Editor-in-Chief: Askold Khovanskii |
Managing Editor: Vladlen Timorin |
A Journal of the
IMS,
Stony Brook University |
Published by |
home | editors | submission |
Let $ \nu_0(t),\nu_1(t),\ldots,\nu_n(t)$ be the roots of the equation $ R(z)=t$, where $ R(z)$ is a rational function of the form
$\displaystyle \begin{eqnarray*} R(z)=z-\sum\limits_{k=1}^n\frac{\alpha_k}{z-\mu_k}, \end{eqnarray*}$ |
$ \mu_k$ are pairwise distinct real numbers, $ \alpha_k> 0,\,1\leq{}k\leq{}n$. Then for each real $ \xi$, the function $ e^{\xi\nu_0(t)}+e^{\xi\nu_1(t)}+\,\cdots\,+e^{\xi\nu_n(t)}$ is exponentially convex on the interval $ -\infty< t< \infty$.
Let $ \nu_0(t),\nu_1(t),\ldots,\nu_n(t)$ be the roots of the equation $ R(z)=t$, where $ R(z)$ is a rational function of the form
$\displaystyle \begin{eqnarray*} R(z)=z-\sum\limits_{k=1}^n\frac{\alpha_k}{z-\mu_k}, \end{eqnarray*}$ |
$ \mu_k$ are pairwise distinct real numbers, $ \alpha_k> 0,\,1\leq{}k\leq{}n$. Then for each real $ \xi$, the function $ e^{\xi\nu_0(t)}+e^{\xi\nu_1(t)}+\,\cdots\,+e^{\xi\nu_n(t)}$ is exponentially convex on the interval $ -\infty< t< \infty$.