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Abstract. In this paper, normality of a family of meromorphic functions is deduced
from the normality of a given family. Precisely, we have proved: Let F and G be two
families of meromorphic functions on a domain D, and a, b, c be three finite complex
numbers such that a ̸= 0 and b ̸= c. Suppose that G is normal in D such that no sequence
in G converges locally uniformly to infinity in D. If n ≥ 3 and for each function f ∈ F ,
there exists g ∈ G such that f

′ − afn and g
′ − agn partially share the values b and c,

then F is normal in D. Further, examples are given to establish the sharpness of the
result.

1. Introduction and main results

Let D be a domain in the complex plane C. A family F of meromorphic functions on
D is said to be normal if from every sequence {fn} in F we can extract a subsequence
{fnk

} which converges locally uniformly to f in D with respect to the spherical metric,
where f is either a meromorphic function or identically equal to infinity in D. A family
F is said to be normal at z0 ∈ D if it is normal in some neighborhood of z0; thus F is
normal in D if and only if it is normal at each point z ∈ D. (see [14]).

Let f and g be two meromorphic functions in D and let a ∈ C. We shall denote by
E(f, a) the set of zeros of f − a (ignoring multiplicities). We say that f and g share the
value a if E(f, a) = E(g, a). Further, if E(f, a) ⊂ E(g, a), we say that f and g share the
value a partially (see [18]).
According to Bloch’s principle [14] any condition which reduces a meromorphic function

in C to a constant is likely to force a family of meromorphic functions in a domain D to
be normal. Although this principle as well as its converse do not hold in general (see,
for example [2, 13]) still it serves as a guiding principle for obtaining normality criteria
corresponding to Picard type theorems and vice-versa (see [1]).

In 1959, Hayman [5] proved that if f is a meromorphic function in the complex plane,
a ∈ C \ {0} and the differential polynomial f

′ − afn, n ≥ 5, does not assume a finite
complex value in C, then f is constant. This result is not true for n = 3, 4 as shown
by Mues [10]. In view of Bloch’s principle, Hayman [6] in 1967 conjectured that there
exists a normality criterion corresponding to this Picard-type theorem. Over the next few
decades, the following normality criterion was established thereby proving the Hayman’s
conjecture.
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Theorem 1.1. Let F be a family of meromorphic (holomorphic) functions in a domain
D, n ∈ N and a, b be two finite complex numbers such that n ≥ 3 (n ≥ 2) and a ̸= 0. If
for each f ∈ F , f

′ − afn ̸= b, then F is normal in D.

The proof of Theorem 1.1 for meromorphic functions is due to S. Li [8], X. Li [9] and
Langley [7] for n ≥ 5, Pang [11] for n = 4, Chen and Fang [3] and Zalcman [17] for n = 3
independently and the proof of Theorem 1.1 for holomorphic functions is due to Drasin
[4] for n ≥ 3 and Ye [16] for n = 2.

In 2008, Zhang [19] considered the idea of shared values and proved the following.

Theorem 1.2. Let F be a family of meromorphic (holomorphic) functions in D, n ∈ N
and a, b be two finite complex numbers such that n ≥ 4 (n ≥ 2) and a ̸= 0. If for each
pair of functions f and g in F , f

′ − afn and g
′ − agn share the value b, then F is normal

in D.

In this paper, we consider the related problems concerning two families of meromorphic
functions and prove the following theorem:

Theorem 1.3. Let F and G be two families of holomorphic functions on a domain D,
and a, b, c be three complex numbers such that a ̸= 0 and b ̸= c. Suppose that G is normal
in D such that no sequence in G converges locally uniformly to infinity in D. If n ≥ 2
and for each function f ∈ F , there exists g ∈ G such that f

′ − afn and g
′ − agn partially

share the values b and c, then F is normal in D.

In the following example, we show that the condition ‘partial sharing of two values b
and c’ in Theorem 1.3 can not be reduced to one.

Example 1.4. Consider the two families F := {fj(z) = ejz : j ∈ N} and G := {1} of
holomorphic functions on D. Note that g

′
j − g2j ≡ −1. Therefore, f

′
j − f 2

j = −1 ⇒
g

′
j − g2j = −1. But F fails to be normal at z = 0.

We demonstrate in the subsequent example that Theorem 1.3 fails to be true when
n = 1. Therefore, the condition n = 2 is the best possible for Theorem 1.3.

Example 1.5. Consider the two families F := {fj(z) = jz : j ∈ N} and G := {−1} of
holomorphic functions on D. Then, clearly, f

′
j(z) − fj(z) = j(1 − z) ̸= 0, and for each

fj ∈ F , there exists gj ∈ G such that f
′
j(z)− fj(z) = 1 ⇒ g

′
j(z)− gj(z) = 1. But F fails

to be normal at z = 0.

The following example illustrates that Theorem 1.3 is not valid for the family of mero-
morphic functions when n = 2.

Example 1.6. Consider the two families

F :=

{
fj(z) =

jz

1 + jz2
: j ∈ N

}
and

G := {1}
of meromorphic functions on D. Take a = −1. Then, clearly, f

′
j(z)−af 2

j (z) =
j

(1+jz2)2
̸= 0

and for each fj ∈ F , there exists gj ∈ G such that f
′
j(z)−af 2

j (z) = 1 ⇒ g
′
j(z)−ag2j (z) = 1.

But F is not normal at z = 0 since fj(0) = 0 and for z ̸= 0, fj(z) → 1/z as n → ∞.
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However, Theorem 1.3 can be extended to families of meromorphic functions provided
that n ≥ 3.

Theorem 1.7. Let F and G be two families of meromorphic functions on a domain D,
and a, b, c be three finite complex numbers such that a ̸= 0 and b ̸= c. Suppose that G is
normal in D such that no sequence in G converges locally uniformly to infinity in D. If
n ≥ 3 and for each function f ∈ F , there exists g ∈ G such that f

′ − afn and g
′ − agn

partially share the values b and c, then F is normal in D.

In the following example, we show that the condition ‘partial sharing of two values b
and c’ in Theorem 1.7 can not be reduced to one.

Example 1.8. Consider the two families

F :=

{
fj(z) =

1

jz
: j ∈ N

}
and

G :=

{
1

z + 1
j2
− 1

: j ∈ N

}
of meromorphic functions on D. Then for each fj ∈ F there exists gj ∈ G such that
f

′
j − f 3

j = 0 ⇒ g
′
j − g3j = 0. Also, gj(z) → g(z) = 1

z−1
̸≡ ∞. But F fails to be normal at

z = 0.

For n = 2, we have the following weak version of the Theorem 1.7.

Theorem 1.9. Let F and G be two families of meromorphic functions on a domain D
such that each f ∈ F has neither simple zeros nor simple poles. Let a, b and c be three
finite complex numbers such that a ̸= 0 and b ̸= c. Suppose that G is normal in D such
that no sequence in G converges locally uniformly to infinity in D. If for each function
f ∈ F , there exists g ∈ G such that f

′ − af 2 and g
′ − ag2 partially share the values b and

c, then F is normal in D.

Note that Example 1.6 also shows that the condition ‘each f ∈ F has neither simple
zeros nor simple poles’ in Theorem 1.9 can not be omitted.

2. Lemmas and proof of the results

In order to prove our results, we need the following lemmas.

Lemma 2.1. [12] Let F be a family of meromorphic functions on the unit disk D such
that all the zeros of f ∈ F are of multiplicity at least p and all the poles of f ∈ F are
of multiplicity at least q. Suppose that F is not normal at z0 ∈ D. Then, for every
α ∈ (−p, q), there exist

(a) points zn in D : zn → z0;
(b) functions fn ∈ F ;
(c) positive real numbers ρn : ρn → 0

such that the re-scaled sequence {gn(ζ) = ραnfn(zn + ρnζ)} converges spherically locally
uniformly on C to a non-constant meromorphic function g on C of finite order.
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Lemma 2.2. [3] Let f be a meromorphic function in C, and let n be a positive integer.
If fnf

′
does not assume a non-zero finite complex number in C, then f is constant.

Lemma 2.3. [15] Let f be a meromorphic function in C and b be a non-zero complex
number. If f has neither simple zero nor simple pole and f

′
(z) ̸= b, then f is constant.

Proof of the Theorem 1.3 We may consider D to be an open unit disk D. Suppose
that the family F is not normal at z0 ∈ D. Then by Lemma 2.1, there exist points zj ∈ D
with zj → z0, a sequence of positive numbers ρj → 0 and a sequence of functions fj ∈ F
such that

Fj(ζ) = ρ
1

n−1

j fj(zj + ρjζ) → F (ζ) (2.1)

locally uniformly on C, where F is a non-constant entire function of finite order.

From (2.1), we have

ρ
n

n−1

j {(f ′

j − afn
j )(zj + ρjζ)− b} = (F

′

j − aF n
j )(ζ)− ρ

n
n−1

j b → F
′
(ζ)− aF n(ζ) (2.2)

and

ρ
n

n−1

j {(f ′

j − afn
j )(zj + ρjζ)− c} = (F

′

j − aF n
j )(ζ)− ρ

n
n−1

j c → F
′
(ζ)− aF n(ζ) (2.3)

locally uniformly on C.
For each fj ∈ F , there exists gj ∈ G such that f

′
j − afn

j and g
′
j − agnj share the values

b and c partially in D. Since G is normal, there exists a subsequence in {gj}, again
denoted by {gj}, that converges uniformly to a holomorphic function g(z) ̸≡ ∞ in some
neighborhood of z0.

Suppose (F
′ −aF n) ̸≡ 0 otherwise −1

n−1
1

Fn−1 ≡ aζ+d, for some d ∈ C, which contradicts

to the fact that F is an entire function and n ≥ 2. Further, suppose that (F
′−aF n)(ζ) ̸= 0,

ζ ∈ C. Then F
′

Fn ̸= a. By setting F = 1/ϕ, we have ϕn−2ϕ
′ ̸= −a. When n ≥ 3, ϕ is

constant by Lemma 2.2 and when n = 2, ϕ is again constant by Hayman’s alternative
since ϕ ̸= 0 and ϕ

′ ̸= −a. In both cases, ϕ is constant. This implies that F is constant, a
contradiction. Thus (F

′ − aF n) has at least one zero.
Now we have two cases:
Case-I. (g

′ − agn)(z0) ̸= b.
Suppose that (F

′ − aF n)(ζ0) = 0, for some ζ0 ∈ C. From (2.2), by Hurwitz’s theorem,
there exists a sequence {ζj} with ζj → ζ0 such that for sufficiently large j

(F
′

j − aF n
j )(ζj)− ρ

n
n−1

j b = 0,

and thus

(f
′

j − afn
j )(zj + ρjζj) = b.

By hypothesis, we have (g
′
j−agnj )(zj+ρjζj) = b and so (g

′−agn)(z0) = b, a contradiction.

Case-II. (g
′ − agn)(z0) = b.

By using (2.3) instead of (2.2) in Case-I, we obtain (g
′ − agn)(z0) = c (̸= b) which is

not true. This completes the proof. 2
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Proof of the Theorem 1.7 We may consider D to be an open unit disk D. Suppose
that the family F is not normal at z0 ∈ D. Then there exists a sequence {fn} ⊂ F which
has no locally convergent subsequence at z0. Thus, by Lemma 2.1, there exist points
zj ∈ D with zj → z0, a sequence of positive numbers ρj → 0, and a sequence of functions
in {fj} again denoted by {fj} such that

Fj(ζ) = ρ
1

n−1

j fj(zj + ρjζ) → F (ζ) (2.4)

locally uniformly on C with respect to spherical metric, where F is a non-constant mero-
morphic function on C of finite order.

From (2.4), we have

(F
′

j − aF n
j )(ζ)− ρ

n
n−1

j b = ρ
n

n−1

j {(f ′

j − afn
j )(zj + ρjζ)− b} → F

′
(ζ)− aF n(ζ) (2.5)

and

(F
′

j − aF n
j )(ζ)− ρ

n
n−1

j c = ρ
n

n−1

j {(f ′

j − afn
j )(zj + ρjζ)− c} → F

′
(ζ)− aF n(ζ) (2.6)

spherically locally uniformly on C except possibly at the poles of F .

For each fj ∈ F , there exists gj ∈ G such that f
′
j − afn

j and g
′
j − agnj partially share

the values b and c in D. Since G is normal, there exists a subsequence in {gj}, again
denoted by {gj}, that converges uniformly to a meromorphic function g(z) ̸≡ ∞ in some
neighborhood of z0.

Claim. (F
′ − aF n)(ζ0) = 0, for some ζ0 ∈ C.

Suppose that (F
′ − aF n)(ζ) ̸= 0. Then F

′

Fn ̸= a. By setting F = 1/ϕ, ϕn−2ϕ
′ ̸= −a. By

Lemma 2.2, ϕ and so F is constant, a contradiction. This proves the claim.

Now we have three cases:

Case-I. (g
′ − agn)(z0) ̸= b,∞.

By Claim, (F
′ − aF n)(ζ0) = 0, for some ζ0 ∈ C. Since (F

′ − aF n) ̸≡ 0, otherwise
−1
n−1

1
Fn−1 ≡ aζ + d, for some d ∈ C, which contradicts to the fact that F is a non-constant

meromorphic function and n ≥ 3, by (2.5), there exists a sequence {ζj} with ζj → ζ0
such that for sufficiently large j, (f

′
j − afn

j )(zj + ρjζj) = b. By assumption, we have

(g
′
j − agnj )(zj + ρjζj) = b and so (g

′ − agn)(z0) = b, a contradiction.

Case-II. (g
′ − agn)(z0) = b.

Using (2.6) instead of (2.5) in Case-I, we obtain (g
′ − agn)(z0) = c ( ̸= b), which is not

true.

Case-III. (g
′ − agn)(z0) = ∞.

Then, clearly, g(z0) = ∞. Suppose that z0 is a pole of g with multiplicity k ≥ 1.
Then, for sufficiently large j, gj has exactly l ≤ k distinct poles z1j , . . . , z

l
j in D(z0, r) with

multiplicities α1, . . . , αl respectively such that zij → z0 (i = 1, . . . , l) and
∑l

i=1 αi = k.
Renumbering if possible, we may assume that the number l and multiplicities αi, i =
1, . . . , l are independent of j. Now set

Hj(z) := gj(z)
l∏

i=1

(z − zij)
αi .
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Then the functions Hn are holomorphic in D(z0, r) and Hn → H on D(z0, r/2) \ {z0},
where H(z) = g(z)(z − z0)

k is holomorphic on D(z0, r). Note that H(z0) ̸= 0,∞. Hence
by maximum principle, Hn → H on D(z0, r/2).

We have

g
′

j(z) =

(
Hj(z)

l∏
i=1

(z − zij)
−αi

)′

= H
′

j(z)
l∏

i=1

(z − zij)
−αi −Hj(z)

l∑
i=1

αi(z − zij)
−αi−1

∏
s ̸=i

(z − zsj )
−αs

=
l∏

i=1

(z − zij)
−αi−1

(
H

′

j

l∏
i=1

(z − zij)−Hj(z)
l∑

i=1

αi

∏
s ̸=i

(z − zsj )

)
. (2.7)

Then

g
′

j(z)− agnj (z)− b = Kj(z)
l∏

i=1

(z − zij)
−αi−1, (2.8)

where

Kj(z) = H
′

j

l∏
i=1

(z − zij)−Hj(z)
l∑

i=1

αi

∏
s ̸=i

(z − zsj )

− aHn
j (z)

l∏
i=1

(z − zij)
−αi(n−1)+1 − b

l∏
i=1

(z − zij)
αi+1. (2.9)

Since H(z0) ̸= 0,∞, we have

Kj(z) → H
′
(z)(z − z0)

l −H(z)k(z − z0)
l−1 − aHn(z)

(z − z0)k(n−1)−l
− b(z − z0)

k+l

=
1

(z − z0)k(n−1)−l

{
H

′
(z)(z − z0)

k(n−1) − kH(z)(z − z0)
k(n−1)−1 − aHn(z)− b(z − z0)

nk
}

(2.10)

and(
H

′
(z)(z − z0)

k(n−1) − kH(z)(z − z0)
k(n−1)−1 − aHn(z)− b(z − z0)

nk
)
z=z0

= −aHn(z0) ̸= 0.

(2.11)

Therefore, Kj(z) and so g
′
j(z)− agnj (z)− b has no zeros in some neighborhood of z0. By

assumption, we find that f
′
j(z)− afn

j (z)− b has no zero in some neighborhood of z0. By
Theorem 1.1, the sequence {fj} is normal at z0, a contradiction. 2
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Proof of the Theorem 1.9 Following the proof of Theorem 1.7 , we only need to
prove that F

′ − aF 2 ̸≡ 0 and F
′ − aF 2 has at least one zero. Suppose that F

′ − aF 2 ≡ 0.
Then ( 1

F
)
′ ≡ a which implies that 1

F
≡ aζ + d, for some d ∈ C, which contradicts to the

fact that F has no simple pole. Next suppose that F
′ − aF 2 ̸= 0. Then F

′

F 2 ̸= a. By

setting F = 1/ϕ, ϕ
′ ̸= −a. By Lemma 2.3, ϕ and so F is constant, a contradiction. 2

3. Disclosure statement

The author declares that there is no conflict of interest.

4. Acknowledgement

The author is grateful to the anonymous reviewer for his/her careful reading and valu-
able comments which have improved the clarity and readability of the paper.

References

1. W. Bergweiler, Bloch’s principle, Comput. Methods Funct. Theory, 6(1) (2006), 77-108.
2. K. S. Charak and J. Rieppo, Two normality criteria and the converse of the Bloch principle, J. Math.

Anal. Appl., 353(1) (2009), 43-48.

3. H. Chen and M. Fang, On the value distribution of fnf
′
, Sci. China Ser. A, 38 (1995), 789-798.

4. D. Drasin, Normal families and Nevanlinna theory, Acta Math., 122 (1969), 231-263.
5. W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. (1959),

9-42.
6. W. K. Hayman, Research Problems in Function Theory, Athlone Press of Univ. of London, London

(1967).
7. J. Langley, On normal families and a result of Drasin, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984),

385-393.
8. S. Y. Li, On normality criterion of a class of the functions, J. Fujian Normal Univ., 2 (1984), 156-158.
9. X. J. Li, Proof of Hayman’s conjecture on normal families, Sci. China Ser. A, 28 (1985), 596-603.
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