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Abstract
It has been shown by Hawkins and Koss that over any given lattice, the Weierstrass
℘ function does not exhibit cycles of Herman rings. We show that, regardless of the
lattice, any elliptic function of order two cannot have cycles of Herman rings. Through
quasiconformal surgery, we obtain the existence of elliptic functions of order at least
three with an invariant Herman ring. Finally, if an elliptic function has order o ≥ 2,
then we show there can be at most o − 2 invariant Herman rings.
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1 Introduction

Given a transcendental meromorphic function f : C → ̂C with a unique essential
singularity at infinity, we consider the dynamical system determined by its iterates.
The Fatou set of f , denoted by F( f ), is defined as the set of points z ∈ C that have
an open neighborhood U = U (z) where the family of iterates { f n|U } is well defined
and form a normal family. The Julia set, J ( f ) equals the complement of F( f ) with
respect to ̂C. In particular, J ( f ) = ⋃

n≥0 f −n(∞).
If f is an elliptic functionwith respect to a lattice� (that is, ameromorphic function

which is �-periodic), its order, denoted by o f , is defined as the number of poles of
f in a given period parallelogram, counting multiplicity. Furthermore, f takes each
value z ∈ ̂C exactly o f times. Hence, f has no omitted or asymptotic values, and
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its singular set consists of a finite number of critical values. One can conclude that
f neither exhibits wandering nor Baker domains, and the classification of periodic
Fatou components of any elliptic function reduces to (super)attracting, parabolic and
rotation domains (Siegel disks or Herman rings). In general, it is a difficult problem to
determine the existence of Herman rings since, in contrast to other Fatou components,
a Herman ring is not associated with a periodic orbit. On the other hand, each cycle
of Herman rings is closely related to the post-critical set and poles of the function.

In the context of elliptic functions, Hawkins and Koss showed in [8] that over any
given lattice �, the Weierstrass ℘-function has no cycle of Herman rings. The proof
relies on two facts: the set of poles for ℘� coincides with the set of periods and ℘�

is an even function. In the particular case when H is a positively invariant Herman
ring under ℘�, one can assume that the origin lies inside its bounded complementary
component. By showing that H is symmetric with respect to 0 (that is, z ∈ H if and
only if −z ∈ H ) one obtains ℘�(−z) = ℘�(z), a contradiction with the injectivity of
℘�|H .

Non-existence results have been obtained for other elliptic functions (mostly of
even order) over some particular lattices, see [4,10,12,13]. It has been conjectured that
even elliptic functions of any order do not exhibit Herman rings.

Our first result (analogous to Shishikura’s result for rational functions of degree
two) is based on the explicit expression of an elliptic function of order 2 and the
symmetries it exhibits with respect to its poles.

Theorem 1 An elliptic function of order 2 has no cycles of Herman rings.

Although similar ideas as for℘� apply to the case of a double pole, a new geometrical
approach is needed when the elliptic function has two simple poles.

We are also concerned with the existence of Herman rings for elliptic functions.
In [14], Shishikura describes a quasiconformal surgery technique between two ratio-
nal functions, each one with an n-cycle of Siegel disks, to construct a new rational
function with an n-cycle of Herman rings. The extension of this method to transcen-
dental meromorphic functions is found in [5] and more recently in [3]. We adapt these
techniques to perform surgery between an elliptic function f� of order o ≥ 2 with
an invariant Siegel disk, and a rational function W of degree d ≥ 2 with an invariant
Siegel disk, to obtain a quasiregular function g : C → ̂C outside a discrete set of poles
with an invariant annular domain, where it is conjugated to a rigid irrational rotation
(Theorem 5). If ψ : ̂C → ̂C denotes the quasiconformal map that conjugates g to a
transcendental meromorphic function G and �̃ = ψ(�), we show that �̃ is a lattice
(Lemma 6) and furthermore,

Theorem 2 The function G : C → ̂C is a doubly periodic meromorphic function with
respect to the lattice �̃, it has order o+d−1 ≥ 3 and possesses an invariant Herman
ring.

Since an elliptic function is a meromorphic function of finite type, then it must
have a finite number of Herman rings [15, Theorem 1]. In addition, it is known that
a meromorphic function with n poles has at most n invariant Herman rings (see [5,
7]). Taking into account that any elliptic function has at least two poles (counting
multiplicity) on each period parallelogram, and that each invariant Herman ring can
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be turn into a Siegel disk through quasiconformal surgery, we obtain the following
upper bound.

Theorem 3 Let f be an elliptic function of order o f ≥ 2. Then f can have at most
o f − 2 invariant Herman rings.

If f has H1, . . . , Hm invariant Herman rings, let Bi denote the compact comple-
mentary component of C\Hi for each i = 1, . . . ,m. From Theorem 3, one can easily
derive the following result that, in turn, it can be implemented to refine the upper bound
of invariant Herman rings according to the number of poles and their multiplicities.

Corollary 1 If f hasm ≥ 1 invariantHerman rings, then the complement of
⋃m

i=1(Hi∪
Bi ) + � contains the residue classes of (at least) two simple poles or (at least) the
residue class of a multiple pole.

The paper is organized as follows. In Sect. 2, we review some properties of elliptic
functions, their dynamics and introduce some notation. The proof of Theorem 1 is
found in Sect. 3. In Sect. 4, we describe the quasiconformal surgery construction and
provide the proof of Theorem 2. Finally, the proof of Theorem 3 and the implementa-
tion of Corollary 1 to refine the upper bound are discussed in Sect. 5.

2 Preliminaries

In this section,we gather some standard results of elliptic functions and their dynamics.
We refer the reader to the classical expositionofDuVal [6] for a comprehensive account
on elliptic functions and their properties. The dynamics of meromorphic functions can
be consulted in [2]. The works by Hawkins and Koss in [8,9] have established most of
the fundamental results regarding the dynamics of elliptic functions and, in particular,
the dynamics of the Weierstrass ℘ function.

A lattice � ⊂ C is a collection of complex numbers that form a discrete group
with respect to addition. � is said to be trivial, simple or double if � = {0}, � ∼= Z

or � ∼= Z × Z, respectively. Given any nontrivial lattice �, its group representation
can be naturally defined by the group homomorphism

T : � → GL(2, C), T (λ) = Tλ : z 	→ z + λ.

Clearly T (λ1 + λ2) = T (λ1) ◦ T (λ2) for any λ1, λ2 ∈ � and the representation is
faithful. We say that � acts via translations over the complex plane. A residue class
of the action of � in C is defined as

[z] = {w ∈ C | ∃λ ∈ �, Tλ(w) = z}.

From now on, a lattice � will always refer to a double lattice � ∼= Z × Z.
If λ1, λ2 ∈ C are R-linearly independent and satisfy Im(λ2/λ1) > 0, then the

collectionof all entire linear combinations ofλ1 andλ2 determines a lattice. In this case,
we write � = 〈λ1, λ2〉 = {mλ1 + nλ2 | m, n ∈ Z}. An elliptic function f : C → ̂C,
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is a transcendental meromorphic function that is doubly periodic with respect to �.
We write E(�) to denote the field of all elliptic functions with respect to �. Let Q be
a fundamental domain for � and assume no poles lie on its boundary. The order of
an elliptic function f ∈ E(�), denoted o f , is the number of poles of f in the interior
of Q, counting multiplicity. A consequence of Liouville’s theorem is that o f ≥ 2 for
any non-constant elliptic function.

Denote by ℘� the Weierstrass ℘ function which is doubly periodic with respect to
�. Its analytic expression is given by

℘�(z) = 1

z2
+

∑

λ∈�∗

(

1

(z − λ)2
− 1

λ2

)

, (1)

where �∗ = � − {0}. The above expression shows that ℘� is an even meromorphic
function with double poles at the residue class [0] = � and at no other points. Since
(1) converges uniformly on compact sets not containing lattice points, term by term
differentiation gives ℘′

�(z) = −2
∑

λ∈�(z − λ)−3, which is an odd elliptic function
over �. Another useful analytic expression is the power series development of ℘� at
the origin, namely

℘�(z) = 1

z2
+

∞
∑

k=1

(2k + 1)E2k+2(�)z2k,

where E2k(�) = ∑

λ∈�∗ λ−2k is the Eisenstein series of order 2k. This expression,
combined with the power series development of ℘′

� can be used to show the relation

(℘′
�)2 = 4(℘�)3 − g2℘� − g3, (2)

where g2 = g2(�) = 60E4(�) and g3 = g3(�) = 140E6(�). The numbers g2, g3
are called invariants of the lattice since for any k ∈ C

∗, gi (k�) = gi (�) for i = 2, 3.
The cubic polynomial q(x) = 4x3−g2x−g3 has discriminant� = g32 −27g23, which
never vanishes for the invariants of the lattice �. A classical result states that a lattice
can be determined by its invariants.

Theorem 4 If a, b are complex numbers such that a3 − 27b2 �= 0, then there exists a
lattice � with g2(�) = a and g3(�) = b.

Consider � = 〈λ1, λ2〉 and let λ3 := λ1 +λ2. It follows from the condition � �= 0,
that (2) has three distinct roots given by ei := ℘�(λi/2). Using the standard notation
for half-periods, let ωi := λi/2 for i = 1, 2, 3. Hence, the set of critical points of ℘�

are given by the union of the residue classes of the half-periods.

2.1 Dynamics of Elliptic Functions

The Julia and Fatou sets of an elliptic function are invariant under the action of � (see
[9]), that is, J ( f ) = J ( f ) + � and F( f ) = F( f ) + �.
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As stated in Introduction, the singular set of an elliptic function consists only of
a finite number of critical values; thus, they are functions of finite type. Among all
possible periodic Fatou components, we are only concerned in rotation domains. For
0 < r < s < ∞, consider the standard annulus

Ar ,s = {z ∈ C | r < |z| < s}.

Definition 1 An n-periodic Fatou component H ⊂ C is a Herman ring for f if there
exist an irrational angle θ ∈ [0, 1) and a conformal isomorphism ϕ : H → A1,r ,
so that ϕ conjugates f n|H to the action of the rigid rotation z 	→ e2π iθ z over A1,r .
The map ϕ is called linearizing coordinates and θ is the rotation number of f n in H .
The n-periodic component H defines a cycle of Herman rings,H = {H0, . . . , Hn−1},
where Hj := f j (H) for j = 0, . . . , n − 1 and f (Hj ) = Hj+1 mod n .

Similarly, a Siegel disk, � ⊂ C, is an n-periodic Fatou component where f n|�
is conformally conjugate to an irrational rigid rotation over the unit disk under the
linearizing coordinates ϕ : � → D. Observe that for z0 := ϕ−1(0), one has f n(z0) =
z0 and ( f n)′(z0) = e2π iθ . We write �(z0, θ) to denote a Siegel disk with center at z0
and rotation number θ .

For further reference, we state the next result for a cycle of Siegel disks, which
is based on Proposition 2.2 in [9]. Its proof extends verbatim for a cycle of Herman
rings.

Proposition 1 Let f be an elliptic function with respect to�. Assume f has an n-cycle
of Siegel disks S = {S0, . . . , Sn−1} with f (S) = S and f (Si ) = Si+1 mod n. Then

1. Each Si is contained in one fundamental domain of �.
2. If z ∈ S and λ ∈ �∗ then z + λ /∈ S.

3 Elliptic Functions of Order 2

Consider an elliptic function g ∈ E(�) of order 2. As shown in [6, Theorem 2.3], one
can express g as the composition

g(z) = M ◦ ℘� ◦ L(z),

with M(z) = (az + b)/(cz + d) and L(z) = z − z0, for constants a, b, c, d, z0 ∈ C,
and ad − bc �= 0. Without loss in generality, we consider throughout this work the
conjugacy f = L ◦g ◦ L−1, so that f (z) = S ◦℘�(z) and S is again a linear fractional
transformation. Depending on the multiplicity of poles for f , an explicit expression
can be obtained as follows.

– Case 1: Double poles. Since f = S ◦ ℘� has a double pole at the origin, then, for
some A, k ∈ C, A �= 0, we can express f as

f (z) = A(℘�(z) − ℘�(k)), (3)

where Zeros( f ) = {±k} + �. Moreover, Crit( f ) = Crit(℘�).
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– Case 2: Simple poles. Assume f has simple poles at v,w ∈ C. For simplicity, let
2h ≡ (v − w) mod �, so that Poles( f ) = {±h} + �. Then, for some A, k ∈
C, A �= 0, we can write

f (z) = A

(

℘�(z) − ℘�(k)

℘�(z) − ℘�(h)

)

, (4)

where Zeros( f ) = {±k} + �. In this case, Crit( f ) = {0, ω1, ω2, ω3} + �.

From now on, f denotes an order 2 elliptic function written either as in (3) or as in
(4).

Remark 1 Regardless of the order of the poles, observe that f = S ◦ ℘� is an even
function. Thus, f exhibits the same critical point symmetry as℘�, namely f (c−w) =
f (c + w) for all c ∈ Crit( f ) and any w ∈ C.

Let� denote a simple closed curve over the complex plane with a given orientation,
and denote by D = D� the bounded component of C\�. Fix a point a ∈ C\�; the
notation −� + a stands for the set of points {−w + a | w ∈ �}. The following result
is straightforward.

Lemma 1 Let p ∈ D and s ∈ C\D. Then the set −� + 2p is a simple closed curve
that surrounds p and has nonempty intersection with�. Also,−�+(s+ p) is a simple
closed curve that surrounds s.

3.1 Proof of Theorem 1

Assume H = {H0, . . . , Hq−1} is a q-cycle of Herman rings for f , with q ≥ 1.
Denote by Bi the compact component of C\Hi . As a consequence of [7, Theorem
A], at least one of the Bi ’s must contain a pole of f . We assume the q-cycle has been
labeled in such a way that the bounded component B0 contains a pole, and then set
Hi+1 mod q = f (Hi ).

Choose a base point b ∈ H0 and let � = O+
f (b). Clearly, � = �0 � · · · � �q−1,

where each �i is a smooth, simple closed curve in Hi with a given orientation, and f
preserves those orientations. Let Di be the open and bounded component of C\�i .

Assume first that f has a double pole at the origin. Let λ ∈ B0 and consider the
curve −�0 + 2λ, which also surrounds λ. Then, since f is even and �-periodic, we
have that for any w ∈ �0,

f (w) = f (λ + (w − λ)) = f (λ − (w − λ)) = f (2λ − w),

in other words, f sends the curves �0 and −�0 + 2λ onto �1 ⊂ H1. From Lemma 1,
the curves have nonempty intersection so they both lie in H0. In consequence, �0 =
−�0 +2λ as sets (that is, �0 is symmetric with respect to λ). To reach a contradiction,
we only need to observe that w and 2λ−w are two distinct points in �0 with the same
image. Indeed, w = 2λ − w if and only if w = λ, but this is impossible as �0 lies in
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the Fatou set and the set of poles of f lie in the Julia set. We conclude that any order
two elliptic function with a double pole cannot have a cycle of Herman rings.

The same arguments used for the double pole case can be applied to critical points:
if there exists a curve �i whose component Di contains a critical point c ∈ Crit( f ),
then �i must be symmetric with respect to c, that is �i = −�i + 2c. But then again,
�i contains two distinct points, w and 2c − w, with the same image (for otherwise,
w = 2c − w if and only if w = c ∈ Hi , which is impossible). Thus, regardless of the
multiplicity of poles, we conclude

Lemma 2 Each open component Di is disjoint from Crit( f ).

From now on, assume f has two simple poles on each fundamental domain.

Proposition 2 For each i , the cardinality of Di∩Poles( f ) is atmost equal to one. Thus,
if the intersection is empty, f maps Di onto Di+1 conformally; otherwise f maps Di

onto ̂C\Di+1 as a univalent, meromorphic function that reverses orientation.

Proof By assumption, f has simple poles, and since each Di does not contain critical
points, it is sufficient to show that Di contains at most one simple pole.

Part 1. in Proposition 1 can be applied to any cycle of Herman rings, thus, each Hi

lies in a fundamental domain of �. If there exists a component Di that contains more
than one pole, then it must contain the two non-equivalent poles of its fundamental
domain. Without loss of generality, let those poles be ζ = h and ζ ′ = −h + λ, for
some λ ∈ �. The midpoint of the line segment that joins ζ with ζ ′ is the critical point
c = λ/2, and by Lemma 2, c must lie in the unbounded component of �i .

Consider the sets −Di + 2c and −�i + 2c. Clearly, −Di + 2c is a topological
disk, symmetric to Di with respect to c, so it must contain both ζ and ζ ′. Hence,
�i ∩ (−�i + 2c) �= ∅. If these curves are equal, then c must lie in Di , a contradiction.
If the curves are not equal, the critical point symmetry of f implies that f (�i ) =
f (−�i + 2c), which contradicts the univalence of f n|Hi . ��
Corollary 2 Any elliptic function of order 2 and with simple poles cannot have a fixed
Herman ring.

Proof Indeed, if f has a positively invariant Herman ring H and � ⊂ H is any
curve of its foliation, then the bounded component D ⊂ ̂C\� contains a simple pole.
From the previous proposition, f must map � onto itself with reversed orientation, a
contradiction. ��

One can infer from the previous results the existence of an even number of curves in
the cycle � = {�0, . . . , �q−1} each one surrounding a pole. Let �i1, . . . , �i2r ∈ � be
those curves (which are pairwise disjoint by definition) and assume each�i j surrounds
the pole ζi j . Using Lemma 1 one can construct new curves �′

i1
, . . . , �′

i2r
∈ f −1(�) so

that every �′
i j
surrounds the same given pole, say ζ0. This can be achieved by defining

�′
i j := − �i j + (ζ0 + ζi j ) = {−w + ζ0 + ζi j | w ∈ �i j }. (5)

Observe that �′
i1
, . . . , �′

i2r
are also pairwise disjoint. For otherwise, if �′

i j
∩ �′

ik
�= ∅,

then f maps this intersection onto a subset of �i j+1 ∩�ik+1 which can only happen if
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and only if i j = ik . Finally, if from the beginning, all the �i j surround the same pole,
then set �′

i j
:= �i j and denote by ζ0 the common pole. Let D′

i j
denote the bounded

component of C\�′
i j
and relabel the curves so that �′

i j
⊂ D′

i j+1
for j = 1, . . . , 2r −1.

Clearly, D′
i j

⊂ D′
i j+1

, so we can define the annular open region

A j = A
(

�′
i j , �

′
i j+1

)

:= D′
i j+1

\D′
i j
,

for j = 1, . . . , 2r − 1. Each A j contains at least a boundary component of either a
Herman ring from the q-cycle, or either a boundary component of one of its preimages,
and hence, it contains many prepoles. If p ∈ A j is a prepole of f , let op denote the
non-negative integer so that f op (p) ∈ Poles( f ).

Lemma 3 For each j = 1, . . . , 2r − 1, let k j := min{op | p ∈ A j prepole}. Assume
k j0 := min{k j | 1 ≤ j ≤ 2r −1}, that is, the minimum of the orders is achieved inside
the annulus A j0 . Then 1 ≤ k j0 ≤ q − 1 and k j0 < k j for all j �= j0.

Proof First, observe that k j0 > 0. Furthermore, if k j0 ≥ q then f q |A j0
acts confor-

mally and thus { f nk j0 |A j0}n≥1 is a normal family, which is impossible. Now assume
the minimum is achieved in both A j0 and Ai , with j0 < i (the case i < j0 is
similar). From Proposition 2, it follows f k j0 acts conformally over both rings, so
their images under f k j0 are again annuli. There exist distinct poles ζ and ζ ′ so that
ζ ∈ f k j0 (A j0) and ζ ′ ∈ f k j0 (Ai ). If j0 + 1 < i then f k j0 (A j0+1) is an annulus that
lies in̂C\( f k j0 (A j0)∪ f k j0 (Ai )) and contains∞. This implies that k j0+1 < k j0 which
contradicts the minimality of k j0 . If j0 + 1 = i , then the images of A j0 and A j0+1

under f k j0 are two nested annuli that share one boundary component. Hence, the most
exterior boundary curve of f k j0 (A j0)∪ f k j0 (Ai ) surrounds two poles, a contradiction
with Proposition 2. ��
Remark 2 The notation �′

i j
will imply a curve in f −1(�) defined as in (5) that sur-

rounds a suitable choice of ζ0, while�i j will denote a curve lying in� (thus q-periodic)
that surrounds its pole ζi j .

Lemma 4 Assume each disk in the nested collection D′
i1

⊂ · · · ⊂ D′
i2r

has a common
simple pole in its interior and has no other poles or critical points. Then, for each
j = 1, . . . , 2r − 1, the interior and exterior boundaries of A j are mapped under f k j0

to the exterior and interior boundaries of f k j0 (A j ), respectively.

Proof From Proposition 2, f sends the collection {D′
i j
} homeomorphically onto a new

nested collection of disks in̂C, where∞ ∈ f (D′
i1
) ⊂ · · · ⊂ f (D′

i2r
). The boundary of

each f (D′
i j
) is given by f (�′

i j
) = �i j+1 ∈ � (with addition mod q). Let Di j+1 denote

the bounded complementary component of �i j+1. Then for each j = 1, . . . , 2r − 1,
the condition

∞ ∈ f (D′
i j ) ⊂ f (D′

i j+1
) implies Di j+1+1 ⊂ Di j+1. (6)
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Since f sends A j = D′
i j+1

\D′
i j

= A(�′
i j
, �′

i j+1
) conformally onto f (A j ) =

f (D′
i j+1

)\ f (D′
i j
), it follows from (6) that f (A j ) = Di j+1\Di j+1+1, that is f (A j ) =

A(�i j+1+1, �i j+1). This proves that f sends the interior and exterior boundaries of A j

onto the exterior and interior boundaries of f (A j ) respectively. Briefly, we will refer
to the interchange of boundaries just described as “ f flips the boundaries of A j”.

We want to show f k j0 flips the boundaries of each A j only once. If k j0 = 1 this
is clear, so assume k j0 > 1. Lemma 3 implies that f k j0 acts conformally on each A j ,
and since

⋃

f (A j ) = Di1+1\Di2r+1, it suffices to prove that Di2r+1 does not contain
poles nor prepoles of order less than k j0 − 1. For the shake of contradiction, assume
the existence of p ∈ Di2r+1 and a least integer 0 ≤ m < k j0 − 1 so that f m(p) = ζ

is a pole. Since p ∈ Di2r+1 ⊂ . . . ⊂ Di1+1, we have ζ ∈ f m(Di2r+1) = Di2r+m+1 ⊂
· · · ⊂ f m(Di1+1) = Di1+m+1. This implies {�i j+m+1} is a collection of 2r curves
in � that surround the common pole ζ . From the definition of {�′

i j
} we must have

{�′
i j
} = {�i j+m+1} as sets (and by convention, �′

i j
= �i j ∈ �, so we drop the symbol

′). Observe f m+1 permutes these curves in such a way that �i j+m+1 = f m+1(�i j ) =
�i2r− j+1 for each j = 1, . . . , 2r . It follows that f 2(m+1)(�i j ) = f m+1(�i2r− j+1) =
�i2r−(2r− j+1)+1 = �i j . As a consequence, { f 2n(m+1)|A j }n≥1 forms a normal family,
arriving at the sought contradiction. ��

We now proceed with the final part of the proof of Theorem 1 for the case of simple
poles. To ease the notation, the numbers k j0 and j0 defined in Lemma 3 are now simply
denoted by k and j . Thus, p j ∈ A j denotes the prepole with smallest order among
all prepoles in A1 ∪ · · · ∪ A2r−1. And since 1 ≤ k ≤ q − 1 then we can find unique
integers m0, n0 ≥ 1 with n0 < k, so that

q = m0 · k + n0. (7)

Since f k |A j acts conformally, then f k(A j ) is an annular domain that contains the
pole f k(p j ), and from Lemma 4, the exterior boundary of f k(A j ), namely f k(�′

i j
),

surrounds that pole. Then we can set �i
 := f k(�′
i j
) for some 
 ∈ {1, . . . , 2r − 1}

(hence, f k(p j ) = ζi
 ) and �s := f k(�′
i j+1

) for some s ∈ {0, . . . , q − 1}. Since
1 ≤ k ≤ q − 1, then either 
 < j or 
 > j .
Case 
 < j : Define�′

i j
:= −�i j +ζi
 +ζi j (so it surrounds ζi
) and consider the annular

region A := A(�i
 , �
′
i j
). Lemmas 3 and 4 guarantee that f k |A acts conformally and

flips only once the boundaries of A, thus f k(A) = A(�i
 , �it ), where �it := f k(�i
 )

for some 
 < t ≤ 2r . If t < j (resp. t > j), then Grötzsch inequality implies
a contradiction: one has mod(A) = mod( f k(A)) and at the same time f k(A) is
essentially contained as a proper annulus of A (resp. A is essentially contained as a
proper annulus of f k(A)). On the other hand, if t = j then f k(A) = A and hence,
{ f nk |A}n≥1 is a normal family, a contradiction.
Case 
 > j : Let �′

i j
and �′

i j+1
denote curves in f −1(�) that surround the pole ζi


and write A j := A(�′
i j
, �′

i j+1
). From Lemma 4, f k flips the boundaries of A j only

once, hence f k(A j ) = A(�s, �i
 ). And by Lemma 3, ζi
 ∈ f k(A j ), thus �s cannot
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Fig. 1 On the left, the configuration of curves �′
i j

, �′
i j+1

and their f k -images (namely, �i
 and �s resp.)

are shown. Since �s is contained in the annular domain A = A(�′
i j+1, �i
 ), its image under f k maps onto

a curve �s+k contained in A(�i
+k , �s ). Colors match their image (color figure online)

surround this pole, and in particular �s �= �′
i j
, �′

i j+1
. The proof now resides in the

location of �s with respect to �′
i j
and �′

i j+1
.

If �s ⊂ D′
i j
, then A j is essentially contained as a proper annulus of f k(A j ), which

contradicts Grötzsch inequality.
If �s ⊂ A(�′

i j+1
, �i
 ), then A j � f k(A j ) non-essentially. Denote by Ds the

bounded complementary component of �s and let A := A(�′
i j+1

, �i
 ). Observe that A

does not contain any prepole of order less or equal than k; thus, f k flips its boundaries
and sends A isomorphically to the annular domain

f k(A) = Ds\ f k(Di
 ) = Ds\Di
+k = A(�i
+k, �s),

where �i
+k = f k(�i
 ) ⊂ Ds and i
 + k ∈ {0, . . . , q − 1} (addition mod q). Fur-
thermore, since �s ⊂ A, then �s+k = f k(�s) must lie inside f k(A), so in particular,
�s+k ⊂ Ds\Di
+k . See Fig. 1.

Now consider the 3-connected set E := Di
\(D′
i j

∪Ds), which contains the prepole

p j ofminimal order. Recalling that f k maps�i
 	→ �i
+k ,�s 	→ �s+k and�′
i j

	→ �i
 ,
then it maps E conformally onto the 3-connected set

f k(E) = Di
\(Di
+k ∪ Ds+k).

To reach a contradiction, we now provide an extremal length argument (see [1] or
appendix in [11] for further reference). LetG ⊂ E be the family of curves that connect
�i
 to the boundaries �′

i j
and �s . Similarly, consider the family G ′ ⊂ Ds\(Di
+k ∪

Ds+k) connecting the respective boundaries. Then, S = f k(G) defines a family of
curves in f k(E) that overflows both G and G ′ (S overflows G if any curve in S
contains some curve in G). From conformality of f k one obtains equality of extremal
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Fig. 2 The only remaining possible location of �s+k with respect to the boundaries of E1 is shown. E1 is
the grey region bounded by �′

i j+1
, η and �s . Its conformal image, f k (E1), is shown in grey and is bounded

by �′
i j+1

= f k (η), �s = f k (�′
i j+1

) and �s+k = f k (�s ) (colors match their image). The 4-connected

region E2 is obtained by removing the topological disk Ds+k from E1 (color figure online)

lengths, namely L(S) = L(G), while by the Series Law, L(S) ≥ L(G) + L(G ′), a
contradiction.

The final case is when �s ⊂ A j = A(�′
i j
, �′

i j+1
) in such a way that the component

Ds lies completely inside A j and it is also the bounded complementary component of
f k(A j ).
Since �′

i j+1
⊂ f k(A j ) then we can find a simple closed curve η ⊂ A j sufficiently

close to �′
i j
so that f k(η) = �′

i j+1
. Denote by Dη the bounded complementary com-

ponent ofC\η and defineC = A(η, �′
i j+1). ThenC is essentially contained in A j and

f k sends C conformally onto f k(C) = A(�s, �
′
i j+1

). Clearly �s �= η for otherwise

f k(C) = C and hence { f nk |C}n≥1 becomes a normal family. If �s lies in Dη, then C
is essentially contained as a subannulus in f k(C), contradicting Grötzsch inequality.
So the remaining case to analyze is when �s ⊂ D′

i j+1
\Dη.

Define E1 := D′
i j+1

\(Ds ∪ Dη) and note that f k |E1 is conformal. Furthermore,

f k(E1) is a 3-connected domain bounded by �′
i j+1

, �s and �s+k . We have several
possible scenarios for the location of �s+k with respect to the boundary components
of E1. First of all, �s+k must lie in D′

i j+1
. Then observe that �s+k cannot be neither

equal to �s (as k < q) nor be in its interior (as E1 is 3-connected). Then we only need
to analyze the location of �s+k with respect to η:

1. If �s+k lies in Dη, then we can find two families of curves G ⊂ E1 and G ′ ⊂
Dη\Ds+k so that S = f k(G) in f k(E1) overflows both G and G ′. As before,
conformality and the Series Law provide a contradiction.

2. If �s+k = η, then f k(E1) = E1 which implies that { f nk |E1}n≥1 is a normal
family, again a contradiction.

We conclude that �s+k lies in E1 (see Fig. 2). One can repeat the analysis above to
conclude that for each i = 1, . . . ,m0 − 1, the curve �s+ik lies in Ei so the region

Ei+1 := Ei\Ds+ik,
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iswell defined. Furthermore, f k |Ei is conformal for each i and Em0 ⊂ Em0−1 ⊂ · · · ⊂
E1 ⊂ C ⊂ A j . In particular, each disk Ds+ik also lies in A j for all i = 1, . . . ,m0−1.

If we apply f n0 to the boundary curve �s+(m0−1)k of Em0 , it follows from equation
(7) that

f n0(�s+(m0−1)k) = f n0( f m0k(�i j+1)) = �i j+1,

since �s = f k(�i j+1) = f k(�′
i j+1

). The curve �i j+1 surrounds the pole ζi j+1 by

construction. Then �s+(m0−1)k must surround a prepole p′ ∈ Ds+(m0−1)k ⊂ A j

with op′ < k, a contradiction since k was the smallest order of prepoles in A j . This
concludes the case 
 > j and the proof of Theorem 1.

4 Herman Rings via Quasiconformal Surgery

In this section, we describe the quasiconformal surgery between an elliptic function of
order o ≥ 2 and a rational function of degree d ≥ 2, both with an invariant Siegel disk
in their Fatou sets. The surgery produces an elliptic function of order o + d − 1 ≥ 3
with an invariant Herman ring, thus answering in the positive the question of existence
of Herman rings for elliptic functions.

4.1 Preparing for Surgery

Let f ∈ E(�) be an elliptic function of order o := o f ≥ 2. Assume f has an invariant
Siegel disk � = �(0, θ) centered at the origin with rotation number θ ∈ [0, 1).
Similarly, let W denote a rational map of degree d ≥ 2 with an invariant Siegel disk
�̃ = �(0, 1 − θ) centered at the origin and rotation by angle 1 − θ . We also assume
�̃ does not contain the point at infinity. Denote the set of poles of f by Poles( f ) =
Pf +�, where Pf = {ζ1, . . . , ζo f }, listed with multiplicities. Let ZW = {η1, . . . , ηd}
be the set of zeros of W , listed with multiplicities, in such a way that η1 = 0 and thus
η j �= 0 for j = 2, . . . , d.

Consider the triplets ( f ,�, 0) and (W , �̃, 0). Each triplet its associated with a
linearizing coordinate

ϕ : � → D and ϕ̃ : �̃ → D,

that conjugates f |� and W |�̃ with rigid rotations of rotation numbers θ and 1 − θ ,
both acting on D. Fix 0 < r , r̃ < 1 and denote by γ ⊂ � and γ̃ ⊂ �̃ the invariant
simple closed curves defined by ϕ−1(Cr ) and ϕ̃−1(Cr̃ ).

The circle inversion L(z) = r̃r/z maps Cr bijectively to Cr̃ and, moreover, con-
jugates the rigid rotations restricted over these circles. Therefore, we can define a
glueing map over the invariant curves γ and γ̃ by

h = ϕ̃−1|γ̃ ◦ L ◦ ϕ|γ .
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From the above construction, h is a diffeomorphism and conjugates f |γ with W |γ̃ .
One can construct a global glueing map � : ̂C → ̂C that extends h analytically; �

will be the result of four maps defined over different regions of the sphere. To begin,
recall that if � is any simple closed curve in C, then D� denotes the bounded domain
of C\�. Consider an annular neighborhood of γ = ϕ−1(Cr ) defined by the preimage
of an standard annulus, namely

Aγ := ϕ−1(Ar1,r2),

where 0 < r1 < r < r2 < 1. Define also γin := ϕ−1(Cr1), γout := ϕ−1(Cr2),
Ain := ϕ−1(Ar1,r ) and Aout := ϕ−1(Ar ,r2). Analogous constructions under preimages
by ϕ̃ and values 0 < r̃1 < r̃ < r̃2 < 1 determine the sets Aγ̃ , Ãin, Ãout, γ̃in and γ̃out.

Observe that Aγ is a closed and f -invariant annular neighborhood for γ , properly
contained in�. The complementary components of Aγ , namely Dγin ,

̂C\Dγout (and the
respective complementary components for Aγ̃ ) are simply connected proper domains
of the sphere, so there exist conformal isomorphisms

Rout : ̂C\Dγout → Dγ̃in and Rin : Dγin → ̂C\Dγ̃out

that satisfy Rout(∞) = 0 and Rin(0) = ∞. Moreover, since each invariant curve
inside its Siegel disk is by definition analytic, there exist analytic extensions of the
above maps into the boundary of their domains. Denote by ̂Rout the analytic extension
of Rout over γout and by ̂Rin the extension of Rin over γin.

Two more maps must be defined over the subannuli of Aγ . To do so, observe first
that the restriction maps h|γ , ̂Rout|γout and ̂Rin|γin define C1-diffeomorphisms, and
thus, they are all quasisymmetric functions. From Proposition 2.30, part (b) in [3],
there exist two quasiconformal maps

hout : Aout → Ãin and

hin : Ain → Ãout

with quasiconformal constants Kout and Kin, respectively, defined in such a way that
hout|γout = ̂Rout|γout , hin|γin = ̂Rin|γin and hout|γ = hin|γ = h|γ . Finally, define the
global glueing map by

� :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Rout on ̂C\Dγout ,

hout on Aout,

hin on Ain,

Rin on Dγin .

Proposition 3 The map � : ̂C → ̂C satisfy the following properties:

1. �|γ = h.
2. �(Dγ ) = ̂C\Dγ̃ and �(̂C\Dγ ) = Dγ̃ .
3. �(0) = ∞ and �(∞) = 0.
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4. � is conformal everywhere except in a closed annular neighborhood of γ .

Proof The first property follows from the fact that �|γ = hout|γ = h. For the second,
observe that Dγ = Ain � γin � Dγin ; thus,

�(Dγ ) = Ãout � γ̃out � ̂C\Dγ̃out = ̂C\Dγ̃ .

A similar decomposition applied to ̂C\Dγ shows �(̂C\Dγ ) = Dγ̃ . The third
property is straightforward. For the last property, recall that both hin and hout are,
respectively, Kin- and Kout-quasiconformal maps in the interior of their annular
domains and agree with conformal maps on the boundary curves γ, γin and γout.
On the complementary domains of Aγ , � agrees with conformal maps Rout and Rin.
Thus, � is conformal everywhere except in Aγ . ��

A K -quasiregular function canbedefinedas the compositionof a K -quasiconformal
map and a holomorphic function, regardless of the order of composition, (see for
example Definition 1.33 and Proposition 1.37 in [3]). Our goal is to construct a K -
quasiregular function g : C → ̂C that is 2-periodic with respect to � and has an
invariant annular domain. To do so, let

g(z) :=
{

�−1 ◦ W ◦ � ◦ T−1
λ (z) if z ∈ Dγ + λ, λ ∈ �,

f (z) otherwise.
(8)

Theorem 5 The function g : C → ̂C is a quasiregular function outside a discrete set
of poles, it is 2-periodic with respect to � and on each fundamental domain of �,
it has exactly o + d − 1 ≥ 3 poles, counted with multiplicity. Moreover, g has an
invariant annular domain where it is conjugated to a rigid rotation by angle θ .

Proof First, note that g is continuous at γ since �|γ = h and h conjugates f |γ with
W |γ̃ . From the second part of definition in (8), g is �-periodic in C\ ⋃

λ∈�(Dγ + λ),
and hence, continuous in γ + �. For an arbitrary point z ∈ ⋃

λ∈�(Dγ + λ), set
z = ζ + λ for some λ ∈ � and ζ ∈ Dγ . The first part of (8) shows

g(z) = �−1 ◦ W ◦ � ◦ T−1
λ (ζ + λ) = �−1 ◦ W ◦ �(ζ) = g(ζ ).

Given any μ ∈ �, let η = λ + μ ∈ �, then, since z + μ = ζ + η ∈ Dγ + η,

g(z + μ) = �−1 ◦ W ◦ � ◦ T−1
η (ζ + η) = �−1 ◦ W ◦ �(ζ) = g(ζ ),

thus g(z + μ) = g(z) by the previous step. We conclude that g is �-periodic in all C.
It is clear that g is well defined in all C\ ⋃

λ∈�(Dγ + λ) except at the poles of f .
Assume there exists a point z ∈ Dγ for which g(z) = ∞. From (8), one obtains

W ◦ �(z) = �(∞) = 0, if and only if �(z) ∈ ZW ∩ ̂C\Dγ̃ ,
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which is equivalent to z ∈ �−1(ZW − {0}). If z is a pole of g in Dγ + λ for some
λ ∈ �, then equivalently, z ∈ �−1(ZW − {0}) + λ. We conclude

Poles(g) = (Pf � �−1(ZW − {0})) + �, (9)

and thus, g has exactly o+d−1 poles on each fundamental domain of�. In particular,
Poles(g) is a discrete set of the complex plane.

To show g is quasiregular, note that g ismeromorphic inC\ ⋃

λ∈�(Dγ +λ).Writing
Dγ = Aγin � Dγin , the action of g in this domain can be expressed as

g|Dγ
:=

⎧

⎨

⎩

R−1
in ◦ W ◦ Rin on Dγin ,

h−1
in ◦ W ◦ hin on Aγin .

On the one hand, g|Dγin
is the composition of a 1-quasiconformal map Rin and a

holomorphic map R−1
in ◦ W , thus it is 1-quasiregular. On the other hand, g|Aγin

is

Kin-quasiconformally conjugated to a holomorphic function W . Thus, g is CK 2
in-

quasiregular in the complex plane (for some C > 0) outside its discrete set of poles.
Finally, the topological annulus A = � ∩ �−1(�̃) is g-invariant. Indeed, both f

restricted to�\Dγ andW restricted to Dγ ∩�−1(�̃) leave their domains invariant. It
follows from the construction that g|A is conjugated to the rigid rotation z 	→ e2π iθ z.

��
Corollary 3 The function g has a unique essential singularity at z = ∞ and at no
other point of ̂C.

Proof Since g coincides with the elliptic function f in C\⋃

λ∈�(Dγ + λ), it inherits
the essential singularity at infinity. In Dγ \{0}, the function g is either conjugate to a
rigid rotation or it is conformally conjugated to a rational function. In particular, since
W is a rational map, then g(0) = �−1 ◦ W ◦ �(0) = �−1 ◦ W (∞) ∈ ̂C, and the
origin reduces to either a removable singularity or a pole for g. ��

4.2 Straightening g

The g-invariant ring A = �∩�−1(�̃) can be decomposed into two invariant subrings
as A = Ao � Ai with Ao = �\Dγ and Ai = Dγ ∩ �−1(�̃). Let

X =
⋃

n≥0

g−n(Poles(g)) ∪ {∞}.

As it was shown in Theorem 5, the poles of g form a discrete set. By the σ -additivity
of the Lebesgue measure, X has measure zero.

Theorem 6 There exists ameasurableBeltrami differentialμdefinedover the extended
complex plane that has bounded dilation, it is g-invariant and satisfies that for any
λ ∈ �, μ(u + λ) = μ(u).
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Proof As customary, denote by μ0 the constant Beltrami differential equal to zero.
We define μ in several steps. First, using the partition A = Ao � Ai , let μA := μ0 in
Ao and set μA := �∗(μ0) in Ai , in that way μ|A = μA. We now define μ along the
backward orbit of A under g: for any integer n > 0, let μ = (gn)∗(μA) on g−n(A).
Finally, set μ = μ0 everywhere else, so in particular, μ = μ0 in X .

To see μ has bounded dilatation, first observe that g is conformal in Ao and K 2
in-

quasiregular in Ai , thus, the dilatation of μ|A is bounded. In the first pullback defined
on g−1(A)\A, the dilatation of μ may increase by a factor of Kin, as one of the
branches of g−1 may be Kin-quasiconformal. After that, all subsequent pullbacks are
performed by holomorphic branches of g, so the dilatation of μ does not increase and
hence, remains bounded. Thus, we obtain that μ is a g-invariant Beltrami differential
of bounded dilatation and defined in the extended complex plane.

Finally, observe that for any u ∈ C and any λ ∈ �, one has μ(u) = T ∗
λ μ(u), since

Tλ is conformal. Furthermore, the definition of pullback of a Beltrami differential
yields

T ∗
λ μ(u) := μ(Tλ(u))

∂zTλ(u)

∂zTλ(u)
= μ(u + λ)

since ∂zTλ ≡ 1. Hence, μ is �-periodic. ��
The Measurable Riemman Mapping Theorem guarantees the existence of a unique

K ′-quasiconformal map ψ : ̂C → ̂C with 0 < K ′ = C ′K 3
in < ∞, that solves the

Beltrami equation ψ∗μ0 = μ and fixes 0, 1 and ∞. It follows from the proof of
Theorem 5 that gn|C\X is at least CK 2

in-quasiregular for any n ≥ 1. Then Sullivan’s
Straightening Theorem implies that g is quasiconformally conjugate to a transcenden-
tal meromorphic function

G = ψ ◦ g ◦ ψ−1 : C → ̂C.

We want to show that G is an elliptic function with respect to a double lattice.

Lemma 5 Given λ ∈ � and its associated translation Tλ(z) = z + λ, its conjugate
map ψ ◦ Tλ ◦ ψ−1 is equal to the translation z 	→ z + ψ(λ).

Proof The case λ = 0 is straightforward so assume λ �= 0 and set Sλ := ψ ◦ Tλ ◦ψ−1.
Since S∗

λ(μ0) = μ0 and fixes the point at infinity, then Sλ is a conformal automorphism
of the plane. Moreover, Sλ(0) = ψ(λ) and Sλ(1) = ψ(1 + λ), so Sλ must coincide
with the affine transformation z 	→ (ψ(1+λ)−ψ(λ))z+ψ(λ). Furthermore, Tλ has
a single fixed point of multiplicity two at infinity, and under the conjugacy, so is Sλ.
This implies that for every λ ∈ �, the linear coefficient ψ(1 + λ) − ψ(λ) is equal to
1 and the conclusion follows. ��
Remark 3 The condition on the linear coefficient above entails the identity

ψ(1 + λ) = 1 + ψ(λ), for any λ ∈ �. (10)
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And from the identity ψ ◦ Tλ = Tψ(λ) ◦ ψ , one has that for any z ∈ C and any λ ∈ �,

ψ(z + λ) = ψ(z) + ψ(λ). (11)

The following result is a straightforward consequence of (11).

Lemma 6 The set �̃ = {λ̃ := ψ(λ) | λ ∈ �} is a double lattice with group represen-
tation T (λ̃) = Tψ(λ).

Proof The action ψ |� : � → �̃ defines a group homomorphism by (11), so �̃ is a
discrete additive group isomorphic to Z × Z. The identity element is 0 = ψ(0) and
for any λ̃ ∈ �̃, its additive inverse is given by −λ̃ := ψ(−λ). ��
Theorem 2 The function G : C → ̂C is a doubly periodic meromorphic function with
respect to the lattice �̃, it has order o+d−1 ≥ 3 and possesses an invariant Herman
ring.

Proof The conjugacy of G and g via the homeomorphism ψ preserves the number
of poles on each fundamental domain. Also, the above construction guarantees that
A = ψ(A) is an invariant Fatou component of the meromorphic function G , where it
is conjugated to the irrational rotation z 	→ e2π iθ z.We are left to show thatG is doubly
periodic with respect to the lattice �̃. Indeed, from Lemma 5 and the �-periodicity of
g shown in Theorem 5, we obtain

G ◦ Tψ(λ) = ψ ◦ g ◦ ψ−1 ◦ (ψ ◦ Tλ ◦ ψ−1),

= ψ ◦ g ◦ Tλ ◦ ψ−1,

= ψ ◦ g ◦ ψ−1;

hence, G (z + λ̃) = G (z) for all z ∈ C and all λ̃ ∈ �̃. We conclude that G ∈ E(�̃) is
an elliptic function of order o + d − 1 ≥ 3 and with an invariant Herman ring. ��

5 A Bound for the Number of Invariant Herman Rings

For a given m ≥ 1, let H1, . . . , Hm be invariant Herman rings of the elliptic function
f ∈ E(�) with order o f ≥ 3. From Theorem A in [7], there exists a pole on each
bounded connected component of C\⋃m

j=1 Hj . We begin the proof of Theorem 3
by establishing first that residue classes of these poles can be chosen to be pairwise
disjoint.

As before, let Bi denote the compact complementary component of Hi and let
�i ⊂ Hi be an f -invariant curve.

Lemma 7 There exists a collection of poles, ζ1, . . . , ζm, each one selected from a
bounded component of C\ ⋃m

j=1 Hj such that ζ j ≡ ζk mod � if and only if j = k.

Proof It suffices to consider the casem = 2. Assume that B1 contains the pole ζ while
B2 contains the pole ζ + λ for some λ ∈ �. From �-periodicity, either H2 − λ lies in
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the interior of B1 or otherwise, H1 + λ lies in the interior of B2. To fix ideas, consider
the case H2 − λ ⊂ int(B1) (the other case follows by interchanging the labels). Let
A denote the bounded annular domain defined by the curves �2 − λ and �1. If λ = 0
then Amust contain a pole η by Theorem A in [7]. Similarly, if λ �= 0 but A contains a
pole η, then it follows from Proposition 1 that η and ζ must belong to distinct residue
classes, so in both cases we are done.

Let λ ∈ �∗ and assume A contains no other pole of f . Since A is compact and
f |A is holomorphic (and thus continuous), the Maximum Modulus Principle implies
that z 	→ | f (z)| attains its maximum at the boundary of A. Nevertheless, the image
of ∂A under f lies in two distinct fundamental domains, and since f |A is an open
mapping, this contradicts the previous assertion. Thus, A must contain a pole whose
residue class is disjoint from ζ . ��

We are now able to provide an upper bound for the number of invariant Herman
rings of an elliptic function.

Proof of Theorem 3 Let ζ1, . . . , ζm be the poles obtained in Lemma 7. Denote by
Hj1, . . . , Hjk the invariant Herman rings that are not contained in any bounded com-
ponent Bi . In turn, for each s = 1, . . . , k, the domain Bjs contains at least n js poles,
namely its own pole ζ js and any other element ζi +λ ∈ [ζi ] for λ ∈ � such that Hi +λ

lies inside Bjs . Also, Bjs may contain a pole whose residue class is disjoint from the
set {ζ1, . . . , ζm}. Hence, #(Bjs ∩Poles( f )) ≥ n js . From the definition of n js , observe
that 1 ≤ n js ≤ m and

∑k
s=1 n js = m.

Through quasiconformal surgery, one can turn each Hjs into an invariant Siegel
disk. We describe the main steps of the construction and refer the reader to [3, Chapter
7] for a detailed explanation.

Fix s = 1. For simplicity, write H := Hj1 , B := Bj1 and for an f -invariant curve
� ⊂ H , denote by D� the bounded component of C\�. As stated in Definition 1,
the conformal isomorphism ϕ : H → A1,r conjugates f with the rigid rotation
Rθ (z) = e2π iθ , where θ ∈ [0, 1) is the rotation number of H . We can find a unique
r0 ∈ (1, r) so that ϕ(�) = Cr0 . Since the restriction ϕ−1|Cr0 : Cr0 → � is a
C1-diffeomorphism (hence quasisymmetric) there exists a quasiconformal extension
�−1 : D(0, r0) → D� , where �−1 ≡ ϕ on �. Consider the function

g(z) :=
{

�−1 ◦ Rθ ◦ � ◦ T−1
λ (z) if z ∈ D� + λ, λ ∈ �,

f (z) otherwise.

The proof of Theorem 5 extends almost verbatim to show that g : C → ̂C is a
quasiregular map outside a discrete set of poles given by

Poles(g) = Poles( f )\{[ζ ] : ζ + λ ∈ B ∩ Poles( f ) for some λ ∈ �}.

The function g remains doubly-periodic with respect to�, it has at most o f −n j1 poles
on each fundamental domain, and it has an invariant disk where g is conjugated to Rθ .
By Theorem 6, there exists a bounded g-invariant Beltrami differential μ, integrated
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by a quasiconformal mapping ψ : ̂C → ̂C (fixing 0, 1 and ∞) so as in Theorem 2 one
can conclude that

f1 := ψ ◦ g ◦ ψ−1 : C → ̂C

is an elliptic function with respect to the lattice ψ(�), has order at most o f − n j1 and
its Fatou set contains an invariant Siegel disk andm−n j1 ≥ 0 invariant Herman rings
given by ψ(Hj2), . . . , ψ(Hjk ). From Liouville’s Theorem,

2 ≤ o f1 ≤ o f − n j1 .

If n j1 = m we are done. Otherwise, apply the surgery construction to f1 and the
ringψ(Hj2) to obtain a new elliptic function f2 with two Siegel disks,m− (n j1 +n j2)

invariant Herman rings and order 2 ≤ o f2 ≤ o f − (n j1 + n j2). Repeating the process
if necessary, one ends with an elliptic function fk with exactly k invariant Siegel disks
and no Herman rings. The order of fk is 2 ≤ o fk ≤ o f −m and the sought inequality
follows. ��

A very useful consequence of Theorem 3 is the following.

Corollary 1 If f has m ≥ 1 invariant Herman rings, then the complement of
⋃m

i=1(Hi ∪ Bi ) + � contains the residue classes of (at least) two simple poles or
(at least) the residue class of a multiple pole.

This result provides an even finer upper bound on the number of invariant Herman
rings according to the poles and their multiplicities. To do that, consider the integer
partitions of o ≥ 2, that is, the collection of all positive integers that sum up to o. We
can associate to each partition an elliptic function whose poles have the multiplicities
described by the partition. And although each of these functions have the same order
(and hence, have at most o − 2 invariant Herman rings), one can say more.

As an example, let o = 4. Its integer partitions are given by

{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}.

If f(4) denotes an order 4 elliptic function with a single pole of multiplicity 4, then by
Corollary 1, it cannot have an invariantHerman ring. Similarly, if f(3,1) has a triple pole
and a simple pole, then it has at most one invariant Herman ring whichmust surround a
simple pole. The function f(2,2) has at most an invariant Herman ring that surrounds a
double pole. For the rest of the partitions, their associated functions can have at most 2
invariant Herman rings, as established by Theorem 3.We conclude with the following.

Corollary 4 Any elliptic function with a pole of full multiplicity cannot have invariant
Herman rings.
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