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Abstract
For a real algebraic link in RP

3, we prove that its encomplexed writhe (an invariant
introduced by Viro) is maximal for a given degree and genus if and only if its self-
linking number with respect to the framing by the osculating planes is maximal for a
given degree.

1 Introduction and Statement of theMain Result

By real algebraic curve in RP
3 we mean a complex curve in CP

3 invariant under
complex conjugation. We use the same notation for a real curve and the set of its
complex points and, if it is denoted by A, then RA stands for the set of real points
which is called a real algebraic link if it is non-empty and A is smooth. A real algebraic
link is calledmaximally writhed orMWλ-link if |wλ(L)| [a variation ofViro’s invariant
(Viro 2002)] attains the maximal possible value (d − 1)(d − 2)/2− g where d and g
is the degree and genus of A respectively. We refer to Mikhalkin and Orevkov (2019)
for a precise definition of wλ.

In Mikhalkin and Orevkov (2019, Thm. 2) we proved that several topological and
geometric invariants are maximized on MWλ-links. In this paper we add one more
item to this collection: we show that the self-linking number of L with respect to the
osculating framing attains its maximal value (for links of a given degree) if and only if
L is an MWλ-link. The proof is very similar to that of the main theorem of Mikhalkin
and Orevkov (2019). Let us give precise definitions and statements.
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Let L be an oriented link in a rational homology 3-sphere. A framing of L is a
continuous 1-dimensional subbundle of the normal bundle of L or, equivalently, a
continuous field (defined on L) of 2-dimensional planes tangent to L . Given a framed
oriented link L , its self-linking number is defined as follows. Let F be an embedded
annulus or Möbius band with core L , tangent to the framing. Then the self-linking
number is 1

2 lk(L, ∂F) where the boundary ∂F of F is oriented so that [∂F] = 2[L]
in H1(F).

For an oriented link L in RP3, the osculating framing is the framing defined by the
field of osculating planes. We denote the self-linking number of L with respect to this
framing by osc(L). If L is a non-oriented link and O an orientation of L , we use the
notation osc(L, O) which is self-explained.

Recall that a smooth irreducible real algebraic curve A is called an M-curve if RA
has g + 1 connected components where g is the genus of A. In this case RA divides
A into two halves. The boundary orientation on RA induced by any of these halves is
called a complex orientation. The main result of the paper is the following.

Theorem 1 Let L = RA be an irreducible real algebraic link of degree d ≥ 3 and O
be an orientation of L. Then:

(a) | osc(L, O)| ≤ d(d − 2)/2.
(b) | osc(L, O)| = d(d − 2)/2 if and only if L is an MWλ-link [by Mikhalkin and

Orevkov (2019, Thm. 2), in this case A is an M-curve of genus at most d − 3]
and O is its complex orientation.

Remark In the space of real algebraic links of a given degree and genus we can
distinguish three kinds of “walls”. The walls of the first kind correspond to curves
with a double point with real local branches.When crossing suchwalls, both invariants
wλ(L) and osc(L) are changed by ±2. The walls of the second kind correspond to
curves with a real double point with complex conjugate local branches.When crossing
suchwalls,wλ(L) does change but osc(L) does not. The third kind of wall corresponds
to curves which have a local branch parametrized by t �→ (t, t3 + o(t3), t4 + o(t4))
in some affine chart. When crossing such a wall, wλ(L) does not change but osc(L)

does. So, in general, the invariants wλ(L) and osc(L) are more or less independent.
Nevertheless, Theorem 1 implies that the chamber where they have maximal value is
bounded only by the walls of the first kind—common for the both invariants.

2 AVariant of Klein’s Formula for the Number of Real Inflection Points

LetC ∈ P
2 be a nodal real irreducible algebraic curve. Itmayhave three types of nodes:

real nodes with real local branches of C , real nodes with imaginary local branches of
C , or non-real nodes (coming in conjugate pairs). Denote the number of nodes of each
type with h, e, and i respectively.

A real flex is a local real branch of C with the order of tangency ω to its tangent
line greater than 1 (i.e. the local intersection number is ω + 1 ≥ 3). The multiplicity
of a real flex is ω − 1. In an affine chart of P2 a flex corresponds to a critical point of
the Gauss map. It is easy to see that the multiplicity of a flex equals the multiplicity
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of the corresponding critical point. Thus a multiple flex can be thought of as ω − 1
ordinary flexes collected at the same point. We denote with F the number of flexes
counted with multiplicities.

A solitary real bitangent is a real line L ⊂ P
2 which is tangent to C at a non-real

point (and thus also at the complex conjugate point). The multiplicity of L is the sum
of the orders ω over all local branches of C\RP2 tangent to L . We denote with B the
number of solitary real bitangents counted with multiplicities. Clearly, B is an even
number.

Lemma 2.1 (Klein’s formula Klein (1876) for nodal curves). For a nodal real irre-
ducible curve of degree d in P

2 we have

F + B = d(d − 2) − 2h − 2i .

Proof As in Viro (1988), we use additivity of the Euler characteristic χ to derive
Klein’s formula. Let ν : C̃ → C be the normalization. The space of all real lines in
P
2 is homeomorphic to RP2, and thus has the Euler characteristic 1. For a real line L

the set ν−1(L) consists of d distinct points unless L is tangent to C . Each tangency
decreases the size of this set by ω.

Consider the space X = {(p, L) | p ∈ C, L � p}, where L ⊂ RP
2 is a real line.

From the observation above we deduce

χ(X) + B + F + χ(RC̃) = d.

Note that χ(RC̃) = 0 and χ(X) = χ(ν−1(C\RC)) = χ(C̃) − 2e, as each point of
RC lifts to a circle in X while χ(S1) = 0. The lemma now follows from the adjunction
formula χ(C̃) = 3d − d2 + 2e + 2h + 2i . 	


Remark 2.2 Lemma 2.1 can be also obtained as an almost immediate consequence
from Schuh’s generalization (Schuh 1903–1904) of another Klein’s formula

d −
∑

x∈C∩RP2
(m(x) − r(x)) = d∨ −

∑

x∈C∨∩RP2∨
(m∨(x) − r∨(x))

[see Viro (1988, Thm. 6.D) for a proof via Euler characteristics] combined with the
class formula d∨ = d(d − 1) − 2e − 2h − 2i . Here C∨ is the dual curve, d∨ is its
degree, m(x) and r(x) (resp. m∨(x) and r∨(x)) are the multiplicity and the number
of real local branches of C (resp. of C∨) at x .

3 Proof of theMain Theorem

Let L = RA be a smooth irreducible real algebraic link of degree d endowed with
an orientation O . Let U be the set of points p in RP3\L such that the projection of L
from p is a nodal curve.
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Fix a point p ∈ U . Let Cp = πp(A) where πp : P
3\{p} → P

2 is the linear
projection from p. Consider the field of tangent planes to L passing through p, (so-
called blackboard framing). Let bp(L) be the self-linking number with respect to it.
We have

bp(L) =
∑

q

s(q), thus |bp(L)| ≤ h(Cp) (1)

where q runs over the hyperbolic (i. e., with real local branches) double points of Cp,
h(Cp) is the number of them, and s(q) is the sign of the crossing at q in the sense
of knot diagrams. The difference | osc(L) − bp(L)| is bounded by one half of the
number of those points where the osculating plane passes through p (each such point
contributes ±1/2 or 0 to osc(L)). This is the number of real flexes of Cp which we
denote by f (Cp). We have f (Cp) ≤ d(d − 2) − 2h(Cp) by Lemma 2.1. Thus

| osc(L)| ≤ | osc(L) − bp(L)| + |bp(L)| ≤ 1
2 f (Cp) + h(Cp) ≤ 1

2d(d − 2) (2)

which is Part (a) of Theorem 1.
Now suppose that | osc(L)| = d(d − 2)/2. Then for any choice of p ∈ U we have

the equality sign everywhere in (2), in particular, we have the equality sign in (1), i.e.,
all crossings are of the same sign, say, positive:

s(q) = +1 for any hyperbolic crossing q ofCp. (3)

By Lemma 2.1, the equality sign in the last inequality of (2) implies that all flexes
of Cp are ordinary for any choice of p ∈ U . This implies that L has non-zero torsion
at each point. Indeed, otherwise there exists a real plane P which has tangency with
L of order greater than 3. It is easy to check that U has non-empty intersection with
any plane, thus we can choose a point p ∈ U ∩ P , and then Cp would have a k-flex
with k > 3. Moreover, the positivity of all crossings for any generic projection implies
that the torsion is everywhere positive [cf. the proof of Mikhalkin and Orevkov (2018,
Prop. 1)].

Similarly to Mikhalkin and Orevkov (2018, Lem. 7) and Mikhalkin and Orevkov
(2019, Lem. 4.10), we derive from these conditions that the real tangent surface T L
(the union of all real lines in RP3 tangent to L) is a union of (non-smooth) embedded
tori. Indeed, suppose that two tangent lines cross. Let P be the plane passing through
them (any plane passing through them if they coincide) and let � be the line passing
through the two tangency points. Let p be a generic real point on �. Then Cp has
two real local branches at the same point such that each of them is either singular or
tangent to the line πp(P). Since L has non-zero torsion, all singular branches of Cp

are ordinary cusps. Then we can find a generic point close to p such that the projection
from it does not satisfy (3).

Let K1, . . . , Kn be the connected components of L , and let T Ki be the connected
component of T L that contains Ki (the union of real lines tangent to Ki ). The same
arguments as in Mikhalkin and Orevkov (2019, Lemma 4.12) show that, for some
positive integers a1, . . . , an , there exist real lines �i , �′

i , i = 1, . . . , n, such that (for
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r..

Fig. 1 A cuspidal edge of the tangent surface

suitable choice of the orientations) the linking numbers of their real loci li = R�i and
l ′i = R�′

i with the components of L are:

2 lk(li , Ki ) = ai + 2, 2 lk(l ′i , Ki ) = ai . (4)

Moreover, each T Ki splitsRP3 into two solid toriUi and Vi such that li ⊂ Ui , l ′i ⊂ Vi ,
the homology classes [li ]U and [l ′i ]V generate H1(Ui ) and H1(Vi ) respectively, and
we have [Ki ]U = ai [li ]U and [Ki ]V = (ai + 2)[l ′i ]V . It follows that

2 osc(Ki ) = ai (ai + 2) (5)

(the linking number of Ki with its small shift disjoint from T L). Indeed, if Ki is
parametrized by t �→ r(t) and the torsion is non-zero, then T Ki has a cuspidal edge
along Ki and a small shift of Ki in the direction of the vector field r̈ is disjoint from
T Ki (see Fig. 1). A priori this argument proves (5) up to sign only. However the
positivity of the torsion implies that osc(Ki ) is positive.

If L is connected (i. e., n = 1), it remains to note that then the condition 2 osc(K1) =
d(d−2) implies (a1+2)a1 = d(d−2), hence a1 = d−2. Thus L satisfies Condition
(v) of Mikhalkin and Orevkov (2019, Thm. 1) which completes the proof that L is an
MW -knot.

If L is not necessarily connected, we argue as follows. By Murasugi’s result Mura-
sugi (1991, Prop. 7.5) (see alsoMikhalkin andOrevkov 2019, Prop. 1.2), the number of
crossings of any projection of Ki is at least (ai +2)(ai −1)/2. Hence, for h = h(Cp),
we have

2h ≥
n∑

i=1

(ai + 2)(ai − 1) +
∑

i �= j

| lk(Ki , K j )|. (6)

On the other hand, if we choose p on a line passing through a pair of complex conjugate
points of A, then Cp has at least one elliptic double point (i. e., a real double point
with complex conjugate local branches), whence by the genus formula we obtain

h ≤ (d − 1)(d − 2)/2 − g − 1 ≤ (d − 1)(d − 2)/2 − n (7)
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(the second inequality in (7) is the Harnack’s bound). Hence

d(d − 2) = 2 osc(L) = 2
n∑

i=1

osc(Ki ) +
∑

i �= j

lk(Ki , K j )

≤
n∑

i=1

ai (ai + 2) + 2h −
n∑

i=1

(ai + 2)(ai − 1) by (5) and (6)

= 2h + 2n +
n∑

i=1

ai ≤ (d − 1)(d − 2) +
n∑

i=1

ai . by (7)

Thus
∑

ai ≥ d − 2 and we conclude that L is an MWλ-link. This fact follows
from Mikhalkin and Orevkov (2019, Prop. 1.1) (which implies that ps(L) = ∑

ai )
combined with Mikhalkin and Orevkov (2019, Thm. 2) (which claims, in particular,
that L is an MWλ-link as soon as ps(L) ≥ d − 2). Here we denote with ps(L) the
plane section number of L . It is a topological invariant of a link in RP

3 defined in
Mikhalkin and Orevkov (2019) as the minimal number of intersection points with a
generic plane where the minimum is taken over the isotopy class of the link.

Let us show that O is a complex orientation of L . It is easy to see that the plane
section number is at most d−2 for any algebraic link of degree d. Indeed, it is enough
to consider a small shift of a non-osculating tangent plane in a suitable direction.
Thus the inequality in ps(L) = ∑

ai ≥ d − 2 is in fact an equality. It follows that
the equality is attained in all the inequalities used in the proof, in particular, we have
| lk(Ki , K j )| = lk(Ki , K j ) for i �= j . Since all components of anMWλ-link endowed
with a complex orientation are positively linked (see Mikhalkin and Orevkov 2019),
we are done. This completes the proof of the “only if ” part of (b).

To prove the “if ” part of (b), we notice that by Mikhalkin and Orevkov (2019,
Thm. 3 and §4.4), any MWλ-link L of degree d and genus g is a union of g + 1 knots
K0 ∪ · · · ∪ Kg and lk(Ki , K j ) = aia j , i �= j , for some positive integers a0, . . . , ag
with a0 + · · · + ag = d − 2. Furthermore, the torsion of L is everywhere positive and
each knot Ki is arranged on its tangent surface T Ki as described above, thus (5) holds
for each i , and we obtain

2 osc(L) =
g∑

i=0

osc(Ki ) +
∑

i �= j

lk(Ki , K j ) =
g∑

i=0

ai (ai + 2) +
∑

i �= j

ai a j

=
( ∑

ai
)2 + 2

∑
ai = (d − 2)2 + 2(d − 2) = d(d − 2).
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