classes of ∂α for any multi-index α ∈ N

k, |α| = 2. Therefore,
our assertion is proved for q = 2.

Assume now that q ≥ 3 and that our assertion is proved for q − 1. Remark that the
image of Lq contains obviously the classes of ∂α for each α ∈ N

k, |α| = q. We shall
use now the following easy formula:

• For any r ∈ [q − 1, k(q − 1)] and any j ∈ [1, k] we have in Nλ the equality

∂ j Lq−1(yq−1,r ) = Lq(∂ j yq−1,r ) = Lq(yq,r+ j ).
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For any β ∈ N
k\{0} with |β| ≤ q − 1 we may find j ∈ [1, k] and γ ∈ N

k , such
that ∂β = ∂ j∂

γ . By our inductive assumption there exists x ∈ Wq−1, such that
Lq−1(x) = ∂γ . Then, ∂ j x is inWq and thanks to the formula above we have

Lq(∂ j x) = ∂ j Lq−1(x) = ∂ j .∂
γ = ∂β in Nλ.

Again, we conclude that the class of 1 inNλ(q) is in the image of Lq using λ �= 0 and
the equality λ = ∑k

h=1 hσh∂h which holds in Nλ(q). This complete the proof of our
first statement.

However, it is clear that θq,r for r ∈ [q, k(q −1)] are in the kernel of Lq . Therefore,
the ON -free rank k module with basis

(
yq,r , r ∈ [k(q − 1) + 1, kq]) is surjective via

Lq ontoNλ(q). The next lemma completes the proof, as we already know thatNλ(1)
is a ON -free rank k sub-module of Nλ(q) with basis ∂1, . . . , ∂k . �

Lemma 3.3.6 Let A be an integral commutative ring and let M be a A-module. Assume
that there exists a surjective A-linear map p : Ak → M and an injective A-linear
map i : Ak → M. Then, p is an isomorphism.

Proof Let j : Ak → Ak be a A−linear map, such that j ◦ p = i . Therefore, j
is injective and the co-kernel C of j is a torsion module. Let q : Ak → C be the
quotient map and let K be the kernel of p. The restriction of q to K is injective,
because if x ∈ K satisfies q(x) = 0 then x = j(y) for some y ∈ Ak and then
i(y) = p( j(y)) = p(x) = 0, which implies y = 0 and x = 0. Therefore, K is a
sub-module of C and then K is a A−torsion module. However, as K ⊂ Ak we have
K = 0 and so p is an isomorphism. �

0

C

0 K Ak p

q

M 0

0 Ak

i
j

0 0

Lemma 3.3.7 For λ /∈ N we have σk�(σ)Nλ(2) ⊂ Nλ(1).

The proof will be a simple consequence of the following lemma.
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Lemma 3.3.8 Let y := (y2, . . . , y2k) be in C[σ ]2k−1 and consider the C[σ ]−linear
system (2k − 1, 2k − 1) on C[σ ]2k−1 given by the following C[σ ]−linear forms:

Lq(y) :=
k∑

h=0

hσh yq+h for q ∈ [1, k]

�r (y) :=
k∑

h=0

σh yr+h for r ∈ [2, k]

Then, the determinant of this linear system is equal to σk�(σ) where �(σ) is the
discriminant of the polynomial Pσ (z) := zk + ∑k

h=1(−1)hσhzk−h.

Proof Remark first that �(σ) is also the discriminant of the polynomial (see the
computation below):

P̃σ (z) :=
k∑

h=0

σhzk−h .

Then, remark also that the resultant of the polynomials P̃σ (z) and k P̃σ (z)− z(P̃σ )′(z)
coincides with the determinant of the (2k − 1, 2k − 1) C[σ ]−linear system defined
in the statement of the lemma. Therefore, it is enough to compute this resultant. It is
given by

R(σ ) =
∏

P̃σ (z j )=0

(
k P̃σ (z j ) − z j (P̃σ )′(z j )

)

= σk

∏

Pσ (−z j )=0

(−1)k−1P ′
σ (−z j ) = σk�(σ)

as P̃σ (−z) = (−1)k Pσ (z) implies P̃ ′
σ (−z) = (−1)k−1P ′

σ (z). This conclude the proof
�

proof of 3.3.7 It is enough to prove that for each (p, q) ∈ [1, k]2 there exist
polynomials a p

h,q(λ) in C[σ, λ] (in fact affine in λ), such that

σk�(σ)∂p∂q −
k∑

h=1

a p
h,q(λ)∂h ∈ Jλ.

For m ∈ [2, k] we have

T m = y2,m +
k∑

h=1

σh y2,m+h + y1,m ∈ I ⊂ Jλ
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and for q ∈ [1, k]:

∂q(U0 − λ) =
k∑

h=1

hσh y2,q+h + (q − λ)y1,q ∈ Jλ.

This gives (2k −1) C[σ ]−linear relations between the basis elements y2,r , r ∈ [2, 2k]
of W2 modulo L−1

2 (Nλ(1)). However, the determinant of these 2k − 1 vectors in the
basis y2,r of W2 is equal to σk�(σ) thanks to the previous lemma. The conclusion
follows, as we know that L2 : W2 → Nλ(2) is surjective for λ /∈ N. �

Lemma 3.3.9 Assume that on a Stein open set U in N the equality of the sheaves
Nλ(2)|U = Nλ(1)|U is true for some λ ∈ C. Then, we have

(Nλ)|U = Nλ(1)|U .

Proof It is enough to prove the equality Nλ(q)|U = Nλ(1)|U for any q ≥ 2, because
we know that Nλ = ∪q≥0 Nλ(q). As this is true for q = 2 by assumption, we shall
prove this equality by induction on q ≥ 2. Therefore, assume that this equality is
proved for some q ≥ 2 and we shall prove it for q + 1.

Letα ∈ N
k , such that |α| = q+1andwrite ∂α = ∂p∂

β for some p ∈ [1, k] and some
β ∈ N

k with |β| = q. By the inductive assumption we may write ∂β = ∑k
h=1 bh∂h

in Nλ(q) with bh ∈ O(U ), because we know that Nλ(1) = ⊕k
h=1ON ∂h on N . Then,

we obtain that ∂p∂
β is in Nλ(2)|U = Nλ(1)|U , concluding our induction. �

Corollary 3.3.10 For each λ ∈ C \ N there exists a meromorphic integrable connec-
tion ∇λ : Ok

N → 1
σk .�

.Ok
N ⊗ �1

N with a simple pole on the reduced hyper-surface
{σk�(σ) = 0} ⊂ N, such that the restriction of Nλ to the Stein (in fact affine) open set
U := {σk�(σ) �= 0} is isomorphic to the DU -module defined by (Ok

N ,∇λ). Moreover,
this isomorphism is the restriction of an injective DN -linear map

Nλ → (
Ok

N (∗σk�(σ)),∇λ

)
.

Proof This is an easy consequence of the ON isomorphism Nλ(1) → ⊕k
h=1O∂h and

previous Lemmas 3.3.7 and 3.3.9. �

We shall conclude this section by the following theorem.

Theorem 3.3.11 Let λ ∈ C\Z. Then, Nλ is the minimal extension of the meromorphic
connection given by (Nλ(1),∇λ). Therefore, Nλ is a simple DN -module.

Proof To see that Nλ is the minimal extension of the simple pole meromorphic con-
nection

(
Nλ(1),∇λ

)
it is enough to prove thatNλ has no torsion, and this is given by

Proposition 3.3.5, and no co-torsion, that is to say that there is no non trivial coherent
left ideal K in DN containing Jλ and generically equal to Jλ on N . Such an ideal
defines a holonomic quotient Q ofNλ which is supported in a closed analytic subset S
of N with empty interior in N . AsNλ is a quotient ofM, wemay apply Corollary 2.3.2
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and so it is enough to show that near the generic points of {σk�(σ) = 0} such an ideal
K is equal to Jλ or to DN .

Near the generic point of {σk = 0} we have � �= 0 and we may use a local
isomorphism of N given by a holomorphic section of the quotient map

quot : M = C
k → C

k/Sk = N .

Via such an isomorphismNλ is the quotient of DCk by the left ideal generated by the
∂2

∂zi ∂z j
for i �= j ∈ [1, k] and ∑k

j=1 z j
∂

∂z j
− λ. The lemma below allows to conclude

this case. For the other case, that is to say near the generic point of {� = 0}, Theorem
2.3.6 completes the proof.

The fact that Nλ is a simple DN -module is then consequence of the irreductibility
of the monodromy representation of its associated meromorphic connection. �

Lemma 3.3.12 Let Jλ for λ /∈ −N
∗ be the ideal in DCk generated by the differential

operators ∂2

∂zi ∂z j
for 1 ≤ i < j ≤ k and

∑k
h=1 zh . ∂

∂zh
− λ. Let assume that Q is

a quotient of the DCk −module Nλ := DCk

/
Jλ in a neighborhood U of the point

(z01, . . . , z0k) in C
k where z01 = 0 and zi �= z j for 1 ≤ i < j ≤ k, with support in

{z1 = 0}. Then, Q = 0.

Proof Assume that Q �= 0 Then Q = DU
/
K where K is a left ideal in DU , such that

Jλ � K � D. Then, restricting the open neighborhood U of z0 if necessary, there
exists a positive integer n, such that zn

1 belongs9 to K. Then, we have

∂

∂z1
zn
1 = nzn−1

1 + zn
1

∂

∂z1
∈ K so writing this as (a)

nzn−1
1 + zn−1

1

(
k∑

h=1

zh
∂

∂zh
− λ

)

+ λ.zn−1
1 − zn−1

1

(
k∑

h=2

zh
∂

∂zh

)

∈ K and then

(n + λ)zn−1
1 −

k∑

h=2

zhzn−1
1

∂

∂zh
∈ K

as
∑k

h=1 zh
∂

∂zh
− λ ∈ Jλ ⊂ K on U . However, zn

1 ∈ K implies also, for each
j ∈ [2, k]:

∂2

∂z1∂z j
zn
1 = nzn−1

1
∂

∂z j
+ zn

1
∂2

∂z1∂z j
∈ K which implies (b)

nzn−1
1

∂

∂z j
∈ K ∀ j ∈ [2, k]

again as Jλ ⊂ K. Combining (a) and (b) we conclude that zn−1
1 belongs toK, as we

assume n > 0 and λ /∈ N
∗.

9 The class of 1 in Q is of z1−torsion!
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By a descending induction on n we conclude that 1 belongs toK which contradicts
our assumption that Q is not 0. �

Remark Note that the DN -linear map

ϕ−1 : N−1 → H1[σk=0](ON ) := ON [σ−1
k ]/ON

defined by ϕ−1(1) := σk−1/σk is surjective, because ϕ−1(∂k−1) = 1/σk . This shows
that for p = −1 the sheafN−1 has a non zero quotient supported by {σk = 0}. Then,
using the isomorphism Tλ : Nλ−1 → Nλ for λ ∈ −N

∗ to deduce the case λ − 1
from the case λ for each λ ∈ −N

∗, we see that the sheafN−p has a non zero quotient
supported by {σk = 0} for any p ∈ N

∗.

4 TheDN-ModulesNp,p ∈ Z

4.1 Structure ofNp, p ≥ 1

The first important remark is that, thanks to Lemma 3.1.5, it is enough to determine
the structure ofN1 as for each p ≥ 2 the DN -moduleNp is isomorphic toN1 via the

right multiplication by U p−1
1 .

4.1.1 Minimality ofN�
1

Recall thatN�
1 is the co-kernel of the left DN -linear map T1 : N0 → N1 defined by

the right multiplication by U−1.
Thanks to formulas Eh, h ∈ [2, k] (see Proposition 3.1.6) we obtain thatN�

1 is the
quotient of DN by the left idealA+DN (U0 − 1) +DN U−1, because these formulas
imply that the partial differential operators T m, m ∈ [2, k] are contained in the ideal
A + DN (U0 − 1) + DN U−1 and we have J1 = I + DN (U0 − 1) by definition (see
Formula (8) for the definition of I and the beginning of Paragraph 3.1 for the definition
of the ideal Jλ).

We shall note N�
1 (q) := DN (q)

/(
J1 ∩ DN (q)

)
for each integer q ≥ 0.

Proposition 4.1.1 For each q the natural map N�
1 (q) → N�

1 is injective.

Proof The proof will use Proposition 3.2.1 two times: the first time for the left ideal
A and with U := U−1 and the second time for the left ideal A + DN U−1 and with
U := U0 − 1. This will give the equalities

(
A + DN U−1

) ∩ DN (q) = A(q) + DN (q − 1)U−1 and
(
A + DN U−1 + DN (U0 − 1)

) ∩ DN (q) = A(q) + DN (q − 1)U−1

+ DN (q − 1)(U0 − 1).

This will conclude the proof.
To apply Proposition 3.2.1 we have to show that the following properties hold:
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(i) The coherence of A and of A + DN U−1.
(ii) The fact that the characteristic ideals of A and of A + DN U−1 are reduced.
(iii) The inclusions AU−1 ⊂ A and

(
A + DN U−1)(U0 − 1)

) ⊂ A + DN U−1.
(iv) The symbol ofU−1 does not vanish on anynonemptyopen set of the characteristic

variety of DN
/
A.

(v) The symbol of U0 − 1 does not vanish on any non empty open set of the charac-
teristic variety of DN

/
A + DN U−1.

The point (i) is clear.
The characteristic ideal ofA is the pull-back by the projection p2 : N × C

k → C
k

of the ideal of the reduced ideal I S(k) of the surface S(k) (see Corollary 6.1.6 in the
appendix).

The point (i i) is completed by the following lemma:

Lemma 4.1.2 Let γ (σ, η) := ∑
h=0(k − h)σhηh+1 and g(σ, η) := ∑k

h=1 hσhηh.
Then, defined the following ideals in ON [η], where I1 := (p2)∗(I S(k)):

I2 := I1 + (γ ) and I3 := I2 + (g).

Then, I2 is reduced and g does not vanish on any non empty open set of the analytic
subset (N × S(k)) ∩ {γ = 0}.
Proof To see that I2 is reduced, as N × S(k) is normal, it is enough to prove that
{γ = 0} defined a reduced and irreducible hyper-surface in N × S(k). Looking at
the chart on the dense open set ηk �= 0 of N × S(k) which is given by the map
(σ, η) �→ (σ,−ηk−1/ηk, ηk) ∈ N × C × C

∗ (see Paragraph 3.2) we find that γ is
given in this chart by

γ (σ, η) = (−1)k−1P ′
σ (z)ηk where z := −ηk−1/ηk

using the fact that ηh = (−z)k−hηk in this chart. This gives the fact that {γ = 0} is
reduced and irreducible in N × S(k).

The computation of g in the same chart gives that

g(σ, η) = (−1)k z P ′
σ (z)ηk − (−1)kk Pσ (z)ηk .

and this proves that g does not vanishes identically on any non zero open set in
(N × S(k)) ∩ {γ = 0}, because

(N × S(k)) ∩ {γ = 0} ∩ {g = 0} ⊂ Z ∩ {γ = 0}

which has dimension k, so co-dimension 2 in N × S(k). �

End of proof of 4.1.1 The point i i i) is consequence of the following easy formulas:

Ap,qU−1 = U−1Ap,q − (k − p − 1)Ap+1,q − (k − q)Ap,q+1

Ap,qU0 = U0Ap,q − (p + q)Ap,q
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U−1(U0 − 1) = U0U−1.

The points (iv) and (v) are obvious, because a non zero germ of section of ON [η]
which is homogeneous of degree 1 in η does not vanishes of N × S(k). �

Recall that inW(q) := ⊕q
p=0Wp we have, for each β ∈ N

k with |β| = q − 1 and
w(β) = r − 1 (compare with Formulas (13) and (14), but here w(β) = r − 1)

[
∂β(U0 − 1)

] =
k∑

h=1

hσh yq,r+h−1 + (r − 2)yq−1,r−1. (24)

and

[
∂βU−1

] =
k∑

h=0

(k − h)σh yq,r+h + (k(q − 1) − r + 1)yq−1,r (25)

Now, note β+ amulti-indexwith |β+| = q −1 andw(β+) = r , when r �= k(q −1)+1
and β+ = 0 for r = k(q − 1) + 1.

Then for r �= k(q − 1) + 1 we have

∂β+
(U0 − 1) =

k∑

h=0

hσh yq,r+h + (r − 1)yq−1,r

with the convention σ0 ≡ 1 and ∂β+
(U0 − 1) = 0 for r = k(q − 1) + 1.

Then define for q ≥ 2 and r ∈ [q, k(q − 1)] the following elements inWq :

θ̃q,r := (r − 1)∂βU−1 − (k(q − 1) − r + 1)∂β+
(U0 − 1) (26)

This gives

θ̃q,r = k
k∑

h=0

(
(r − 1) − h(q − 1)

)
σh yq,r+h (27)

Remark that for r = k(q − 1) + 1 and h = k the vector yq,r+k is not defined in Wq

and we cannot use the formula (27) to define θ̃q,k(q−1)+1. But with our convention

∂β+
(U0 − 1) = 0 for r = k(q − 1) + 1, we define the vector

θ̃q,k(q−1)+1 := k(q − 1)∂q−1
k U−1 = k(q − 1)

k−1∑

h=0

(k − h)σh .yq,k(q−1)+1+h

(28)

which is inWq .
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Then, for q ≥ 2, let �̃q ⊂ Wq be the sub-ON -module generated by the elements
θ̃q,r , r ∈ [q, k(q − 1] + 1]. Of course �̃q is in the kernel of the ON −linear map

Lq : Wq → N�
1 (q)

induced by the quotient map W → N�
1 .

For q = 1 define �̃1 := ON U−1 and V1 := ⊕k
h=2ON [∂h] (where y1,h := [∂h] in

W1).

Lemma 4.1.3 For each q ≥ 1 we have a direct sum decomposition Wq = �̃q ⊕ Vq

where Vq is the ON −sub-module with basis yq,r with r ∈ [k(q − 1) + 2, kq].
Proof For q = 1 our assertion is clear. For q ≥ 2 ( and so r ≥ 2) the difference
θ̃q,r − k(r − 1)yq,r is a C[σ ]−linear combination of the yq,s for s ≥ r + 1, so the
matrix of the vectors θ̃q,r for r ∈ [q, k(q − 1) + 1] and yq,s, s ∈ [k(q − 1) + 2, kq]
is triangular in the basis yq,t , t ∈ [q, kq], ofWq with determinant equal to

k(k−1)(q−1)+1
k(q−1)+1∏

r=q

(r − 1) = k(k−1)(q−1)+1 (k(q − 1))!
(q − 2)!

which is a positive integer. �

Lemma 4.1.4 For each q ≥ 1 the map lq : Vq → N�
1 (q) induced by Lq is bijective.

Proof We shall prove this lemma by induction on q ≥ 1. First remark that the map
l1 : V1 → N�

1 (1) is surjective (in fact an isomorphism of free rank (k − 1) ON -
modules), because 1 = ∑k

h=1 hσh∂h and k∂1 = −∑k−1
h=1(k − h)σh∂h+1 in N�

1 .
So let q ≥ 2 and assume that lq−1 : Vq−1 → N�

1 (q − 1) is surjective. Then,
N�

1 (q − 1) is contained in the image of Lq , because for r ∈ [k(q − 2) + 2, k(q − 1)]
the relation (26) shows that the image of yq−1,r by lq−1 is in the image of Lq .

Then remark that Lq induces a surjectivemap onto the quotientN�
1 (q)

/
N�

1 (q−1)
and that �̃q is in the kernel of Lq . Therefore, lq is surjective on N�

1 (q). Therefore,
we have a surjective map lq of the rank k − 1 free ON -module Vq onto N�

1 (q)

and an injective map of the rank k − 1 free ON -module N�
1 (1) into N�

1 (q). Then,
Lemma 3.3.6 gives that lq is bijective. �

Theorem 4.1.5 The restriction of N�
1 (1) to the Zariski open set {�(σ) �= 0} is a rank

(k −1) free10 ON -module with a simple pole meromorphic connection along {� = 0}
given by the inclusion �(σ)N�

1 (2) ⊂ N�
1 (1) (see Lemma 4.1.6 below). Its sheaf

of horizontal sections is locally generated by zi − z j where zh, h ∈ [1, k], are local
branches of the multivalued function z(σ ) defined by Pσ (z(σ )) ≡ 0. The DN -module
N�

1 is the minimal extension on N of this vector bundle with its integrable regular
meromorphic connection. Therefore, it is a simple DN -module.

10 Isomorphic to ⊕k
h=2ON ∂h .
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Proof Lemma 4.1.4 gives that the map lq : Vq → N�
1 (q) is a isomorphism of ON -

modules for each q ≥ 1 and Proposition 4.1.1 implies that N�
1 is the union of the

sheaves N�
1 (q), q ≥ 1. Therefore, the DN -module N�

1 has no ON -torsion.
Thanks to Lemma 4.1.6 below we have the inclusion �N�

1 (2) ⊂ N�
1 (1). This

implies that N�
1 (1) 	 Ok−1

N has an integrable meromorphic connection ∇1 with a
simple pole along {�(σ) = 0} on N . The fact that K1 = J1 + DN U−1 implies that
the horizontal sections of N�

1 (1) are trace functions (see [1]) which are homoge-
neous of degree 1 and killed by U−1. Therefore, they are C−linear combinations of
z1(σ ), . . . , zk(σ ), the local branches of the multivalued function z(σ ) on N defined
by Pσ (z(σ )) = 0.

The condition for
∑k

h=1 ahzh(σ ), ah ∈ C, to be killed by U−1 	 ∑k
h=1

∂
∂zh

is

given by
∑k

h=1 ah = 0 and then the horizontal sections are linear combinations of the
differences zi − z j , i, j ∈ [1, k]. A basis of horizontal sections is given, for instance,
by z2(σ ) − σ1/k, . . . , zk(σ ) − σ1/k (note that

∑k
j=1(z j (σ ) − σ1/k) ≡ 0).

The DN -moduleN�
1 has neitherON -torsion norON -co-torsion, because its char-

acteristic variety is the union of N × {0} and X (X is defined in Sect. 3.2) and, thanks
to Theorem 2.3.6, it has neither�-torsion nor�-co-torsion as a quotient ofM. There-
fore,N�

1 is the minimal extension of the meromorphic connection
(
N�

1 (1),∇1
)
and

it is a simpleDN -module, because the monodromy representation of the local system
of horizontal sections of (N�

1 (1),∇1) is irreducible. �

Lemma 4.1.6 We have �N�
1 (2) ⊂ N�

1 (1).

Proof InW2
/
W1 the 2k−1 vectors induced by ∂ j (U0−1), j ∈ [2, k] and ∂hU−1, h ∈

[1, k] are given in the basis y2,r , r ∈ [2, 2k] of this free ON -module by the relations:

A j := ∂ j (U0 − 1) =
k∑

p=1

pσp y2, j+p

Bh := ∂hU−1 =
k−1∑

p=0

(k − p)σp y2,h+p+1

with the convention σ0 = 1.
Put P̃σ (z) := ∑k

p=0 σpzk−p and y2,k+p = zk−p.

Then Bk = P̃ ′
σ (z) and Ak = z P̃ ′

σ (z) − k P̃σ (z). Therefore, the resultant of Ak

and Bk is equal to (−k)k−1�(σ). The determinant of the vectors A j , j ∈ [2, k] and
Bh, h ∈ [1, k] in the basis y2,r , r ∈ [2, 2.k] of W2 	 W2

/
W1 is then equal to

(−k)k−1�(σ) (compare with Lemma 3.3.8). �

4.1.2 The Structure Theorem forNp, p ≥ 1

We first examine the case p = 1. As already explained in the beginning of this section
this will be enough to describe the structure of Np for any p ∈ N

∗.
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The torsion sub-module ofN1 is described by the following result. Remark that we
already know from Theorem 4.1.5 that the torsion sub-module of N1 is contained in
the image of T1 : N0 → N1 as N�

1 = N1
/

I m(T1) has no torsion.

Proposition 4.1.7 There exists a injective DN -linear map χ : H1[σk=0](ON ) → N1

which sends the class [1/σk] in H1[σk=0](ON ) to the class [∂kU−1] in N1. Its image is
the torsion sub-module � of N1.

Proof Note first that H1[σk=0](ON ) is given by DN
/(∑k−1

h=1DN ∂h + DN σk
)
as the

annihilator of [1/σk] is generated by ∂h, h ∈ [1, k − 1] and σk . To show that χ exists
it is enough to show that ∂h, h ∈ [1, k − 1] and σk annihilate the class [∂kU−1] in
N1. The fact that ∂h[∂kU−1] = 0 in N1 for h ∈ [1, k − 1] is a direct consequence of
Formulas (Eh), h ∈ [2, k] which give [∂hU−1] = 0 in N1. Then, Formula (E1) gives
the vanishing of the class of EU−1 = ∑k

h=1 σh∂hU−1 in N1. Therefore, we obtain
that σk[∂kU−1] vanishes in N1 and χ is well defined. Moreover, as H1[σk=0](O) is a
DN -module with support in {σk = 0}, its image is contained in the torsion sub-module
in N1.

Note thatweknow that the torsion inN1 is onlyσk−torsion thanks toCorollary 3.2.6
and Theorem 2.3.6.

To prove the injectivity of χ , assume that the kernel of χ is not 0 and consider
an element K := ∑m

p=1 f p∂
p
k [1/σk] in this kernel with f p ∈ ON

/
(σk) and with

m minimal. Then, we have 0 = χ(K ) = [∑m
p=1 f p∂

p+1
k U−1] in N1. Therefore,

fmηm+1
k γ is the symbol of an element in J1. Then, Lemma 3.2.7 implies that fm is

in σkON contradicting the minimality of m. Therefore, χ is injective.
To complete the proof we have to show that if P induces a torsion class inN1 then

there exists Q ∈ DN , such that P − Q∂kU−1 is in J1. As we already know (because
N�

1 has no torsion) that there exists P1 ∈ DN , such thatT1(P1) = [P1U−1] = [P] in
N1 and as we know that ∂hU−1 = 0 for each h ∈ [1, k − 1] we may assume that P1 is
inON [∂k]. However, ∂n

k U−1 is torsion inN1 for n ≥ 1, because ∂kU−1 is torsion (see
above). Therefore, the only point to prove is that if f U−1 is torsion in N1 for some
f ∈ ON then f = 0. This a consequence of the following lemma. �

Lemma 4.1.8 The class of U−1 is not in the σk−torsion of N1.

Proof Assume that σ n
k U−1 is in J1 for some n ∈ N. Then, choose n minimal with this

property and compute

∂kσ
n
k U−1 = nσ n−1

k U−1 + σ n
k ∂kU−1 ∈ J1.

As σk∂kU−1 is in J1 (see above) we obtain that n = 0 by minimality of n. However,
U−1 is not in J1, because its symbol γ (σ, η) restricted to the co-normal C to the
hyper-surface {σk = 0} is equal to σk−1 which does not vanish identically on C . In
addition, C is a component of the characteristic variety of N1 (see Paragraph 3.2).
This concludes the proof. �

Theorem 4.1.9 The diagram below describes the structure of N1, where � is the
torsion sub-module of N1, where ϕ1 : N1 → ON is the DN -linear map defined by
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ϕ1(1) = σ1 and where the isomorphism χ : H1[σk=0](ON ) 	 � is defined by sending
1/σk to [∂kU−1].

The DN -modules � 	 H1[σk=0](ON ) and N�
1 are simple DN -modules.

Moreover, we have the direct sum decomposition of left DN -modules:

N1
/
� = I m(T1)

/
� ⊕ N ∗

1

/
� = ON [U−1] ⊕ N�

1 .

The following commutative diagram of left DN -modules has exact lines and columns
where the maps i and e are defined by i([U−1]) = [U−1] and e([U−1]) = k:

0 0

0 � I m(T1)
i ON [U−1]

e	

0

0 N ∗
1 N1

ϕ1 ON 0

N ∗
1

/
�

θ N�
1

0 0

Proof Note first that the quotient by the torsion sub-module � (which is the image
of DN ∂kU−1 in N1; see Proposition 4.1.7) of the image of N0 (equal to DN U−1 in
N1) is isomorphic to ON , because its generator [U−1] is killed by ∂h,∀h ∈ [1, k]
(see Formulas (Eh), h ∈ [1, k]) and this quotient has no torsion, because � is also the
torsion sub-module of I m(T1). This gives the exactness of the first line. The exactness
of the second line and of the columns are clear.

Note also thatϕ1(U−1) = k, so the upper right square commutes. The commutations
of the other squares are obvious.

To show that the map θ is well defined and is an isomorphism is a simple exercise
in diagram chasing which is left to the reader.

The direct sum decomposition of N1
/
� is given by the left DN -linear map

r : N1
/
� → I m(T1)

/
�

constructed as follows:
Note first that ϕ1(U−1) = k. For [P] ∈ N1 let f := ϕ1([P]). Then, we define

r([P]) := [
( f /k)U−1

] ∈ I m(T1)
/
�.

As � is in the kernel of ϕ1, this map is well defined onN1
/
� and [P] − r([P]) is in

ker(ϕ1) = N ∗
1 and defines a class in N ∗

1

/
�. Remark that Lemma 4.1.8 shows that
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the kernel of r is equal toN ∗
1

/
�, because ϕ1 is injective onON [U−1]. This gives the

desired splitting, as r induces the identity on I m(T1)
/
�. �

4.2 The Structure ofN0

Define N ∗
0 as the kernel of the DN -linear map ϕ0 : N0 → ON given by ϕ0(1) = 1.

The sub-moduleN ∗
0 is generated by ∂1, . . . , ∂k . We shall show that it contains a copy

of ON .
Note that the DN -module N0 has no ON -torsion thanks to Theorem 3.3.1.

Proposition 4.2.1 The kernel of the DN -linear map T1 : N0 → N1 given by the right
multiplication by U−1 is DN U1 which is contained in N ∗

0 and the quotient N ∗
0

/
DN U1

is isomorphic to the DN -module H1[σk=0](ON ).

The proof of this proposition will used the following results from [1] Proposi-
tion 5.2.1.

Proposition 4.2.2 For each m ∈ Z, m ≥ −k + 1 and for each σ ∈ N, such that
�(σ) �= 0 define

DNm(σ ) :=
∑

Pσ (x j )=0

xm+k−1
j

P ′
σ (x j )

. (29)

Each DNm is the restriction to the open set {�(σ) �= 0} of a polynomial of (pure)
weight m in C[σ1, . . . , σk] and the following properties are satisfied:

(i) For m ∈ [−k + 1,−1], DNm = 0 and DN0 = 1.
(ii) For each m ≥ 1,

∑k
h=0(−1)hσh DNm−h = 0 with the convention σ0 ≡ 1.

(iii) For each h ∈ [1, k] and each m ≥ 0 we have

∂h Nm = (−1)h−1m DNm−h . �

We shall use also the following lemma.

Lemma 4.2.3 For any h ∈ [2, k] we have

∂hU1 + ∂h−1(U0 + 1) ∈ I. (Fh)

Moreover, we have also

∂1U1 − E(U0 + 1) ∈ I. (F1)

Therefore, we have ∂hU1 = −∂h for h ∈ [2, k] and ∂1U1 = E in N ∗
0 .

Remark Note that Formulas (Fh) for any h ∈ [1, k] give that ∂hU1 = 0 in N−1.
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Proof Thanks to the characterization of trace functions given in [1] it is enough to
prove that for each m ∈ N we have ∂hU1[Nm] = −∂h−1(U0 + 1)[Nm] for h ∈ [2, k]
and ∂1U1(Nm) = E(U0 +1)[Nm] for all m ∈ N. This is consequence of the following
formulas which use the results of [1] recalled in Proposition 4.2.2 and the equality
Up[Nm] = m Nm+p which is valid for each m ∈ N and each integer p ≥ −1, because
Up is the image by the tangent map to the quotient map quot : M = C

k → C
k
/
Sk =

N of the vector field
∑k

j=1 z p+1
j

∂
∂z j

:

∂hU1[Nm] = ∂h[m.Nm+1] = (−1)h−1m(m + 1)DNm+1−h ∀h ∈ [1, k] ∀m ∈ N

∂h−1(U0 + 1)[Nm] = ∂h−1[(m + 1)Nm] = (−1)hm(m + 1)DNm−h+1 ∀h ∈ [2, k]

proving Formulas (Fh) for h ∈ [2, k].
Now σh∂h[Nm] = (−1)h−1mσh DNm−h gives

E(U0 + 1)[Nm] = m(m + 1)
k∑

h=1

(−1)h−1σh DNm−h = m(m + 1)DNm

because for m ≥ 1 we have
∑k

h=0(−1)hσh DNm−h = 0 (see i i) above) and also
E[1] = 0 for m = 0. However, for h = 1 we have

∂1U1[Nm] = ∂1[m Nm+1] = m(m + 1)DNm ∀m ∈ N.

This gives Formula (F1). �

Proof of Proposition 4.2.1 Remark first that U1 is in N ∗
0 and, thanks to the previous

lemma, that DN U1 contains ∂1, . . . , ∂k−1 and σk∂k . Define the sub-DN -module S :=∑k−1
h=1DN ∂h . Then, we have a natural surjective DN -linear map α : S +DN ∂k

/
(S +

DN σk∂k) → N ∗
0

/
DN U1. However, we have

S + DN ∂k
/
(S + DN σk∂k) 	 DN ∂k

/
(S ∩ DN σk∂k) 	 DN

/
(S + DN σk)

thanks to the equality S ∩ DN σk∂k = (S + DN σk)∂k . Moreover, the DN -module

DN
/
(S + DN σk) 	 H1[σk=0](ON )

is simple, so α must be an isomorphism. �

Theorem 4.2.4 Define N�
0 := DN U1 ⊂ N ∗

0 . Then, N�
0 is simple and isomorphic to

N�
1 via the map induced by the map �U1 : N1 → N0, and the quotient N0

/
N�

0 is
isomorphic to ON (�σk).

Proof The only point which is not already proved above is the fact that right multipli-
cation by U1, �U1 : N1 → N0 has its image in N ∗

0 and induces an isomorphism of
N�

1 toN�
0 = DN U1 ⊂ N ∗

0 . However, U1 is inN ∗
0 so the first assertion is clear. This

map vanishes on the image of T1, because U−1U1 = (U0 + 1)U0 modulo I (and
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also IU1 ⊂ I see Theorem 2.4.1), so that right multiplication by U1 induces a map
which is clearly surjective. As N�

1 is simple, this surjective map is an isomorphism.
We have the following exact sequences ofDN -moduleswhich describe the structure

of N0 and N ∗
0 :

0 N�
0 N ∗

0 H1[σk=0](ON ) 0

0 N�
0 N0 ON (�σk) 0

0 N�
0 N0

�U−1 N1 N�
1 0

where the map �U1 : N1 → N0 given by right multiplication by U1 induces an
isomorphism N�

1 → N�
0 , showing that N�

0 is a simple DN -module. �

Note that the local horizontal basis ofN�
0 on the open set {�(σ)σk �= 0} is (locally)

generated by the (Log zi − Log z j ) and their images by the isomorphism induced by
U1 are the (zi − z j ) which generates a local horizontal basis of N�

1 on the open set
{�(σ)σk �= 0}.

4.3 The Structure ofNp for p ∈ −N
∗

Again it is enough, thanks to Lemma 3.1.5, to describe the structure of N−1. Define
N ∗−1 as the kernel of the DN -linear map

ϕ−1 : N−1 → ON (�σk)

which is given by ϕ−1(1) = σk−1
/
σk . This map is well defined, because the mero-

morphic function σk−1
/
σk = ∑k

j=1 1
/

z j is a local trace function of the open set
{σk �= 0} and so it is killed by I everywhere as the DN -module ON (∗σk) has no
torsion. Moreover, we have, still on the open set {σk �= 0}:

U0(σk−1
/
σk) = (k − 1)σk−1

/
σk − kσk−1

/
σk = −σk−1

/
σk .

So U0 + 1 is also in the annihilator of σk−1
/
σk in ON (�σk). Therefore, the map ϕ−1

is well defined. It is surjective, because ϕ−1(∂k−1) = 1/σk .

Lemma 4.3.1 The symbol of U1 does not vanish identically on X for each integer
k ≥ 2.

Proof Recall that X is defined in Sect. 3.2. We have ηh = (−z)k−hηk on X where
z = −ηk−1/ηk is the double root of Pσ at the generic point of H� (recall that X is
the closure of the graph of the meromorphic map H� ��� C given by the double root
of Pσ at the generic point of H�). As U1 = ∑k

h=1(σ1σh − (h + 1)σh+1)∂h (with the

123



D. Barlet

convention σk+1 = 0), we obtain

s(U1) = (−1)kηk

k∑

h=1

(σ1σh − (h + 1)σh+1)(−1)hzk−h

= (−1)kηk

k∑

h=1

(−1)hσ1σhzk−h + (−1)kηk

k∑

p=2

(−1)p−1(k − p)σpzk−p+1+

− (−1)kkηk

k∑

p=2

(−1)p−1σpzk−p+1

s(U1) = (−1)kηkσ1
(
Pσ (z) − zk) + (−1)kηk z2

(
P ′

σ (z) − kzk−1 + (k − 1)σ1zk−2)

− (−1)kkηk z
(
Pσ (z) − zk + σ1zk−1)

= −(−1)kηkσ1zk − (−1)kkηk zk+1 + (−1)k(k − 1)ηkσ1zk

+ (−1)kkηk zk+1 − (−1)kkηkσ1zk

= −2(−1)kηkσ1zk

as Pσ (z) = P ′
σ (z) = 0 on X . �

So U1 is not zero in any Nλ for any λ ∈ C.

Proposition 4.3.2 The kernel of the DN -linear map T0 : N−1 → N0 given by right
multiplication by U−1 is equal to DN U1 = ON U1 in N−1.

Proof Recall that Formulas (Fh), h ∈ [1, k] show the equality DN U1 = ON U1 in
N−1 (see Remark following Lemma 4.2.3). Moreover, we know that N−1 has no
ON -torsion, thanks to Theorem 3.3.1, so DN U1 is a sub-module of N−1 which is
isomorphic toON as U1 is not zero inN−1, because its symbol does not vanish on X
(see Lemma 4.3.1 above).

The end of the proof of this proposition will use the following lemmas:

Lemma 4.3.3 Let a and b be holomorphic function on an open set U in N, such that
the function aγ − bg is a section on U × C

k which vanishes on Z ∩ (U × C
k). Then,

a and b vanishes identically on U

Proof The first remark is that we have aγ = bg on U × C
k , because the sheaf

p∗(IZ ) has no non zero section which homogeneous of degree 1 in η1, . . . , ηk (see
Lemma 2.2.5). Then, looking at the coefficients of η1 and η2 in the equality aγ = bg
gives

ka = σ1b and (k − 1)σ1a = 2σ2b and so (k − 1)σ 2
1 b = 2kσ2.b

which implies b ≡ 0 and then a ≡ 0 on U . �

Lemma 4.3.4 Let P ∈ DN , such that PU−1 = AU0 + Q with A ∈ DN and Q ∈ I.
Then, A is unique modulo I.
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Proof We have to show that AU0 ∈ I implies that A is in I.
If this is not true, let A ∈ DN \ I be of minimal order, such that AU0 ∈ I. We

have s(A)g ∈ IZ and, as g is generically �= 0 on Z and IZ is prime (so reduced), there
exists A1 ∈ I with A− A1 of order strictly less than the order of A. Then, (A− A1)U0
is in I.

This contradicts the minimality of A, since A − A1 cannot be in I. �

Lemma 4.3.5 There exists a natural DN -linear map ψ : K er(T0) → N1 given by
ψ(P) = [A] when PU−1 = AU0 modulo I.

Proof First recall that the right multiplication by U−1 induces a DN -linear map T0 :
N−1 → N0, because we have IU−1 ⊂ I and the relation (U0 + 1)U−1 = U−1U0. If
P ∈ DN induces a germ of section of K er(T0) then the previous lemma shows that
if we write PU−1 = AU0 + Q with Q ∈ I, the image of the germ A in DN

/
I is

well defined. Then, we have a DN -linear map K er(T0) → DN
/
I = M and after

composition by the quotient maps DN
/
I → N1 we obtain the desired map. �

End of proof of Proposition 4.3.2 First remark that U1 is sent to 0 in N1 by the
map ψ because of the relation U1U−1 = (U0 − 1)U0 modulo I.

So ψ composed with the quotient map N1 → N�
1 induces a map

ψ̃ : K er(T0)
/
ON U1 → N�

1 .

We shall prove that this map is injective and not surjective. AsN�
1 is simple, this will

prove that K er(T0) = ON U1 completing the proof of Proposition 4.3.2.
We shall first prove the injectivity of ψ̃ , so the fact that if [P] ∈ K er(T0) satisfies

ψ(P) = [A]with [A] = 0 inN�
1 then [P] is a germ of section of the sub-sheafDN U1

of K er(T0).
Let P ∈ DN of minimal order, such that the class of [P] in K er(T0)

/
DN U1 is not

zero and satisfies ψ̃([P]) = 0. Then, we have

(P + X(U0 + 1) + Q0)U−1 = A0U0 + Q1 with Q0, Q1 ∈ I and X ∈ DN .

Then, thanks to the relations (U0 + 1)U−1 = U−1U0 modulo I we obtain

PU−1 = AU0 + Q2 with Q2 := Q1 − Q0U−1 ∈ I and A = A0 − XU−1.

Then, our hypothesis implies that there exist R, S, Q3 ∈ DN with Q3 ∈ I, such that
A = R(U0 − 1) + SU−1 + Q3. Therefore

(P − S(U0 + 1) − RU1)U−1 = Q3U0 modulo I

and Q3U0 is again in I. So looking at the symbols we find

s(P − S(U0 + 1) − RU1)γ ∈ IZ .
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As γ is generically �= 0 on Z and IZ is prime (then reduced) we conclude that there
exists P1 ∈ I with symbol s(P1) = s(P − S(U0 + 1) − RU1). Therefore, the order
of P − P1 − S(U0 + 1) − RU1 is strictly less than the order of P but the class of
P − P1 − S(U0 + 1) − RU1 in K er(T0)

/
DN U1 is the same than the class induced

by P . This contradict the minimality of the order of P; so K er(T0) = DN U1 and the
map ψ̃ is injective.

To conclude it is now enough to prove that ψ̃ is not surjective, as explained above.
Therefore, assume that there exists P ∈ DN with PU−1 = AU0 + Q with Q ∈ I and
[A − 1] = 0 in N�

1 . This would implies that PU−1 = (1 + T (U0 − 1) + YU−1)U0
modulo I and so we obtain the equality

(P − Y (U0 + 1) − T U1)U−1 = U0 modulo I.

So looking at the symbols restricted to Z this gives:

s
(
P − Y (U0 + 1) − T U1

)
γ = g

in OZ . By homogeneity in η this implies that f := s
(
P − Y (U0 + 1) − T U1

)
is the

pull-back of a holomorphic function on an open set in N and this gives a contradiction
thanks to Lemma 4.3.3. �

Proposition 4.3.6 Let N�−1 be the sub-DN -module of N ∗−1 which is generated by

∂1, . . . , ∂k−2. Then, T0 sends N�−1 onto N�
0 and induces an isomorphism between

theses two simple DN -modules.

Proof Aswe know thatN�
0 is equal toDN U1 ⊂ N ∗

0 , we first check that the generators
of N�−1 have their images by T0 in DN U1.

For h ∈ [1, k − 2] Formulas (Eh+2) and (Fh+1) imply

∂h+2U1 + ∂h+1(U0 + 1) + ∂hU−1 + ∂h+1(U0 − 1) ∈ I

which implies ∂hU−1 = −∂h+2U1 in N0.
Note that, as N�

1 is obviously generated11 by ∂1, . . . , ∂k−2 its image by the right
multiplication by U1 inN ∗

0 is generated by ∂hU1, h ∈ [1, k − 2] giving a direct proof
of the surjectivity of T0 : N�−1 → DN U1 = N�

0 .
The injectivity of this map is clear thanks to Proposition 4.3.2 and the fact that

ϕ−1(U1) = −k which implies that the sub-modulesDN U1 = ON U1 and K er(T0) of
N−1 have an intersection reduced to {0}. �

Proposition 4.3.7 The sub-module N�−1 defined in the previous proposition is equal
to N ∗−1.

11 In fact knowing that it is simple, it is generated by any non zero element in it.
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Proof By definitionN ∗−1 is the kernel of themap ϕ−1 : N−1 → ON (∗σk)which sends
[1] to σk−1/σk . Then, N ∗−1 is generated by the annihilator of σk−1/σk in ON (∗σk).
Therefore, N ∗−1 is generated by the class in N1 of

∂1, . . . , ∂k−2, ∂
2
k−1, σk−1∂k−1 − 1, σk∂k + 1.

We already know that ∂1, . . . , ∂k−2 are inN�−1 for h ∈ [1, k −2] by definition ofN�−1.
Moreover, we have ∂2k−1 = ∂k∂k−2 modulo I gives that ∂2k−1U−1 = ∂k∂k−2U−1

belongs to N�
0 . Then, Proposition 4.3.6 implies that ∂2k−1 is in N�−1 + K er(T0).

Therefore, write ∂2k−1 = e + f U1 with e ∈ N�−1 and f ∈ ON using Proposition 4.3.2.

Then ϕ−1(∂
2
k−1) = 0 implies ϕ( f U1) = −k f = 0, because e is in N�−1 ⊂ N ∗−1.

Therefore, f = 0 and ∂2k−1 is in N�−1.

So it is enough to prove that a := σk−1∂k−1 − 1 and b = σk∂k + 1 are in N�−1 to
complete the proof.

Formula (E1) gives EU−1 = −∂1 in N0 and Formula (F2) gives ∂2U1 = −∂1 in
N0. This implies thatT0(E) = ∂2U1 ∈ N�

0 . This implies that E is inN�−1+K er(T0).

So write E = e + f U1 with e ∈ N�−1 and f ∈ ON using Proposition 4.3.2.
Now

ϕ−1(E) = E[σk−1/σk] = 0 and N�−1 ⊂ N ∗
1 = ker(ϕ−1).

Therefore, ϕ−1( f U1) = f ϕ−1(U1) = −k f = 0. This implies E = e is in N�−1.

But a + b = E modulo N�−1. Therefore, a + b belongs to N�−1.
We have also in N−1:

0 = U0 + 1 = (k − 1)(σk−1∂k−1 − 1) + k(σk∂k + 1) modulo N�−1

and this gives (k − 1)a + kb ∈ N�−1, concluding the proof. �

Theorem 4.3.8 We have the following commutative diagram of DN -module with exact
lines and columns, where the DN -linear map ϕ−1 : N−1 → ON (�σk) is defined by
ϕ−1(1) = σk−1

/
σk:
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0 0 0

0 N ∗−1

=

N ∗−1 ⊕ ON U1
ϕ−1 ON 0

0 N ∗−1 N−1
ϕ−1 ON (�σk) 0

0 Q χ
H1[σk=0](ON ) 0

0 0

Therefore, χ is an isomorphism. Moreover, the map T0 induces an isomorphism of
N ∗−1 onto the simple DN -module N�

0 = DN U1 ⊂ N ∗
0 .

Proof The exactness of the first line is consequence of the equality ϕ−1(U1) = −k.
The exactness of the second line is consequence of the surjectivity of ϕ−1 which is
consequence of the equality ϕ−1(∂k−1) = 1/σk .

AsQ is the obvious quotient the injectivity of the induced map χ is easily obtained
by a diagram chasing. �

The local solutions of N−1 are the 1/z j , j ∈ [1, k] and the local solutions of N ∗−1
are the 1/z j − 1/zh which generate the linear combinations of the 1/z j which are
killed by U1 = ∑k

j=1 z2j
∂

∂z j
.

Conclusion For each integer p ≥ 2 define

N�
p := DN

/
I + DN (U0 − p) + DN U p

−1

and N ∗−p := ker(ϕ−p), where ϕ−p : N−p → ON (∗σk) is given by ϕ−p(1) =
U p−1

−1 [σk−1/σk]. Then, we have the chain of isomorphisms:

. . .N ∗−p−1

T −p

N ∗−p . . .

�U1

T −1

�U1

N ∗−1

T 0

�U1

N�
0 N�

1

�U1

T 2

N�
2 . . .

�U1

T p−1

N�
p

�U1

T p

N�
p+1 . . .

�U1

where Tp := �U−1 is given by right multiplication by U−1.
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4.4 Some Higher Order Solutions ofNp for p ∈ N

Let N := C
k with coordinates σ1, . . . , σk and note DN the sheaf of (holomorphic)

differential operators on N and Dbp,q
N the sheaf of (p, q)−currents on N .

Recall that Dbp,q
N is a left DN −module and that we have the following theorem

due to M. Kashiwara (see [7])

Theorem 4.4.1 For any regular holonomic DN −module N and any integer j ≥ 1 we
have

Ext j
DN

(N ,Db0,p
N ) = 0.

Note that the case p ≥ 1 is an obvious consequence of the case p = 0 as Db0,p
N is

the direct sum of C p
k copies of Db0,0N as a left DN −module.

Corollary 4.4.2 For any regular holonomic DN −module N and any integer j ≥ 0 we
have a natural isomorphism of sheaves of C−vector spaces

Sol j (N ) := Ext j
DN

(N ,ON ) 	 H j ((Hom DN (N ,Db0,•N ), ∂̄•)
)
.

For instance, ifN := DN
/
J is a regular holonomic system (whereJ is a coherent

left ideal in DN ), we have a natural isomorphism of sheaves of complex vector spaces,
for each j :

Sol j (DN
/
J ) 	 {T ∈ Db0, j

N / /J .T = 0, ∂̄T = 0}
/

∂̄
({T ∈ Db0, j−1

N / /J .T = 0}).

Proof As the Dolbeault–Grothendieck complex (Db0,•N , ∂̄•) is a resolution of ON by
DN −modules for which the functor

N �→ Hom DN (N ,−)

is exact, thanks to the previous theorem, the conclusion follows by degeneracy of the
spectral sequence. �

Proposition 4.4.3 Let σ 0 be a point the hypersurface {σk = 0} in N and let d be the
multiplicity of the root 0 in Pσ 0 . Let U be a small open neighborhood of σ 0 in N on
which there exists a holomorphic map f : U → Symd(C) whose value at σ ∈ U is
the d−tuple of roots of Pσ which are near by 0.12

Then define for q ∈ N the distribution on U (given by a locally integrable function)

Tq(σ ) =
d∑

j=1

zq
j Log|z j |2 where [z1, . . . , zd ] = f (σ ) (30)

12 To be more precise, let D be an open disc with center 0 in C, such that D̄ contains only the root 0 of
Pσ0 . Then, choose U small enough, such that for all σ ∈ U the polynomial Pσ has exactly d roots in D.
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Then, the current ∂̄Tq defines a section on U of the sheaf Sol1(Nq), such that its germ
at a point σ 0 is non zero in Sol1(Nq)σ 0 .

Proof Let pr : H → C and π : H → N are the projections, where

H := {(σ, z) ∈ N × C / Pσ (z) = 0}.

We may assume that the open set pr(π−1(U )) is the disjoint union of D with an
open set � in C. Then, if we define the locally integrable function f : D ∪ � as
f (z) = zq Log|z|2 on D and f ≡ 0 on�we have Tq(σ ) = π∗( f )(σ ) = ∑k

j=1 f (z j )

where z1, . . . , zk are the roots of Pσ . It is then easy to verify that ITq = 0 and that
(U0 − q)Tq = Nq(σ ) the q-th Newton function of the d−tuple d(σ ) of roots of Pσ

which are in D. Therefore, it is holomorphic on U . Then, the (0, 1)−current ∂̄Tq is
∂̄−closed and is killed by Jq . Then, thanks to Corollary 4.4.2 it induces a section on
U of the sheaf Sol1(Nq).

Fix now τ ∈ U and assume that the germ at τ of the previous section vanishes.
Then, there exists on an open polydisc V with center τ in U and a (0, 0)−current S
satisfying

IS = 0, (U0 − q)S = 0 and ∂̄S = ∂̄T .

Then, we may write S = T − F where F is holomorphic on V . However, then F
satisfies also IF = 0 and (U0−q).F(σ ) = Nq(d(σ )) for all σ ∈ V . The first equation
implies that F is a global trace function on V (up to shrink V around τ if necessary)
and using Lemma 3.1.2 in [1] we see that, up to a locally constant function on D ∪ �,
(U0 − q).F is the trace of a holomorphic function h define by h(z) = zq on D and 0
on �. However, if F = T race(g) where g is holomorphic on D ∪ � this implies

z
∂g

∂z
(z) = h(z) + κ(z)

where κ is constant equal to k on D. Therefore, on D the meromorphic function
G := g

/
zq satisfies

G ′(z) = 1/z + κ/zq+1.

This is clearly impossible for q ≥ 1. For q = 0 this gives that G = g is constant
and so is F = T race(g). But then, U0F = d is impossible for d ≥ 1. This shows
that at each point σ 0 of the hyper-suface {σk = 0} in N the germ induced by ∂̄Tq in
Sol1(Nq)σ 0 is not zero. Therefore, the support of the sheaf Sol1(Nq) contains this
hyper-surface for each q ∈ N. �

Remark The exact sequence

0 → M (U0−q)→ M → Nq → 0
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gives a long exact sequence

0 → Sol0(Nq) → Sol0(M)
U0−q→ Sol0(M)

∂→ Sol1(Nq) → Sol1(M) → . . .

and it is clear that the germ at the origin of the Newton polynomial Nq in Sol0(M) is
not in the image of U0 − q. Our computation above shows that the image of the germ
of Nq at the point 0 is mapped by the connector ∂ to the germ in Sol1(Nq)0 which is
constructed above.

The reader will find the computation of the conjugate of the DN -modules Nλ for
each λ ∈ C in the article [4], so the computation of the sheaves:

Hom DN (Nλ, Db0,0N ).

5 An Application

5.1 A Taylor Expansion

We shall consider now the universal monic degree k equation near the point σ 0 defined
by σ 0

1 = σ 0
2 = · · · = σ 0

k−1 = 0 and σ 0
k = −1. We shall denote by z(σ ) the root of

Pσ 0+σ (z) = 0 which is near the (simple) root −1, for σ small enough, of the equation
Pσ 0+σ (z) = zk − (−1)k = 0 when σ is small enough. Define

F(σ 0 + σ) := z(σ ) − σ1/k :=
∑

α∈Nk

Cα

σα

α! (31)

the Taylor expansion at the point σ 0 of z(σ ) − σ1/k which a solution near σ 0 of the
DN -module N�

1 (see the Theorem 4.1.5).
The reader may compare the computation below with [8].
An easy consequence of the results in the paragraph 4.1 is the following theorem.

Theorem 5.1.1 The following differential operators annihilate the function F in a
neighborhood of σ 0, where we note ∂h for the partial derivative relative to σh.

1. Ai, j := ∂2

∂i∂ j − ∂2

∂i+1∂ j−1
∀i ∈ [1, k − 1] and ∀ j ∈ [2, k].

2. Û0 − 1 := ∑k
h=1 hσh∂h − k∂k − 1.

3. U−1 := ∑k−1
h=0(k − h)σh∂h+1 with the convention σ0 ≡ 1

Proof This is consequence of the fact that F is a solution in an open neighborhood
of σ 0 of the regular holonomic system N�

1 	 DN
/
A + DN (U0 − 1) + DN (U−1).

Remark that the operator Û0 is the expression of U0 in the coordinates centered at σ 0.
The other operators have in these coordinates the same expression than in the usual
coordinates centered at the origin. �
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Corollary 5.1.2 The coefficients Cα is the expansion (1) only depend on the integers
q := |α| = ∑k

h=1 αh and w(α) := ∑k
h=1 hαh so we may rewrite the expansion (1)

with the convention Cq,r = 0 when r /∈ [q, kq]:

F(σ 0 + σ) =
∑

q,r

Cq,r mq,r (σ ) (32)

where for q ∈ N and r ∈ [q, kq] we define the polynomial mq,r ∈ C[σ ] by the formula

mq,r (σ ) :=
∑

|α|=q,w(α)=r

σα

α!

Proof This is obvious consequence of the description of the holomorphic functions
which are annihilated by the differential operators Ai, j for all i ∈ [1, k − 1] and
j ∈ [2, k] (see the paragraph 2.1) which generate the left ideal A in DN . �

Proposition 5.1.3 We have the following formulas, with the conventions mq,r = 0 for
r /∈ [q, kq] (in particular for q < 0 or r < 0):

1. (Û0 − 1)(mq,r ) = (r − 1)mq,r − kmq−1,r−k ∀q ≥ 0, ∀r ∈ [q, kq]
2. U−1(mq,r ) = (kq − r + 1)mq,r−1 + kmq−1,r−1 ∀q ≥ 0, ∀r ∈ [q, kq].
Proof The first formula is a direct consequence of the easy formulas

U0(σ
α/α!) = w(α)σα/α! and ∂k(σ

α/α!) = σβ/β!

when αk ≥ 1, with β + 1k = α and

∂k(σ
α/α!) = 0 when αk = 0.

The second formula is little more tricky:
For h ∈ [2, k − 1] we have

σh∂h+1(σ
α/α!) = βhσβ/β! when αh+1 ≥ 1

with β + 1h+1 = α + 1h , and

σh∂h+1(σ
α/α!) = 0 when αh+1 = 0.

Moreover, for any β with |β| = q − 1 and w(β) = r − 1 and for each h ∈ [2, k]
there exists exactly one α if βh �= 0 with σh∂h+1(σ

α/α!) = βhσβ/β!, and it satisfies
|α| = q and w(α) = r , and no such α exists if βh = 0. This means that that
σh∂h+1(mq,r ) contains σβ/β! with the coefficient βh .

For h = 1 the situation is simpler: ∂1(σ
α/α!) = σβ/β! when α1 ≥ 1 with

β + 11 = α, and ∂1(σ
α/α!) = 0 when α1 = 0.
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Then for each β with |β| = q − 1 and w(β) = r − 1 there exists a unique α,
such that ∂1(σ

α/α!) = σβ/β! and it satisfies |α| = q and w(α) = r . Therefore, we
conclude that

U−1(mq,r ) =
∑

|α|=q,w(α)=r

k∑

h=0

(k − h)σh∂h+1

(
σα

α!
)

= kmq−1,r−1 +
∑

|β|=q,w(β)=r−1

k∑

h=1

(k − h)βh
σβ

β!
= kmq−1,r−1 + (

k(q − 1) − (r − 1)
)
mq,r−1

concluding the proof. �

Taking in account Eqs. 2 and 3. of Theorem 5.1.1 ( Eq.1. are used already in the
Corollary 5.1.2), we obtain:

Corollary 5.1.4 The coefficients Cq,r of the Taylor expansion (1) satisfies the relations:

(r − 1)Cq,r − kCq+1,r+k = 0 ∀q ≥ 1, ∀r ∈ [q, kq] (A)

(kq − r + 1)Cq,r + kCq+1,r = 0 ∀q ≥ 1, ∀r ∈ [q + 1, kq]. (B)

The formula (B) gives, for each r ≥ 2 and each s ∈ N, such that 0 ≤ s ≤ (k−1).r
k

Cr−s,r = (−1)sCr ,r
∏s

j=1(r − j − (r − 1)/k)
(B∗)

Formula (A) gives for each r ≥ 1:

Cr+k,r+k = (−1)k−1 r − 1

k

k−2∏

p=0

(
r + p − (r − 1)/k

)
Cr ,r (A∗)

Moreover, we have

Cq,r = 0 ∀q ≥ 2 and ∀r ≡ 1 modulo k, r ∈ [q, kq] (C)

Proof Looking at the coefficient of mq,r for q ≥ 1 and r ∈ [q, kq] in the equality
(Û0 − 1)[F] ≡ 0 gives the gives (A). Looking at the coefficient of mq,r−1 for q ≥ 1
and r ∈ [q + 1, kq] in U−1[F] ≡ 0 gives (B).

The formula (B∗) is a direct consequence of the formula (B) with q := r − s by
an easy induction on s ∈ [0, (k−1).r

k ].

123



D. Barlet

Using formula (B∗) with r ′ = r + k and s = k − 1 we obtain

Cr+1,r+k = (−1)k−1Cr+k,r+k
∏k−2

p=0(r + p − (r − 1)/k)

Combining this formula with the formula (A) with q = r ≥ 1 which gives

Cr+1,r+k = r − 1

k
Cr ,r

and we obtain the formula (A∗).
Formula (C) is a direct consequence of (A∗) for r = 1 with an induction on a ≥ 1

when r = 1 + ak. �

We shall see below that the vanishing of C1+ak,1+ak is also valid for a = 0 giving
Cq,1+ak = 0 for any q ≥ 1 and any a, such that q ≤ 1 + ak ≤ kq.

Remark It is enough to compute C0,0 and C1,h for each h ∈ [1, k] to determine all
coefficients Cq,r in (1) with r ∈ [q, kq]:

The formula (B) determines Ch,h, h ∈ [2, k] from C1,h with r = h and s = h − 1.
Then, the formulas (A∗) and (C) gives Cr ,r for any r ≥ 1. Then, the formula (B)

completes the computation of Cq,r for any q ≥ 0 and any r ∈ [q, kq].
Lemma 5.1.5 We have the following values:

C0,0 = −1

C1,1 = 0

C1,h = 1/k for h ∈ [2, k].

Proof The value of C0,0 is F(σ 0) which is −1 by definition of F . The values of
C1,h is the derivative ∂h(F + σ1/k)(σ 0), because we have m1,h = σh for h ∈ [1, k].
Therefore, it is enough to make an order 1 expansion of F at σ 0 to compute the values
of the C1,h, h ∈ [1, k]. This is given by the following computation at the first order of
Pσ 0+σ (z(σ )) ≡ 0, where we define

z(σ ) = −1 +
k∑

j=1

c jσ j + o(||σ ||)

which gives c1 = C1,1 + 1/k and c j := C1, j for j ∈ [2, k] and then:

(

−1 +
k∑

h=1

chσh

)k

+
k∑

j=1

(−1) jσ j

(

−1 +
k∑

h=1

chσh

)k− j

− (−1)k = o(||σ ||)

(−1)k−1k

(
k∑

h=1

chσh

)

+
k∑

j=1

(−1)kσ j = o(||σ ||) and so

c j = 1/k ∀ j ∈ [1, k]
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Then, C1,1 = 0 and C1, j = c j = 1/k for each j ∈ [2, k]. �

6 Appendix: The Surface S(k)

6.1 Study of S(k)

For k ≥ 2 an integer and α ∈ N
k define

• the length of α given by |α| := ∑k
h=1 αh ;

• the weight of α given by w(α) := ∑k
h=1 h.αh .

We shall say that α and β are equivalent, noted by α�β, when |α| = |β| and w(α) =
w(α).

Remark that for any γ ∈ N
k we have (α + γ )�(β + γ ) if and only if α�β.

Let A be a C−algebra which is commutative, unitary and integral. In the algebra
A[x1, . . . , xk] let I S(k) be the ideal generated by the polynomials x p.xq − x p+1.xq−1
for all p ∈ [1, k − 1] and q ∈ [2, k].

We shall say that the two monomials xα and xβ in A[x1, . . . , xk] are equivalent
when α and β are equivalent. In this case we shall also write xα�xβ .

Remark that for any p ∈ [1, k − 1] and any q ∈ [2, k] x p.xq is equivalent to
x p+1.xq−1.

For a monomial m := xα we define its length by l(m) := |α| and its weight
w(m) := w(α).

Our first result is the following characterization of the elements in I S(k).

Proposition 6.1.1 Two monomials xα and xβ in A[x1, . . . , xk] are equivalent if and
only if xα − xβ is in I S(k).

The proof of this proposition will need a preliminary lemma and the next definition.

Definition 6.1.2 We shall say that a monomial m in A[x1, . . . , xk] is minimal when
it has one of the following forms:

1. there exists p, q in N, such that m = x p
1 xq

k ;
2. there exists p, q in N and j ∈ [2, k − 1] such that m = x p

1 x j xq
k .

Remark Any monomial (minimal or not) is not in the ideal I S(k), because the
point x1 = x2 = · · · = xk = 1 is not in |S(k)| the common set of zeros in Ak of the
generators of I S(k) and any monomial does not vanish at this point.

Lemma 6.1.3 For each α ∈ N
k there exists an unique minimal monomial xμ(α), such

that xα�xμ(α). Moreover, for each α xα − xμ(α) is in I S(k)

Proof Let us begin by proving the uniqueness assertion.
We have to show that two minimal monomials which are equivalent are equal. If

both are in case 1. (som := x p
1 xq

k ) this is obvious as the length is equal to l(m) = p+q
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and the weight is w(m) = p + kq and then (k − 1).q = w(m) − l(m) proving the
uniqueness of q and then of p.

If both are in case 2. let m := x p
1 x j xq

k and m′ = x p′
1 x j ′ x

q ′
k then we have

l(m) = p + 1 + q = l(m′) = p′ + 1 + q ′ and

w(m) = p + j + kq = w(m′) = p′ + j ′ + kq ′ which imply

j − j ′ = (k − 1)(q ′ − q) with | j − j ′| ∈ [0, k − 3].
So j = j ′ and then q = q ′ and p = p′.

If m = x p
1 x j xq

k and m′ = x p′
1 xq ′

k we have

(m) = p + 1 + q = l(m′) = l(m′) = p′ + q ′ and

w(m) = p + j + kq = w(m′) = p′ + kq ′ which imply

j − 1 = (k − 1)(q ′ − q) with j ∈ [2, k − 1] and this is impossible.

The assertion of existence is clear for |α| = 0, 1. We shall prove the existence of μ(α)

by an induction on the length |α| of α.
Assume that the lemma is proved for all β ∈ N

k with length 1 ≤ |β| < |α|. Then,
write xα = xr xβ for some r ∈ [1, k]. By the induction hypothesis we know that there
exists a minimal monomial xμ(β) with xβ�xμ(β). Then, we obtain that xα�xr xμ(β). If
xμ(β) = x p

1 xq
k , then xr x p

1 xq
k isminimal for any choice of r ∈ [1, k]. If xμ(β) = x p

1 x j xq
k

then remark that we have xr x j�x1xr+ j−1 for r + j − 1 ≤ k and xr x j�xk xr+ j−k for
r + j ≥ k + 1 and this allows to conclude the induction.

Remark that if, in the induction above, we assume that xβ − xμ(β) belongs to I S(k)

we obtain that xα − xμ(α) is also in I S(k); for instance in the case xμ(β) = x p
1 x j xq

k

xα − xμ(α) = xr (xβ − xμ(β)) + (xr x j − x1xr+ j−1)x p
1 xq

k for r + j ≤ k + 1,

xα − xμ(α) = xr (xβ − xμ(β)) + (xr x j − xk xr+ j−k)x p
1 xq

k for r + j ≥ k + 2.

The other cases are analogous. �

Proof of the proposition 6.1.1 The previous lemma gives that xα�xβ implies
xα − xμ(α) and xβ − xμ(α) are in I S(k), so also xα − xβ . Conversely, assume that
xα − xβ is in I S(k). As the ideal I S(k) is homogeneous (in the sense of length) if
l(α) �= l(β)we conclude that both xα and xβ are in I S(k). This contradicts the remark
following Definition 6.1.2.

In a similar way the ideal I S(k) is quasi-homogeneous in the sense of the weight
w. Therefore, ifw(α) �= w(β) then xα and xβ are in I S(k)which is again impossible.
Therefore, xα − xβ is in I S(k) implies that α�β. �

Corollary 6.1.4 For any q ∈ N and any r ∈ [q, kq] there exists a minimal monomial
μq,r (necessarily unique), such that |μq,r | = q and w(μq,r ) = r .

Proof The assertion is clear for q = 0, 1. Therefore, let us prove it by induction on q.
Therefore, let q ≥ 2 and let r ∈ [q, kq], and assume that we know that μq ′,r ′ exists
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for any q ′ ≤ q − 1 and any r ′ ∈ [q ′, kq ′]. If r is in [q, k(q − 1) + 1], then r − 1 is in
[q − 1, k(q − 1)] and μq−1,r−1 exists. Therefore, μq,r := x1mq−1,r−1 is the solution.

If r is in [k(q − 1)+ 1, kq] then r − k is in [q − 1, k(q − 1)]and, because for q ≥ 2
we have kq − 2k + 1 ≥ q − 1 and also r − k ≤ kq − k ≤ k(q − 1), μq−1,r−k is
defined and μq,r := xkμq−1,r−k is the solution. �

Proposition 6.1.5 Let L1 := {η1 = 0} ∩ S(k) and Lk := {ηk = 0} ∩ S(k). Then, L1
is the line directed by the vector (0, . . . , 0, 1) and Lk the line directed by the vector
(1, 0, . . . , 0). The maps ϕ1 : S(k)\L1 → C

∗ ×C and ϕk : S(k)\Lk → C
∗ ×C which

are defined by the formulas

ϕ1(η) := (η1,−η2/η1) and ϕk(η) := (ηk,−ηk−1/ηk) (33)

are isomorphisms. Therefore, S(k) \ {0} is smooth and connected surface.

Proof of the proposition 6.1.5 Consider the holomorphic map

ψ1 : C
2 → S(k) (ζ0, ζ1) �→ xh := ζ0(−ζ1)

h−1 ∀h ∈ [1, k].

It induces the inverse to the map ϕ1 on ζ0 �= 0 and the map ψk defined by
xh = (−ζ0)

k−h .ζ1 ∀h ∈ [1, k] gives the inverse of ϕk on ζ1 �= 0. �

Corollary 6.1.6 The ideal I S(k) of C[x] is prime. Moreover, (Sk) is a normal surface.

Proof of the corollary 6.1.6 The only point which is not a direct consequence of the
previous proposition is the normality of S(k). However, as the blow-up of the maximal
ideal at the origin in S(k) gives a desingularization of S(k) with the rational curve13

over the origin in S(k). Therefore, is a rational singular point and S(k) is normal. �
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