Received: 23 May 2017 / Revised: 24 July 2017 / Accepted: 29 July 2017
In the present paper we introduce and develop a version of integral geometry for the steady Euler system.
More precisely, the system which we consider is as follows
\begin{eqnarray}\label{eqE} \sum_{j=1}^3\frac{\pa (v^iv^j)}{\pa x_j}+\frac{\pa p}{\pa x_i}=0\quad\hbox{for } i=1,2,3, \end{eqnarray} | (1.1) |
\begin{eqnarray}\label{Ed} \div (v\otimes v)+\nabla p=0. \end{eqnarray} | (1.2) |
\begin{eqnarray}\label{div} \div \,v=0, \end{eqnarray} | (1.3) |
A long-standing folklore conjecture states that a smooth compactly supported solution of (1.2) and (1.3) should be identically zero, and this is known for Beltrami flows; see [Nadirashvili2014] and also [Chae and Constantin2015]. Let us state it explicitly:
Note, however, that there do exist nontrivial Beltrami flows slowly decaying at infinity; see [Enciso and Peralta-Salas2012]. Note also that nontrivial compactly supported solutions of system (1.1) exist, e.g., any spherically symmetric vector field $ v$ is a solution of (1.1) for a suitable pressure $ p$, but we do not know whether the system \begin{eqnarray*} \sum_{j=1}^3v^j\frac{\pa v^i}{\pa x_j}+\frac{\pa p}{\pa x_i}=0,\quad i=1,2,3 \end{eqnarray*} which is equivalent to (1.1) and to (1.2) under the additional condition (1.3) , admits a non-trivial compactly supported solution not satisfying (1.3) .
Our idea is to separate the study of system (1.1) from the study of Eq. (1.3) using an integral geometry technique which permits to encode (almost) all information about a compactly supported solution $ v$ of (1.1) in a single scalar function $ w$ defined on the Grassmannian $ M$ of affine lines in space. We conjecture that this function $ w$ is in fact identically zero, which can readily be verified for any spherically symmetric solution. If it were the case, then adding the incompressibility condition (1.3) to the condition $ w=0$ we were able to obtain that $ v=0$ everywhere. In order to proof that $ w=0$ we deduce a linear differential equation for $ w$ on $ M$. Unfortunately, this equation is not elliptic and admits non-trivial solutions, and therefore, the purported annulation of $ w$ remains conjectural, despite some additional integral geometry arguments going in the same direction.
More concretely, below we characterize the kernel of (1.1) in terms of integral transforms of the quadratic forms $ v^iv^j$. Thus, given any smooth compactly supported solution $ (v;p)$ of (1.1) , we define a smooth function $ w$ on the Grassmannian $ M$ classifying lines in space using the $ X$-ray transforms of $ v^iv^j$ and then derive a linear differential equation for $ w$. Using a Radon plane transform of $ w$ we deduce one more linear homogeneous differential equation which suggests that $ w=0$ everywhere. However, we are not able to justify this claim rigorously and we formulate it as a conjecture; we show that assuming the conjecture and (1.3) one can deduce Conjecture 1.1. Therefore, we put forth
Note, in particular, that this conjecture holds for any spherically symmetric compactly supported vector field $ v.$
Note also that it is possible to prove that the general solution of Eq. (4.5) depends on two arbitrary (smooth compactly supported) functions (V.A. Sharafutdinov, personal communication) and therefore to prove Conjecture 1.2 one needs to use some non-linear argument, e.g. using the fact that the tensor $ v\otimes v$ is of rank 1 as opposed to the general symmetric tensor of rank 3 which also gives a solution of (4.5) by constructing the corresponding function $ w$; thus, we can say that we have (at least) two more independent conditions on $ w$. Unfortunately, we not know how to use this rank conditions to restrict possible functions $ w$'s. However, there do exist some natural linear conditions for a suitable tensor which are sufficient to prove Conjecture 1.2, for instance, system (5.4) which is partially supported by Eq. (5.3) .
The rest of the paper is organized as follows: in Sect. 2 we recall some definitions and results from [Sharafutdinov1994] concerning the $ X$-ray transform of symmetric tensor fields. In Sect. 3 we define and study a smooth function $ w\in C^{\infty}(M)$ which depends on a smooth compactly supported solution $ (v,p)$ of (1.1) . Section 4 contains a description of two invariant order 2 differential operators on $ C^\infty(M)$ and a differential equation for $ w$ in terms of those operators. In Sect. 5 we define a plane Radon transform for quadratic tensor fields, prove that it vanishes for some quadratic tensor field connected with $ w$ and explain why this annulation partially confirms Conjecture 1.2. Finally, in Sect. 6 we deduce Conjecture 1.1 assuming Conjecture 1.2 together with (1.3) .
We use throughout our paper the integral geometry of tensor fields developed in [Sharafutdinov1994] and discussed in [Nadirashvili et al.2016] in its three-dimensional form. Let us give some of its points in our simple situation. For details see [Sharafutdinov1994] and [Nadirashvili et al.2016].
In what follows we fix a positive scalar product $ \langle x,y\rangle, \, x,y\in \R^n$. Let \begin{eqnarray*} T{\mathbb S}^{n-1}=\{(x,\xi)\in{\mathbb R}^n\times{\mathbb R}^n:\,\|\xi\|=1,\,\langle x,\xi\rangle =0\}\subset{\mathbb R}^n\times({\mathbb R}^n{\setminus}\{0\}) \end{eqnarray*} be the tangent bundle of $ {\mathbb S}^{n-1}\subset{\mathbb R}^n$.
Given a continuous rank $ h$ symmetric tensor field $ f$ on $ {\mathbb R}^n$, the X-ray transform of $ f$ is defined for $ (x ,\xi)\in{\mathbb R}^n\times ({\mathbb R}^n{\setminus}\{0\})$ by
\begin{eqnarray} (If)(x,\xi)=\sum\limits_{i_1,\dots,i_h=1}^n\;\int\limits_ {-\infty}^\infty f_{i_1\dots i_h}(x+t\xi)\,\xi_{i_1}\dots\xi_{i_h}\,dt \label{eq0} \end{eqnarray} | (2.1) |
We denote by $ {\mathcal S} (S^h;{\mathbb R}^n)$ the space of symmetric degree $ h$ tensor fields with all components lying in the Schwartz space, and denote by $ {\mathcal S}(T{\mathbb S}^{n-1})$ the Schwartz space on $ T{\mathbb S}^{n-1}$. Below we consider only tensors from $ {\mathcal S} (S^h;{\mathbb R}^n)$ and functions from $ {\mathcal S}(T{\mathbb S}^{n-1})$. For such $ f\in {\mathcal S} (S^h;{\mathbb R}^n)$ we get a $ C^\infty$-smooth function $ \psi(x,\xi)=(If)(x,\xi)$ on $ {\mathbb R}^n\times({\mathbb R}^n{\setminus}\{0\})$ satisfying the following conditions:
\begin{eqnarray} \psi(x,t\xi)= {\mathrm{sgn}}( t) t^{h-1}\psi(x,\xi)\quad (0\neq t\in{\mathbb R}),\quad\psi(x+t\xi,\xi)=\psi(x,\xi), \label{eq1} \end{eqnarray} | (2.2) |
Conversely, for a tensor field $ f\in{\mathcal S}(S^h;{\mathbb R}^n)$, the restriction $ \chi=\psi|_{T{\mathbb S}^{n-1}}$ of the function $ \psi=If$ to the manifold $ T{\mathbb S}^{n-1}$ belongs to $ {\mathcal S}(T{\mathbb S}^{n-1} )$. Moreover, the function $ \psi$ is uniquely recovered from $ \chi$ by the formula
\begin{eqnarray} \psi(x,\xi)=\|\xi\|^{h-1}\chi\left(x-\frac{\langle x,\xi\rangle}{\|\xi\|^2} \xi,\frac{\xi}{\|\xi\|}\right), \label{1sps} \end{eqnarray} | (2.3) |
The image of the operator $ I$ is described by Theorem 2.10.1 in [Sharafutdinov1994] as follows. John's Conditions. A function $ \chi\in{\mathcal S}(T{\mathbb S}^{n-1})\ (n\geq3)$ belongs to the range of the operator $ I$ if and only if the following two conditions hold :
\begin{eqnarray} \left(\frac{\partial^2}{\partial x_{i_1}\partial\xi_{j_1}}-\frac{\partial^2}{\partial x_{j_1}\partial\xi_{i_1}}\right)\dots \left(\frac{\partial^2}{\partial x_{i_{h+1}}\partial\xi_{j_{h+1}}}-\frac{\partial^2}{\partial x_{j_{h+1}}\partial\xi_{i_{h+1}}}\right)\psi=0 \label{JE} \end{eqnarray} | (2.4) |
Define the symmetric inner differentiation operator $ d_s=\si \nabla$ by symmetrization of the covariant differentiation operator $ \nabla\colon C^{\infty} (S^h) \lra C^{\infty}(T^{h+1}),$ \begin{eqnarray*} (\nabla u)_{i_1,\ldots i_{h+1}} =u_{i_1\ldots i_h;i_{h+1}}=\frac{\pt u_{i_1\ldots i_h}}{\pt x_{i_{h+1}}}; \end{eqnarray*} it does not depend on the choice of a coordinate system.
The kernel of the operator $ I$ is given by (Theorem 2.2.1, (1),(2) in [Sharafutdinov1994]). Kernel of the Ray Transform. Let $ n\ge 2$ and $ h\ge 1$ be integers. For a compactly-supported field $ f\in C^{\infty}_0(S^h;\R^n)$ the following statements are equivalent :
\begin{eqnarray}\label{dv} d_sv = f. \end{eqnarray} | (2.5) |
Note also that an inversion formula for the operator $ I$ given by Theorem 2.10.2 in [Sharafutdinov1994] implies that it is injective on the subspace of divergence-free ($ =$solenoidal) tensor fields. The 3-Dimensional Case For $ n=3$ one notes that the tangent bundle $ T\S^2$ over $ \S^2$ coincides with the homogeneous space $ M=G/(\R\times{\rm SO}(2))=G'/(\R\times {\rm O}(2))$, where $ G=\R^3\rtimes{\rm SO}(3)$ is the group of proper rigid motions of $ \R^3$, while $ G'=G\cdot\{\pm I_3\}$ is the isometry group of $ \R^3$. Therefore the operator $ I$ for $ n=3$ can be written as $ I\colon{\mathcal S}(S^h;{\R}^3)\lra{\mathcal S}(M).$
Let us define coordinates on the open subset $ M_{nh}$ of $ M$ consisting of non-horizontal affine lines. Namely, $ m=m\left(y_1,y_2,\alpha_1,\alpha_2 \right)$ is given by a parametric equation for a current point $ A$ on $ m$, \begin{eqnarray*} A=(y_1,y_2,0)+t\alpha =(y_1+\alpha_1t,y_2+\alpha_2t,t), \end{eqnarray*} where $ t$ grows in the positive direction of $ m$ and thus the vector $ \alpha=(\alpha_1,\alpha_2,1)$ defines the positive direction of $ m$.
We can now rewrite the above general formulas using the coordinates $ (y_1,y_2,\alpha_1,\alpha_2)$. First we fix the following notation:
\begin{eqnarray}\label{eqk} k=k(\alpha_1,\alpha_2)=\sqrt{1+\alpha_1^2+ \alpha_2^2}=\sqrt{1+\|\alpha\|^2}; \end{eqnarray} | (2.6) |
Define the diffeomorphism \begin{eqnarray*} \Phi\colon U\rightarrow{\mathbb R}^4,\quad(x,y,z,\xi)=(x,y,z,\xi_1,\xi_2,\xi_3) \mapsto(y,\alpha)=(y_1,y_2,\alpha_1,\alpha_2), \end{eqnarray*} on the open set $ U= T{\S}^2\cap \{ \xi_3> 0\}$ by
\begin{eqnarray} y_1=x-\frac{\xi_1}{\xi_3}z,\quad y_2=y-\frac{\xi_2}{\xi_3}z, \quad\alpha_1=\frac{\xi_1}{\xi_3},\quad\alpha_2=\frac{\xi_2}{\xi_3}.\label{eq1.1} \end{eqnarray} | (2.7) |
For a function $ \chi\in C^\infty(U)$, we define $ \varphi\in C^\infty({\mathbb R}^4)$ by \begin{eqnarray*} \varphi=k^{h-1}\chi\circ\Phi^{-1}. \end{eqnarray*} These two functions are expressed through each other by the formulas
\begin{eqnarray} &&\chi(x,y,z,\xi)=\xi_3^{h-1}\varphi\left(x-\frac{\xi_1z}{\xi_3} ,y-\frac{\xi_2z}{\xi_3},\frac{\xi_1}{\xi_3},\frac{\xi_2}{\xi_3}\right),\nonumber\\ &&\label{phi} \varphi(y,\alpha) =k^{h-1}\chi\left(y_1-\frac{\langle y,\alpha\rangle\alpha_1} {k^2},y_2- \frac{\langle y,\alpha\rangle\alpha_2}{k^2}, -\frac{\langle y,\alpha \rangle }{k}, \frac{\alpha_1 }{k},\frac{\alpha_2}{k},\frac{1}{k}\right).\qquad\qquad \end{eqnarray} | (2.8) |
If a function $ \chi\in C^\infty(T{\mathbb S}^2)$ satisfies $ \chi(-x,-\xi)=(-1)^h\chi(x,\xi)$, then it is uniquely determined by \begin{eqnarray*} \varphi=k^{h-1}\chi|_U\circ\Phi^{-1}\in C^\infty({\mathbb R}^4). \end{eqnarray*} For a tensor field $ f\in{\mathcal S}(S^h;{\mathbb R}^3)$, the function
\begin{eqnarray}\label{phik} \varphi=k^{h-1}(If)|_U\circ\Phi^{-1}\in C^\infty({\mathbb R}^4) \end{eqnarray} | (2.9) |
\begin{eqnarray}\label{eq1.4} \varphi(y,\alpha)=\sum\limits_{i_1,\dots,i_h=1}^3\;\int\limits_{-\infty}^\infty f_{i_1\dots i_h}(y_1+\alpha_1t,y_2+\alpha_2t,t)\,\alpha_{i_1}\dots\alpha_{i_h}dt, \end{eqnarray} | (2.10) |
Let
\begin{eqnarray} \label{eql} L=_{\rm def} {\partial^2\over \partial \alpha_2\partial y_1}- {\partial^2\over \partial \alpha_1 \partial y_2 } \end{eqnarray} | (2.11) |
\begin{eqnarray} L^{h+1}\varphi=0. \label{eq1.5} \end{eqnarray} | (2.12) |
In what follows we fix a compactly supported smooth solution $ (v,p)\in C^\infty_0(\R^3)$ of system and define a function $ w\in C^\infty_0 (M)$ using the following result.
\begin{eqnarray}\label{eq3.2} \int_{L}\langle v,z\rangle\langle v,\nu_L\rangle \,d\sg_L =0 \end{eqnarray} | (3.1) |
Note that by Eq. (1.1) with $ i=1$ and $ i=2$ there holds \begin{eqnarray*} &&\frac{\pa (v^1v^3)}{\pa x_3} =-\frac{\pa (v^1v^2)}{\pa x_2}-\frac{\pa(v^1v^1)}{\pa x_1}-\frac{\pa p}{\pa x_1},\\ &&\frac{\pa (v^2v^3)}{\pa x_3}=- \frac{\pa (v^2v^1)}{\pa x_1}- \frac{\pa(v^2v^2)}{\pa x_2}-\frac{\pa p}{\pa x_2}, \end{eqnarray*} and thus we get \begin{eqnarray*} &&\frac{\pa }{\pa x _3}\left(\int v^1v^3 \,dx_1dx_2\right)=\int \frac{\pa (v^1v^3)}{\pa x_3}\,dx_1dx_2=0,\\ &&\frac{\pa }{\pa x _3}\left(\int v^2v^3 \,dx_1dx_2\right)=\int \frac{\pa (v^2v^3)}{\pa x_3}\,dx_1dx_2=0. \end{eqnarray*} Therefore, the compactly supported functions \begin{eqnarray*} \int v^1v^3 \,dx_1dx_2\quad\hbox{and}\quad \int v^2v^3 \,dx_1dx_2 \end{eqnarray*} of $ x_3$ on $ \R$ are constant and thus vanish everywhere which finishes the proof. ⬜
For any fixed value of $ x_3$, we define the vector field $ v^\perp v^3=(-v^2v^3,\,v^1v^3)$ on the plane $ (x_1,x_2,x_3)$ with coordinates $ \{x_1,x_2\}$ depending on $ x_3$ as on a parameter, where $ u^\perp=(-u_2, u_1)$ for a vector field $ u=(u_1, u_2)$ on $ \R^2$; note that below we use this notation for vector fields on various planes in $ \R^3$. Then let us set
\begin{eqnarray}\label{n7} F= \int_{-\infty}^\infty(-v^2v^3,\,v^1v^3)\,dx_3; \end{eqnarray} | (3.2) |
Therefore, by (2.5) we have
\begin{eqnarray}\label{eq3.4} d_sw_0= \nabla w_0=-F \end{eqnarray} | (3.3) |
Let us fix for a moment a point $ P^0=(x_1^0, x_2^0)\in \R^2$, let $ r \subset\Pi_{12}= \R^2$ be a ray emanating from $ P^0$ and let $ e_r$ be a unit directional vector of $ r$, then in virtue of (3.3) we have
\begin{eqnarray}\label{st} \int_{r}\langle e_{r},F\rangle \,ds_{r}=w_0(x_1^0,x_2^0) \end{eqnarray} | (3.4) |
\begin{eqnarray}\label{dw} w= -\int_{H(m)}\langle e_m,v\rangle \langle\nu_{H(m)},v\rangle \,d\si_{H(m)} \end{eqnarray} | (3.5) |
Therefore, $ w$ is a compactly supported smooth function on $ M$ and it can be written as $ w=w(y_1,y_2,\alpha_1,\alpha_2)$ on $ M_{nh}$; moreover, we get
\begin{eqnarray}\label{P0} {\pa w\over \pa y_1}(0)=\int_{-\infty}^\infty v^2v^3 \,dx_3,\quad {\pa w\over \pa y_2}(0)=-\int_{-\infty}^\infty v^1v^3 \,dx_3, \end{eqnarray} | (3.6) |
Now we give two explicit formulas for $ w$ which use two specific choices of $ H(m)$. We begin by putting
\begin{eqnarray} k_1 =\sqrt{1+\alpha_1^2},\quad k_2 =\sqrt{1+\alpha_2^2}; \end{eqnarray} | (3.7) |
Given a line $ m\in M_{nh},$ let $ H(m)_1$ and $ H(m)_2$ be the half-planes with the border-line $ m$ which are determined by the following conditions:
We have then \begin{eqnarray*} \nu_{H(m)_1}= \left(0,{ 1\over k_2},-{\alpha_2\over k_2}\right),\quad \nu_{H(m)_2}= \left(-{1\over k_1},0,{\alpha_1\over k_1} \right), \end{eqnarray*} and the plane $ H(m)_1$ forms angle $ \beta_1$ with the coordinate plane $ \Pi_{13}=\{x_2=0\}$ where $ \cos\beta_1={1/k_2}$, while the plane $ H(m)_2$ forms angle $ \beta_2$ with the coordinate plane $ \Pi_{23}=\{x_1=0\}$, $ \cos\beta_2={1/ k_1}$. Note also that we have \begin{eqnarray*} e_m=\frac 1k\left(\alpha_1,\alpha_2,1\right) =\left({\alpha_1\over k},{\alpha_2\over k},{1\over k} \right) \end{eqnarray*} for the positive unit directional vector $ e_m$ of $ m$.
\begin{align}\label{eqi} ({\rm i})\quad w&= -\int_{H(m)_2}\langle e_m,v \rangle\langle\nu_{H(m)_2},v\rangle \,d\si_2\nonumber\\ &=-\int_{-\infty}^\infty\int_{l_2 }^\infty (\langle e_m,v \rangle\langle\nu_{H(m)_2},v\rangle)|_{(l_1,x_2,x_3)} k_1dx_2dx_3\nonumber\\ &= \int_{-\infty}^\infty\int_{l_2}^\infty \frac 1k ((\alpha_1v^1+\alpha_2v^2+v^3)(v^1-\alpha_1v^3))|_{(l_1,x_2,x_3)}dx_2dx_3 \end{align} | (3.8) |
\begin{align} \label{eqii} ({\rm ii})\quad w&= -\int_{H(m)_1}\langle e_m,v \rangle\langle\nu_{H(m)_1},v\rangle \,d\si_1\nonumber\\ &=-\int_{-\infty}^\infty\int_{l_1}^\infty(\langle e_m,v \rangle\langle\nu_{H(m)_1},v\rangle)|_{(x_1,l_2,x_3)} k_2\,dx_1dx_3\nonumber\\ &= -\int_{-\infty}^\infty\int_{l_1}^\infty \frac1k((\alpha_1v^1+\alpha_2v^2+v^3) (v^2- \alpha_2 v^3))|_{(x_1,l_2,x_3)}\,dx_1dx_3.\nonumber\\ \end{align} | (3.9) |
The formulas (3.8) and (3.9) are somewhat cumbersome and use below only the following simple consequence.
\begin{equation}\label{wI} w=\int_{-\infty}^\infty\int_{l_2}^\infty (\alpha_2v^1v^2+v^1v^3+\alpha_1(v^1)^2 -\alpha_1(v^3)^2)|_{(l_1,x_2,x_3)}\,dx_2dx_3, \end{equation} | (3.10) |
\begin{equation} \label{wII} w=\int_{-\infty}^\infty\int_{l_1}^\infty(\alpha_2(v^3)^2- \alpha_1v^1v^2-v^2 v^3-\alpha_2( v^2)^2)|_{(x_1,l_2,x_3)} dx_1dx_3. \end{equation} | (3.11) |
This corollary permits to calculate the quantities \begin{eqnarray*} \;{\pa^m w\over \pa y_1^i\pa y_2^j \pa \alpha_1^k \pa \alpha_2^l}(0),\quad i+j+k+l=m, \end{eqnarray*} for $ k+l\le 1$, and in particular, implies the following.
\begin{equation}\label{w12} {\pa^2w\over\pa y_2\pa\alpha_1}(0)= \int_{-\infty}^\infty\left((v^3)^2-(v^1) ^2-x_3{\pa (v^3v^1)\over\pa x_1} \right)\Bigg|_{(0,0,x_3)} \,dx_3, \end{equation} | (3.12) |
\begin{equation}\label{w21} {\pa^2w\over\pa y_1\pa \alpha_2}(0)=\int_{-\infty}^\infty \left((v^2)^2 -(v^3) ^2+x_3{\pa (v^3v^2)\over\pa x_2} \right)\Bigg|_{(0,0,x_3)} \,dx_3, \end{equation} | (3.13) |
\begin{equation}\label{de} {\pa^2w\over\pa y_1^2}(0)+{\pa^2w\over\pa y_2^2}(0) =\int_{-\infty}^{\infty}\left({\pa (v^2v^3)\over\pa x_1}-{\pa \left(v^1v^3\right) \over\pa x_2} \right)\Bigg|_{(0,0,x_3)}\,dx_3. \end{equation} | (3.14) |
Taking then the difference of (3.12) and (3.13) we get the following formula:
\begin{eqnarray}\label{eqL} {\pa^2w \over\pa y_1\pa \alpha_2}(0)-{\pa^2w \over\pa y_2\pa \alpha_1}(0) =\int_{-\infty}^\infty(p+(v^1)^2+(v^2)^2-(v^3) ^2 )|_{(0,0,x_3 )} \,dx_3.\nonumber\\ \end{eqnarray} | (3.15) |
Indeed, we have $ \;{\pa (v^3v^1)\over\pa x_1} +{\pa (v^3v^2) \over\pa x_2} =-{\pa (p +(v^3)^2 )\over\pa x_3}$ by (1.1) and integrating \begin{eqnarray*} \int_{-\infty}^\infty x_3 \left({\pa(v^3v^1)\over\pa x_1} +{\pa (v^3v^2)\over\pa x_2} \right)\Bigg|_{(0,0,x_3 )} dx_3=-\int_{-\infty}^\infty {x_3 \pa (p +(v^3)^2)\over\pa x_3 } \Bigg|_{(0,0,x_3 )} dx_3 \end{eqnarray*} by parts we get (3.15) .
Let us define first an order 2 differential operator $ P$ on the space $ C^{2}(M).$
Recall that $ M=G/(\R\times{\rm SO}(2))=G'/(\R\times {\rm O}(2))$ for $ G=\R^3\rtimes{\rm SO}(3)$ and $ G'=G\cdot\{\pm I_3\}.$
We put $ u=g^{-1}h,\,F=f_u$, and thus we have to verify that $ LF(0)=LF_u(0)$ for $ u\in {\R}\times {\mathrm SO}(2)=St_0$, $ St_0< G$ being the stabilizer of the vertical line. It is sufficient to verify the equality separately for $ u\in {\R}$ and $ u\in {\mathrm SO}(2)$. It is clear for a vertical shift $ u\in {\R}$ since $ L$ has constant coefficients; for a rotation $ u\in {\mathrm SO}(2)$ by angle $ \theta$ in the horizontal plane one easily calculates \begin{eqnarray*} F_u(y_1,y_2,\alpha_1,\alpha_2 )&=&F(y_1\cos \theta-y_2\sin \theta,y_2\cos \theta+y_1\sin \theta,\alpha_1\cos \theta\\ &&-\, \alpha_2\sin \theta,\alpha_2\cos \theta+\alpha_1\sin \theta), \end{eqnarray*} and a simple calculation shows the necessary equation, since we get \begin{eqnarray*} &&{\partial^2 F_u(0)\over \partial \alpha_2\partial y_1}= \cos^2 \theta {\partial^2 F(0)\over \partial \alpha_2\partial y_1} -\sin^2 \theta{\partial^2 F(0)\over \partial \alpha_1\partial y_2}+\cos \theta \sin \theta\left({\partial^2 F(0)\over \partial \alpha_1\partial y_1} -{\partial^2 F(0)\over \partial \alpha_2\partial y_2}\right),\\ &&{\partial^2 F_u(0)\over \partial \alpha_1\partial y_2} =\cos^2 \theta {\partial^2 F(0)\over \partial \alpha_1\partial y_2} -\sin^2 \theta {\partial^2 F(0)\over \partial \alpha_2\partial y_1}+\cos \theta \sin \theta\left({\partial^2 F(0)\over \partial \alpha_1\partial y_1} -{\partial^2 F(0)\over \partial \alpha_2\partial y_2}\right). \end{eqnarray*} The proof is finished. ⬜
We can now rewrite (3.15) as follows
\begin{eqnarray}\label{eqP} P_0w&=&\int_{-\infty}^\infty(p+(v^1)^2+(v^2)^2-(v^3)^2)\,dx_3\nonumber\\ &=&\int_{-\infty}^\infty(p+|v|^2-2(v^3)^2)\, dx_3 \end{eqnarray} | (4.1) |
\begin{eqnarray}\label{Psps} Pw&=&\int_m(p+|v|^2-2\langle v,e_m\rangle^2) \,ds\nonumber\\ &=&\int_m(p+|v|^2-2v\otimes v)\,ds =IQ_0(m) \end{eqnarray} | (4.2) |
We will also use the fiber-wise Laplacian $ \De_M=\De_{y_1, y_2}$ acting in tangent planes to $ \S^2$; it is defined by the usual formula \begin{eqnarray*} \De_Mf(m )=\frac{\pa^2 f(m )}{\pa{y_1}^2} +\frac {\pa^2 f(m)}{\pa{y_2}^2} \end{eqnarray*} for $ f\in C^2(M)$ and a vertical line $ m=m(y_1,y_2,0,0)$. For any $ m\in M$ the value $ \De_M f(m)$ is determined by the $ G$-invariance condition as for the operator $ P$ above, and the rotational symmetry of $ \De_{y_1, y_2}$ guarantees the correctness of that definition. Note that the operators $ P$, $ \De_M$ commute and note also that (2.10) implies that for $ Q\in C_0^\infty(S^h,\R^3)$ there holds a commutation rule
\begin{eqnarray}\label{dd} I(\De Q)=\De_M(IQ). \end{eqnarray} | (4.3) |
One can also give explicit formulas for $ P$ and $ \De_M$ in our coordinates, namely,
\begin{eqnarray}\label{pe} P=k^2L+\alpha_1\frac{\pt}{\pt y_2}-\alpha_2\frac{\pt}{\pt y_1},\quad\De_M= k_1^2\frac{ \pt^2}{ \pt y_1^2}+k_2^2\frac{\pt^2}{\pt y_2^2} +2\alpha_1\alpha_2 {\partial^2 \over \partial y_1\partial y_2}. \end{eqnarray} | (4.4) |
Now we deduce the principal linear differential equation for $ w$.
\begin{eqnarray}\label{p4} P^2w=-4\De_M w. \end{eqnarray} | (4.5) |
Indeed, since $ P$ is $ G$-invariant, it is sufficient to verify the equation at a single point $ 0\in M$ which follows from (2.12) with $ h=0$.
Lemma 4.4 implies by (4.2) that
\begin{eqnarray}\label{pwq} P^2w=PIQ_0= PI((p+|v|^2)\de_{ij}-2v\otimes v)=-2PI(v\otimes v) \end{eqnarray} | (4.6) |
\begin{eqnarray}\label{iq0} IQ_0(m)=0,\quad\forall m\in M \end{eqnarray} | (4.7) |
Indeed, if $ IQ_0(m)=0$ then $ \De_M w(m)=-\frac14 P^2w(m)=-\frac14 PIQ_0(m)=0$ and thus $ w=0$, since $ w$ is compactly supported. Invariant definitions and the second proof of (4.5) Now let us give a description of $ P$ and $ \De_M$ in terms of the Lie algebra $ \mathfrak g$ of $ G$. We have $ \mathfrak g= {\mathfrak so}(3)\oplus {\mathfrak r}(3)=\R^3\oplus\R^3$ as vector spaces, where $ {\mathfrak r}(3)$ is 3-dimensional and abelian. Thus, we can write any $ g\in\mathfrak g$ as $ g=(r;s) \in{\mathfrak so}(3)\oplus {\mathfrak r}(3)$, and the commutators in $ \mathfrak g$ are given by \begin{eqnarray*} [(r_1;0),(r_2;0)] {\!}= {\!}(r_1\times r_2;0),\quad [(0;s_1),(0;s_2)]=0,\quad [(r;0),(0;s)] {\!}= {\!} (0;r \times s). \end{eqnarray*}
Let $ (R_1,R_2,R_3)$ be the standard basis of $ {\mathfrak so}(3)$, and $ (S_1,S_ 2, S_3)$ be that of $ {\mathfrak r}(3)$. Consider the following operators on $ M$:
\begin{eqnarray}\label{0p1} \tilde \De_M = S_1^2+S_2^2+S_3^2,\quad\tilde P= {S_1} {R_1}+ {S_2} {R_2}+ {S_3} {R_3}, \end{eqnarray} | (4.8) |
To prove the invariance of $ \tilde P$ under the $ x_3$-axis rotation we verify that $ \tilde P$ and $ {R_3}$ commute which can be shown as follows: \begin{eqnarray*} [ {S_1} {R_1}, {R_3}]= - {S_2} {R_1}- {S_1} {R_2},\quad [ {S_2} {R_2}, {R_3}]= {S_1} {R_2}+ {S_2} {R_1},\quad [ {S_3} {R_3}, {R_3}]= 0. \end{eqnarray*} Similarly we get its invariance under the $ x_1$- and $ x_2$-axis rotations and thus its $ {\mathrm{SO}}(3)$-invariance, while its $ x_3$-translations invariance follows from \begin{eqnarray*} [{S_1} {R_1}, {S_3}]= -{S_1}{S_2},\quad [{S_2}{R_2},{S_3}]={S_1S_2},\quad [S_3R_3, S_3]= 0. \end{eqnarray*} Since any line is $ {\mathrm SO}(3)$-conjugate to a vertical one, $ \tilde P$ is $ G$-invariant. Finally, we have $ \tilde \De_M (m_0)=\De_M (m_0),\, \tilde P(m_0)=P(m_0)\,$ for $ m_0=m(0,0,0,0)$, which finishes the proof, since $ \De_M$ and $ P$ are both $ G$-invariant. Indeed, e.g., in $ \tilde P(m_0)$ the terms $ S_1R_1+S_2R_2$ give $ L(0)$, while $ S_3R_3$ vanishes since $ m_0$ is invariant under both $ S_3$ and $ R_3.$ ⬜
\begin{eqnarray} \int_\R P^2f(l_t)\,dt =\int_\R S_2^2 R_2^2 f(l_t) \,dt.\label{l2f} \end{eqnarray} | (4.9) |
\begin{eqnarray} \int_{\R} R_2^2 w(l_t)\,dt =- 4\int_{\R} w(l_t)\,dt. \label{l3f} \end{eqnarray} | (4.10) |
Therefore, since $ \langle v,e^\th_1\rangle \langle v,e^\th_3\rangle=v^1v^3\cos 2\th+((v^1)^2-(v^3)^2){\sin 2\th\over 2}$ we have \begin{eqnarray*} {\pa^2\over \pa \th^2}\int_{\R} w(l^\th_t)\,dt&=&\int_{ x_2 > 0 }{\pa^2\over \pa \th^2} (\langle v,e^\th_1\rangle \langle v,e^\th_3\rangle) \,dx_1dx_2 dx_3\\ &=& -{4}\int_{x_2 > 0} (\langle v,e^\th_1\rangle \langle v,e^\th_3\rangle)\,dx_1dx_2 dx_3 \end{eqnarray*} and evaluating at $ \th=0$ we get a proof of Lemma 4.8.
We can finish now our second proof of (4.5) . Indeed, (4.9) and (4.10) imply that
\begin{eqnarray}\label{4l} \int_{\R} P^2 w(l_t)\,dt=\int_{\R} S_2^2 R_2^2 w(l_t)\,dt =-4 \int_{\R} S_2^2w(l_t)\,dt= -4\int_{\R} \De_M w(l_t)\,dt.\nonumber\\ \end{eqnarray} | (4.11) |
If we define a function $ F(x_1,x_2)$ on $ \R^2$ by \begin{eqnarray*} F(x_1,x_2)= P^2w(x_1,x_2,0,0)+4\De_M w(x_1,x_2,0,0), \end{eqnarray*} then the integral of $ F$ over the $ x_1$-axis vanishes by (4.11) . Changing the coordinate system $ x_1,x_2$ in $ \R^2$, we get the same for the integral of $ F$ over any line in the plane $ \{ x_1,x_2\}$. Thus $ F=0$ by Radon's theorem, and we get the conclusion. ⬜
\begin{eqnarray}\label{pde} P^3\psi+4P\De_M \psi=0 \end{eqnarray} | (4.12) |
However, it is possible to construct a function $ u\in C_0^\infty(M)$ verifying \begin{eqnarray*} P\De_Mu =-2\De_Mw,\quad \De_Mu=IQ_1 \end{eqnarray*} for some $ \,Q_1\in C_0^\infty(S^2,\R^3)$ and applying (4.12) to $ \psi=\De_Mu=IQ_1$ we get \begin{eqnarray*} 0=P^3\De_M u+4\De_M^2 P u= -2\De_M(P^2 w+4\De_M w), \end{eqnarray*} and thus we reprove (4.5) . We can define $ u$ similarly to (3.5) as follows \begin{eqnarray*} u=\int_{H(m)}{\rm{dist}}(P,m)(p+\langle \nu_{H(m)},v\rangle^2) d\si_{H(m)}, \end{eqnarray*} where $ {\rm{dist}}(P,m)$ is the distance from a point $ P\in H(m)$ to $ m$.
Let us define a Radon tensor plane transform $ J$ as follows:
\begin{eqnarray} \label{pt} JQ(L)= \int_L\mathrm{tr}(Q_{|L}) \,d\si_L \end{eqnarray} | (5.1) |
\begin{eqnarray} \label{est2} |Q(x)| \le C(1 +|x|)^{-2-\varepsilon}, \end{eqnarray} | (5.2) |
Let us explain in what Proposition 5.1 partially confirms (4.7) and thus Conjecture 1.2. One can verify that the condition $ JQ_0(L)=0, \forall L\in\R P^3$ is equivalent to the following equation for the components $ \{q^{ij}\}$ of $ Q_0{:}$
\begin{eqnarray}\label{jq0} \sum_{ i,j=1}^3 {\pa^2 q^{ij}\over\pa x_i\pa x_j}=\De\tr\, Q_0, \end{eqnarray} | (5.3) |
\begin{eqnarray}\label{jq} {2\,\pa q^{ij}\over\pa x_i\pa x_j}={\pa^2q^{ii}\over\pa x_j^2}+ {\pa^2 q^{jj}\over\pa x_i^2},\quad 1\le i< j\le 3 \end{eqnarray} | (5.4) |
Now we can deduce Conjecture 1.1 from Conjecture 1.2.
\begin{eqnarray}\label{int} \int_m\langle v,t\rangle\langle v,n\rangle \,ds=0. \end{eqnarray} | (6.1) |
Let $ L\ss \R^3$ be an affine plane; let $ v_n=\langle\nu_L,v\rangle$ and $ v_t=v-v_n\nu_L$ be its components normal to $ L$ and tangent to $ L$, respectively. Then by (6.1) we have $ IV=0$ for the vector field $ V=v_n v_t$ on $ L$, and hence $ \curl_L V =0$ for the curl operator $ \curl_L$ on $ L$ which gives
\begin{eqnarray}\label{eqr} v_n\curl_L v_t - \langle v^\perp_t, \nabla_L v_n\rangle=-v_n\om_n- \langle v^\perp_t, \nabla_L v_n\rangle=0 \end{eqnarray} | (6.2) |
First take $ L=\Pi_{12}$, then $ v_t=(v^1,v^2,0),\,v_n=v^3,\,V=v^3v_t$ and we get
\begin{eqnarray} \label{eq01} v^3\curl_L v_t-\langle v^\perp_t, \nabla v^3\rangle=v^3\left({\pa v^1 \over \pa x_2} -{\pa v^2 \over \pa x_1} \right)-v^1{\pa v^3 \over \pa x_2}+v^2 {\pa v^3 \over \pa x_1} =0. \end{eqnarray} | (6.3) |
In orthonormal coordinates with $ v^1(u_0)=v^2(u_0) =0$ we get for $ u_0\in \Om$ that
\begin{eqnarray}\label{eqc5} v^3\left({\pa v^1 \over \pa x_2} -{\pa v^2 \over \pa x_1} \right)(u_0) =0\quad \hbox{and therefore}\quad \langle v,\om\rangle(u_0) =0. \end{eqnarray} | (6.4) |
\begin{eqnarray}\label{eq40} \langle v \nabla v,\om\rangle+ \langle v\nabla \om, v\rangle=0 ; \end{eqnarray} | (6.5) |
\begin{eqnarray}\label{eq41} v \nabla \om= \om\nabla v \end{eqnarray} | (6.6) |
\begin{eqnarray}\label{eq42} \langle v \nabla v,\om\rangle+ \langle\om \nabla v, v\rangle=0. \end{eqnarray} | (6.7) |
\begin{eqnarray}\label{eq43} {\pa v^1 \over \pa x_2}(u_0) +{\pa v^2 \over \pa x_1}(u_0) =0, \end{eqnarray} | (6.8) |
Moreover, since the vector $ \om$ is directed along $ x_2$, we get
\begin{eqnarray}\label{eq45} {\pa v^1\over \pa x_2}(u_0) ={\pa v^2\over\pa x_1}(u_0)\quad \hbox{and therefore}\quad{\pa v^1\over \pa x_2}(u_0) ={\pa v^2 \over \pa x_1}(u_0)=0. \end{eqnarray} | (6.9) |
Let then $ L=\Pi_{13}$, and thus $ v_t=(v^1,0,v^3),\,v_n=v^2,\,V=v^2v_t$. Since $ v_n(u_0)=0$, we get from (6.2) and (6.6) that
\begin{eqnarray}\label{eq46} {\pa v^2 \over \pa x_3} (u_0)=0\quad \hbox{and hence}\quad{\pa v^3 \over \pa x_2}(u_0) =0\quad \hbox{and}\quad{\pa \om^3 \over \pa x_1}(u_0)=0. \end{eqnarray} | (6.10) |
\begin{eqnarray}\label{eq48} {\pa \om^1 \over \pa x_1}(u_0)=0\quad \hbox{and}\quad {\pa \om^1 \over \pa x_3}(u_0)=0. \end{eqnarray} | (6.11) |
Now we take $ L=\{x_2+x_3=0\}$, therefore $ v_n={v^2+v^3\over \sqrt 2},\nu_L=\left(0, {1\over \sqrt 2},{1\over \sqrt 2} \right)$, $ v_t=\left(v^1, {v^2-v^3\over 2},{v^3-v^2\over 2} \right)$ and $ V={v^2+v^3\over \sqrt 2} \left(v^1, {v^2-v^3\over \sqrt 2} \right)_{\mathcal{B}}$ in the orthonormal basis $ {\mathcal{B}}=\left\{e_1'=(1,0,0), e_2'= \left(0, {1\over \sqrt 2},-{1\over \sqrt 2} \right)\right\}$. Since $ v_n(u_0)=0$ and the vector $ v_t^\perp(u_0)$ is directed along $ e'_1$, we get from (6.2) that \begin{eqnarray*} v^1(u_0) \left ({\pa v^2 \over \pa x_2}(u_0)+{\pa v^2\over\pa x_3}(u_0) -{\pa v^3\over\pa x_3} (u_0)-{\pa v^3 \over \pa x_2} (u_0)\right)=0 \end{eqnarray*} and thus \begin{eqnarray*} {\pa v^2 \over \pa x_2}(u_0)+{\pa v^2\over\pa x_3} (u_0)-{\pa v^3\over\pa x_3} (0)-{\pa v^3 \over \pa x_2}(u_0)=0. \end{eqnarray*} Therefore by (6.10) we get also
\begin{eqnarray}\label{eq49} {\pa v^2 \over \pa x_2}(u_0) ={\pa v^3 \over \pa x_3}(u_0). \end{eqnarray} | (6.12) |
For $ L=\{x_1+x_2=0\}$ we then have $ v_n={v^1+v^2\over\sqrt 2}$, $ \nu_L=\left( {1\over \sqrt 2},{1\over \sqrt 2},0 \right),$ $ v_t=\left( {v^1-v^2\over 2},{v^2-v^1\over 2},v^3\right)$ and thus $ V={v^1+v^2\over\sqrt 2}\left({v^1-v^2\over\sqrt 2},v^3\right)_{\mathcal{B'}}$ in the plane basis $ {\mathcal{B'}}=\left\{\left({1\over \sqrt 2},-{1\over \sqrt 2},0 \right), (0,0,1)\right\}$. Since the vector $ v_t^\perp(u_0)$ is directed along $ (0,0,1)$ we get from (6.2) and (6.9) that \begin{eqnarray*} v^1(u_0)\left(\om^2(u_0)+{\pa v^1\over\pa x_3}(u_0)+{\pa v^2\over\pa x_3} (u_0) \right)=0; \end{eqnarray*} therefore, we get by (6.10) that
\begin{eqnarray}\label{eq51} \om^2(u_0)=-{\pa v^1 \over \pa x_3}(u_0). \end{eqnarray} | (6.13) |
If a trajectory $ \ga=\ga(t)$ of the flow $ v$ is parametrized by $ t,$ i.e. $ \frac{d\ga}{d t}=v,$ we have in virtue of (6.6) a differential inequality \begin{eqnarray*} |q'(t)|\leq C |q(t)|, \end{eqnarray*} for the function $ q(t)=_{\rm def } \om^2(\gamma(t))$ and a positive constant $ C$. Therefore, if $ q(0)\ne0$ then $ q(t)\ne0$ for any $ t\in \R$, thus any trajectory of $ v$ does not cross $ \pa\Om =\pa D$ and hence stays either in $ \bar\Om$ or in $ \bar D$.
Using (6.9) , we see that $ |v|$ is constant on any trajectory $ \Ga$ of the vector field $ \om$ and, conversely, (6.10) and (6.11) imply that $ \om$ has a constant direction on any trajectory $ \ga$ of the flow $ v$ and therefore $ \ga\ss \Pi_\ga$ is a plane curve for an affine plane $ \Pi_\ga$. Set $ \xi =\om/|\om|$, then we can define the vector $ \xi(\ga)$ for any $ \ga \ss \Om$ and $ \xi(\ga)\perp \Pi_\ga$. For $ z\in \Om$ we get
\begin{eqnarray}\label{eq82} {\pa \xi \over\pa x_1}(z)=0 \end{eqnarray} | (6.14) |
\begin{eqnarray}\label{eq80} {\pa \xi^1 \over\pa x_3}(z)=0. \end{eqnarray} | (6.15) |
Denote by $ \ga(s,t)\ss \Om$ the trajectory of $ v$ passing through $ z+(0,s,0)$, and let $ L_s^z$ be the plane containing $ \ga(s,t)$. Then $ L_s^z\perp\om (z+(0,s,0))$ and the planes $ L_s^z$ are invariant under the flow $ v$ and foliate a neighborhood of $ z$ in $ \R^3$. Let $ \la (s,y)$ for $ y\in \Pi_{13}$ be an affine function on $ \Pi_{13}$ with the graph $ L_s^z$ and let $ l_z(y)={\pa \la\over \pa s}(0,y)$ then $ l_z$ is an affine linear function. Denote by $ G$ a connected component of $ \Pi_{13}\cap \Om,\, z\in G$ then $ G$ is invariant under the flow $ v$. We fix some $ z'\in G$ and set \begin{eqnarray*} l=l_{z'}, \end{eqnarray*} then $ l(z')=1$.
Let $ z_1,z_2\in G$, then some neighborhoods of $ z_1$ and $ z_2$ in $ \R^3$ are foliated by the same set of planes invariant under the flow $ v$ and thus the sets of planes $ L^{z_1}_s$ and $ L^{z_2}_s$ are the same after a reparametrization. Therefore $ l$ does not vanish in $ G$ and we have $ l_{z_1}=l_{z_2}/l_{z_2}(z_1)$. Set now \begin{eqnarray*} h(t)={\pa \ga(s,t)\over\pa s}{|_{s=0}} \end{eqnarray*} then $ h(0)=(0,1,0)$ and thus by (6.6) the vector field $ h$ is proportional to $ \om$ on $ \ga=\ga(0,t)$. Since $ \om$ is orthogonal to $ \Pi_{13}$ on $ \ga$ we get that $ h(y) = (0,l(y),0),$
\begin{eqnarray}\label{eq52a} {\pa v^2\over\pa x_2}(y)={\pa \ln l\over\pa v}(y) \end{eqnarray} | (6.16) |
It follows by (6.16) and (6.12) that
\begin{eqnarray}\label{d51} {\pa v^3\over\pa x_3}(y) ={\pa \ln l\over\pa v}(y) \end{eqnarray} | (6.17) |
\begin{eqnarray}\label{d52} {\pa |v|\over\pa x_1}(y)=-2{\pa \ln l\over\pa v}(y) ={\pa \ln |v|\over\pa v}(y); \end{eqnarray} | (6.18) |
\begin{eqnarray}\label{eq521} |v(y)|= \frac{ C_\gamma }{l^2(y)} \end{eqnarray} | (6.19) |
\begin{eqnarray} \label{ln0} v(y)\ne 0\quad\hbox{for any }y\in\bar G\hbox{ with }l(y)\ne 0. \end{eqnarray} | (6.20) |
Let $ z_0\in \bar G$ be a point where the function $ |v|$ attains its maximum on $ \bar G$, then $ z_0\in \pa G$. Indeed, if it is not the case, we have \begin{eqnarray*} {\pa v^1 \over \pa x_3}(z_0) =0, \end{eqnarray*} and hence $ \om(z_0)=0$ by (6.13) which implies $ z_0\in \pa G$.
Let $ \ga_1$ be the trajectory of $ v$ starting from $ z_1\in \pa G$ with $ v(z_1)\neq 0$, then $ \om=0$ on the whole trajectory $ \ga_1$ and $ \ga_1\subset \pa \Om$. Therefore $ \nabla b = v\times \om=0$ on $ \ga_1$, where $ b=p+\frac12 |v|^2 $ is the Bernoulli function (see, e.g., [Arnold and Khesin1998]) and we get
\begin{eqnarray}\label{eq52} \nabla p=-\frac12 \nabla |v|^2\quad \hbox{on } \ga_1. \end{eqnarray} | (6.21) |
Let now $ z_0=0$ and continue to assume that $ x_1$ is directed along $ v(0)\ne 0$ and $ x_2$ is directed along $ \om(x)\ne 0$ for some $ x\in G$ (the direction of $ \om(x)$ does not depend on $ x$), then $ l$ is a linear function on $ \Pi_{13}$ vanishing on the $ x_1$-axis: $ l=Cx_3$ for $ C\neq 0$. Denote now $ D^+_\epsilon =B_\epsilon\cap\{ 0< x_3 \}$ and $ D^-_\epsilon=B_ \epsilon\cap\{0> x_3 \},$ then we have $ D^+_\epsilon\ss G$. Indeed, first note that $ (D^+_\epsilon\cap\pa G)\cup( D^-_\epsilon\cap \pa G)=\emptyset$ since otherwise the trajectory $ \ga_1$ starting from $ z_1\in (D^+_\epsilon\cap \pa G)\cup (D^-_\epsilon\cap \pa G)$ leads to a contradiction since $ l|_{\ga_1}=0$. Moreover, for the trajectory $ \al_0(t) $ of $ v^\perp =(-v^3,v^1)$ starting at 0 we have $ \al_0(t)\in D^+_\epsilon$ for a small $ t> 0$ and $ \al_0(t)\in D^-_\epsilon$ for a small $ t< 0$. Since $ \om\ne 0$ on $ G$ we get that $ |v|$ strictly decreases along $ \al_0$ by (6.13) ($ v(0)$ being parallel to $ x_1$) while $ \al_0(t)$ stays in $ G$ and since $ |v|$ attains at $ 0$ its maximum in $ \bar G$ we get that $ D^-_\epsilon\bigcap G=\emptyset$; therefore, $ D^+_\epsilon\ss G$.
Furthermore, any trajectory $ \ga_s$ of $ v$ starting from the point $ (0,0,s)\in D^+_ \epsilon$ with $ 0< s< \epsilon$ and a sufficiently small $ \epsilon > 0$ is closed. Indeed, by (6.19) we may assume that $ C_{\ga_s}$ strictly increases as a function of $ s\in(0,\epsilon)$ and thus $ \ga_s$ with $ s\in(0,\epsilon)$ intersects the interval $ (0,(0,\epsilon))$ only once. By the Poincaré–Bendixson theorem we get that $ \ga_s$ either
Note now that $ C_{\ga_s}$ tends to zero for $ s \to 0$ by (6.19) . Any trajectory $ \al$ of $ v^\perp$ in $ A$ is orthogonal to the trajectories $ \ga_s$ and thus intersects all $ \ga_s$ while $ |v|$ strictly decreases along $ \al$ by (6.13) since $ \om^2> 0$ on $ G$. If $ \lambda\in (0,\epsilon)$ then \begin{eqnarray*} \inf_{\ga_{\lambda}}|v|> |v(z)| \end{eqnarray*} for a sufficiently small $ s\in (0,\la)$ and some $ z\in \gamma_s$, while the trajectory $ \al_z$ of $ v^\perp$ starting from $ z$ intersects $ \ga_{\lambda}$ and $ |v|$ strictly decreases along $ \al_z$ which gives a contradiction and thus finishes the proof.
Let us briefly discuss Conjectures 1.1 and 1.2 in terms of the vector analysis for compactly supported tensor fields in $ \R^3$. In this section we suppose that $ v\in C_0^\infty(S^1,\R^3)$. We can rewrite (1.2) as follows
\begin{eqnarray}\label{Ec} \curl(\div (v\otimes v))=0. \end{eqnarray} | (7.1) |
\begin{eqnarray}\label{sc} \Psi=\Psi(v)=_{\mathrm{def}}\si(\curl(v\otimes v))=0 \end{eqnarray} | (7.2) |
We have then $ IZ(m')=w_{\nu_m}(m)=\langle \nabla w, \nu_m\rangle$ for a line $ m\ss {\Pi_{23}(x_1)},$ a normal $ \nu_m$ to $ m$ and a line $ m'\perp m\ss {\Pi_{23}(x_1)},$ thus $ IZ=0$ and hence the solenoidal component $ ^sZ $ equals zero, where $ Z=^sZ+\,^pZ$ is the Helmholtz decomposition of the vector field $ Z$. Therefore we have \begin{eqnarray*} \;\Psi^{11}=\curl Z= \curl\, ^s Z=0, \end{eqnarray*} thus $ \Psi^{ii}=0$ for $ \,i=1,2,3$ and rotating the coordinate system in each plane $ {\{ x_i,x_j\}}$ through the angle $ \frac{\pi}{4}$ we get $ \Psi^{ij}=0$ for all $ \,1\le i \le j\le 3.$ ⬜
Moreover, the proof of Theorem 6.1 shows that the conditions $ \Psi(v)=0$ and $ \mathrm{div}\,v=0$ imply $ v=0$.
Therefore Conjectures 1.1 and 1.2 follow from
Another equivalent statement can be formulated as follows
One can also ask whether the condition $ \curl(\mathrm{div}(v\otimes v))=0$ implies that $ v$ is spherically symmetric, which would grant Conjectures 1.1, 1.2, 7.2 and 7.3.