[Arnold2014] Arnold, V.I.: On the differential geometry of infinite-dimensional
Lie groups and its application to the hydrodynamics of perfect fluids. In:
Arnold, V.I. (ed.) Collected works vol. 2. Springer, New York (2014)

[Arnold and Khesin1998] Arnold, V.I., Khesin, B.: Topological methods in
hydrodynamics. Springer, New York (1998)

[Ebin and Marsden1970] Ebin, D.G., Marsden, J.: Diffeomorphism groups
and the motion of an incompressible fluid. Ann. Math.

92
(1970)

[Ebin et al.2006] Ebin, D.G., Misiołek, G., Preston, S.C.: Singularities
of the exponential map on the volume-preserving diffeomorphism group.
Geom. Funct. Anal.

16
, 850--868 (2006)

[Ebin and Preston2013] Ebin, D.G., Preston, S.C.: Riemannian
geometry of the quantomorphism group (2013).

arXiv:1302.5075
[Haller et al.2002] Haller, S., Teichmann, J., Vizman, C.: Totally geodesic
subgroups of diffeomorphisms. J. Geom. Phys.

42
, 342--354 (2002)

[Khesin et al.2013] Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.:
Curvatures of Sobolev metrics on diffeomorphism groups. Pure Appl. Math.
Q.

9
, 342--354 (2013)

[Luo and Hou2014] Luo, G., Hou, T.Y.: Toward the finite-time blowup of the
3D axisymmetric Euler equations: a numerical investigation. Multiscale
Model. Simul.

12
, 1722--1776 (2014)

[Misiołek1993] Misiołek, G.: Stability of ideal fluids and the
geometry of the group of diffeomorphisms. Indiana Univ. Math. J.

42
, 215--235 (1993)

[Modin et al.2011] Modin, K., Perlmutter, M., Marsland, S., McLachlan, R.:
On Euler-Arnold equations and totally geodesic subgroups. J. Geom. Phys.

61
, 1446--1461 (2011)

[Preston2002] Preston, S.C.: Eulerian and Lagrangian stability of fluid motions,
Ph. D. Thesis, SUNY Stony Brook (2002)

[Preston2005] Preston, S.C.: Nonpositive curvature on the area-preserving
diffeomorphism group. J. Geom. Phys.

53
, 226--248 (2005)

[Preston2006] Preston, S.C.: On the volumorphism group, the first
conjugate point is always the hardest. Commun. Math. Phys.

267
, 493--513 (2006)

[Rouchon1992] Rouchon, P.: Jacobi equation, Riemannian curvature and the
motion of a perfect incompressible fluid. European J. Mech. B Fluids

11
, 317--336 (1992)

[Vizman1999] Vizman, C.: Curvature and geodesics on diffeomorphism
groups. Proceedings of the Fourth International Workshop on Differential
Geometry. Bra[U+00B8]sov, Romania (1999)