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Abstract
Weprove that the space of affine, transversal at infinity, nonsingular real cubic surfaces
has 15 connected components. We give a topological criterion to distinguish them and
show also how these 15 components are adjacent to each other via wall-crossing.
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On résout les problèmes qu’on se pose et non les problèmes qui se posent.
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1 Introduction

1.1 Main Task

We consider an affine three-space as a chart P
3

� P
2 of a projective space P

3 with a
fixed hyperplane P

2. Accordingly, by an affine cubic surface transversal at infinity, we
mean the complement X � A, where X ⊂ P

3 is a projective cubic surface transversal
to P

2 and A = X ∩ P
2. Occasionally, we refer to affine cubics as to pairs (X , A).

The space of nonsingular affine cubic surfaces transversal at infinity is P
19

� (� ∪
�′), where P

19 is the space of projective cubic surfaces, � ⊂ P
19 is the hypersurface

formed by singular surfaces, and �′ is the hypersurface formed by surfaces which are
not transversal to P

2.
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Our main objective is to classify up to deformation the real nonsingular affine cubic
surfaces transversal at infinity. These surfaces form the real part P

19
R

� (�R ∪ �′
R
) of

P
19

� (� ∪ �′). We declare two such surfaces deformation equivalent if they belong
to the same connected component of P

19
R

� (�R ∪ �′
R
).

Often, it is convenient to work with a larger space of surfaces, P
19
R

� (
.

�R ∪
.

�′
R
),

where the semi-algebraic hypersurface
.

�R ⊂ P
19
R

(resp.
.

�′
R

⊂ P
19
R
) is formed by real

affine cubic surfaces with a real singular point (resp. not transversal to P
2 at some real

point). Since both the spaces, P
19
R

� (
.

�R ∪
.

�′
R
) and P

19
R

� (�R ∪ �′
R
), are open in

Euclidean topology and differ by a codimension 2 semi-algebraic set, this does not
change the equivalence relation.

1.2 Deformation Classification

Recall that, for every real algebraic M-surface X , there exists a quadratic Z/4-valued
function (called Rokhlin–Guillou–Marin quadratic function), which is defined on the
kernel of the inclusion homomorphism H1(XR; Z/2) → H1(XC; Z/2) and takes
value 2 ∈ Z/4 on each real vanishing cycle (see, e.g., [1]).

Theorem 1.2.11 There are 15 deformation classes of real affine nonsingular and
transversal at infinity cubic surfaces X � A. For all but two exceptional classes,
such surfaces are deformation equivalent if and only if their real parts XR � AR are
homeomorphic. The two exceptional classes are those for which:

• X is an M-surface, that is, χ(XR) = −5,
• A is an M-curve, that is, AR has two components,
• both components of AR give non-zero classes in H1(XR).

The number of real lines intersecting an oval-component O ⊂ AR is 12 for one of
these exceptional classes and 16 for another. The Rokhlin–Guillou–Marin quadratic
function q : H1(XR) → Z/4 takes value q(O) = 2 in the first case and q(O) = 0 in
the second.

The topological types of XR� AR used as a classification invariant in Theorem1.2.1
are determined by XR (five columns in Table 1), the number of components of AR

(one or two circles) and the number of components of XR � AR (one, two, or three).
In Table 1, we list possible combinations and give the corresponding number of defor-
mation classes of (X , A) in each case.

More concretely:

• Each of the five classes of X contains precisely one deformation class of affine
cubics X � A with connected real locus AR.

• The class of X with XR = RP
2 contains precisely one deformation class of X � A

with 2-component AR.

1 Added in proofreading. As was pointed out to us by J. Capco, a somewhat different description for 10
of these 15 deformation classes and some hints how to complete the classification were given by B. Segre
[6], pp. 114–124.
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Table 1 The number of real deformation classes of affine cubics X � A depending on the topology of XR

(columns) and AR (rows). Here, T
2 stands for S1 × S1

XR RP
2#3T

2
RP

2#2T
2

RP
2#T

2
RP

2
RP

2⊥⊥S
2

AR = S1 1 1 1 1 1

AR = S1⊥⊥S1, b0(XR � AR) =

⎧
⎪⎨

⎪⎩

1

2

3

2
1
0

1
1
0

1
1
0

0
1
0

0
1
1

• Each of the two classes of X with XR = RP
2#k(S1 × S1), k = 1, 2, contains

precisely two classes of X � A with two-component AR: for one class, the oval of
AR is null-homologous in XR and for another is not.

• The class of X with XR = RP
2#3(S1 × S1) contains precisely three classes of

X � A with two-component AR; for one class, the oval of AR is null-homologous
in XR and for the other two is not. For one of the latter two classes, the oval is
homologous to a real vanishing class in H1(XR) and for another is not.

• The class of X with XR = RP
2⊥⊥S

2 contains precisely two classes of X � A
with two-component AR: for one class, the components of AR lie in different
components of XR and for another in the same component RP

2.

1.3 Adjacency of Deformation Classes

Two deformation classes are said to be adjacent if they meet along a maximal dimen-
sion stratum of �R � �′

R
. These strata are formed by those transversal at infinity

hypersurfaces which have a node and no other singular points, and they constitute the
connected components of the smooth part of �R � �′

R
. We call these strata walls and

name the graph representing the above adjacency relation the wall-crossing graph.
We depict the vertices of this graph by circles labeled inside with the number of

real lines intersecting AR. If AR is connected, it is just the total number of real lines
on X . If not, then it is a pair of numbers indicating the number of lines intersecting the
one-sided in P

2 component of AR and the two-sided component called the oval. The
edges are decorated with the number of real lines intersecting the node that appears
at the instance of wall-crossing. Following the same convention as for vertices, when
AR has two connected components, this number is split into a pair. In addition, we
color in black the vertices representing (X , A) with two-component AR whose oval
bounds a disc in the non-orientable component of XR.

Theorem 1.3.1 The wall-crossing graph for affine cubics is as shown in Fig. 1: its
left-hand-side corresponds to (X , A) with one-component curves AR, and the right-
hand-side to (X , A) with two-component AR.

Note that there may be several walls that separate the same pair of deformation
classes and, thus, represent the sameedgeon the graphofFig. 1 (see details inSect. 5.2).
For instance, it is so for a pair of walls which are adjacent to the same codimension 1
cuspidal stratum of�R��′

R
(representing A2-singularity on a cubic). This motivated
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Fig. 1 The wall-crossing graph for transversal at infinity affine cubic surfaces

us to consider extended walls that we define as the connected components of (�R �

�′
R
) ∪ (�c

R
� �′

R
), where �c is the union of the cuspidal strata of �. We establish

that the correspondence between the edges of the graph in Fig. 1 and extended walls
is in fact bijective by combining Theorem 1.3.1 with the following one.

Theorem 1.3.2 Each edge of the graph in Fig.1 represents just one extended wall.

2 Preliminaries

2.1 On the Projective Real Nonsingular Cubic Surfaces (cf., [4, 6])

Theorem 2.1.1 There are five deformation classes of real nonsingular projective cubic
surfaces. Two real nonsingular projective cubic surfaces are deformation equivalent if
and only if their real parts XR are homeomorphic. For four of them, XR = #2μ+1RP

2,
μ = 0, 1, 2, 3. For the fifth one, XR = RP

2#S
2.

The wall-crossing graph of real nonsingular projective cubic surfaces coincides
with the left-hand-side graph of Fig.1 and is reproduced below. The number of real
lines for each class is encircled and the number of lines passing through the node
corresponding to a wall-crossing decorates the edges.

3
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15

27

3

2

4

6

0

Note also that representatives of all five deformation classes of real projective
nonsingular cubic surfaces can be obtained by small perturbations of Cayley’s four-
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nodal cubic surface,
∑4

i=0 x3i = 1
4 (

∑4
i=0 xi )

3 (see https://mathworld.wolfram.com/
CayleyCubic.html).

2.2 BlowupModels of Cubic Surfaces (cf., [6])

A set of real points or real lines on a real algebraic surface is said to be real if it is
invariant under the complex conjugation on the surface.

A set of six points S ⊂ P
2 will be called a typical 6-tuple if S does not contain

collinear triples and all six points are not coconic.

Theorem 2.2.1 For any real projective nonsingular cubic surface X with connected
real part, there exists a real set of six pairwise disjoint lines on X. Blowing down these
lines yields a real plane with a typical real 6-tuple S ⊂ P

2. Conversely, blowing up
P
2 at any real typical 6-tuple S gives a unique (up to a real projective transformation)

real projective nonsingular cubic surface X with connected real part equipped with a
real set of six skew lines.

This blow-down transforms isomorphically any real nonsingular hyperplane sec-
tions A ⊂ X into a real nonsingular plane cubic curves C ⊂ P

2, S ⊂ C. In this way,
it establishes a bijection between the set of the former sections A with the set of the
latter curves C.

Recall that for a typical 6-tuple S = {x1, . . . , x6} ⊂ P
2, the 27 lines in the corre-

sponding cubic surface X include:

• six exceptional curves Ei corresponding to blowing up at xi ;
• (6

2

) = 15 proper images of straight lines xi x j ⊂ P
2, 1 ≤ i < j ≤ 6;

• six proper images Qi of plane conics passing through the five points x j , j 
= i .

Theorem 2.2.1 allows us to represent any real affine nonsingular and transversal at
infinity cubic surface (X , A) with connected XR via a real nonsingular plane cubic
curve C equipped with a real typical 6-tuple S ⊂ C . Since such a representation
determines (X , A) only up to a real affine transformation, which may preserve or
reverse orientation, such approach ignores a possibility that some affine equivalent
cubics may be not deformation equivalent. For this reason, in our first step of proving
Theorem 1.2.1, we classify pairs (X , A) only up to a weaker equivalence in which we
call two pairs coarse deformation equivalent if one is deformation equivalent to the
image of another under an affine transformation.

As is well known and easy to show, Theorem 2.2.1 extends to a wider class of
6-tuples, as well as to families of them. In particular, the following statement holds.

Theorem 2.2.2 Given a continuous family (Ct , St ) formed by nonsingular real plane
cubics Ct and real 6-tuples St ⊂ Ct such that the linear system of cubic curves
passing through St has projective dimension 2, there is a unique (up to a family of real
projective transformations) family of real projective cubic surfaces Xt giving rise to
the given data including the proper image At of Ct as a real nonsingular hyperplane
section of Xt .
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Note that the dimension condition imposed on S in Theorem 2.2.2 is fulfilled if,
for example, S is in a one-nodal position, that is, if S lies on a nonsingular conic, or
if S contains one and only one triple of points aligned.

2.3 Counting Real Lines Intersecting a Given Component of AR

Here, we treat a particular case of blowup models, namely, the case where CR has
two connected components: an oval and a one-sided component. We denote by Sa,b,
a, b ≥ 0, a + b ∈ {0, 2, 4, 6}, the set of pairs (C, S), where C ⊂ P

2 is a nonsingular
cubic curve, CR has two connected components, and S ⊂ C is a real typical 6-tuple
which includes μ ≤ 3 pairs of complex-conjugate imaginary points and a + b =
6−2μ real ones, among which a points lie on the one-sided component of CR and the
remaining b real points lie therefore on the oval (two-sided component). By �a,b, we
denote the set of real affine cubic surfaces X � A, represented by pairs (C, S) ∈ Sa,b,
and put �μ = ∪a+b=6−2μ�a,b.

Proposition 2.3.1 The set �μ is partitioned into non-empty subsets as follows:

• for μ = 0 into 3 subsets: �6,0, �0,6 = �3,3 = �4,2 and �1,5 = �2,4 = �5,1,
• for μ = 1 into 2 subsets: �4,0 and �0,4 = �1,3 = �2,2 = �3,1,
• for μ = 2 into 2 subsets �2,0 and �0,2 = �1,1.

The case �3 = �0,0 is trivial.

Proof First, note that the indicated subsets are non-empty because one can always
displace the required number of real points on the two-components of a cubic CR.
Next, these sets either coincide or are disjoint and, thus, give a partition.

If b ≥ 3, we can apply a standard quadratic Cremona transformationwhich changes
exceptional divisors over points x1, x2, x3 on the oval O ⊂ CR by the proper transform
of lines x1x2, x2x3 and x3x1. This Cremona transformation takes the oval with b points
into a one-sided component with b−3 points and, thus, identifies�a,b with�b−3,a+3.
Hence, �3,3 = �0,6, �2,4 = �1,5 for μ = 0 and �1,3 = �0,4 for μ = 1.

If a ≥ 2 and b ≥ 1, we apply the same Cremona transformation, but with x1 chosen
on the oval, and x2 with x3 on the one-sided component. This also takes the oval into
one-sided component and, thus, identifies �a,b with �b+1,a−1. Hence, �5,1 = �2,4,
�4,2 = �3,3 for μ = 0, and �3,1 = �2,2 for μ = 1.

If b ≥ 1 and μ ≥ 1, we apply again the same transformation, but with x2, x3 to be
chosen imaginary complex conjugate and x1 placed on the oval. This also takes the
oval into one-sided component and, thus, identifies �a,b with �b−1,a+1. Therefore,
�3,1 = �0,4, �2,2 = �1,3 for μ = 1, and �1,1 = �0,2 for μ = 2. �

To distinguish affine cubics (X , A) by counting real lines intersecting a given com-
ponent of AR, we make first a count in terms of (P2, C, S) and then translate it in
terms of (X , A).

Lemma 2.3.2 If (C, S) ∈ Sa,b, then the proper image Õ ⊂ AR of the oval O ⊂ CR

is intersected by 2b + ab real lines of X if b is even, and by 6 − 2μ + ab if b is odd.
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Proof For each of the b points xi ∈ O , the component Õ is intersected by the line Ei

and by the proper images of lines xi x j for each of the a points x j ∈ S on the one-sided
component AR� O . In addition, Õ intersects b lines Qi if b is even, or a = 6−2μ−b
lines Q j if b is odd. �
Lemma 2.3.3 Assume that (C, S) ∈ Sa,b. Then, the proper image Õ ⊂ AR of the oval
O ⊂ CR is an oval of AR if and only if b is even.

Proof This is because after blowing up at a point of a curve on a surface, the tubular
neighborhood of the proper image of the curve alternates its orientability. �
Proposition 2.3.4 Assume (X , A) ∈ �a,b. Then the oval of A intersects 0 lines if
b = 0. If b > 0, then this oval intersects:

• 12 lines for �0,6 = �3,3 = �4,2 and 16 lines for �1,5 = �2,4 = �5,1;
• 8 lines if a + b = 4;
• 4 lines if a + b = 2.

Proof Lemma 2.3.2 gives answer 2b + ab for even b, which is the required number
by Lemma 2.3.3. For odd b, these Lemmas imply that the one-sided component Õ
intersects 6 − 2μ + ab lines and, thus, the oval of AR intersects the remaining real
lines. �

3 Proof of theMain Theorem

3.1 Coarse Deformation Classes via Blow-upModels

Lemma 3.1.1 If the triples (P2
R
, C1

R
, S1

R
), (P2

R
, C2

R
, S2

R
) are homeomorphic, then the

associated real affine cubic surfaces (X1, A1), (X2, A2) are coarse deformation equiv-
alent.

Proof According to Theorem 2.2.2 to prove coarse deformation equivalence of
(X1, A1) and (X1, A2), it is sufficient to build a real deformation between (C1

R
, S1

R
)

and (C2
R
, S2

R
) using at worth one-nodal 6-tuples. Such a real deformation equivalence

can be built in three steps: deforming C1 to C2, transporting S1 from C1 to C2 along
a chosen deformation by means of a family of typical 6-tuples, and finally moving
the transported S1 to S2. A real deformation between C1 and C2 exists due to the
deformation classification of real plane cubic curves. Given two typical conj-invariant
6-tuples S1, S2 on the same real nonsingular plane cubic curve C, we may join them
by a generic path St , t ∈ [1, 2], if the pairs (CR, S1

R
), (CR, S2

R
) are homeomorphic. It

may happen that at a finite number of times, the 6-tuples St go through a one-nodal
position. But since in the associated family of real surfaces (X , A), the topology of the
real part of the cubic surfaces is not changing, and since when X acquires a node the
curve A does not pass through the node (and remains nonsingular), we may conclude
that at each nodal instance we touch the discriminant�a without crossing it, and thus,
due to the deformation classification of real nonsingular projective cubic surfaces,
may bypass the family of surfaces by a small real deformation. �
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Fig. 2 Cayley’s four-nodal cubic surface with a tetrahedron-like piece T (top figure) gives after a small
perturbation a cubic surface X (at the bottom), with nodes replaced by one-handles. A plane truncating T
near its vertex traces on XR a cubic curve AR, whose oval is a vanishing cycle. Another plane separating
one pair of vertices of T from another traces on XR a cubic curve AR, whose oval is homologous to the
sum of two disjoint vanishing cycles. In each case, the oval intersects 4n lines in XR, where n is the number
of edges of T intersected by the plane (resp. 3 and 4)

Proposition 3.1.2 The real transversal at infinity affine cubics (X , A) for which both
XR and AR are connected form 4 coarse deformation classes: each class is determined
by the deformation class of X.

Proof Using Theorem 2.2.1, we interpret the claim in the language of blowup models
of (X , A), that is, triples (P2, C, S). Since, as it follows from Theorem 2.1.1, the class
of X is determined by μ ∈ {0, 1, 2, 3}, for construction of A for a fixed class of X ,

it is enough to pick a connected cubic AR and place on it 6 − 2μ real points (and μ

pairs of imaginary points on A � AR). For uniqueness of the coarse deformation class
of such pairs (X , A), it is enough to apply Lemma 3.1.1. �

Proposition 3.1.3 The real transversal at infinity affine cubics (X , A) for which XR

is connected, while AR is not, form eight coarse deformation classes. For all but
two exceptional cases, indicated in Theorem 1.2.1, the coarse deformation class is
determined by the topology of XR � AR, while the exceptional cases are distinguished
as stated in Theorem 1.2.1.

Proof We use Theorem 2.2.1 and Lemma 3.1.1, like in the case of connected AR, and
then apply Proposition 2.3.1 giving eight coarse deformation classes of (X , A): three
for μ = 0, two for each of μ ∈ {1, 2} and one for μ = 3. Proposition 2.3.4 gives the
numbers of lines intersecting each component of AR and, in particular, describes the
two exceptional classes forμ = 0 in terms of real lines, as stated in Theorem 1.2.1. To
obtain the other description, in terms of Rokhlin–Guillou–Marin quadratic function,
it is sufficient to observe on examples (see Fig. 2) that in the case �0,6 = �3,3 = �4,2
(where the number of real lines intersecting the oval is 12), the oval is a vanishing cycle,
and in the other case,�5,1 = �2,4 = �1,5 (where the number of real lines intersecting
the oval is 16), the oval is homologous to the sum of two disjoint vanishing cycles.
Therefore, in the first case, the quadratic function takes value 2 ∈ Z/4 on the oval,
while in the other case its value is 0 ∈ Z/4. �
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3.2 Affine Cubics with Disconnected XR

Lemma 3.2.1 If a real cubic hypersurface XR ⊂ P
n+1
R

has at least one contractible
n-dimensional component in P

n+1
R

, then XR has no singular points.

Proof Let F ⊂ XR be a contractible n-dimensional component. Then it decomposes
P

n+1
R

into ≥ 2 connected components so that at least one of them is contractible in
P

n+1
R

. Pick a point inside this contractible component. Each real line passing through
this point intersects F at an even number ≥ 2 of real points, and in addition the other
component of XR at ≥ 1 points. So, existence of a singular point contradicts the
Bézout theorem. �
Proposition 3.2.2 The real transversal at infinity affine cubic surfaces (X , A) with
disconnected XR form three deformation classes. One is formed by cubics with con-
nected AR and two with disconnected. For cubics of one of the latter two classes, the
oval of AR is contained in the spherical component of XR, while for the other class it
is contained in the non-spherical component.

Proof We start with the case in which the spherical component F ⊂ XR contains
an oval � = F ∩ P

2
R
of AR = XR ∩ P

2
R
. Then, we select as a standard model a

pair (X ′, A′) obtained by a small perturbation of the product of a sphere with a plane
so that the spherical component F ′ of X ′

R
and the oval component of the curve A′

R

are contained inside F and, respectively, �, while the non-spherical component of
X ′
R
lies outside F . Next, we pick cubic equations f for XR and g for X ′

R
so that

f g > 0 is inside F ′. Then, by Bolzano intermediate value theorem, the cubic surface
XR(t) defined by t f + (1 − t)g has for any t ∈ [0, 1] at least one two-dimensional
component contained inside F . Similarly, AR(t) = XR(t) ∩ P

2
R
has at least one one-

dimensional component inside �. These components have to be contractible and so,
by Lemma 3.2.1, the pairs (XR(t), AR(t)) are nonsingular for all t ∈ [0, 1]. Thus,
(XR, AR) and (X ′

R
, A′

R
) are deformation equivalent, and it remains to be noticed that

all the standard models (X ′, A′) are deformation equivalent to each other.
In the other two cases, we pick as a standard model a pair (X ′, A′) so that X ′ is

defined by g = wq + ε f∞, 0 < |ε| << 1, where P
2 = {w = 0}, f∞ = f (x, y, z, 0)

( f still defines X ), and q = 0 defines a small sphere contained inside F and chosen
so that f g > 0 inside F ′. By the same arguments as above, the cubic surfaces X(t)
defined by t f +(1−t)g = 0 are all nonsingular. In addition, A(t) = A = A′ for each t .
So, it remains to be noticed that all the standard models (X ′

R
, A′

R
)with homeomorphic

A′
R
are deformation equivalent, since all real nonsingular cubic curves with the same

topology are deformation equivalent. �

3.3 Achirality and End of Proof of Theorem 1.2.1

To finish the proof of Theorem 1.2.1 there remains to check achirality in each of coarse
deformation classes.

Proposition 3.3.1 Each coarse deformation class of real affine surface (X , A) contains
a surface invariant under some real affine reflection.
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Proof The Cayley four-nodal real cubic surface
∑4

i=0 x3i = 1
4 (

∑3
i=0 xi )

3 is invari-
ant under the projective transformations induced by permutations of the coordinates
x0, . . . , x3. In particular, it is invariant under six reflections induced by the 6 = (4

2

)

transpositions. So, we may obtain examples of achiral real affine surfaces just by
choosing one of these reflections and considering a reflection invariant real perturba-
tion of the Cayley surface and a reflection invariant real projective plane as the plane at
infinity. It is then straightforward to construct in such a way a representative for each
of our 15 coarse deformation classes. (In particular, the both plane sections indicated
in caption to Fig. 2 can be chosen invariant with respect to a reflection fixing two of
four vertices of the tetrahedron and permuting the two others.)

Recall that for all but two exceptional cases, a coarse deformation class is
determined by simple topological properties of the pair (XR, AR). As for the two
exceptional cases, already the construction indicated in the proof of Proposition 3.1.3
provides reflection invariant examples. �

3.4 Proof of Theorem 1.3.1

The forgetful map (X , A) �→ X induces a projection �af → � of the wall-crossing
graph �af of real transversal at infinity affine cubic surfaces to the wall-crossing graph
� of projective real nonsingular cubic surfaces that is shown in Theorem 2.1.1. For the
connected component of�af that describes adjacency for deformation classes of affine
cubics (X , A)with connected AR, this projection is an isomorphism, as it follows from
its bijectivity at the level of vertices established in Proposition 3.1.2.

For the remaining part of �af (that describes adjacency in the cases with two-
component AR), the set of vertices is described in Propositions 3.1.3 and 3.2.2. Labels
of the vertices are determined by Proposition 2.3.4. To determine the edges and their
labels, we use the following observation: if underwall-crossing the Euler characteristic
of XR increases, then the number of real lines decreases by 0 ≤ 2k ≤ 12 (where k
is the number of real lines passing through the node at the instance of wall-crossing)
and, in particular, each of the labels a and b decreases. Existence of the edges with
labels (a, b) such that a, b ∈ {0, 2, 4, 6}, a + b ≤ 6 follows from Theorem 2.2.2 and
known examples of transversal pairs of conic and cubic, see [3, Section 9.2].

4 Edges of theWall-Crossing Graph

4.1 ExtendedWalls

Let us assume that an affine cubic X � A, A = X ∩ P
3, has a double point x ∈ X � A

and consider affine coordinates centered at x . Then, such an affine cubic is defined
by equation f2 + f3 = 0, where f2 and f3 are nonzero ternary quadratic and cubic
forms: f3 defines the (cubic) curve A ⊂ P

2 and f2 a conic.
The following criterion is straightforward from definitions (c.f., for example, [2,

Lemma 2.2]).
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Lemma 4.1.1 An affine cubic surface { f2 + f3 = 0} is transversal at infinity and
has no singular point except the node or cusp at the coordinate origin, if and only if
{ f3 = 0} ⊂ P

2 is a nonsingular cubic transversal to the conic { f2 = 0} ⊂ P
2.

Proposition 4.1.2 Pick any real nonsingular plane cubic curve C and any label: “a”
if CR is connected, or “a, b” if it has two components. Then the above construction
gives a bijection between the set of extended walls representing the edges of graphs on
Fig.1 with the chosen label and the connected components of the space of real conics
B intersecting transversely cubic C, with the number of intersection points on each
component of CR prescribed by the label.

Proof It is a straightforward consequence of Lemma 4.1.1, Theorem 1.3.1, and con-
nectedness of the group of real affine transformations preserving orientation. �

Remark 4.1.3 The only label marking more than one edge on Fig. 1 is “0, 0”.

4.2 Auxiliary Covering

Let C be a nonsingular plane cubic curve. Denote by C (n) its n-fold symmetric power
and by Ċ (n) its Zariski open subset formed by collections of n distinct points. For any
effective divisor of degree 5 on C , which we consider as a point D ∈ C (5), there is a
unique conic B that cuts onC a divisor B ·C ≥ D. This correspondence, D �→ B ·C ∈
C (6), defines a regular map f : C (5) → C (6) whose image V = f (C (5)) ⊂ C (6) is a
codimension 1 smooth subvariety of C (6) (in fact, this image is isomorphic to P

5 due
to its identification with the space of plane conics).

In accordance with Proposition 4.1.2, we are especially interested in a Zariski open
subset of V defined as V̇ = f (C (5)) ∩ Ċ (6) = f (Ċ (5)) ∩ Ċ (6).

If the cubic curve C is real, the (open) manifold Ċ (n)
R

= {D ∈ Ċ (n) : conj D = D}
splits into several connected components enumerated by the number of points in
D ∈ Ċ (n)

R
on each of the connected components of CR. Namely, we have a partition

Ċ (n)
R

=

⎧
⎪⎪⎨

⎪⎪⎩

⊔

r≥0, r=n mod 2

Ċr
R
, if CR is connected,

⊔

r ,s≥0, r+s=n mod 2

Ċr ,s
R

if CR has two components,

where r stands for the number of points of D ∈ Ċ (n)
R

on the one-sided component of
CR and s for that on the oval.

In the case n = 6, for each a = 0 mod 2, a ≥ 0 and, respectively, each a + b = 0
mod 2 with a, b ≥ 0, we put
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V̇ a
R

= V ∩ Ċa
R
, V̇ a,b

R
= V ∩ Ċa,b

R
.

The above map f respects this partition. It restricts to a collection of maps

{
ḟ : Ċr

R
→ VR, if CRis connected,

ḟ : Ċr ,s
R

→ VR, if CRhas two components.

Note that ḟ (Ċr
R
) and ḟ (Ċr ,s

R
) are contained in the closure of V̇ r+1

R
and, respectively,

V̇ r̄ ,s̄
R

, where for x = r , s we let x̄ := x + 1 if x is odd and x̄ = x if even.

Lemma 4.2.1 Each restriction map ḟ : Ċr
R

→ VR or ḟ : Ċr ,s
R

→ VR is smooth
with only fold singular points. Namely, ḟ is a local diffeomorphism at a point D if
ḟ (D) ∈ V̇R, while for ḟ (D) ∈ VR � V̇R the map ḟ is given by ḟ (x1, . . . , x4, y) =
(x1, . . . , x4, y2) in appropriate local coordinates of the domain and codomain. More-
over, ḟ −1( ḟ (D)) = D for every fold point D (a point with ḟ (D) ∈ VR � V̇R).

Proof Straightforward from the Abel–Jacobi theorem, implying that for each 5-tuple
D = {p1, . . . , p5} in the domain of ḟ the 6th point in the 6-tuple ḟ (D) = {p1, . . . , p6}
is determined by the condition p1 + · · · + p6 = 0 with respect to the group structure
in C with a flex-point of C taken for zero. �

The following result is an immediate consequence of Lemma 4.2.1.

Proposition 4.2.2 Each image ḟ (Ċr
R
), ḟ (Ċr ,s

R
) is a manifold with the boundary formed

by fold-points of ḟ and the interior part being V̇ r+1
R

, V̇ r̄ ,s̄
R

, respectively.

4.3 Proof of Theorem 1.3.2

Let us treat, first, the case of edges with labels a and a, b different from 0 and 0, 0.
In such a case, according to Proposition 4.1.2, it is sufficient to show that each of the
manifolds V̇ a

R
and V̇ a,b

R
is connected.

To prove their connectedness, we put a = r + 1 or a, b = r̄ , s̄, respectively, and
deduce the connectedness of ḟ (Ċr

R
) and ḟ (Ċr ,s

R
) from the connectedness of Ċr

R
and

Ċr ,s
R

(already observed in Sect. 4.2). By virtue of Proposition 4.2.2, this implies the

connectedness of V̇ r+1
R

= V̇ a
R
and V̇ r̄ ,s̄

R
= V̇ a,b

R
.

For the case of labels 0 or 0, 0, we observe that the set of real quadratic forms taking
a fixed sign on each component of CR is convex and that non-transversality with C
is a codimension 2 condition (since it happens simultaneously at pairs of complex-
conjugate points). Due to Proposition 4.1.2, this gives one extendedwall for connected
CR and two walls for disconnected. This corresponds to one edge labeled with 0 and,
respectively, two edges labeled 0, 0 on Fig. 1.
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5 Concluding Remarks

5.1 Intersecting a Cubic by Curves of Arbitrary Degree

Our proof of Theorem 1.3.2 given in Sect. 4 is based on enumeration of connected
components of the space of real conics intersecting transversally a fixed nonsingular
real cubic C ⊂ P

2. If we replace conics by curves of arbitrary degree d ≥ 1, we
may similarly define a map f : C (3d−1) → C (3d), let V = f (C (3d−1)), consider
a similar partition of V̇R into V̇ a or V̇ a,b, and prove the connectedness of V̇ a,b for
(a, b) 
= (0, 0) and of V̇ a for any a.

The case (a, b) = (0, 0) is possible only if d is even. Then the same sign and
convexity arguments as for d = 2 apply and show that for any even d the space V̇ 0,0,
that is the space of real nonsingular plane curves of degree d transversal to C and
having no real points common with C , consists of two connected components. The
latter ones are distinguished by comparison of the signs that an underlying real form
of degree d takes on the real components of C .

5.2 Number of OrdinaryWalls in an ExtendedWall

Recall that by definition (see Sect. 1) the “ordinary” walls are the connected com-
ponents of �R � �′

R
, while the extended walls are the connected components of a

bigger space obtained by adding the cuspidal strata. As it is natural to expect, there
exist extended walls that contain more than one ordinary wall. A complete answer is
given in Table 2 that indicates the precise number of ordinary walls in each of the
extended walls. The latter ones are marked with the labels as in the previous section
(like the corresponding edges on Fig. 1). Note that label 0, 0 is attributed to two dif-
ferent extended walls, so, “1” under “0, 0” says that each of them contains just one
ordinary wall.

In fact, the set of ordinary walls is in a natural bijective correspondence with the set
of deformation classes of real plane quintics that split into a nonsingular cubic C and
nonsingular conic B meeting each other transversally (cf. Lemma 4.1.1). Therefore,
the results shown in the table can be obtained from [3, Section 9.2], where the latter
classification was presented as follows.

Table 2 Number of ordinary walls in each extended wall

Extended wall label 0 2 4 6 0, 0 0, 2 2, 0 0, 4 2, 2 4, 0 0, 6 2, 4 4, 2 6, 0

Number of walls 1 1 1 3 1 1 2 1 1 2 1 2 1 3
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Fig. 3 The extremal mutual positions of a cubic and a conic

On one hand, each deformation class is determined by the topology of the mutual
arrangement of CR and BR in the real projective plane. On the other hand, as it was
shown by G. Polotovsky [5], there are 25 such arrangements: 7 extremal classes are
shown in Fig. 3, while the other, non-extremal, cases are obtained from the extremal
ones by repeating the following moves. One move consists in erasing an oval (of the
cubic or of the conic) containing no intersection points, and the other in shifting a piece
of curve containing a pair of consecutive (both on the conic and the cubic) intersection
points, so that these two intersections disappear.

5.3 Vasilliev’s Conjectures

The deformation classification in this paper is naturally related to enumeration of
connected components of non-discriminant perturbations of parabolic singularities of
type P8. In a recent preprint [7], Vasilliev provided lower bounds on the number of such
components for each of the eight classes of parabolic singularities and conjectured that
his bounds are sharp. Our results confirm partially this conjecture.
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