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Abstract
We describe supertraces on “queerifications” (see arXiv:2203.06917) of the algebras
of matrices of “complex size”, algebras of observables of Calogero–Moser model,
Vasiliev higher spin algebras, and (super)algebras of pseudo-differential operators. In
the latter case, the supertraces establish complete integrability of the analogs of Euler
equations to be written (this is one of several open problems and conjectures offered).

Keywords Simple Lie superalgebra · Queerification · Trace · Supertrace

Mathematics Subject Classification Primary 17B20 · 16W55; Secondary 81Q60 ·
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1 Introduction

The goal of this note is to give a list of supertraces in a quite general new situation
(Sects. 2–5); to make the exposition self-contained we remind certain known results
(Sect. 6 and partly Sects. 4, 5).

The traces on Lie algebras, and even (here: not odd) supertraces on Lie superalge-
bras, are known to be very useful, for example, in representation theory, see, e.g., [6]
and references therein. The odd supertraces are less known, and hence less popular. In
Sect. 5, we show one of their usages not previously explored: application to the study
of integrability of certain dynamical systems.

Inspired by [4], where Lie algebras are queerified over an algebraically closed
ground field of characteristic p = 2 to produce the complete list of simple finite-
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dimensional Lie superalgebras in characteristic p = 2, this new method—Lie
queerification—producing many new simple Lie superalgebras from associative alge-
bras and superalgebras overC is applied in [15] to several infinite-dimensional algebras
of interest in theoretical physics. A number of papers were devoted to the description
of traces on these algebras, and supertraces on these algebras considered as superalge-
bras, see [10–13]. In this note, we describe the supertraces on the Lie queerifications
of these algebras and superalgebras, having added one more type of example.

2 Preliminaries

2.1 From Associative to Lie

LetK be an algebraically closed ground field of characteristic p �= 2; unless otherwise
stated, we consider K = C.

Let A be any associative algebra, and let AL be the Lie algebra whose space is A
but multiplication is given by the commutator [a, b] := ab − ba for any a, b ∈ A.

Let A := A0̄ ⊕ A1̄ be a Z/2-graded algebra; let p denote the parity function:
p(a) = i ∈ Z/2 for any non-zero a ∈ Ai . If A a Z/2-graded associative algebra,
let AS be the Lie superalgebra whose space is A but the multiplication is given by
the supercommutator, which by the modern habitual abuse of notation is also denoted
[·, ·], although defined differently, namely as

[a, b] := ab − (−1)p(a)p(b)ba for any homogeneous a, b ∈ A

and extended to inhomogeneous elements via linearity. Let g′ := [g, g] be the first
derived Lie algebra (resp. Lie superalgebra), a.k.a. commutant (resp. supercommu-
tant), of the Lie algebra (resp. Lie superalgebra) g.

Not every Z/2-graded algebra A is called superalgebra: only if multiplication in
A or—if A is associative—in AS depends on the parity. Thus, a liefication AL of
a Z/2-graded algebra A is a Lie algebra, whereas a liefication AS of a Z/2-graded
superalgebra A is a Lie superalgebra (satisfying axioms of anti-commutativity and
Jacobi identity with signs depending on parity).

Recall that a trace (called supertrace in the super setting, for emphasis) on a given
Lie algebra (resp.Lie superalgebra)g is a linear function that vanishes on its commutant
(resp. supercommutant), so there are dim(g/g′) linearly independent traces (resp.
supertraces) on g; some of the supertraces can be even and some of them odd.

2.2 Queerifications in Characteristic p �= 2 (from [4])

Let A be an associative algebra. The space of the associative algebra Q(A)—the
associative queerification of A—is A⊕�(A), where� is the change of parity functor,
with the same multiplication in A; let the left action of A on �(A), considered as a
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copy of A, and multiplication in �(A) be

x�(y) := �(xy), �(x)y := �(xy),
�(x)�(y) := xy for any x, y ∈ A.

Set Q(n) := Q(Mat(n)).
We will be mostly interested in the following: Lie queerifications q(A):

1. when A is an associative algebra, “Liefication" yields Lie algebra AL ;
2. when A is a Z/2-graded associative algebra, “Liefication” yields Z/2-graded Lie

algebra AL ;
3. when A is an associative superalgebra (this case differs from case 2) because pass-

ing to AS the supercommutators instead of commutators are considered), “super
Liefication" yields Lie superalgebra AS which is Z/2-graded by parity.

In Case (1), as spaces, q(A) := AL ⊕ �(A), so q(A)0̄ = AL and q(A)1̄ = �(A),
with the bracket given by the following expressions and super anti-symmetry, i.e.,
anti-symmetry amended by the Sign Rule:

[x, y] := xy − yx; [x,�(y)] := �(xy − yx); [�(x),�(y)]
:= xy + yx for any x, y ∈ A. (1)

The term “queer”, now conventional, is taken after the Lie superalgebra q(n) :=
q(Mat(n)). (The associative superalgebra Q(n) is an analog of Mat(n); likewise, the
Lie superalgebra q(n) is an analog of gl(n) for several reasons, for example, due the
role of these two types of analogs in Schur’s Lemma and in the classification of central
simple superalgebras, see [14, Ch.7].)We express the elements of the Lie superalgebra
q(n) by means of a pair of matrices:

(X ,Y ) ←→
(
X Y
Y X

)
∈ gl(n|n),where X ,Y ∈ Mat(n). (2)

For any associative A, wewill similarly denote the elements of q(A) by pairs (X ,Y ),
where X ,Y ∈ A. The brackets between these elements are as follows:

[(X1, 0), (X2, 0)] := ([X1, X2], 0), [(X , 0), (0,Y )] := (0, [X ,Y ]),
[(0,Y1), (0,Y2)] := (Y1Y2 + Y2Y1, 0).

(3)

We define Lie queerifications in cases (2) and (3) in the next section.

3 Traces and Supertraces: Generalities

3.1 Theorem Let A be an associative algebra. Then, the estimate of the number of
traces in the three cases of its Lie queerification are as follows:
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Case 1. Let Q(A) := A⊕�(A) be the associative queerification of A, let g := AL be
the corresponding Lie algebra and let the Lie superalgebra qg := (Q(A))S = q(A)

be the Lie queerification of A. Then, there are as many odd supertraces on qg as there
are traces on g; there are fewer even supertraces on qg than there are traces on g. In
particular, if A has unit, then there are no even supertraces on qg.
Case 2. Let A be a Z/2-graded associative algebra, g := AL. Let i, j = 0̄, 1̄, let ni
be the number of traces on g of grade i , and let Ni, j be the number of supertraces on
qg of grade (i, j). Then,

N1̄,0̄=n0̄, N1̄,1̄ = n1̄, N0̄,0̄=codimA0̄
((A0̄)

2+(A1̄)
2), N0̄,1̄=codimA1̄

(A0̄A1̄).

(4)

In particular, if A has unit, then there are no supertraces on qg of grades (0̄, 0̄) and
(0̄, 1̄).
Case 3. Let A = A0̄ ⊕ A1̄ be an associative superalgebra, g = g0̄ ⊕ g1̄ := AS. Let
Q(A) := A ⊕ �(A) and qg := (Q(A))S. In notation of Case 2),

N0̄,1̄ = n1̄, N0̄,0̄ = codimA0̄
((A0̄)

2 + (A1̄)
2), N1̄,1̄ = codimA1̄

(A0̄A1̄). (5)

In particular, if A has unit, then there are no even supertraces on qg, i.e., supertraces
of grades (0̄, 0̄) and (1̄, 1̄).

Proof Case 1. Clearly, qg = g ⊕ �(g) as spaces.
Denote, for brevity, u := (qg)′. By definition, the supercommutant u := u0̄ ⊕ u1̄ is

spanned by elements [a, b] for any a, b ∈ qg. In particular,

u1̄ := Span([x,�(y)] = �([x, y]) | x, y ∈ (qg)0̄),

and hence u1̄ = �([g, g]). Therefore, there are as many odd supertraces on qg as there
are traces on g.

Clearly, u0̄ is the sum of two ideals of g:

u0̄ = [g, g] + [�(g),�(g)].

Observe that the second summand does not have to be contained in the first one.
Therefore, there are fewer even supertraces on qg than there are traces on g.

In particular, if A has unit 1, then u0̄ = g, because [�(1),�(x)] = 2x for any
x ∈ g0̄.

For example, if A = Mat(n), then on (Q(A))S , there is an odd trace, nowadays
called queertrace; it was first defined in [2] by the formula

qtr :
(
X Y
Y X

)
�→ tr Y .

Case 2. Clearly, Z/2-grading of A makes g = g0̄ ⊕ g1̄ a Z/2-graded Lie algebra.
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Actually, this is a particular case of Case 1. However, a Z/2-grading in the Lie
algebra g and hence a Z/2 × Z/2-bigrading in the Lie superalgebra qg := (Q(A))S

enable us to sharpen the answer.
We will denote the elements of g0̄ by letters x, y, . . . , and the elements of g1̄ by

letters a, b, c, . . . . We have g′ = (g′)0̄ ⊕ (g′)1̄, where

(g′)0̄ = Span([x, y] := xy − yx, [a, b] := ab − ba), (g′)1̄
= Span([x, a] := xa − ax).

The components of (Z/2 × Z/2)-grading of qg are of the form:

(qg)0̄,0̄ = g0̄, (qg)0̄,1̄ = g1̄, (qg)1̄,0̄ = �(g0̄), (qg)1̄,1̄ = �(g1̄).

The elements that span homogeneous components of (qg)′ are as follows:

(qg)′̄
0,0̄

(qg)′̄
0,1̄

(qg)′̄
1,0̄

(qg)′̄
1,1̄

[x, y] = xy − yx [x, a] [x, �(y] [x,�(a)]
[a, b] = ab − ba = xa − ax = �(xy − yx) = �(xa − ax)
[�(a),�(b)] = ab + ba [�(a),�(x)] [a,�(b)] [a,�(x)]
[�(x), �(y)] = xy + yx = ax + xa = �(ab − ba) = �(ax − xa)

Therefore,

(qg)′̄
1,0̄

= �(g)′̄
0
, (qg)′̄

1,1̄
= �(g)′̄

1
, (qg)′̄

0,0̄
= (A0̄)

2 + (A1̄)
2, (qg)′̄

0,1̄
= A0̄A1̄,

where the last two equalities mean equalities as spaces.
We see that equalities (4) are satisfied. In particular, if A has unit, then

(qg)′̄
0,0̄

= g0̄ and (qg)′̄
0,1̄

= g1̄.

Hence, in this case, there are no supertraces on qg of grades (0̄, 0̄) and (0̄, 1̄).
Case 3. Clearly, qg = g ⊕ �(g) as superspaces. It is also clear that the natural
(Z/2 × Z/2)-grading on Q(A) induces the same grading on qg, where

(qg)0̄,0̄ = g0̄, (qg)0̄,1̄ = g1̄, (qg)1̄,0̄ = �(g0̄), (qg)1̄,1̄ = �(g1̄).

Let us now compare the supercommutants of g and qg. We will denote the elements
of g0̄ by letters x, y, . . . , and the elements of g1̄ by letters a, b, c, . . . . We have g′ =
(g′)0̄ ⊕ (g′)1̄, where

(g′)0̄ = Span([x, y] := xy − yx, [a, b] := ab + ba),

(g′)1̄ = Span([x, a] := xa − ax).
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(qg)′̄
0,0̄

(qg)′̄
0,1̄

(qg)′̄
1,0̄

(qg)′̄
1,1̄

[x, y] = xy − yx [x, a] [x, �(y] [x,�(a)]
[a, b] = ab + ba = xa − ax = �(xy − yx) = �(xa − ax)
[�(a),�(b)] = ab − ba [�(a),�(x)] [a,�(b)] [a,�(x)]
[�(x), �(y)] = xy + yx = ax − xa = �(ab − ba) = �(ax + xa)

The elements that span homogeneous components of (qg)′ are as follows:
Therefore,

(qg)′̄
0,1̄

= (g)′̄
1
, (qg)′̄

0,0̄
= (A0̄)

2 + (A1̄)
2, (qg)′̄

1,1̄
= �(A0̄A1̄),

where the last two equalities mean equalities as spaces.
We see that equalities (5) are satisfied. In particular, if A has unit, then

(qg)′̄
0,0̄

= g0̄ and (qg)′̄
1,1̄

= �(g1̄).

Hence, in this case, there are no even supertraces on qg, i.e., supertraces of grades
(0̄, 0̄) and (1̄, 1̄). 	


4 Examples of Supertraces on Queerified Algebras and Superalgebras

4.1 Clifford–Weyl Algebras and Superalgebras

Among various definitions of the Weyl and Clifford algebras, we select their
description as associative (super)algebras of differential operators with polynomial
coefficients on the 2n|m-dimensional superspace with coordinates u := (x, ξ) gener-
ated by the ui and ∂

∂ui
subject to the relations [ ∂

∂ui
, u j ] = δi j .

Recall that the Clifford algebra Cliff(2m) on 2m generators can be considered as
a Z/2-graded associative superalgebra generated by the anti-commuting elements ξi
and ∂

∂ξi
, which is natural to consider as a superalgebra with the ξi , and hence ∂

∂ξi
, odd.

The Clifford algebra Cliff(2m − 1) is defined as the algebra preserving an element
J ∈ Cliff(2m) such that J 2 = a id for any fixed a ∈ C

×. For example, one can take
J = √−1(ξ1 + ∂

∂ξ1
), then J 2 = −1.

Clearly, by a linear change of indeterminates, the Clifford algebra Cliff(m) can be
given for any m by relations θ2i = 1 for i = 1, . . .m in terms of the new indeterminates
θi .

The Weyl algebra Wn of polynomial differential operators in n even indetermi-
nates xi is an associative algebra generated by n commuting indeterminates xi and
the corresponding ∂i := ∂

∂xi
. More generally, define the Clifford–Weyl superalgebra

CW(n|m) := Wn ⊗ Cliff(m).

4.1 Theorem Let A be a Z/2-graded simple associative algebra of characteristic
p �= 2 with supercenter Z whose elements supercommute with any a ∈ A. Let the
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Montgomery’s condition

if u2 ∈ Z , then u ∈ Z for any homogeneous u ∈ A1̄ (6)

hold. Then, there are no even supertraces on qA, but there is one odd supertrace.

Proof Observe that the superalgebra A of differential operators in any finite num-
ber of indigenously odd indeterminates (a.k.a. the Clifford algebra on 2n generators
considered as a Z/2-graded associative superalgebra) is isomorphic to the matrix
superalgebra Mat(2n−1|2n−1) on which there is an even supertrace, whereas on
q(2n) := q(gl(2n−1|2n−1)) = q((Mat(2n−1|2n−1))L) there is the (well-known today)
odd queer trace. Therefore, by arguments in the proof of Theorem 3.1, and using
Montgomery’s theorem [18, Th.3.8] which states that, provided condition (6) holds,
SL(A) := (AS)′/((AS)′ ∩ Z) is a simple Lie superalgebra, we are done. 	

Comments Vasiliev was, most probably, the first to publish that on the Weyl algebra
Wn of polynomial differential operators in n even indeterminates xi considered as
superalgebra with parity given by p(xi ) = p(∂i ) = 1̄ for all i , where ∂i := ∂

∂xi
, there

is an even supertrace, see [24].
For a generalized Calogero–Moser case, see [25]; the detailed version [26] con-

tains an elementary proof of uniqueness of the supertrace on Wn . The algebras of
“matrices of complex size” first appeared as associative algebras in the book [5] and
as Lie algebras in [7]. For a generalization to symplectic reflection algebras, see [11,
Th.7.1.1]. Alexey Lebedev suggested a beautiful elementary proof of the existence
of the supertrace on Wn , see §6.

Recall that Herstein, see [8], proved that for any simple finite-dimensional associa-
tive algebra A with center Z , the Lie algebra L(A) := (AL)′/((AL)′ ∩ Z) is simple,
unless [A : Z ] = 4 and A has characteristic 2.

Obviously unaware of Vasiliev’s works on supertraces, his results were rediscov-
ered by mathematicians, see [18, Proposition 4.3] and [19]. Montgomery found out
the sufficient condition (6) to the super version of Herstein’s theorem (see [8]) and
formulated it in the infinite-dimensional situation (in the finite-dimensional case, it is
also true).

4.2 (Super)algebras of “Matrices of Complex Size”

Theorem 4.1 is applicable to the queerifications of both algebras and superalgebras A
of “matrices of complex size”, see [15, Subsection 2.2] with the same answer: there are
no even supertraces on qA, but there is one odd supertrace. (Since gl(λ) = gl(λ)′⊕C 1,
one can define the trace on the Lie algebra gl(λ) by any value on 1. Although we do
not need it here, recall—for its beauty—that J. Bernstein defined the trace on gl(λ) for
λ ∈ C\Z, see [9], so that tr(1) = λ; Bernstein’s trace naturally generalizes the trace
on Mat(|n|) such that tr(1|n|) = |n| for any n ∈ Z\{0}.)
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4.3 Symplectic Reflection Algebras and Superalgebras

For the classification of traces (resp. supertraces) on these algebras and superalgebras
A, see [10, Tables on pp.5,6]. Considering them as algebras (resp. superalgebras) we
get the exact number of supertraces on their Lie qeerifications, according to general
results established in Case 1 (resp. Case 3) of Theorem 3.1.
Openproblem For a description of ideals in these algebras and superalgebras, see [11–
13]. Determine when these ideals are themselves simple algebras and superalgebras,
and describe (super)traces on them and on their queerifications.

4.4 (Super)Trace on the (Super)Algebra of Pseudo-Differential Operators

4.4.1 N = 0

Recall that the associative algebra� of pseudo-differential operators of integer order is
F((D−1)), where D := d

dx and F is the algebra of functions in x , with multiplication
given for any integer n by the Leibniz rule

Dn f :=
∑
k≥0

(
n

k

)
Dk( f )Dn−k, where

(
n

k

)

:= n(n − 1) . . . (n − k + 1)

k! , for any f ∈ F .

Adler defined a trace on the algebra� of pseudo-differential operators, see [1] andvery
reader-friendly reviews [16, 20], as the composition of the residue and the indefinite
integral

tr

⎛
⎝∑

k≤n

fk D
k

⎞
⎠ =

∫
f−1dx, where fk ∈ F .

This trace (it vanishes on the commutators even before the integral is taken, just residue
suffices, see [20]) takes values in F . By Theorem 3.1, there are no even supertraces
on q�, but there are ≥ 1 odd supertraces; we conjecture there is just one odd
supertrace.

4.4.2 N = 1

On the superalgebra �1 := F((D−1)) of N = 1-extended pseudo-differential oper-
ators, where D := ∂

∂ξ
+ ξ ∂

∂x and F is the algebra of functions in the even x and
odd ξ , Manin and Radul defined super residue, super binomial coefficients and an
even supertrace, see [17]. By Theorem 3.1, there are no even supertraces on q�1,
but there are ≥ 1 odd supertraces; we conjecture there is just one odd supertrace.
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5 An Application of Traces: Integrals in Involution

Let A be an associative (super)algebra, g := AL or AS , tr a (super)trace on A, and b
the corresponding invariant symmetric bilinear form (briefly: IS form)

b(X ,Y ) := tr(XY ) for any X ,Y ∈ A.

Let, moreover, b be non-degenerate, briefly: NIS (for examples, see [3, 12]). Since the
spaces of g and A coincide, we can (and will) consider b as a form on g.

Let tr, and hence b, be even. Let L := L(t) ∈ g be a point on the curve depend-
ing on parameter t interpreted as time, P ∈ g a fixed element, called/interpreted as
a Hamiltonian. Then, for the equation (P and L are in honor of Peter Lax)

L̇ = [L, P], where L, P ∈ g and dot signifies the derivative with respect to time t,

(7)

the functions L �→ tr(Lk) on g, identified with g∗ thanks to the NIS b, are integrals in
involution, i.e., they commute with the Hamiltonian P and each other with respect to
the Poisson bracket {−,−} defined on the space F(g∗) of functions on g∗ as follows,
see, e.g., [1]. We identify g with the space of linear functions on g∗; for any functions
f , g ∈ F(g∗), set

{ f , g}(X) := X([d f (X), dg(X)]) for any X ∈ g∗. (8)

In the super setting, a more subtle version of (7) is more adequate: it involves a
1|1-dimensional Time with even coordinate t and odd one τ , see [22]:

(∂τ + τ∂t )L = [L, H ], where L, H ∈ A. (9)

Clearly, (∂τ + τ∂t )
2 = ∂t and setting P = 1

2 [H , H ] we get Eq. (7). The functions
L �→ tr(Lk) are integrals in involution for Eq. (9) as well.

It seems, nobody considered yet the Euler equations or Lax pairs (7) related with
superalgebras A on which there is an odd trace qtr, and hence an odd b. If b is odd
and non-degenerate, then g � �g∗, and an antibracket, rather than a Poisson bracket,
is defined on the space �F(g∗) of functions on g∗. The functions L �→ qtr(Lk)

are integrals in involution, i.e., they commute with the Hamiltonian and each other
(themselves including) with respect to the antibracket.

On 2n|k-dimensional superspace on which the Poisson bracket is defined (or n|n-
dimensional superspace on which the antibracket bracket is defined), let for the
dynamical system (7), there be n first integrals in involution. Then, a theorem of
Shander guarantees complete integrability of the system whatever k < ∞ is, see [23].

The traces on (super)algebras A considered in Sect. 4.4 determine what researchers
conceded to call “complete integrability" in the case of infinite-dimensional Hamil-
tonian system (since there are infinitely many of these traces, “this infinity is a half
of the infinite dimension”). Examples: (1) the KdV equations for the case where L is
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the Schrödinger operator; (2) (N = 1)-superextended KdV, see Sect. 4.4.2, where L
is an (N = 1)-superextension of the Schrödinger operator.
Open problem For any simple associative algebra A considered in this note, give
explicit examples of integrable systems related with Q(A).

6 Supertrace onWn

Although the statement of Lemma 6.1 is known, we find its proof due to Lebedev is
very interesting and worth publishing.

6.1 Two General Facts [21]

1. If there is no (super)trace on an associative (super)algebra A, then there is no
(super)trace on any product A ⊗ B for any associative (super)algebra B with
unit: if [a1, a2] = a, then [a1 ⊗ 1, a2 ⊗ b] = a ⊗ b for any a1, a2 ∈ A and
b ∈ B, i.e., if any element of A can be represented as a linear combination of
(super)commutators, then the same is true for any element of A ⊗ B.

2. Let tri be a (super)trace on the associative (super)algebra Ai for i = 1, 2. Then,

tr(a1 ⊗ a2) := (tr1 a1)(tr2 a2) for any ai ∈ Ai

is a (super)trace on A1 ⊗ A2.

6.1 Lemma Consider Wn as a superalgebra with p(xi ) = p(∂xi ) = 1̄.
Then, on Wn, there is an even supertrace.

Observe that if we consider Wn as an algebra, not a superalgebra, no analog of
Lemma 6.1 takes place since the associative algebra Wn is simple; on the other hand,
the center (constants) is given by a non-trivial cocycle on the simple Lie algebra
constructed via Montgomery’s theorem ( [18, Th.3.8]). The proof below demonstrates
existence of the supertrace; its uniqueness (up to a non-zero factor) should be proved
separately. For the proof of uniqueness, see [18, 26].

Proof (A. Lebedev) Actually, Wn = K1 ⊕ [Wn,Wn], where [Wn,Wn] is the super-
commutant.

Let n = 1 and D := d
dx . Introduce the weight function wht: let wht(x) := 1, so

wht(D) := −1. On Wn , define the following linear function T :

T (P) :=
{(

P( 1
x+1 )

)
|x=1 if wht(P) = 0,

0 if wht(P) �= 0.

Let us prove that T is a supertrace on Wn , i.e.,

T (PQ) = (−1)p(P)p(Q)T (QP).
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Clearly, it suffices to prove this for the case where P and Q are monomials whose
weights are opposite.

Case 1: P = xn+1Dn and Q = D. Then,

T (PQ) = (xn+1(−1)n+1 (n+1)!
(x+1)n+2 )|x=1 = −(− 1

2 )
n+2(n + 1)!

T (QP) = (D(xn+1(−1)n n!
(x+1)n+1 )|x=1

= ((−1)n (n+1)! xn
(x+1)n+1 − (−1)n (n+1)! xn+1

(x+1)n+2 )|x=1 = (− 1
2 )

n+2(n + 1)!

This implies the answer for the case where Q = D and any P of weight 1, because
any such P can be represented as a linear combination of operators of the form xn+1Dn .

Case 2: wht(P) = −1 and Q = x . Then,

T (QP) =
(
x P

(
1

x+1

))
|x=1 =

(
P

(
1

x+1

))
|x=1,

T (PQ) =
(
P

(
x

x+1

))
|x=1 =

(
P

(
1 − 1

x+1

))
|x=1 = −

(
P

(
1

x+1

))
|x=1,

since P(1) = 0 because wht(P) < 0.
This implies the general case where P and Q are monomials of opposite weights,

because we can transplant x and D, one by one, from the end of PQ to the begin-
ning until we get QP , and each transplantation changes the sign by the opposite; by
(−1)deg(Q) = (−1)p(P)p(Q) altogether.

Since T (1) = 1
2 , it follows that 1 cannot be represented as a linear combination of

supercommutators.
For n > 1, recall that Wn � Wn−1 ⊗ W1 and apply general fact 2), see Sect. 6.1. 	


Comment: how to guess the form of T (A. Lebedev). Let P be a differential operator
of weight 0. In the basis 1, x , x2, …, consider P as a linear operator on the space of
polynomials and consider the matrix of P . Naively, ignoring possible divergence, the
supertrace of this matrix is equal to

∞∑
n=0

(−1)n(the coefficient of xn in Pxn).

Since wht(P) = 0, then Pxn is equal to the above-mentioned coefficient of xn . In
other words, the coefficient is equal to the value of Pxn at x = 1. Hence, the supertrace
is equal to

∑
n

(−1)n Pxn |x=1 = P(1 − x + x2 − x3 + · · · )|x=1 =
(
P

(
1

1 + x

))
|x=1.
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